xref: /dragonfly/sys/kern/kern_synch.c (revision fcf53d9b)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.91 2008/09/09 04:06:13 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #include <sys/uio.h>
55 #ifdef KTRACE
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 #include <sys/ktr.h>
60 #include <sys/serialize.h>
61 
62 #include <sys/signal2.h>
63 #include <sys/thread2.h>
64 #include <sys/spinlock2.h>
65 #include <sys/mutex2.h>
66 
67 #include <machine/cpu.h>
68 #include <machine/smp.h>
69 
70 TAILQ_HEAD(tslpque, thread);
71 
72 static void sched_setup (void *dummy);
73 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
74 
75 int	hogticks;
76 int	lbolt;
77 int	lbolt_syncer;
78 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
79 int	ncpus;
80 int	ncpus2, ncpus2_shift, ncpus2_mask;	/* note: mask not cpumask_t */
81 int	ncpus_fit, ncpus_fit_mask;		/* note: mask not cpumask_t */
82 int	safepri;
83 int	tsleep_now_works;
84 int	tsleep_crypto_dump = 0;
85 
86 static struct callout loadav_callout;
87 static struct callout schedcpu_callout;
88 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
89 
90 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
91 
92 #if !defined(KTR_TSLEEP)
93 #define KTR_TSLEEP	KTR_ALL
94 #endif
95 KTR_INFO_MASTER(tsleep);
96 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
98 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
100 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", sizeof(void *));
101 
102 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
103 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
104 
105 struct loadavg averunnable =
106 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
107 /*
108  * Constants for averages over 1, 5, and 15 minutes
109  * when sampling at 5 second intervals.
110  */
111 static fixpt_t cexp[3] = {
112 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
113 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
114 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
115 };
116 
117 static void	endtsleep (void *);
118 static void	loadav (void *arg);
119 static void	schedcpu (void *arg);
120 #ifdef SMP
121 static void	tsleep_wakeup_remote(struct thread *td);
122 #endif
123 
124 /*
125  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
126  * Note that 'tick' is in microseconds per tick.
127  */
128 static int
129 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
130 {
131 	int error, new_val;
132 
133 	new_val = sched_quantum * ustick;
134 	error = sysctl_handle_int(oidp, &new_val, 0, req);
135         if (error != 0 || req->newptr == NULL)
136 		return (error);
137 	if (new_val < ustick)
138 		return (EINVAL);
139 	sched_quantum = new_val / ustick;
140 	hogticks = 2 * sched_quantum;
141 	return (0);
142 }
143 
144 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
145 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
146 
147 /*
148  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
149  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
150  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
151  *
152  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
153  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
154  *
155  * If you don't want to bother with the faster/more-accurate formula, you
156  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
157  * (more general) method of calculating the %age of CPU used by a process.
158  *
159  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
160  */
161 #define CCPU_SHIFT	11
162 
163 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
164 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
165 
166 /*
167  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
168  */
169 int     fscale __unused = FSCALE;	/* exported to systat */
170 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
171 
172 /*
173  * Recompute process priorities, once a second.
174  *
175  * Since the userland schedulers are typically event oriented, if the
176  * estcpu calculation at wakeup() time is not sufficient to make a
177  * process runnable relative to other processes in the system we have
178  * a 1-second recalc to help out.
179  *
180  * This code also allows us to store sysclock_t data in the process structure
181  * without fear of an overrun, since sysclock_t are guarenteed to hold
182  * several seconds worth of count.
183  *
184  * WARNING!  callouts can preempt normal threads.  However, they will not
185  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
186  */
187 static int schedcpu_stats(struct proc *p, void *data __unused);
188 static int schedcpu_resource(struct proc *p, void *data __unused);
189 
190 static void
191 schedcpu(void *arg)
192 {
193 	allproc_scan(schedcpu_stats, NULL);
194 	allproc_scan(schedcpu_resource, NULL);
195 	wakeup((caddr_t)&lbolt);
196 	wakeup((caddr_t)&lbolt_syncer);
197 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
198 }
199 
200 /*
201  * General process statistics once a second
202  */
203 static int
204 schedcpu_stats(struct proc *p, void *data __unused)
205 {
206 	struct lwp *lp;
207 
208 	/*
209 	 * Threads may not be completely set up if process in SIDL state.
