xref: /dragonfly/sys/kern/lwkt_serialize.c (revision 2038fb68)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_serialize.c,v 1.18 2008/10/04 14:22:44 swildner Exp $
35  */
36 /*
37  * This API provides a fast locked-bus-cycle-based serializer.  It's
38  * basically a low level NON-RECURSIVE exclusive lock that can be held across
39  * a blocking condition.  It is NOT a mutex.
40  *
41  * This serializer is primarily designed for low level situations and
42  * interrupt/device interaction.  There are two primary facilities.  First,
43  * the serializer facility itself.  Second, an integrated interrupt handler
44  * disablement facility.
45  */
46 
47 #include "opt_serializer.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/kernel.h>
52 #include <sys/proc.h>
53 #include <sys/rtprio.h>
54 #include <sys/queue.h>
55 #include <sys/thread2.h>
56 #include <sys/serialize.h>
57 #include <sys/sysctl.h>
58 #include <sys/ktr.h>
59 #include <sys/kthread.h>
60 #include <machine/cpu.h>
61 #include <machine/cpufunc.h>
62 #include <machine/specialreg.h>
63 #include <sys/lock.h>
64 #include <sys/caps.h>
65 
66 struct exp_backoff {
67 	int backoff;
68 	int round;
69 	lwkt_serialize_t s;
70 };
71 
72 #define SLZ_KTR_STRING		"slz=%p"
73 #define SLZ_KTR_ARG_SIZE	(sizeof(void *))
74 
75 #ifndef KTR_SERIALIZER
76 #define KTR_SERIALIZER	KTR_ALL
77 #endif
78 
79 KTR_INFO_MASTER(slz);
80 KTR_INFO(KTR_SERIALIZER, slz, enter_beg, 0, SLZ_KTR_STRING, SLZ_KTR_ARG_SIZE);
81 KTR_INFO(KTR_SERIALIZER, slz, sleep_beg, 1, SLZ_KTR_STRING, SLZ_KTR_ARG_SIZE);
82 KTR_INFO(KTR_SERIALIZER, slz, sleep_end, 2, SLZ_KTR_STRING, SLZ_KTR_ARG_SIZE);
83 KTR_INFO(KTR_SERIALIZER, slz, exit_end, 3, SLZ_KTR_STRING, SLZ_KTR_ARG_SIZE);
84 KTR_INFO(KTR_SERIALIZER, slz, wakeup_beg, 4, SLZ_KTR_STRING, SLZ_KTR_ARG_SIZE);
85 KTR_INFO(KTR_SERIALIZER, slz, wakeup_end, 5, SLZ_KTR_STRING, SLZ_KTR_ARG_SIZE);
86 KTR_INFO(KTR_SERIALIZER, slz, try, 6, SLZ_KTR_STRING, SLZ_KTR_ARG_SIZE);
87 KTR_INFO(KTR_SERIALIZER, slz, tryfail, 7, SLZ_KTR_STRING, SLZ_KTR_ARG_SIZE);
88 KTR_INFO(KTR_SERIALIZER, slz, tryok, 8, SLZ_KTR_STRING, SLZ_KTR_ARG_SIZE);
89 #ifdef SMP
90 KTR_INFO(KTR_SERIALIZER, slz, spinbo, 9,
91 	 "slz=%p bo1=%d bo=%d", (sizeof(void *) + (2 * sizeof(int))));
92 #endif
93 KTR_INFO(KTR_SERIALIZER, slz, enter_end, 10, SLZ_KTR_STRING, SLZ_KTR_ARG_SIZE);
94 KTR_INFO(KTR_SERIALIZER, slz, exit_beg, 11, SLZ_KTR_STRING, SLZ_KTR_ARG_SIZE);
95 
96 #define logslz(name, slz)		KTR_LOG(slz_ ## name, slz)
97 #ifdef SMP
98 #define logslz_spinbo(slz, bo1, bo)	KTR_LOG(slz_spinbo, slz, bo1, bo)
99 #endif
100 
101 static void lwkt_serialize_sleep(void *info);
102 static void lwkt_serialize_wakeup(void *info);
103 
104 #ifdef SMP
105 static void lwkt_serialize_adaptive_sleep(void *bo);
106 
107 static int slz_backoff_limit = 128;
108 SYSCTL_INT(_debug, OID_AUTO, serialize_bolimit, CTLFLAG_RW,
109 	   &slz_backoff_limit, 0, "");
110 
111 static int slz_backoff_shift = 1;
112 SYSCTL_INT(_debug, OID_AUTO, serialize_boshift, CTLFLAG_RW,
113 	   &slz_backoff_shift, 0, "");
114 
115 static int slz_backoff_round;
116 TUNABLE_INT("debug.serialize_boround", &slz_backoff_round);
117 SYSCTL_INT(_debug, OID_AUTO, serialize_boround, CTLFLAG_RW,
118 	   &slz_backoff_round, 0, "");
119 #endif	/* SMP */
120 
121 void
122 lwkt_serialize_init(lwkt_serialize_t s)
123 {
