xref: /dragonfly/sys/kern/lwkt_ipiq.c (revision 19fe1c42)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_ipiq.c,v 1.27 2008/05/18 20:57:56 nth Exp $
35  */
36 
37 /*
38  * This module implements IPI message queueing and the MI portion of IPI
39  * message processing.
40  */
41 
42 #include "opt_ddb.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/proc.h>
48 #include <sys/rtprio.h>
49 #include <sys/queue.h>
50 #include <sys/thread2.h>
51 #include <sys/sysctl.h>
52 #include <sys/ktr.h>
53 #include <sys/kthread.h>
54 #include <machine/cpu.h>
55 #include <sys/lock.h>
56 #include <sys/caps.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <vm/vm_kern.h>
61 #include <vm/vm_object.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_pager.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
67 
68 #include <machine/stdarg.h>
69 #include <machine/smp.h>
70 #include <machine/atomic.h>
71 
72 #ifdef SMP
73 static __int64_t ipiq_count;	/* total calls to lwkt_send_ipiq*() */
74 static __int64_t ipiq_fifofull;	/* number of fifo full conditions detected */
75 static __int64_t ipiq_avoided;	/* interlock with target avoids cpu ipi */
76 static __int64_t ipiq_passive;	/* passive IPI messages */
77 static __int64_t ipiq_cscount;	/* number of cpu synchronizations */
78 static int ipiq_optimized = 1;	/* XXX temporary sysctl */
79 #ifdef PANIC_DEBUG
80 static int	panic_ipiq_cpu = -1;
81 static int	panic_ipiq_count = 100;
82 #endif
83 #endif
84 
85 #ifdef SMP
86 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_count, CTLFLAG_RW, &ipiq_count, 0, "");
87 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_fifofull, CTLFLAG_RW, &ipiq_fifofull, 0, "");
88 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_avoided, CTLFLAG_RW, &ipiq_avoided, 0, "");
89 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_passive, CTLFLAG_RW, &ipiq_passive, 0, "");
90 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_cscount, CTLFLAG_RW, &ipiq_cscount, 0, "");
91 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_optimized, CTLFLAG_RW, &ipiq_optimized, 0, "");
92 #ifdef PANIC_DEBUG
93 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
94 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
95 #endif
96 
97 #define IPIQ_STRING	"func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
98 #define IPIQ_ARG_SIZE	(sizeof(void *) * 2 + sizeof(int) * 3)
99 
100 #if !defined(KTR_IPIQ)
101 #define KTR_IPIQ	KTR_ALL
102 #endif
103 KTR_INFO_MASTER(ipiq);
104 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARG_SIZE);
105 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARG_SIZE);
106 KTR_INFO(KTR_IPIQ, ipiq, send_nbio, 2, IPIQ_STRING, IPIQ_ARG_SIZE);
107 KTR_INFO(KTR_IPIQ, ipiq, send_fail, 3, IPIQ_STRING, IPIQ_ARG_SIZE);
108 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARG_SIZE);
109 KTR_INFO(KTR_IPIQ, ipiq, sync_start, 5, "cpumask=%08x", sizeof(cpumask_t));
110 KTR_INFO(KTR_IPIQ, ipiq, sync_add, 6, "cpumask=%08x", sizeof(cpumask_t));
111 KTR_INFO(KTR_IPIQ, ipiq, cpu_send, 7, IPIQ_STRING, IPIQ_ARG_SIZE);
112 KTR_INFO(KTR_IPIQ, ipiq, send_end, 8, IPIQ_STRING, IPIQ_ARG_SIZE);
113 
114 #define logipiq(name, func, arg1, arg2, sgd, dgd)	\
115 	KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
116 #define logipiq2(name, arg)	\
117 	KTR_LOG(ipiq_ ## name, arg)
118 
119 #endif	/* SMP */
120 
121 #ifdef SMP
122 
123 static int lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
124 				  struct intrframe *frame);
125 static void lwkt_cpusync_remote1(lwkt_cpusync_t poll);
126 static void lwkt_cpusync_remote2(lwkt_cpusync_t poll);
127 
128 /*
129  * Send a function execution request to another cpu.  The request is queued
130  * on the cpu<->cpu ipiq matrix.  Each cpu owns a unique ipiq FIFO for every
131  * possible target cpu.  The FIFO can be written.