210 	 */
211 	if (p->p_stat == SIDL)
212 		return(0);
213 
214 	PHOLD(p);
215 	lwkt_gettoken(&p->p_token);
216 
217 	p->p_swtime++;
218 	FOREACH_LWP_IN_PROC(lp, p) {
219 		if (lp->lwp_stat == LSSLEEP)
220 			lp->lwp_slptime++;
221 
222 		/*
223 		 * Only recalculate processes that are active or have slept
224 		 * less then 2 seconds.  The schedulers understand this.
225 		 */
226 		if (lp->lwp_slptime <= 1) {
227 			p->p_usched->recalculate(lp);
228 		} else {
229 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
230 		}
231 	}
232 	lwkt_reltoken(&p->p_token);
233 	PRELE(p);
234 	return(0);
235 }
236 
237 /*
238  * Resource checks.  XXX break out since ksignal/killproc can block,
239  * limiting us to one process killed per second.  There is probably
240  * a better way.
241  */
242 static int
243 schedcpu_resource(struct proc *p, void *data __unused)
244 {
245 	u_int64_t ttime;
246 	struct lwp *lp;
247 
248 	if (p->p_stat == SIDL)
249 		return(0);
250 
251 	PHOLD(p);
252 	lwkt_gettoken(&p->p_token);
253 
254 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
255 		lwkt_reltoken(&p->p_token);
256 		PRELE(p);
257 		return(0);
258 	}
259 
260 	ttime = 0;
261 	FOREACH_LWP_IN_PROC(lp, p) {
262 		/*
263 		 * We may have caught an lp in the middle of being
264 		 * created, lwp_thread can be NULL.
265 		 */
266 		if (lp->lwp_thread) {
267 			ttime += lp->lwp_thread->td_sticks;
268 			ttime += lp->lwp_thread->td_uticks;
269 		}
270 	}
271 
272 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
273 	case PLIMIT_TESTCPU_KILL:
274 		killproc(p, "exceeded maximum CPU limit");
275 		break;
276 	case PLIMIT_TESTCPU_XCPU:
277 		if ((p->p_flag & P_XCPU) == 0) {
278 			p->p_flag |= P_XCPU;
279 			ksignal(p, SIGXCPU);
280 		}
281 		break;
282 	default:
283 		break;
284 	}
285 	lwkt_reltoken(&p->p_token);
286 	PRELE(p);
287 	return(0);
288 }
289 
290 /*
291  * This is only used by ps.  Generate a cpu percentage use over
292  * a period of one second.
293  *
294  * MPSAFE
295  */
296 void
297 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
298 {
299 	fixpt_t acc;
300 	int remticks;
301 
302 	acc = (cpticks << FSHIFT) / ttlticks;
303 	if (ttlticks >= ESTCPUFREQ) {
304 		lp->lwp_pctcpu = acc;
305 	} else {
306 		remticks = ESTCPUFREQ - ttlticks;
307 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
308 				ESTCPUFREQ;
309 	}
310 }
311 
312 /*
313  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
314  * like addresses being slept on.
315  */
316 #define TABLESIZE	1024
317 #define LOOKUP(x)	(((intptr_t)(x) >> 6) & (TABLESIZE - 1))
318 
319 static cpumask_t slpque_cpumasks[TABLESIZE];
320 
321 /*
322  * General scheduler initialization.  We force a reschedule 25 times
323  * a second by default.  Note that cpu0 is initialized in early boot and
324  * cannot make any high level calls.
325  *
326  * Each cpu has its own sleep queue.
327  */
328 void
329 sleep_gdinit(globaldata_t gd)
330 {
331 	static struct tslpque slpque_cpu0[TABLESIZE];
332 	int i;
333 
334 	if (gd->gd_cpuid == 0) {
335 		sched_quantum = (hz + 24) / 25;
336 		hogticks = 2 * sched_quantum;
337 
338 		gd->gd_tsleep_hash = slpque_cpu0;
339 	} else {
340 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
341 					    M_TSLEEP, M_WAITOK | M_ZERO);
342 	}
343 	for (i = 0; i < TABLESIZE; ++i)
344 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
345 }
346 
347 /*
348  * This is a dandy function that allows us to interlock tsleep/wakeup
349  * operations with unspecified upper level locks, such as lockmgr locks,
350  * simply by holding a critical section.  The sequence is:
351  *
352  *	(acquire upper level lock)
353  *	tsleep_interlock(blah)
354  *	(release upper level lock)
355  *	tsleep(blah, ...)