124     atomic_intr_init(&s->interlock);
125 #ifdef INVARIANTS
126     s->last_td = (void *)-4;
127 #endif
128     s->sleep_cnt = 0;
129     s->tryfail_cnt = 0;
130     s->enter_cnt = 0;
131     s->try_cnt = 0;
132 }
133 
134 #ifdef SMP
135 void
136 lwkt_serialize_adaptive_enter(lwkt_serialize_t s)
137 {
138     struct exp_backoff bo;
139 
140     bo.backoff = 1;
141     bo.round = 0;
142     bo.s = s;
143 
144     ASSERT_NOT_SERIALIZED(s);
145 
146     logslz(enter_beg, s);
147     atomic_intr_cond_enter(&s->interlock, lwkt_serialize_adaptive_sleep, &bo);
148     logslz(enter_end, s);
149 #ifdef INVARIANTS
150     s->last_td = curthread;
151 #endif
152 #ifdef PROFILE_SERIALIZER
153     s->enter_cnt++;
154 #endif
155 }
156 #endif	/* SMP */
157 
158 void
159 lwkt_serialize_enter(lwkt_serialize_t s)
160 {
161     ASSERT_NOT_SERIALIZED(s);
162 
163     logslz(enter_beg, s);
164     atomic_intr_cond_enter(&s->interlock, lwkt_serialize_sleep, s);
165     logslz(enter_end, s);
166 #ifdef INVARIANTS
167     s->last_td = curthread;
168 #endif
169 #ifdef PROFILE_SERIALIZER
170     s->enter_cnt++;
171 #endif
172 }
173 
174 /*
175  * Returns non-zero on success
176  */
177 int
178 lwkt_serialize_try(lwkt_serialize_t s)
179 {
180     int error;
181 
182     ASSERT_NOT_SERIALIZED(s);
183 
184 #ifdef PROFILE_SERIALIZER
185     s->try_cnt++;
186 #endif
187     logslz(try, s);
188     if ((error = atomic_intr_cond_try(&s->interlock)) == 0) {
189 #ifdef INVARIANTS
190 	s->last_td = curthread;
191 #endif
192 	logslz(tryok, s);
193 	return(1);
194     }
195 #ifdef PROFILE_SERIALIZER
196     s->tryfail_cnt++;
197 #endif
198     logslz(tryfail, s);
199     return (0);
200 }
201 
202 void
203 lwkt_serialize_exit(lwkt_serialize_t s)
204 {
205     ASSERT_SERIALIZED(s);
206 #ifdef INVARIANTS
207     s->last_td = (void *)-2;
208 #endif
209     logslz(exit_beg, s);
210     atomic_intr_cond_exit(&s->interlock, lwkt_serialize_wakeup, s);
211     logslz(exit_end, s);
212 }
213 
214 /*
215  * Interrupt handler disablement support, used by drivers.  Non-stackable
216  * (uses bit 30).
217  */
218 void
219 lwkt_serialize_handler_disable(lwkt_serialize_t s)
220 {
221     atomic_intr_handler_disable(&s->interlock);
222 }
223 
224 void
225 lwkt_serialize_handler_enable(lwkt_serialize_t s)
226 {
227     atomic_intr_handler_enable(&s->interlock);
228 }
229 
230 void
231 lwkt_serialize_handler_call(lwkt_serialize_t s, void (*func)(void *, void *),
232 			    void *arg, void *frame)
233 {
234     /*
235      * note: a return value of 0 indicates that the interrupt handler is
236      * enabled.
237      */
238     if (atomic_intr_handler_is_enabled(&s->interlock) == 0) {
239 	logslz(enter_beg, s);
240 	atomic_intr_cond_enter(&s->interlock, lwkt_serialize_sleep, s);
241 	logslz(enter_end, s);
242 #ifdef INVARIANTS
243 	s->last_td = curthread;
244 #endif
245 #ifdef PROFILE_SERIALIZER
246 	s->enter_cnt++;
247 #endif
248 	if (atomic_intr_handler_is_enabled(&s->interlock) == 0)
249 	    func(arg, frame);
250 
251 	ASSERT_SERIALIZED(s);
252 #ifdef INVARIANTS
253 	s->last_td = (void *)-2;
254 #endif
255 	logslz(exit_beg, s);
256 	atomic_intr_cond_exit(&s->interlock, lwkt_serialize_wakeup, s);
257 	logslz(exit_end, s);
258     }
259 }
260 
261 /*
262  * Similar to handler_call but does not block.  Returns 0 on success,
263  * and 1 on failure.