132  *
133  * If the FIFO fills up we have to enable interrupts to avoid an APIC
134  * deadlock and process pending IPIQs while waiting for it to empty.
135  * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
136  *
137  * We can safely bump gd_intr_nesting_level because our crit_exit() at the
138  * end will take care of any pending interrupts.
139  *
140  * The actual hardware IPI is avoided if the target cpu is already processing
141  * the queue from a prior IPI.  It is possible to pipeline IPI messages
142  * very quickly between cpus due to the FIFO hysteresis.
143  *
144  * Need not be called from a critical section.
145  */
146 int
147 lwkt_send_ipiq3(globaldata_t target, ipifunc3_t func, void *arg1, int arg2)
148 {
149     lwkt_ipiq_t ip;
150     int windex;
151     struct globaldata *gd = mycpu;
152 
153     logipiq(send_norm, func, arg1, arg2, gd, target);
154 
155     if (target == gd) {
156 	func(arg1, arg2, NULL);
157 	logipiq(send_end, func, arg1, arg2, gd, target);
158 	return(0);
159     }
160     crit_enter();
161     ++gd->gd_intr_nesting_level;
162 #ifdef INVARIANTS
163     if (gd->gd_intr_nesting_level > 20)
164 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
165 #endif
166     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
167     ++ipiq_count;
168     ip = &gd->gd_ipiq[target->gd_cpuid];
169 
170     /*
171      * Do not allow the FIFO to become full.  Interrupts must be physically
172      * enabled while we liveloop to avoid deadlocking the APIC.
173      */
174     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
175 	unsigned int eflags = read_eflags();
176 
177 	if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0) {
178 	    logipiq(cpu_send, func, arg1, arg2, gd, target);
179 	    cpu_send_ipiq(target->gd_cpuid);
180 	}
181 	cpu_enable_intr();
182 	++ipiq_fifofull;
183 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
184 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
185 	    lwkt_process_ipiq();
186 	}
187 	write_eflags(eflags);
188     }
189 
190     /*
191      * Queue the new message
192      */
193     windex = ip->ip_windex & MAXCPUFIFO_MASK;
194     ip->ip_func[windex] = func;
195     ip->ip_arg1[windex] = arg1;
196     ip->ip_arg2[windex] = arg2;
197     cpu_sfence();
198     ++ip->ip_windex;
199     --gd->gd_intr_nesting_level;
200 
201     /*
202      * signal the target cpu that there is work pending.
203      */
204     if (atomic_poll_acquire_int(&ip->ip_npoll)) {
205 	logipiq(cpu_send, func, arg1, arg2, gd, target);
206 	cpu_send_ipiq(target->gd_cpuid);
207     } else {
208 	if (ipiq_optimized == 0) {
209 	    logipiq(cpu_send, func, arg1, arg2, gd, target);
210 	    cpu_send_ipiq(target->gd_cpuid);
211 	} else {
212 	    ++ipiq_avoided;
213 	}
214     }
215     crit_exit();
216 
217     logipiq(send_end, func, arg1, arg2, gd, target);
218     return(ip->ip_windex);
219 }
220 
221 /*
222  * Similar to lwkt_send_ipiq() but this function does not actually initiate
223  * the IPI to the target cpu unless the FIFO has become too full, so it is
224  * very fast.
225  *
226  * This function is used for non-critical IPI messages, such as memory
227  * deallocations.  The queue will typically be flushed by the target cpu at
228  * the next clock interrupt.
229  *
230  * Need not be called from a critical section.
