xref: /dragonfly/sys/kern/kern_time.c (revision 1de703da)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35  * $DragonFly: src/sys/kern/kern_time.c,v 1.2 2003/06/17 04:28:41 dillon Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/proc.h>
48 #include <sys/time.h>
49 #include <sys/vnode.h>
50 #include <vm/vm.h>
51 #include <vm/vm_extern.h>
52 
53 struct timezone tz;
54 
55 /*
56  * Time of day and interval timer support.
57  *
58  * These routines provide the kernel entry points to get and set
59  * the time-of-day and per-process interval timers.  Subroutines
60  * here provide support for adding and subtracting timeval structures
61  * and decrementing interval timers, optionally reloading the interval
62  * timers when they expire.
63  */
64 
65 static int	nanosleep1 __P((struct proc *p, struct timespec *rqt,
66 		    struct timespec *rmt));
67 static int	settime __P((struct timeval *));
68 static void	timevalfix __P((struct timeval *));
69 static void	no_lease_updatetime __P((int));
70 
71 static void
72 no_lease_updatetime(deltat)
73 	int deltat;
74 {
75 }
76 
77 void (*lease_updatetime) __P((int))  = no_lease_updatetime;
78 
79 static int
80 settime(tv)
81 	struct timeval *tv;
82 {
83 	struct timeval delta, tv1, tv2;
84 	static struct timeval maxtime, laststep;
85 	struct timespec ts;
86 	int s;
87 
88 	s = splclock();
89 	microtime(&tv1);
90 	delta = *tv;
91 	timevalsub(&delta, &tv1);
92 
93 	/*
94 	 * If the system is secure, we do not allow the time to be
95 	 * set to a value earlier than 1 second less than the highest
96 	 * time we have yet seen. The worst a miscreant can do in
97 	 * this circumstance is "freeze" time. He couldn't go
98 	 * back to the past.
99 	 *
100 	 * We similarly do not allow the clock to be stepped more
101 	 * than one second, nor more than once per second. This allows
102 	 * a miscreant to make the clock march double-time, but no worse.
103 	 */
104 	if (securelevel > 1) {
105 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
106 			/*
107 			 * Update maxtime to latest time we've seen.
108 			 */
109 			if (tv1.tv_sec > maxtime.tv_sec)
110 				maxtime = tv1;
111 			tv2 = *tv;
112 			timevalsub(&tv2, &maxtime);
113 			if (tv2.tv_sec < -1) {
114 				tv->tv_sec = maxtime.tv_sec - 1;
115 				printf("Time adjustment clamped to -1 second\n");
116 			}
117 		} else {
118 			if (tv1.tv_sec == laststep.tv_sec) {
119 				splx(s);
120 				return (EPERM);
121 			}
122 			if (delta.tv_sec > 1) {
123 				tv->tv_sec = tv1.tv_sec + 1;
124 				printf("Time adjustment clamped to +1 second\n");
125 			}
126 			laststep = *tv;
127 		}
128 	}
129 
130 	ts.tv_sec = tv->tv_sec;
131 	ts.tv_nsec = tv->tv_usec * 1000;
132 	set_timecounter(&ts);
133 	(void) splsoftclock();
134 	lease_updatetime(delta.tv_sec);
135 	splx(s);
136 	resettodr();
137 	return (0);
138 }
139 
140 #ifndef _SYS_SYSPROTO_H_
141 struct clock_gettime_args {
142 	clockid_t clock_id;
143 	struct	timespec *tp;
144 };
145 #endif
146 
147 /* ARGSUSED */
148 int
149 clock_gettime(p, uap)
150 	struct proc *p;
151 	struct clock_gettime_args *uap;
152 {
153 	struct timespec ats;
154 
155 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
156 		return (EINVAL);
157 	nanotime(&ats);
158 	return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
159 }
160 
161 #ifndef _SYS_SYSPROTO_H_
162 struct clock_settime_args {
163 	clockid_t clock_id;
164 	const struct	timespec *tp;
165 };
166 #endif
167 
168 /* ARGSUSED */
169 int
170 clock_settime(p, uap)
171 	struct proc *p;
172 	struct clock_settime_args *uap;
173 {
174 	struct timeval atv;
175 	struct timespec ats;
176 	int error;
177 
178 	if ((error = suser(p)) != 0)
179 		return (error);
180 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
181 		return (EINVAL);
182 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
183 		return (error);
184 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
185 		return (EINVAL);
186 	/* XXX Don't convert nsec->usec and back */
187 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
188 	if ((error = settime(&atv)))
189 		return (error);
190 	return (0);
191 }
192 
193 #ifndef _SYS_SYSPROTO_H_
194 struct clock_getres_args {
195 	clockid_t clock_id;
196 	struct	timespec *tp;
197 };
198 #endif
199 
200 int
201 clock_getres(p, uap)
202 	struct proc *p;
203 	struct clock_getres_args *uap;
204 {
205 	struct timespec ts;
206 	int error;
207 
208 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
209 		return (EINVAL);
210 	error = 0;
211 	if (SCARG(uap, tp)) {
212 		ts.tv_sec = 0;
213 		/*
214 		 * Round up the result of the division cheaply by adding 1.
