xref: /dragonfly/sys/kern/lwkt_thread.c (revision 1fe7e945)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 
59 #include <sys/dsched.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_pager.h>
68 #include <vm/vm_extern.h>
69 
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
72 #include <machine/clock.h>
73 
74 #ifdef _KERNEL_VIRTUAL
75 #include <pthread.h>
76 #endif
77 
78 #define LOOPMASK
79 
80 #if !defined(KTR_CTXSW)
81 #define KTR_CTXSW KTR_ALL
82 #endif
83 KTR_INFO_MASTER(ctxsw);
84 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
85 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
86 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
87 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
88 
89 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
90 
91 #ifdef	INVARIANTS
92 static int panic_on_cscount = 0;
93 #endif
94 static int64_t switch_count = 0;
95 static int64_t preempt_hit = 0;
96 static int64_t preempt_miss = 0;
97 static int64_t preempt_weird = 0;
98 static int lwkt_use_spin_port;
99 static struct objcache *thread_cache;
100 int cpu_mwait_spin = 0;
101 
102 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
103 static void lwkt_setcpu_remote(void *arg);
104 
105 /*
106  * We can make all thread ports use the spin backend instead of the thread
107  * backend.  This should only be set to debug the spin backend.
108  */
109 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
110 
111 #ifdef	INVARIANTS
112 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
113     "Panic if attempting to switch lwkt's while mastering cpusync");
114 #endif
115 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
116     "Number of switched threads");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
118     "Successful preemption events");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
120     "Failed preemption events");
121 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
122     "Number of preempted threads.");
123 static int fairq_enable = 0;
124 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
125 	&fairq_enable, 0, "Turn on fairq priority accumulators");
126 static int fairq_bypass = -1;
127 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
128 	&fairq_bypass, 0, "Allow fairq to bypass td on token failure");
129 extern int lwkt_sched_debug;
130 int lwkt_sched_debug = 0;
131 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
132 	&lwkt_sched_debug, 0, "Scheduler debug");
133 static u_int lwkt_spin_loops = 10;
134 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
135 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
136 static int preempt_enable = 1;
137 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
138 	&preempt_enable, 0, "Enable preemption");
139 static int lwkt_cache_threads = 0;
140 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
141 	&lwkt_cache_threads, 0, "thread+kstack cache");
142 
143 /*
144  * These helper procedures handle the runq, they can only be called from
145  * within a critical section.
146  *
147  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
148  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
149  * instead of 'mycpu' when referencing the globaldata structure.   Once
150  * SMP live enqueuing and dequeueing only occurs on the current cpu.
151  */
152 static __inline
153 void
154 _lwkt_dequeue(thread_t td)
155 {
156     if (td->td_flags & TDF_RUNQ) {
157 	struct globaldata *gd = td->td_gd;
158 
159 	td->td_flags &= ~TDF_RUNQ;
160 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
161 	--gd->gd_tdrunqcount;
162 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
163 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
164     }
165 }
166 
167 /*
168  * Priority enqueue.
169  *
170  * There are a limited number of lwkt threads runnable since user
171  * processes only schedule one at a time per cpu.  However, there can
172  * be many user processes in kernel mode exiting from a tsleep() which
173  * become runnable.
174  *
175  * We scan the queue in both directions to help deal with degenerate
176  * situations when hundreds or thousands (or more) threads are runnable.
177  *
178  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
179  *	 will ignore user priority.  This is to ensure that user threads in
180  *	 kernel mode get cpu at some point regardless of what the user
181  *	 scheduler thinks.
182  */
183 static __inline
184 void
185 _lwkt_enqueue(thread_t td)
186 {
187     thread_t xtd;	/* forward scan */
188     thread_t rtd;	/* reverse scan */
189 
190     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
191 	struct globaldata *gd = td->td_gd;
192 
193 	td->td_flags |= TDF_RUNQ;
194 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
195 	if (xtd == NULL) {
196 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
197 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
198 	} else {
199 	    /*
200 	     * NOTE: td_upri - higher numbers more desireable, same sense
201 	     *	     as td_pri (typically reversed from lwp_upri).