356  *
357  * Basically this functions queues us on the tsleep queue without actually
358  * descheduling us.  When tsleep() is later called with PINTERLOCK it
359  * assumes the thread was already queued, otherwise it queues it there.
360  *
361  * Thus it is possible to receive the wakeup prior to going to sleep and
362  * the race conditions are covered.
363  */
364 static __inline void
365 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
366 {
367 	thread_t td = gd->gd_curthread;
368 	int id;
369 
370 	crit_enter_quick(td);
371 	if (td->td_flags & TDF_TSLEEPQ) {
372 		id = LOOKUP(td->td_wchan);
373 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
374 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
375 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
376 	} else {
377 		td->td_flags |= TDF_TSLEEPQ;
378 	}
379 	id = LOOKUP(ident);
380 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
381 	atomic_set_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
382 	td->td_wchan = ident;
383 	td->td_wdomain = flags & PDOMAIN_MASK;
384 	crit_exit_quick(td);
385 }
386 
387 void
388 tsleep_interlock(const volatile void *ident, int flags)
389 {
390 	_tsleep_interlock(mycpu, ident, flags);
391 }
392 
393 /*
394  * Remove thread from sleepq.  Must be called with a critical section held.
395  */
396 static __inline void
397 _tsleep_remove(thread_t td)
398 {
399 	globaldata_t gd = mycpu;
400 	int id;
401 
402 	KKASSERT(td->td_gd == gd);
403 	if (td->td_flags & TDF_TSLEEPQ) {
404 		td->td_flags &= ~TDF_TSLEEPQ;
405 		id = LOOKUP(td->td_wchan);
406 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
407 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
408 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
409 		td->td_wchan = NULL;
410 		td->td_wdomain = 0;
411 	}
412 }
413 
414 void
415 tsleep_remove(thread_t td)
416 {
417 	_tsleep_remove(td);
418 }
419 
420 /*
421  * This function removes a thread from the tsleep queue and schedules
422  * it.  This function may act asynchronously.  The target thread may be
423  * sleeping on a different cpu.
424  *
425  * This function mus be called while in a critical section but if the
426  * target thread is sleeping on a different cpu we cannot safely probe
427  * td_flags.
428  *
429  * This function is only called from a different cpu via setrunnable()
430  * when the thread is in a known sleep.  However, multiple wakeups are
431  * possible and we must hold the td to prevent a race against the thread
432  * exiting.
433  */
434 static __inline
435 void
436 _tsleep_wakeup(struct thread *td)
437 {
438 #ifdef SMP
439 	globaldata_t gd = mycpu;
440 
441 	if (td->td_gd != gd) {
442 		lwkt_hold(td);
443 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)tsleep_wakeup_remote, td);
444 		return;
445 	}
446 #endif
447 	_tsleep_remove(td);
448 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
449 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
450 		lwkt_schedule(td);
451 	}
452 }
453 
454 #ifdef SMP
455 static
456 void
457 tsleep_wakeup_remote(struct thread *td)
458 {
459 	_tsleep_wakeup(td);
460 	lwkt_rele(td);
461 }
462 #endif
463 
464 
465 /*
466  * General sleep call.  Suspends the current process until a wakeup is
467  * performed on the specified identifier.  The process will then be made
468  * runnable with the specified priority.  Sleeps at most timo/hz seconds
469  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
470  * before and after sleeping, else signals are not checked.  Returns 0 if
471  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
472  * signal needs to be delivered, ERESTART is returned if the current system
473  * call should be restarted if possible, and EINTR is returned if the system
474  * call should be interrupted by the signal (return EINTR).
475  *
476  * Note that if we are a process, we release_curproc() before messing with
477  * the LWKT scheduler.
478  *
479  * During autoconfiguration or after a panic, a sleep will simply
480  * lower the priority briefly to allow interrupts, then return.
481  */
482 int
483 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
484 {
485 	struct thread *td = curthread;
486 	struct lwp *lp = td->td_lwp;
487 	struct proc *p = td->td_proc;		/* may be NULL */
488 	globaldata_t gd;
489 	int sig;
490 	int catch;
491 	int id;
492 	int error;
493 	int oldpri;
494 	struct callout thandle;
495 
496 	/*
497 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
498 	 * even in stable.  Just scrap it for now.
499 	 */
500 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
501 		/*
502 		 * After a panic, or before we actually have an operational
503 		 * softclock, just give interrupts a chance, then just return;
504 		 *
505 		 * don't run any other procs or panic below,
506 		 * in case this is the idle process and already asleep.