215 		 * Rounding up is especially important if rounding down
216 		 * would give 0.  Perfect rounding is unimportant.
217 		 */
218 		ts.tv_nsec = 1000000000 / timecounter->tc_frequency + 1;
219 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
220 	}
221 	return (error);
222 }
223 
224 static int nanowait;
225 
226 static int
227 nanosleep1(p, rqt, rmt)
228 	struct proc *p;
229 	struct timespec *rqt, *rmt;
230 {
231 	struct timespec ts, ts2, ts3;
232 	struct timeval tv;
233 	int error;
234 
235 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
236 		return (EINVAL);
237 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
238 		return (0);
239 	getnanouptime(&ts);
240 	timespecadd(&ts, rqt);
241 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
242 	for (;;) {
243 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
244 		    tvtohz(&tv));
245 		getnanouptime(&ts2);
246 		if (error != EWOULDBLOCK) {
247 			if (error == ERESTART)
248 				error = EINTR;
249 			if (rmt != NULL) {
250 				timespecsub(&ts, &ts2);
251 				if (ts.tv_sec < 0)
252 					timespecclear(&ts);
253 				*rmt = ts;
254 			}
255 			return (error);
256 		}
257 		if (timespeccmp(&ts2, &ts, >=))
258 			return (0);
259 		ts3 = ts;
260 		timespecsub(&ts3, &ts2);
261 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
262 	}
263 }
264 
265 #ifndef _SYS_SYSPROTO_H_
266 struct nanosleep_args {
267 	struct	timespec *rqtp;
268 	struct	timespec *rmtp;
269 };
270 #endif
271 
272 /* ARGSUSED */
273 int
274 nanosleep(p, uap)
275 	struct proc *p;
276 	struct nanosleep_args *uap;
277 {
278 	struct timespec rmt, rqt;
279 	int error, error2;
280 
281 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt));
282 	if (error)
283 		return (error);
284 	if (SCARG(uap, rmtp))
285 		if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt),
286 		    VM_PROT_WRITE))
287 			return (EFAULT);
288 	error = nanosleep1(p, &rqt, &rmt);
289 	if (error && SCARG(uap, rmtp)) {
290 		error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
291 		if (error2)	/* XXX shouldn't happen, did useracc() above */
292 			return (error2);
293 	}
294 	return (error);
295 }
296 
297 #ifndef _SYS_SYSPROTO_H_
298 struct gettimeofday_args {
299 	struct	timeval *tp;
300 	struct	timezone *tzp;
301 };
302 #endif
303 /* ARGSUSED */
304 int
305 gettimeofday(p, uap)
306 	struct proc *p;
307 	register struct gettimeofday_args *uap;
308 {
309 	struct timeval atv;
310 	int error = 0;
311 
312 	if (uap->tp) {
313 		microtime(&atv);
314 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
315 		    sizeof (atv))))
316 			return (error);
317 	}
318 	if (uap->tzp)
319 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
320 		    sizeof (tz));
321 	return (error);
322 }
323 
324 #ifndef _SYS_SYSPROTO_H_
325 struct settimeofday_args {
326 	struct	timeval *tv;
327 	struct	timezone *tzp;
328 };
329 #endif
330 /* ARGSUSED */
331 int
332 settimeofday(p, uap)
333 	struct proc *p;
334 	struct settimeofday_args *uap;
335 {
336 	struct timeval atv;
337 	struct timezone atz;
338 	int error;
339 
340 	if ((error = suser(p)))
341 		return (error);
342 	/* Verify all parameters before changing time. */
343 	if (uap->tv) {
344 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
345 		    sizeof(atv))))
346 			return (error);
347 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
348 			return (EINVAL);