264  */
265 int
266 lwkt_serialize_handler_try(lwkt_serialize_t s, void (*func)(void *, void *),
267 			   void *arg, void *frame)
268 {
269     /*
270      * note: a return value of 0 indicates that the interrupt handler is
271      * enabled.
272      */
273     if (atomic_intr_handler_is_enabled(&s->interlock) == 0) {
274 #ifdef PROFILE_SERIALIZER
275 	s->try_cnt++;
276 #endif
277 	logslz(try, s);
278 	if (atomic_intr_cond_try(&s->interlock) == 0) {
279 #ifdef INVARIANTS
280 	    s->last_td = curthread;
281 #endif
282 	    logslz(tryok, s);
283 
284 	    func(arg, frame);
285 
286 	    ASSERT_SERIALIZED(s);
287 #ifdef INVARIANTS
288 	    s->last_td = (void *)-2;
289 #endif
290 	    logslz(exit_beg, s);
291 	    atomic_intr_cond_exit(&s->interlock, lwkt_serialize_wakeup, s);
292 	    logslz(exit_end, s);
293 	    return(0);
294 	}
295     }
296 #ifdef PROFILE_SERIALIZER
297     s->tryfail_cnt++;
298 #endif
299     logslz(tryfail, s);
300     return(1);
301 }
302 
303 
304 /*
305  * Helper functions
306  *
307  * It is possible to race an interrupt which acquires and releases the
308  * bit, then calls wakeup before we actually go to sleep, so we
309  * need to check that the interlock is still acquired from within
310  * a critical section prior to sleeping.
311  */
312 static void
313 lwkt_serialize_sleep(void *info)
314 {
315     lwkt_serialize_t s = info;
316     crit_enter();
317     tsleep_interlock(s);
318     if (atomic_intr_cond_test(&s->interlock) != 0) {
319 #ifdef PROFILE_SERIALIZER
320 	s->sleep_cnt++;
321 #endif
322 	logslz(sleep_beg, s);
323 	tsleep(s, 0, "slize", 0);
324 	logslz(sleep_end, s);
325     }
326     crit_exit();
327 }
328 
329 #ifdef SMP
330 
331 static void
332 lwkt_serialize_adaptive_sleep(void *arg)
333 {
334     struct exp_backoff *bo = arg;
335     lwkt_serialize_t s = bo->s;
336     int backoff;
337 
338     /*
339      * Randomize backoff value
340      */
341 #ifdef _RDTSC_SUPPORTED_
342     if (cpu_feature & CPUID_TSC) {
343 	backoff =
344 	(((u_long)rdtsc() ^ (((u_long)curthread) >> 5)) &
345 	 (bo->backoff - 1)) + 1;
346     } else
347 #endif
348 	backoff = bo->backoff;
349 
350     logslz_spinbo(s, bo->backoff, backoff);
351 
352     /*
353      * Quick backoff
354      */
355     for (; backoff; --backoff)
356 	cpu_pause();
357     if (bo->backoff < slz_backoff_limit) {
358 	bo->backoff <<= slz_backoff_shift;
359 	return;
360     } else {
361 	bo->backoff = 1;
362 	bo->round++;
363 	if (bo->round >= slz_backoff_round)
364 	    bo->round = 0;
365     	else
366 	    return;
367     }
368 
369     crit_enter();
370     tsleep_interlock(s);
371     if (atomic_intr_cond_test(&s->interlock) != 0) {
372 #ifdef PROFILE_SERIALIZER
373 	s->sleep_cnt++;
374 #endif
375 	logslz(sleep_beg, s);
376 	tsleep(s, 0, "slize", 0);
377 	logslz(sleep_end, s);
378     }
379     crit_exit();
380 }
381 
382 #endif	/* SMP */
383 
384 static void
385 lwkt_serialize_wakeup(void *info)
386 {
387     logslz(wakeup_beg, info);
388     wakeup(info);
389     logslz(wakeup_end, info);
390 }
391 
392 #ifdef SMP
393 static void
394 lwkt_serialize_sysinit(void *dummy __unused)
395 {
396 	if (slz_backoff_round <= 0)
397 		slz_backoff_round = ncpus * 2;
398 }
399 SYSINIT(lwkt_serialize, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND,
400 	lwkt_serialize_sysinit, NULL);
401 #endif
402