231  */
232 int
233 lwkt_send_ipiq3_passive(globaldata_t target, ipifunc3_t func,
234 			void *arg1, int arg2)
235 {
236     lwkt_ipiq_t ip;
237     int windex;
238     struct globaldata *gd = mycpu;
239 
240     KKASSERT(target != gd);
241     crit_enter();
242     logipiq(send_pasv, func, arg1, arg2, gd, target);
243     ++gd->gd_intr_nesting_level;
244 #ifdef INVARIANTS
245     if (gd->gd_intr_nesting_level > 20)
246 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
247 #endif
248     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
249     ++ipiq_count;
250     ++ipiq_passive;
251     ip = &gd->gd_ipiq[target->gd_cpuid];
252 
253     /*
254      * Do not allow the FIFO to become full.  Interrupts must be physically
255      * enabled while we liveloop to avoid deadlocking the APIC.
256      */
257     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
258 	unsigned int eflags = read_eflags();
259 
260 	if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0) {
261 	    logipiq(cpu_send, func, arg1, arg2, gd, target);
262 	    cpu_send_ipiq(target->gd_cpuid);
263 	}
264 	cpu_enable_intr();
265 	++ipiq_fifofull;
266 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
267 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
268 	    lwkt_process_ipiq();
269 	}
270 	write_eflags(eflags);
271     }
272 
273     /*
274      * Queue the new message
275      */
276     windex = ip->ip_windex & MAXCPUFIFO_MASK;
277     ip->ip_func[windex] = func;
278     ip->ip_arg1[windex] = arg1;
279     ip->ip_arg2[windex] = arg2;
280     cpu_sfence();
281     ++ip->ip_windex;
282     --gd->gd_intr_nesting_level;
283 
284     /*
285      * Do not signal the target cpu, it will pick up the IPI when it next
286      * polls (typically on the next tick).
287      */
288     crit_exit();
289 
290     logipiq(send_end, func, arg1, arg2, gd, target);
291     return(ip->ip_windex);
292 }
293 
294 /*
295  * Send an IPI request without blocking, return 0 on success, ENOENT on
296  * failure.  The actual queueing of the hardware IPI may still force us
297  * to spin and process incoming IPIs but that will eventually go away
298  * when we've gotten rid of the other general IPIs.
299  */
300 int
301 lwkt_send_ipiq3_nowait(globaldata_t target, ipifunc3_t func,
302 		       void *arg1, int arg2)
303 {
304     lwkt_ipiq_t ip;
305     int windex;
306     struct globaldata *gd = mycpu;
307 
308     logipiq(send_nbio, func, arg1, arg2, gd, target);
309     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
310     if (target == gd) {
311 	func(arg1, arg2, NULL);
312 	logipiq(send_end, func, arg1, arg2, gd, target);
313 	return(0);
314     }
315     ++ipiq_count;
316     ip = &gd->gd_ipiq[target->gd_cpuid];
317 
318     if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO * 2 / 3) {
319 	logipiq(send_fail, func, arg1, arg2, gd, target);
320 	return(ENOENT);
321     }
322     windex = ip->ip_windex & MAXCPUFIFO_MASK;
323     ip->ip_func[windex] = func;
324     ip->ip_arg1[windex] = arg1;
325     ip->ip_arg2[windex] = arg2;
326     cpu_sfence();
327     ++ip->ip_windex;
328 
329     /*
330      * This isn't a passive IPI, we still have to signal the target cpu.
331      */
332     if (atomic_poll_acquire_int(&ip->ip_npoll)) {
333 	logipiq(cpu_send, func, arg1, arg2, gd, target);
334 	cpu_send_ipiq(target->gd_cpuid);
335     } else {
336 	if (ipiq_optimized == 0) {
337 	    logipiq(cpu_send, func, arg1, arg2, gd, target);
338 	    cpu_send_ipiq(target->gd_cpuid);
339 	} else {
340 	    ++ipiq_avoided;
341     	}
342     }
343 
344     logipiq(send_end, func, arg1, arg2, gd, target);
345     return(0);
346 }
347 
348 /*
349  * deprecated, used only by fast int forwarding.