507 		 */
508 		splz();
509 		oldpri = td->td_pri;
510 		lwkt_setpri_self(safepri);
511 		lwkt_switch();
512 		lwkt_setpri_self(oldpri);
513 		return (0);
514 	}
515 	logtsleep2(tsleep_beg, ident);
516 	gd = td->td_gd;
517 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
518 
519 	/*
520 	 * NOTE: all of this occurs on the current cpu, including any
521 	 * callout-based wakeups, so a critical section is a sufficient
522 	 * interlock.
523 	 *
524 	 * The entire sequence through to where we actually sleep must
525 	 * run without breaking the critical section.
526 	 */
527 	catch = flags & PCATCH;
528 	error = 0;
529 	sig = 0;
530 
531 	crit_enter_quick(td);
532 
533 	KASSERT(ident != NULL, ("tsleep: no ident"));
534 	KASSERT(lp == NULL ||
535 		lp->lwp_stat == LSRUN ||	/* Obvious */
536 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
537 		("tsleep %p %s %d",
538 			ident, wmesg, lp->lwp_stat));
539 
540 	/*
541 	 * We interlock the sleep queue if the caller has not already done
542 	 * it for us.  This must be done before we potentially acquire any
543 	 * tokens or we can loose the wakeup.
544 	 */
545 	if ((flags & PINTERLOCKED) == 0) {
546 		id = LOOKUP(ident);
547 		_tsleep_interlock(gd, ident, flags);
548 	}
549 
550 	/*
551 	 * Setup for the current process (if this is a process).
552 	 *
553 	 * We hold the process token if lp && catch.  The resume
554 	 * code will release it.
555 	 */
556 	if (lp) {
557 		if (catch) {
558 			/*
559 			 * Early termination if PCATCH was set and a
560 			 * signal is pending, interlocked with the
561 			 * critical section.
562 			 *
563 			 * Early termination only occurs when tsleep() is
564 			 * entered while in a normal LSRUN state.
565 			 */
566 			lwkt_gettoken(&p->p_token);
567 			if ((sig = CURSIG(lp)) != 0)
568 				goto resume;
569 
570 			/*
571 			 * Early termination if PCATCH was set and a
572 			 * mailbox signal was possibly delivered prior to
573 			 * the system call even being made, in order to
574 			 * allow the user to interlock without having to
575 			 * make additional system calls.
576 			 */
577 			if (p->p_flag & P_MAILBOX)
578 				goto resume;
579 
580 			/*
581 			 * Causes ksignal to wake us up if a signal is
582 			 * received (interlocked with p->p_token).
583 			 */
584 			lp->lwp_flag |= LWP_SINTR;
585 		}
586 	} else {
587 		KKASSERT(p == NULL);
588 	}
589 
590 	/*
591 	 * Make sure the current process has been untangled from
592 	 * the userland scheduler and initialize slptime to start
593 	 * counting.
594 	 */
595 	if (lp) {
596 		p->p_usched->release_curproc(lp);
597 		lp->lwp_slptime = 0;
598 	}
599 
600 	/*
601 	 * If the interlocked flag is set but our cpu bit in the slpqueue
602 	 * is no longer set, then a wakeup was processed inbetween the
603 	 * tsleep_interlock() (ours or the callers), and here.  This can
604 	 * occur under numerous circumstances including when we release the
605 	 * current process.
606 	 *
607 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
608 	 * to process incoming IPIs, thus draining incoming wakeups.
609 	 */
610 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
611 		logtsleep2(ilockfail, ident);
612 		goto resume;
613 	}
614 
615 	/*
616 	 * scheduling is blocked while in a critical section.  Coincide
617 	 * the descheduled-by-tsleep flag with the descheduling of the
618 	 * lwkt.
619 	 *
620 	 * The timer callout is localized on our cpu and interlocked by
621 	 * our critical section.
622 	 */
623 	lwkt_deschedule_self(td);
624 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
625 	td->td_wmesg = wmesg;
626 
627 	/*
628 	 * Setup the timeout, if any.  The timeout is only operable while
629 	 * the thread is flagged descheduled.
630 	 */
631 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
632 	if (timo) {
633 		callout_init_mp(&thandle);
634 		callout_reset(&thandle, timo, endtsleep, td);
635 	}
636 
637 	/*
638 	 * Beddy bye bye.