202 	     *
203 	     *	     In the equal priority case we want the best selection
204 	     *	     at the beginning so the less desireable selections know
205 	     *	     that they have to setrunqueue/go-to-another-cpu, even
206 	     *	     though it means switching back to the 'best' selection.
207 	     *	     This also avoids degenerate situations when many threads
208 	     *	     are runnable or waking up at the same time.
209 	     *
210 	     *	     If upri matches exactly place at end/round-robin.
211 	     */
212 	    rtd = TAILQ_LAST(&gd->gd_tdrunq, lwkt_queue);
213 
214 	    while (xtd &&
215 		   (xtd->td_pri > td->td_pri ||
216 		    (xtd->td_pri == td->td_pri &&
217 		     xtd->td_upri >= td->td_upri))) {
218 		xtd = TAILQ_NEXT(xtd, td_threadq);
219 
220 		/*
221 		 * Doing a reverse scan at the same time is an optimization
222 		 * for the insert-closer-to-tail case that avoids having to
223 		 * scan the entire list.  This situation can occur when
224 		 * thousands of threads are woken up at the same time.
225 		 */
226 		if (rtd->td_pri > td->td_pri ||
227 		    (rtd->td_pri == td->td_pri &&
228 		    rtd->td_upri >= td->td_upri)) {
229 			TAILQ_INSERT_AFTER(&gd->gd_tdrunq, rtd, td, td_threadq);
230 			goto skip;
231 		}
232 		rtd = TAILQ_PREV(rtd, lwkt_queue, td_threadq);
233 	    }
234 	    if (xtd)
235 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
236 	    else
237 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
238 	}
239 skip:
240 	++gd->gd_tdrunqcount;
241 
242 	/*
243 	 * Request a LWKT reschedule if we are now at the head of the queue.
244 	 */
245 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
246 	    need_lwkt_resched();
247     }
248 }
249 
250 static boolean_t
251 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
252 {
253 	struct thread *td = (struct thread *)obj;
254 
255 	td->td_kstack = NULL;
256 	td->td_kstack_size = 0;
257 	td->td_flags = TDF_ALLOCATED_THREAD;
258 	td->td_mpflags = 0;
259 	return (1);
260 }
261 
262 static void
263 _lwkt_thread_dtor(void *obj, void *privdata)
264 {
265 	struct thread *td = (struct thread *)obj;
266 
267 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
268 	    ("_lwkt_thread_dtor: not allocated from objcache"));
269 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
270 		td->td_kstack_size > 0,
271 	    ("_lwkt_thread_dtor: corrupted stack"));
272 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
273 	td->td_kstack = NULL;
274 	td->td_flags = 0;
275 }
276 
277 /*
278  * Initialize the lwkt s/system.
279  *
280  * Nominally cache up to 32 thread + kstack structures.  Cache more on
281  * systems with a lot of cpu cores.
282  */
283 static void
284 lwkt_init(void)
285 {
286     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
287     if (lwkt_cache_threads == 0) {
288 	lwkt_cache_threads = ncpus * 4;
289 	if (lwkt_cache_threads < 32)
290 	    lwkt_cache_threads = 32;
291     }
292     thread_cache = objcache_create_mbacked(
293 				M_THREAD, sizeof(struct thread),
294 				0, lwkt_cache_threads,
295 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
296 }
297 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
298 
299 /*
300  * Schedule a thread to run.  As the current thread we can always safely
301  * schedule ourselves, and a shortcut procedure is provided for that
302  * function.
303  *
304  * (non-blocking, self contained on a per cpu basis)
305  */
306 void
307 lwkt_schedule_self(thread_t td)
308 {
309     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
310     crit_enter_quick(td);
311     KASSERT(td != &td->td_gd->gd_idlethread,
312 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
313     KKASSERT(td->td_lwp == NULL ||
314 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
315     _lwkt_enqueue(td);
316     crit_exit_quick(td);
317 }
318 
319 /*
320  * Deschedule a thread.
321  *
322  * (non-blocking, self contained on a per cpu basis)
323  */
324 void
325 lwkt_deschedule_self(thread_t td)
326 {
327     crit_enter_quick(td);
328     _lwkt_dequeue(td);
329     crit_exit_quick(td);
330 }
331 
332 /*
333  * LWKTs operate on a per-cpu basis
334  *
335  * WARNING!  Called from early boot, 'mycpu' may not work yet.