350  */
351 int
352 lwkt_send_ipiq3_bycpu(int dcpu, ipifunc3_t func, void *arg1, int arg2)
353 {
354     return(lwkt_send_ipiq3(globaldata_find(dcpu), func, arg1, arg2));
355 }
356 
357 /*
358  * Send a message to several target cpus.  Typically used for scheduling.
359  * The message will not be sent to stopped cpus.
360  */
361 int
362 lwkt_send_ipiq3_mask(u_int32_t mask, ipifunc3_t func, void *arg1, int arg2)
363 {
364     int cpuid;
365     int count = 0;
366 
367     mask &= ~stopped_cpus;
368     while (mask) {
369 	cpuid = bsfl(mask);
370 	lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
371 	mask &= ~(1 << cpuid);
372 	++count;
373     }
374     return(count);
375 }
376 
377 /*
378  * Wait for the remote cpu to finish processing a function.
379  *
380  * YYY we have to enable interrupts and process the IPIQ while waiting
381  * for it to empty or we may deadlock with another cpu.  Create a CPU_*()
382  * function to do this!  YYY we really should 'block' here.
383  *
384  * MUST be called from a critical section.  This routine may be called
385  * from an interrupt (for example, if an interrupt wakes a foreign thread
386  * up).
387  */
388 void
389 lwkt_wait_ipiq(globaldata_t target, int seq)
390 {
391     lwkt_ipiq_t ip;
392     int maxc = 100000000;
393 
394     if (target != mycpu) {
395 	ip = &mycpu->gd_ipiq[target->gd_cpuid];
396 	if ((int)(ip->ip_xindex - seq) < 0) {
397 	    unsigned int eflags = read_eflags();
398 	    cpu_enable_intr();
399 	    while ((int)(ip->ip_xindex - seq) < 0) {
400 		crit_enter();
401 		lwkt_process_ipiq();
402 		crit_exit();
403 		if (--maxc == 0)
404 			kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n", mycpu->gd_cpuid, target->gd_cpuid, ip->ip_xindex - seq);
405 		if (maxc < -1000000)
406 			panic("LWKT_WAIT_IPIQ");
407 		/*
408 		 * xindex may be modified by another cpu, use a load fence
409 		 * to ensure that the loop does not use a speculative value
410 		 * (which may improve performance).
411 		 */
412 		cpu_lfence();
413 	    }
414 	    write_eflags(eflags);
415 	}
416     }
417 }
418 
419 int
420 lwkt_seq_ipiq(globaldata_t target)
421 {
422     lwkt_ipiq_t ip;
423 
424     ip = &mycpu->gd_ipiq[target->gd_cpuid];
425     return(ip->ip_windex);
426 }
427 
428 /*
429  * Called from IPI interrupt (like a fast interrupt), which has placed
430  * us in a critical section.  The MP lock may or may not be held.
431  * May also be called from doreti or splz, or be reentrantly called
432  * indirectly through the ip_func[] we run.
433  *
434  * There are two versions, one where no interrupt frame is available (when
435  * called from the send code and from splz, and one where an interrupt
436  * frame is available.
437  */
438 void
439 lwkt_process_ipiq(void)
440 {
441     globaldata_t gd = mycpu;
442     globaldata_t sgd;
443     lwkt_ipiq_t ip;
444     int n;
445 
446 again:
447     for (n = 0; n < ncpus; ++n) {
448 	if (n != gd->gd_cpuid) {
449 	    sgd = globaldata_find(n);
450 	    ip = sgd->gd_ipiq;
451 	    if (ip != NULL) {
452 		while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], NULL))
453 		    ;
454 	    }
455 	}
456     }
457     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
458 	if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL)) {
459 	    if (gd->gd_curthread->td_cscount == 0)
460 		goto again;
461 	    need_ipiq();
462 	}
463     }
464 }
465 
466 void
467 lwkt_process_ipiq_frame(struct intrframe *frame)
468 {
469     globaldata_t gd = mycpu;
470     globaldata_t sgd;
471     lwkt_ipiq_t ip;
472     int n;
473 
474 again:
475     for (n = 0; n < ncpus; ++n) {
476 	if (n != gd->gd_cpuid) {
477 	    sgd = globaldata_find(n);
478 	    ip = sgd->gd_ipiq;
479 	    if (ip != NULL) {
480 		while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], frame))
481 		    ;
482 	    }
483 	}
484     }
485     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
486 	if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, frame)) {
487 	    if (gd->gd_curthread->td_cscount == 0)
488 		goto again;
489 	    need_ipiq();
490 	}
491     }
492 }
493 
494 static int
495 lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
496 		       struct intrframe *frame)
497 {
498     int ri;
499     int wi;
500     ipifunc3_t copy_func;
501     void *copy_arg1;
502     int copy_arg2;
503 
504     /*
505      * Obtain the current write index, which is modified by a remote cpu.