639 	 */
640 	if (lp) {
641 		/*
642 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
643 		 */
644 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
645 		/*
646 		 * tstop() sets LSSTOP, so don't fiddle with that.
647 		 */
648 		if (lp->lwp_stat != LSSTOP)
649 			lp->lwp_stat = LSSLEEP;
650 		lp->lwp_ru.ru_nvcsw++;
651 		lwkt_switch();
652 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
653 
654 		/*
655 		 * And when we are woken up, put us back in LSRUN.  If we
656 		 * slept for over a second, recalculate our estcpu.
657 		 */
658 		lp->lwp_stat = LSRUN;
659 		if (lp->lwp_slptime)
660 			p->p_usched->recalculate(lp);
661 		lp->lwp_slptime = 0;
662 	} else {
663 		lwkt_switch();
664 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
665 	}
666 
667 	/*
668 	 * Make sure we haven't switched cpus while we were asleep.  It's
669 	 * not supposed to happen.  Cleanup our temporary flags.
670 	 */
671 	KKASSERT(gd == td->td_gd);
672 
673 	/*
674 	 * Cleanup the timeout.  If the timeout has already occured thandle
675 	 * has already been stopped, otherwise stop thandle.
676 	 */
677 	if (timo) {
678 		if (td->td_flags & TDF_TIMEOUT) {
679 			td->td_flags &= ~TDF_TIMEOUT;
680 			error = EWOULDBLOCK;
681 		} else {
682 			/* does not block when on same cpu */
683 			callout_stop(&thandle);
684 		}
685 	}
686 
687 	/*
688 	 * Make sure we have been removed from the sleepq.  In most
689 	 * cases this will have been done for us already but it is
690 	 * possible for a scheduling IPI to be in-flight from a
691 	 * previous tsleep/tsleep_interlock() or due to a straight-out
692 	 * call to lwkt_schedule() (in the case of an interrupt thread),
693 	 * causing a spurious wakeup.
694 	 */
695 	_tsleep_remove(td);
696 	td->td_wmesg = NULL;
697 
698 	/*
699 	 * Figure out the correct error return.  If interrupted by a
700 	 * signal we want to return EINTR or ERESTART.
701 	 *
702 	 * If P_MAILBOX is set no automatic system call restart occurs
703 	 * and we return EINTR.  P_MAILBOX is meant to be used as an
704 	 * interlock, the user must poll it prior to any system call
705 	 * that it wishes to interlock a mailbox signal against since
706 	 * the flag is cleared on *any* system call that sleeps.
707 	 *
708 	 * p->p_token is held in the p && catch case.
709 	 */
710 resume:
711 	if (p) {
712 		if (catch && error == 0) {
713 			if ((p->p_flag & P_MAILBOX) && sig == 0) {
714 				error = EINTR;
715 			} else if (sig != 0 || (sig = CURSIG(lp))) {
716 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
717 					error = EINTR;
718 				else
719 					error = ERESTART;
720 			}
721 		}
722 		if (catch)
723 			lwkt_reltoken(&p->p_token);
724 		lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
725 		p->p_flag &= ~P_MAILBOX;
726 	}
727 	logtsleep1(tsleep_end);
728 	crit_exit_quick(td);
729 	return (error);
730 }
731 
732 /*
733  * Interlocked spinlock sleep.  An exclusively held spinlock must
734  * be passed to ssleep().  The function will atomically release the
735  * spinlock and tsleep on the ident, then reacquire the spinlock and
736  * return.
737  *
738  * This routine is fairly important along the critical path, so optimize it
739  * heavily.
740  */
741 int
742 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
743        const char *wmesg, int timo)
744 {
745 	globaldata_t gd = mycpu;
746 	int error;
747 
748 	_tsleep_interlock(gd, ident, flags);
749 	spin_unlock_quick(gd, spin);
750 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
751 	spin_lock_quick(gd, spin);
752 
753 	return (error);
754 }
755 
756 int
757 lksleep(const volatile void *ident, struct lock *lock, int flags,
758 	const char *wmesg, int timo)
759 {
760 	globaldata_t gd = mycpu;
761 	int error;
762 
763 	_tsleep_interlock(gd, ident, flags);
764 	lockmgr(lock, LK_RELEASE);
765 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
766 	lockmgr(lock, LK_EXCLUSIVE);
767 
768 	return (error);
769 }
770 
771 /*
772  * Interlocked mutex sleep.  An exclusively held mutex must be passed
773  * to mtxsleep().  The function will atomically release the mutex
774  * and tsleep on the ident, then reacquire the mutex and return.