349 	}
350 	if (uap->tzp &&
351 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
352 		return (error);
353 	if (uap->tv && (error = settime(&atv)))
354 		return (error);
355 	if (uap->tzp)
356 		tz = atz;
357 	return (0);
358 }
359 
360 int	tickdelta;			/* current clock skew, us. per tick */
361 long	timedelta;			/* unapplied time correction, us. */
362 static long	bigadj = 1000000;	/* use 10x skew above bigadj us. */
363 
364 #ifndef _SYS_SYSPROTO_H_
365 struct adjtime_args {
366 	struct timeval *delta;
367 	struct timeval *olddelta;
368 };
369 #endif
370 /* ARGSUSED */
371 int
372 adjtime(p, uap)
373 	struct proc *p;
374 	register struct adjtime_args *uap;
375 {
376 	struct timeval atv;
377 	register long ndelta, ntickdelta, odelta;
378 	int s, error;
379 
380 	if ((error = suser(p)))
381 		return (error);
382 	if ((error =
383 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
384 		return (error);
385 
386 	/*
387 	 * Compute the total correction and the rate at which to apply it.
388 	 * Round the adjustment down to a whole multiple of the per-tick
389 	 * delta, so that after some number of incremental changes in
390 	 * hardclock(), tickdelta will become zero, lest the correction
391 	 * overshoot and start taking us away from the desired final time.
392 	 */
393 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
394 	if (ndelta > bigadj || ndelta < -bigadj)
395 		ntickdelta = 10 * tickadj;
396 	else
397 		ntickdelta = tickadj;
398 	if (ndelta % ntickdelta)
399 		ndelta = ndelta / ntickdelta * ntickdelta;
400 
401 	/*
402 	 * To make hardclock()'s job easier, make the per-tick delta negative
403 	 * if we want time to run slower; then hardclock can simply compute
404 	 * tick + tickdelta, and subtract tickdelta from timedelta.
405 	 */
406 	if (ndelta < 0)
407 		ntickdelta = -ntickdelta;
408 	s = splclock();
409 	odelta = timedelta;
410 	timedelta = ndelta;
411 	tickdelta = ntickdelta;
412 	splx(s);
413 
414 	if (uap->olddelta) {
415 		atv.tv_sec = odelta / 1000000;
416 		atv.tv_usec = odelta % 1000000;
417 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
418 		    sizeof(struct timeval));
419 	}
420 	return (0);
421 }
422 
423 /*
424  * Get value of an interval timer.  The process virtual and
425  * profiling virtual time timers are kept in the p_stats area, since
426  * they can be swapped out.  These are kept internally in the
427  * way they are specified externally: in time until they expire.
428  *
429  * The real time interval timer is kept in the process table slot
430  * for the process, and its value (it_value) is kept as an
431  * absolute time rather than as a delta, so that it is easy to keep
432  * periodic real-time signals from drifting.
433  *
434  * Virtual time timers are processed in the hardclock() routine of
435  * kern_clock.c.  The real time timer is processed by a timeout
436  * routine, called from the softclock() routine.  Since a callout
437  * may be delayed in real time due to interrupt processing in the system,
438  * it is possible for the real time timeout routine (realitexpire, given below),
439  * to be delayed in real time past when it is supposed to occur.  It
440  * does not suffice, therefore, to reload the real timer .it_value from the
441  * real time timers .it_interval.  Rather, we compute the next time in
442  * absolute time the timer should go off.