506      * Issue a load fence to prevent speculative reads of e.g. data written
507      * by the other cpu prior to it updating the index.
508      */
509     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
510     wi = ip->ip_windex;
511     cpu_lfence();
512 
513     /*
514      * Note: xindex is only updated after we are sure the function has
515      * finished execution.  Beware lwkt_process_ipiq() reentrancy!  The
516      * function may send an IPI which may block/drain.
517      *
518      * Note: due to additional IPI operations that the callback function
519      * may make, it is possible for both rindex and windex to advance and
520      * thus for rindex to advance passed our cached windex.
521      */
522     while (wi - (ri = ip->ip_rindex) > 0) {
523 	ri &= MAXCPUFIFO_MASK;
524 	copy_func = ip->ip_func[ri];
525 	copy_arg1 = ip->ip_arg1[ri];
526 	copy_arg2 = ip->ip_arg2[ri];
527 	cpu_mfence();
528 	++ip->ip_rindex;
529 	KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) == ((ri + 1) & MAXCPUFIFO_MASK));
530 	logipiq(receive, copy_func, copy_arg1, copy_arg2, sgd, mycpu);
531 	copy_func(copy_arg1, copy_arg2, frame);
532 	cpu_sfence();
533 	ip->ip_xindex = ip->ip_rindex;
534 
535 #ifdef PANIC_DEBUG
536 	/*
537 	 * Simulate panics during the processing of an IPI
538 	 */
539 	if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
540 		if (--panic_ipiq_count == 0) {
541 #ifdef DDB
542 			Debugger("PANIC_DEBUG");
543 #else
544 			panic("PANIC_DEBUG");
545 #endif
546 		}
547 	}
548 #endif
549     }
550 
551     /*
552      * Return non-zero if there are more IPI messages pending on this
553      * ipiq.  ip_npoll is left set as long as possible to reduce the
554      * number of IPIs queued by the originating cpu, but must be cleared
555      * *BEFORE* checking windex.
556      */
557     atomic_poll_release_int(&ip->ip_npoll);
558     return(wi != ip->ip_windex);
559 }
560 
561 static void
562 lwkt_sync_ipiq(void *arg)
563 {
564     cpumask_t *cpumask = arg;
565 
566     atomic_clear_int(cpumask, mycpu->gd_cpumask);
567     if (*cpumask == 0)
568 	wakeup(cpumask);
569 }
570 
571 void
572 lwkt_synchronize_ipiqs(const char *wmesg)
573 {
574     cpumask_t other_cpumask;
575 
576     other_cpumask = mycpu->gd_other_cpus & smp_active_mask;
577     lwkt_send_ipiq_mask(other_cpumask, lwkt_sync_ipiq, &other_cpumask);
578 
579     crit_enter();
580     while (other_cpumask != 0) {
581 	tsleep_interlock(&other_cpumask);
582 	if (other_cpumask != 0)
583 	    tsleep(&other_cpumask, 0, wmesg, 0);
584     }
585     crit_exit();
586 }
587 
588 #endif
589 
590 /*
591  * CPU Synchronization Support
592  *
593  * lwkt_cpusync_simple()
594  *
595  *	The function is executed synchronously before return on remote cpus.
596  *	A lwkt_cpusync_t pointer is passed as an argument.  The data can
597  *	be accessed via arg->cs_data.