775  */
776 int
777 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
778 	 const char *wmesg, int timo)
779 {
780 	globaldata_t gd = mycpu;
781 	int error;
782 
783 	_tsleep_interlock(gd, ident, flags);
784 	mtx_unlock(mtx);
785 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
786 	mtx_lock_ex_quick(mtx, wmesg);
787 
788 	return (error);
789 }
790 
791 /*
792  * Interlocked serializer sleep.  An exclusively held serializer must
793  * be passed to zsleep().  The function will atomically release
794  * the serializer and tsleep on the ident, then reacquire the serializer
795  * and return.
796  */
797 int
798 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
799        const char *wmesg, int timo)
800 {
801 	globaldata_t gd = mycpu;
802 	int ret;
803 
804 	ASSERT_SERIALIZED(slz);
805 
806 	_tsleep_interlock(gd, ident, flags);
807 	lwkt_serialize_exit(slz);
808 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
809 	lwkt_serialize_enter(slz);
810 
811 	return ret;
812 }
813 
814 /*
815  * Directly block on the LWKT thread by descheduling it.  This
816  * is much faster then tsleep(), but the only legal way to wake
817  * us up is to directly schedule the thread.
818  *
819  * Setting TDF_SINTR will cause new signals to directly schedule us.
820  *
821  * This routine must be called while in a critical section.
822  */
823 int
824 lwkt_sleep(const char *wmesg, int flags)
825 {
826 	thread_t td = curthread;
827 	int sig;
828 
829 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
830 		td->td_flags |= TDF_BLOCKED;
831 		td->td_wmesg = wmesg;
832 		lwkt_deschedule_self(td);
833 		lwkt_switch();
834 		td->td_wmesg = NULL;
835 		td->td_flags &= ~TDF_BLOCKED;
836 		return(0);
837 	}
838 	if ((sig = CURSIG(td->td_lwp)) != 0) {
839 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
840 			return(EINTR);
841 		else
842 			return(ERESTART);
843 
844 	}
845 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
846 	td->td_wmesg = wmesg;
847 	lwkt_deschedule_self(td);
848 	lwkt_switch();
849 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
850 	td->td_wmesg = NULL;
851 	return(0);
852 }
853 
854 /*
855  * Implement the timeout for tsleep.
856  *
857  * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
858  * we only call setrunnable if the process is not stopped.
859  *
860  * This type of callout timeout is scheduled on the same cpu the process
861  * is sleeping on.  Also, at the moment, the MP lock is held.
862  */
863 static void
864 endtsleep(void *arg)
865 {
866 	thread_t td = arg;
867 	struct lwp *lp;
868 
869 	crit_enter();
870 
871 	/*
872 	 * Do this before we potentially block acquiring the token.  Setting
873 	 * TDF_TIMEOUT tells tsleep that we have already stopped the callout.
874 	 */
875 	lwkt_hold(td);
876 	td->td_flags |= TDF_TIMEOUT;
877 
878 	/*
879 	 * This can block
880 	 */
881 	if ((lp = td->td_lwp) != NULL)
882 		lwkt_gettoken(&lp->lwp_proc->p_token);
883 
884 	/*
885 	 * Only do nominal wakeup processing if TDF_TIMEOUT and
886 	 * TDF_TSLEEP_DESCHEDULED are both still set.  Otherwise
887 	 * we raced a wakeup or we began executed and raced due to
888 	 * blocking in the token above, and should do nothing.
889 	 */
890 	if ((td->td_flags & (TDF_TIMEOUT | TDF_TSLEEP_DESCHEDULED)) ==
891 	    (TDF_TIMEOUT | TDF_TSLEEP_DESCHEDULED)) {
892 		if (lp) {
893 			lp->lwp_flag |= LWP_BREAKTSLEEP;
894 			if (lp->lwp_proc->p_stat != SSTOP)
895 				setrunnable(lp);
896 		} else {
897 			_tsleep_wakeup(td);
898 		}
899 	}
900 	if (lp)
901 		lwkt_reltoken(&lp->lwp_proc->p_token);
902 	lwkt_rele(td);
903 	crit_exit();
904 }
905 
906 /*
907  * Make all processes sleeping on the specified identifier runnable.
908  * count may be zero or one only.