336  */
337 void
338 lwkt_gdinit(struct globaldata *gd)
339 {
340     TAILQ_INIT(&gd->gd_tdrunq);
341     TAILQ_INIT(&gd->gd_tdallq);
342 }
343 
344 /*
345  * Create a new thread.  The thread must be associated with a process context
346  * or LWKT start address before it can be scheduled.  If the target cpu is
347  * -1 the thread will be created on the current cpu.
348  *
349  * If you intend to create a thread without a process context this function
350  * does everything except load the startup and switcher function.
351  */
352 thread_t
353 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
354 {
355     static int cpu_rotator;
356     globaldata_t gd = mycpu;
357     void *stack;
358 
359     /*
360      * If static thread storage is not supplied allocate a thread.  Reuse
361      * a cached free thread if possible.  gd_freetd is used to keep an exiting
362      * thread intact through the exit.
363      */
364     if (td == NULL) {
365 	crit_enter_gd(gd);
366 	if ((td = gd->gd_freetd) != NULL) {
367 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
368 				      TDF_RUNQ)) == 0);
369 	    gd->gd_freetd = NULL;
370 	} else {
371 	    td = objcache_get(thread_cache, M_WAITOK);
372 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
373 				      TDF_RUNQ)) == 0);
374 	}
375 	crit_exit_gd(gd);
376     	KASSERT((td->td_flags &
377 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
378 		 TDF_ALLOCATED_THREAD,
379 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
380     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
381     }
382 
383     /*
384      * Try to reuse cached stack.
385      */
386     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
387 	if (flags & TDF_ALLOCATED_STACK) {
388 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
389 	    stack = NULL;
390 	}
391     }
392     if (stack == NULL) {
393 	if (cpu < 0)
394 		stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 0);
395 	else
396 		stack = (void *)kmem_alloc_stack(&kernel_map, stksize,
397 						 KM_CPU(cpu));
398 	flags |= TDF_ALLOCATED_STACK;
399     }
400     if (cpu < 0) {
401 	cpu = ++cpu_rotator;
402 	cpu_ccfence();
403 	cpu = (uint32_t)cpu % (uint32_t)ncpus;
404     }
405     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
406     return(td);
407 }
408 
409 /*
410  * Initialize a preexisting thread structure.  This function is used by
411  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
412  *
413  * All threads start out in a critical section at a priority of
414  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
415  * appropriate.  This function may send an IPI message when the
416  * requested cpu is not the current cpu and consequently gd_tdallq may
417  * not be initialized synchronously from the point of view of the originating
418  * cpu.
419  *
420  * NOTE! we have to be careful in regards to creating threads for other cpus
421  * if SMP has not yet been activated.
422  */
423 static void
424 lwkt_init_thread_remote(void *arg)
425 {
426     thread_t td = arg;
427 
428     /*
429      * Protected by critical section held by IPI dispatch
430      */
431     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
432 }
433 
434 /*
435  * lwkt core thread structural initialization.
436  *
437  * NOTE: All threads are initialized as mpsafe threads.
438  */
439 void
440 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
441 		struct globaldata *gd)
442 {
443     globaldata_t mygd = mycpu;
444 
445     bzero(td, sizeof(struct thread));
446     td->td_kstack = stack;
447     td->td_kstack_size = stksize;
448     td->td_flags = flags;
449     td->td_mpflags = 0;
450     td->td_type = TD_TYPE_GENERIC;
451     td->td_gd = gd;
452     td->td_pri = TDPRI_KERN_DAEMON;
453     td->td_critcount = 1;
454     td->td_toks_have = NULL;
455     td->td_toks_stop = &td->td_toks_base;
456     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
457 	lwkt_initport_spin(&td->td_msgport, td,
458 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
459     } else {
460 	lwkt_initport_thread(&td->td_msgport, td);
461     }
462     pmap_init_thread(td);
463     /*
464      * Normally initializing a thread for a remote cpu requires sending an
465      * IPI.  However, the idlethread is setup before the other cpus are
466      * activated so we have to treat it as a special case.  XXX manipulation
467      * of gd_tdallq requires the BGL.