598  *
599  *	XXX should I just pass the data as an argument to be consistent?
600  */
601 
602 void
603 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *data)
604 {
605     struct lwkt_cpusync cmd;
606 
607     cmd.cs_run_func = NULL;
608     cmd.cs_fin1_func = func;
609     cmd.cs_fin2_func = NULL;
610     cmd.cs_data = data;
611     lwkt_cpusync_start(mask & mycpu->gd_other_cpus, &cmd);
612     if (mask & (1 << mycpu->gd_cpuid))
613 	func(&cmd);
614     lwkt_cpusync_finish(&cmd);
615 }
616 
617 /*
618  * lwkt_cpusync_fastdata()
619  *
620  *	The function is executed in tandem with return on remote cpus.
621  *	The data is directly passed as an argument.  Do not pass pointers to
622  *	temporary storage as the storage might have
623  *	gone poof by the time the target cpu executes
624  *	the function.
625  *
626  *	At the moment lwkt_cpusync is declared on the stack and we must wait
627  *	for all remote cpus to ack in lwkt_cpusync_finish(), but as a future
628  *	optimization we should be able to put a counter in the globaldata
629  *	structure (if it is not otherwise being used) and just poke it and
630  *	return without waiting. XXX
631  */
632 void
633 lwkt_cpusync_fastdata(cpumask_t mask, cpusync_func2_t func, void *data)
634 {
635     struct lwkt_cpusync cmd;
636 
637     cmd.cs_run_func = NULL;
638     cmd.cs_fin1_func = NULL;
639     cmd.cs_fin2_func = func;
640     cmd.cs_data = NULL;
641     lwkt_cpusync_start(mask & mycpu->gd_other_cpus, &cmd);
642     if (mask & (1 << mycpu->gd_cpuid))
643 	func(data);
644     lwkt_cpusync_finish(&cmd);
645 }
646 
647 /*
648  * lwkt_cpusync_start()
649  *
650  *	Start synchronization with a set of target cpus, return once they are
651  *	known to be in a synchronization loop.  The target cpus will execute
652  *	poll->cs_run_func() IN TANDEM WITH THE RETURN.
653  *
654  *	XXX future: add lwkt_cpusync_start_quick() and require a call to
655  *	lwkt_cpusync_add() or lwkt_cpusync_wait(), allowing the caller to
656  *	potentially absorb the IPI latency doing something useful.
657  */
658 void
659 lwkt_cpusync_start(cpumask_t mask, lwkt_cpusync_t poll)
660 {
661     globaldata_t gd = mycpu;
662 
663     poll->cs_count = 0;
664     poll->cs_mask = mask;
665 #ifdef SMP
666     logipiq2(sync_start, mask & gd->gd_other_cpus);
667     poll->cs_maxcount = lwkt_send_ipiq_mask(
668 		mask & gd->gd_other_cpus & smp_active_mask,
669 		(ipifunc1_t)lwkt_cpusync_remote1, poll);
670 #endif
671     if (mask & gd->gd_cpumask) {
672 	if (poll->cs_run_func)
673 	    poll->cs_run_func(poll);
674     }
675 #ifdef SMP
676     if (poll->cs_maxcount) {
677 	++ipiq_cscount;
678 	++gd->gd_curthread->td_cscount;
679 	while (poll->cs_count != poll->cs_maxcount) {
680 	    crit_enter();
681 	    lwkt_process_ipiq();
682 	    crit_exit();
683 	}
684     }
685 #endif
686 }
687 
688 void
689 lwkt_cpusync_add(cpumask_t mask, lwkt_cpusync_t poll)
690 {
691     globaldata_t gd = mycpu;
692 #ifdef SMP
693     int count;
694 #endif
695 
696     mask &= ~poll->cs_mask;
697     poll->cs_mask |= mask;
698 #ifdef SMP
699     logipiq2(sync_add, mask & gd->gd_other_cpus);
700     count = lwkt_send_ipiq_mask(
701 		mask & gd->gd_other_cpus & smp_active_mask,
702 		(ipifunc1_t)lwkt_cpusync_remote1, poll);
703 #endif
704     if (mask & gd->gd_cpumask) {
705 	if (poll->cs_run_func)
706 	    poll->cs_run_func(poll);
707     }
708 #ifdef SMP
709     poll->cs_maxcount += count;
710     if (poll->cs_maxcount) {
711 	if (poll->cs_maxcount == count)
712 	    ++gd->gd_curthread->td_cscount;
713 	while (poll->cs_count != poll->cs_maxcount) {
714 	    crit_enter();
715 	    lwkt_process_ipiq();
716 	    crit_exit();
717 	}
718     }
719 #endif
720 }
721 
722 /*
723  * Finish synchronization with a set of target cpus.  The target cpus will
724  * execute cs_fin1_func(poll) prior to this function returning, and will
725  * execute cs_fin2_func(data) IN TANDEM WITH THIS FUNCTION'S RETURN.