909  *
910  * The domain encodes the sleep/wakeup domain AND the first cpu to check
911  * (which is always the current cpu).  As we iterate across cpus
912  *
913  * This call may run without the MP lock held.  We can only manipulate thread
914  * state on the cpu owning the thread.  We CANNOT manipulate process state
915  * at all.
916  *
917  * _wakeup() can be passed to an IPI so we can't use (const volatile
918  * void *ident).
919  */
920 static void
921 _wakeup(void *ident, int domain)
922 {
923 	struct tslpque *qp;
924 	struct thread *td;
925 	struct thread *ntd;
926 	globaldata_t gd;
927 #ifdef SMP
928 	cpumask_t mask;
929 #endif
930 	int id;
931 
932 	crit_enter();
933 	logtsleep2(wakeup_beg, ident);
934 	gd = mycpu;
935 	id = LOOKUP(ident);
936 	qp = &gd->gd_tsleep_hash[id];
937 restart:
938 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
939 		ntd = TAILQ_NEXT(td, td_sleepq);
940 		if (td->td_wchan == ident &&
941 		    td->td_wdomain == (domain & PDOMAIN_MASK)
942 		) {
943 			KKASSERT(td->td_gd == gd);
944 			_tsleep_remove(td);
945 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
946 				td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
947 				lwkt_schedule(td);
948 				if (domain & PWAKEUP_ONE)
949 					goto done;
950 			}
951 			goto restart;
952 		}
953 	}
954 
955 #ifdef SMP
956 	/*
957 	 * We finished checking the current cpu but there still may be
958 	 * more work to do.  Either wakeup_one was requested and no matching
959 	 * thread was found, or a normal wakeup was requested and we have
960 	 * to continue checking cpus.
961 	 *
962 	 * It should be noted that this scheme is actually less expensive then
963 	 * the old scheme when waking up multiple threads, since we send
964 	 * only one IPI message per target candidate which may then schedule
965 	 * multiple threads.  Before we could have wound up sending an IPI
966 	 * message for each thread on the target cpu (!= current cpu) that
967 	 * needed to be woken up.
968 	 *
969 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
970 	 * should be ok since we are passing idents in the IPI rather then
971 	 * thread pointers.
972 	 */
973 	if ((domain & PWAKEUP_MYCPU) == 0 &&
974 	    (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
975 		lwkt_send_ipiq2_mask(mask, _wakeup, ident,
976 				     domain | PWAKEUP_MYCPU);
977 	}
978 #endif
979 done:
980 	logtsleep1(wakeup_end);
981 	crit_exit();
982 }
983 
984 /*
985  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
986  */
987 void
988 wakeup(const volatile void *ident)
989 {
990     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
991 }
992 
993 /*
994  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
995  */
996 void
997 wakeup_one(const volatile void *ident)
998 {
999     /* XXX potentially round-robin the first responding cpu */
1000     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
1001 }
1002 
1003 /*
1004  * Wakeup threads tsleep()ing on the specified ident on the current cpu
1005  * only.
1006  */
1007 void
1008 wakeup_mycpu(const volatile void *ident)
1009 {
1010     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
1011 }
1012 
1013 /*
1014  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1015  * only.
1016  */
1017 void
1018 wakeup_mycpu_one(const volatile void *ident)
1019 {
1020     /* XXX potentially round-robin the first responding cpu */
1021     _wakeup(__DEALL(ident), PWAKEUP_MYCPU|PWAKEUP_ONE);
1022 }
1023 
1024 /*
1025  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1026  * only.
1027  */
1028 void
1029 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1030 {
1031 #ifdef SMP
1032     if (gd == mycpu) {
1033 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU);
1034     } else {
1035 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident), PWAKEUP_MYCPU);
1036     }
1037 #else
1038     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
1039 #endif
1040 }
1041 
1042 /*
1043  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1044  * only.
1045  */
1046 void
1047 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1048 {
1049 #ifdef SMP
1050     if (gd == mycpu) {
1051 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1052     } else {
1053 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1054 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1055     }
1056 #else
1057     _wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1058 #endif
1059 }
1060 
1061 /*
1062  * Wakeup all threads waiting on the specified ident that slept using
1063  * the specified domain, on all cpus.
1064  */
1065 void
1066 wakeup_domain(const volatile void *ident, int domain)
1067 {
1068     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1069 }
1070 
1071 /*
1072  * Wakeup one thread waiting on the specified ident that slept using
1073  * the specified  domain, on any cpu.