468      */
469     if (gd == mygd || td == &gd->gd_idlethread) {
470 	crit_enter_gd(mygd);
471 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
472 	crit_exit_gd(mygd);
473     } else {
474 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
475     }
476     dsched_enter_thread(td);
477 }
478 
479 void
480 lwkt_set_comm(thread_t td, const char *ctl, ...)
481 {
482     __va_list va;
483 
484     __va_start(va, ctl);
485     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
486     __va_end(va);
487     KTR_LOG(ctxsw_newtd, td, td->td_comm);
488 }
489 
490 /*
491  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
492  * this does not prevent the thread from migrating to another cpu so the
493  * gd_tdallq state is not protected by this.
494  */
495 void
496 lwkt_hold(thread_t td)
497 {
498     atomic_add_int(&td->td_refs, 1);
499 }
500 
501 void
502 lwkt_rele(thread_t td)
503 {
504     KKASSERT(td->td_refs > 0);
505     atomic_add_int(&td->td_refs, -1);
506 }
507 
508 void
509 lwkt_free_thread(thread_t td)
510 {
511     KKASSERT(td->td_refs == 0);
512     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
513 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
514     if (td->td_flags & TDF_ALLOCATED_THREAD) {
515     	objcache_put(thread_cache, td);
516     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
517 	/* client-allocated struct with internally allocated stack */
518 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
519 	    ("lwkt_free_thread: corrupted stack"));
520 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
521 	td->td_kstack = NULL;
522 	td->td_kstack_size = 0;
523     }
524 
525     KTR_LOG(ctxsw_deadtd, td);
526 }
527 
528 
529 /*
530  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
531  * switch to the idlethread.  Switching must occur within a critical
532  * section to avoid races with the scheduling queue.
533  *
534  * We always have full control over our cpu's run queue.  Other cpus
535  * that wish to manipulate our queue must use the cpu_*msg() calls to
536  * talk to our cpu, so a critical section is all that is needed and
537  * the result is very, very fast thread switching.
538  *
539  * The LWKT scheduler uses a fixed priority model and round-robins at
540  * each priority level.  User process scheduling is a totally
541  * different beast and LWKT priorities should not be confused with
542  * user process priorities.
543  *
544  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
545  * is not called by the current thread in the preemption case, only when
546  * the preempting thread blocks (in order to return to the original thread).
547  *
548  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
549  * migration and tsleep deschedule the current lwkt thread and call
550  * lwkt_switch().  In particular, the target cpu of the migration fully
551  * expects the thread to become non-runnable and can deadlock against
552  * cpusync operations if we run any IPIs prior to switching the thread out.
553  *
554  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
555  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
556  */
557 void
558 lwkt_switch(void)
559 {
560     globaldata_t gd = mycpu;
561     thread_t td = gd->gd_curthread;
562     thread_t ntd;
563     thread_t xtd;
564     int upri;
565 #ifdef LOOPMASK
566     uint64_t tsc_base = rdtsc();
567 #endif
568 
569     KKASSERT(gd->gd_processing_ipiq == 0);
570     KKASSERT(td->td_flags & TDF_RUNNING);
571 
572     /*
573      * Switching from within a 'fast' (non thread switched) interrupt or IPI
574      * is illegal.  However, we may have to do it anyway if we hit a fatal
575      * kernel trap or we have paniced.
576      *
577      * If this case occurs save and restore the interrupt nesting level.
578      */
579     if (gd->gd_intr_nesting_level) {
580 	int savegdnest;
581 	int savegdtrap;
582 
583 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
584 	    panic("lwkt_switch: Attempt to switch from a "
585 		  "fast interrupt, ipi, or hard code section, "
586 		  "td %p\n",
587 		  td);
588 	} else {
589 	    savegdnest = gd->gd_intr_nesting_level;
590 	    savegdtrap = gd->gd_trap_nesting_level;
591 	    gd->gd_intr_nesting_level = 0;
592 	    gd->gd_trap_nesting_level = 0;
593 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
594 		td->td_flags |= TDF_PANICWARN;
595 		kprintf("Warning: thread switch from interrupt, IPI, "
596 			"or hard code section.\n"
597 			"thread %p (%s)\n", td, td->td_comm);
598 		print_backtrace(-1);
599 	    }
600 	    lwkt_switch();
601 	    gd->gd_intr_nesting_level = savegdnest;
602 	    gd->gd_trap_nesting_level = savegdtrap;
603 	    return;
604 	}
605     }
606 
607     /*
608      * Release our current user process designation if we are blocking
609      * or if a user reschedule was requested.