443  */
444 #ifndef _SYS_SYSPROTO_H_
445 struct getitimer_args {
446 	u_int	which;
447 	struct	itimerval *itv;
448 };
449 #endif
450 /* ARGSUSED */
451 int
452 getitimer(p, uap)
453 	struct proc *p;
454 	register struct getitimer_args *uap;
455 {
456 	struct timeval ctv;
457 	struct itimerval aitv;
458 	int s;
459 
460 	if (uap->which > ITIMER_PROF)
461 		return (EINVAL);
462 	s = splclock(); /* XXX still needed ? */
463 	if (uap->which == ITIMER_REAL) {
464 		/*
465 		 * Convert from absolute to relative time in .it_value
466 		 * part of real time timer.  If time for real time timer
467 		 * has passed return 0, else return difference between
468 		 * current time and time for the timer to go off.
469 		 */
470 		aitv = p->p_realtimer;
471 		if (timevalisset(&aitv.it_value)) {
472 			getmicrouptime(&ctv);
473 			if (timevalcmp(&aitv.it_value, &ctv, <))
474 				timevalclear(&aitv.it_value);
475 			else
476 				timevalsub(&aitv.it_value, &ctv);
477 		}
478 	} else
479 		aitv = p->p_stats->p_timer[uap->which];
480 	splx(s);
481 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
482 	    sizeof (struct itimerval)));
483 }
484 
485 #ifndef _SYS_SYSPROTO_H_
486 struct setitimer_args {
487 	u_int	which;
488 	struct	itimerval *itv, *oitv;
489 };
490 #endif
491 /* ARGSUSED */
492 int
493 setitimer(p, uap)
494 	struct proc *p;
495 	register struct setitimer_args *uap;
496 {
497 	struct itimerval aitv;
498 	struct timeval ctv;
499 	register struct itimerval *itvp;
500 	int s, error;
501 
502 	if (uap->which > ITIMER_PROF)
503 		return (EINVAL);
504 	itvp = uap->itv;
505 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
506 	    sizeof(struct itimerval))))
507 		return (error);
508 	if ((uap->itv = uap->oitv) &&
509 	    (error = getitimer(p, (struct getitimer_args *)uap)))
510 		return (error);
511 	if (itvp == 0)
512 		return (0);
513 	if (itimerfix(&aitv.it_value))
514 		return (EINVAL);
515 	if (!timevalisset(&aitv.it_value))
516 		timevalclear(&aitv.it_interval);
517 	else if (itimerfix(&aitv.it_interval))
518 		return (EINVAL);
519 	s = splclock(); /* XXX: still needed ? */
520 	if (uap->which == ITIMER_REAL) {
521 		if (timevalisset(&p->p_realtimer.it_value))
522 			untimeout(realitexpire, (caddr_t)p, p->p_ithandle);
523 		if (timevalisset(&aitv.it_value))
524 			p->p_ithandle = timeout(realitexpire, (caddr_t)p,
525 						tvtohz(&aitv.it_value));
526 		getmicrouptime(&ctv);
527 		timevaladd(&aitv.it_value, &ctv);
528 		p->p_realtimer = aitv;
529 	} else
530 		p->p_stats->p_timer[uap->which] = aitv;
531 	splx(s);
532 	return (0);
533 }
534 
535 /*
536  * Real interval timer expired:
537  * send process whose timer expired an alarm signal.
538  * If time is not set up to reload, then just return.
539  * Else compute next time timer should go off which is > current time.
540  * This is where delay in processing this timeout causes multiple
541  * SIGALRM calls to be compressed into one.
542  * tvtohz() always adds 1 to allow for the time until the next clock
543  * interrupt being strictly less than 1 clock tick, but we don't want
544  * that here since we want to appear to be in sync with the clock
545  * interrupt even when we're delayed.