726  *
727  * If cs_maxcount is non-zero then we are mastering a cpusync with one or
728  * more remote cpus and must account for it in our thread structure.
729  */
730 void
731 lwkt_cpusync_finish(lwkt_cpusync_t poll)
732 {
733     globaldata_t gd = mycpu;
734 
735     poll->cs_count = -1;
736     if (poll->cs_mask & gd->gd_cpumask) {
737 	if (poll->cs_fin1_func)
738 	    poll->cs_fin1_func(poll);
739 	if (poll->cs_fin2_func)
740 	    poll->cs_fin2_func(poll->cs_data);
741     }
742 #ifdef SMP
743     if (poll->cs_maxcount) {
744 	while (poll->cs_count != -(poll->cs_maxcount + 1)) {
745 	    crit_enter();
746 	    lwkt_process_ipiq();
747 	    crit_exit();
748 	}
749 	--gd->gd_curthread->td_cscount;
750     }
751 #endif
752 }
753 
754 #ifdef SMP
755 
756 /*
757  * helper IPI remote messaging function.
758  *
759  * Called on remote cpu when a new cpu synchronization request has been
760  * sent to us.  Execute the run function and adjust cs_count, then requeue
761  * the request so we spin on it.
762  */
763 static void
764 lwkt_cpusync_remote1(lwkt_cpusync_t poll)
765 {
766     atomic_add_int(&poll->cs_count, 1);
767     if (poll->cs_run_func)
768 	poll->cs_run_func(poll);
769     lwkt_cpusync_remote2(poll);
770 }
771 
772 /*
773  * helper IPI remote messaging function.
774  *
775  * Poll for the originator telling us to finish.  If it hasn't, requeue
776  * our request so we spin on it.  When the originator requests that we
777  * finish we execute cs_fin1_func(poll) synchronously and cs_fin2_func(data)
778  * in tandem with the release.
779  */
780 static void
781 lwkt_cpusync_remote2(lwkt_cpusync_t poll)
782 {
783     if (poll->cs_count < 0) {
784 	cpusync_func2_t savef;
785 	void *saved;
786 
787 	if (poll->cs_fin1_func)
788 	    poll->cs_fin1_func(poll);
789 	if (poll->cs_fin2_func) {
790 	    savef = poll->cs_fin2_func;
791 	    saved = poll->cs_data;
792 	    atomic_add_int(&poll->cs_count, -1);
793 	    savef(saved);
794 	} else {
795 	    atomic_add_int(&poll->cs_count, -1);
796 	}
797     } else {
798 	globaldata_t gd = mycpu;
799 	lwkt_ipiq_t ip;
800 	int wi;
801 
802 	ip = &gd->gd_cpusyncq;
803 	wi = ip->ip_windex & MAXCPUFIFO_MASK;
804 	ip->ip_func[wi] = (ipifunc3_t)(ipifunc1_t)lwkt_cpusync_remote2;
805 	ip->ip_arg1[wi] = poll;
806 	ip->ip_arg2[wi] = 0;
807 	cpu_sfence();
808 	++ip->ip_windex;
809     }
810 }
811 
812 #endif
813