1074  */
1075 void
1076 wakeup_domain_one(const volatile void *ident, int domain)
1077 {
1078     /* XXX potentially round-robin the first responding cpu */
1079     _wakeup(__DEALL(ident),
1080 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1081 }
1082 
1083 /*
1084  * setrunnable()
1085  *
1086  * Make a process runnable.  lp->lwp_proc->p_token must be held on call.
1087  * This only has an effect if we are in SSLEEP.  We only break out of the
1088  * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
1089  *
1090  * NOTE: With p_token held we can only safely manipulate the process
1091  * structure and the lp's lwp_stat.
1092  */
1093 void
1094 setrunnable(struct lwp *lp)
1095 {
1096 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_proc->p_token);
1097 	crit_enter();
1098 	if (lp->lwp_stat == LSSTOP)
1099 		lp->lwp_stat = LSSLEEP;
1100 	if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
1101 		_tsleep_wakeup(lp->lwp_thread);
1102 	crit_exit();
1103 }
1104 
1105 /*
1106  * The process is stopped due to some condition, usually because p_stat is
1107  * set to SSTOP, but also possibly due to being traced.
1108  *
1109  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1110  * because the parent may check the child's status before the child actually
1111  * gets to this routine.
1112  *
1113  * This routine is called with the current lwp only, typically just
1114  * before returning to userland.
1115  *
1116  * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
1117  * SIGCONT to break out of the tsleep.
1118  */
1119 void
1120 tstop(void)
1121 {
1122 	struct lwp *lp = curthread->td_lwp;
1123 	struct proc *p = lp->lwp_proc;
1124 
1125 	crit_enter();
1126 	/*
1127 	 * If LWP_WSTOP is set, we were sleeping
1128 	 * while our process was stopped.  At this point
1129 	 * we were already counted as stopped.
1130 	 */
1131 	if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1132 		/*
1133 		 * If we're the last thread to stop, signal
1134 		 * our parent.
1135 		 */
1136 		p->p_nstopped++;
1137 		lp->lwp_flag |= LWP_WSTOP;
1138 		wakeup(&p->p_nstopped);
1139 		if (p->p_nstopped == p->p_nthreads) {
1140 			p->p_flag &= ~P_WAITED;
1141 			wakeup(p->p_pptr);
1142 			if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1143 				ksignal(p->p_pptr, SIGCHLD);
1144 		}
1145 	}
1146 	while (p->p_stat == SSTOP) {
1147 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1148 		lp->lwp_stat = LSSTOP;
1149 		tsleep(p, 0, "stop", 0);
1150 	}
1151 	p->p_nstopped--;
1152 	lp->lwp_flag &= ~LWP_WSTOP;
1153 	crit_exit();
1154 }
1155 
1156 /*
1157  * Compute a tenex style load average of a quantity on
1158  * 1, 5 and 15 minute intervals.
1159  */
1160 static int loadav_count_runnable(struct lwp *p, void *data);
1161 
1162 static void
1163 loadav(void *arg)
1164 {
1165 	struct loadavg *avg;
1166 	int i, nrun;
1167 
1168 	nrun = 0;
1169 	alllwp_scan(loadav_count_runnable, &nrun);
1170 	avg = &averunnable;
1171 	for (i = 0; i < 3; i++) {
1172 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1173 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1174 	}
1175 
1176 	/*
1177 	 * Schedule the next update to occur after 5 seconds, but add a
1178 	 * random variation to avoid synchronisation with processes that
1179 	 * run at regular intervals.
1180 	 */
1181 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1182 		      loadav, NULL);
1183 }
1184 
1185 static int
1186 loadav_count_runnable(struct lwp *lp, void *data)
1187 {
1188 	int *nrunp = data;
1189 	thread_t td;
1190 
1191 	switch (lp->lwp_stat) {
1192 	case LSRUN:
1193 		if ((td = lp->lwp_thread) == NULL)
1194 			break;
1195 		if (td->td_flags & TDF_BLOCKED)
1196 			break;
1197 		++*nrunp;
1198 		break;
1199 	default:
1200 		break;
1201 	}
1202 	return(0);
1203 }
1204 
1205 /* ARGSUSED */
1206 static void
1207 sched_setup(void *dummy)
1208 {
1209 	callout_init_mp(&loadav_callout);
1210 	callout_init_mp(&schedcpu_callout);
1211 
1212 	/* Kick off timeout driven events by calling first time. */
1213 	schedcpu(NULL);
1214 	loadav(NULL);
1215 }
1216 
1217