546  */
547 void
548 realitexpire(arg)
549 	void *arg;
550 {
551 	register struct proc *p;
552 	struct timeval ctv, ntv;
553 	int s;
554 
555 	p = (struct proc *)arg;
556 	psignal(p, SIGALRM);
557 	if (!timevalisset(&p->p_realtimer.it_interval)) {
558 		timevalclear(&p->p_realtimer.it_value);
559 		return;
560 	}
561 	for (;;) {
562 		s = splclock(); /* XXX: still neeeded ? */
563 		timevaladd(&p->p_realtimer.it_value,
564 		    &p->p_realtimer.it_interval);
565 		getmicrouptime(&ctv);
566 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
567 			ntv = p->p_realtimer.it_value;
568 			timevalsub(&ntv, &ctv);
569 			p->p_ithandle = timeout(realitexpire, (caddr_t)p,
570 			    tvtohz(&ntv) - 1);
571 			splx(s);
572 			return;
573 		}
574 		splx(s);
575 	}
576 }
577 
578 /*
579  * Check that a proposed value to load into the .it_value or
580  * .it_interval part of an interval timer is acceptable, and
581  * fix it to have at least minimal value (i.e. if it is less
582  * than the resolution of the clock, round it up.)
583  */
584 int
585 itimerfix(tv)
586 	struct timeval *tv;
587 {
588 
589 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
590 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
591 		return (EINVAL);
592 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
593 		tv->tv_usec = tick;
594 	return (0);
595 }
596 
597 /*
598  * Decrement an interval timer by a specified number
599  * of microseconds, which must be less than a second,
600  * i.e. < 1000000.  If the timer expires, then reload
601  * it.  In this case, carry over (usec - old value) to
602  * reduce the value reloaded into the timer so that
603  * the timer does not drift.  This routine assumes
604  * that it is called in a context where the timers
605  * on which it is operating cannot change in value.
606  */
607 int
608 itimerdecr(itp, usec)
609 	register struct itimerval *itp;
610 	int usec;
611 {
612 
613 	if (itp->it_value.tv_usec < usec) {
614 		if (itp->it_value.tv_sec == 0) {
615 			/* expired, and already in next interval */
616 			usec -= itp->it_value.tv_usec;
617 			goto expire;
618 		}
619 		itp->it_value.tv_usec += 1000000;
620 		itp->it_value.tv_sec--;
621 	}
622 	itp->it_value.tv_usec -= usec;
623 	usec = 0;
624 	if (timevalisset(&itp->it_value))
625 		return (1);
626 	/* expired, exactly at end of interval */
627 expire:
628 	if (timevalisset(&itp->it_interval)) {
629 		itp->it_value = itp->it_interval;
630 		itp->it_value.tv_usec -= usec;
631 		if (itp->it_value.tv_usec < 0) {
632 			itp->it_value.tv_usec += 1000000;
633 			itp->it_value.tv_sec--;
634 		}
635 	} else
636 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
637 	return (0);
638 }
639 
640 /*
641  * Add and subtract routines for timevals.
642  * N.B.: subtract routine doesn't deal with
643  * results which are before the beginning,
644  * it just gets very confused in this case.
645  * Caveat emptor.
646  */
647 void
648 timevaladd(t1, t2)
649 	struct timeval *t1, *t2;
650 {
651 
652 	t1->tv_sec += t2->tv_sec;
653 	t1->tv_usec += t2->tv_usec;
654 	timevalfix(t1);
655 }
656 
657 void
658 timevalsub(t1, t2)
659 	struct timeval *t1, *t2;
660 {
661 
662 	t1->tv_sec -= t2->tv_sec;
663 	t1->tv_usec -= t2->tv_usec;
664 	timevalfix(t1);
665 }
666 
667 static void
668 timevalfix(t1)
669 	struct timeval *t1;
670 {
671 
672 	if (t1->tv_usec < 0) {
673 		t1->tv_sec--;
674 		t1->tv_usec += 1000000;
675 	}
676 	if (t1->tv_usec >= 1000000) {
677 		t1->tv_sec++;
678 		t1->tv_usec -= 1000000;
679 	}
680 }
681