610      *
611      * NOTE: This function is NOT called if we are switching into or
612      *	     returning from a preemption.
613      *
614      * NOTE: Releasing our current user process designation may cause
615      *	     it to be assigned to another thread, which in turn will
616      *	     cause us to block in the usched acquire code when we attempt
617      *	     to return to userland.
618      *
619      * NOTE: On SMP systems this can be very nasty when heavy token
620      *	     contention is present so we want to be careful not to
621      *	     release the designation gratuitously.
622      */
623     if (td->td_release &&
624 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
625 	    td->td_release(td);
626     }
627 
628     /*
629      * Release all tokens.  Once we do this we must remain in the critical
630      * section and cannot run IPIs or other interrupts until we switch away
631      * because they may implode if they try to get a token using our thread
632      * context.
633      */
634     crit_enter_gd(gd);
635     if (TD_TOKS_HELD(td))
636 	    lwkt_relalltokens(td);
637 
638     /*
639      * We had better not be holding any spin locks, but don't get into an
640      * endless panic loop.
641      */
642     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
643 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
644 	     gd->gd_spinlocks));
645 
646 #ifdef	INVARIANTS
647     if (td->td_cscount) {
648 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
649 		td);
650 	if (panic_on_cscount)
651 	    panic("switching while mastering cpusync");
652     }
653 #endif
654 
655     /*
656      * If we had preempted another thread on this cpu, resume the preempted
657      * thread.  This occurs transparently, whether the preempted thread
658      * was scheduled or not (it may have been preempted after descheduling
659      * itself).
660      *
661      * We have to setup the MP lock for the original thread after backing
662      * out the adjustment that was made to curthread when the original
663      * was preempted.
664      */
665     if ((ntd = td->td_preempted) != NULL) {
666 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
667 	ntd->td_flags |= TDF_PREEMPT_DONE;
668 	ntd->td_contended = 0;		/* reset contended */
669 
670 	/*
671 	 * The interrupt may have woken a thread up, we need to properly
672 	 * set the reschedule flag if the originally interrupted thread is
673 	 * at a lower priority.
674 	 *
675 	 * NOTE: The interrupt may not have descheduled ntd.
676 	 *
677 	 * NOTE: We do not reschedule if there are no threads on the runq.
678 	 *	 (ntd could be the idlethread).
679 	 */
680 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
681 	if (xtd && xtd != ntd)
682 	    need_lwkt_resched();
683 	goto havethread_preempted;
684     }
685 
686     /*
687      * Figure out switch target.  If we cannot switch to our desired target
688      * look for a thread that we can switch to.
689      *
690      * NOTE! The limited spin loop and related parameters are extremely
691      *	     important for system performance, particularly for pipes and
692      *	     concurrent conflicting VM faults.
693      */
694     clear_lwkt_resched();
695     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
696 
697     if (ntd) {
698 	do {
699 	    if (TD_TOKS_NOT_HELD(ntd) ||
700 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
701 	    {
702 		goto havethread;
703 	    }
704 	    ++gd->gd_cnt.v_lock_colls;
705 	    ++ntd->td_contended;	/* overflow ok */
706 #ifdef LOOPMASK
707 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
708 		    kprintf("lwkt_switch: excessive contended %d "
709 			    "thread %p\n", ntd->td_contended, ntd);
710 		    tsc_base = rdtsc();
711 	    }
712 #endif
713 	} while (ntd->td_contended < (lwkt_spin_loops >> 1));
714 	upri = ntd->td_upri;
715 
716 	/*
717 	 * Bleh, the thread we wanted to switch to has a contended token.
718 	 * See if we can switch to another thread.
719 	 *
720 	 * We generally don't want to do this because it represents a
721 	 * priority inversion.  Do not allow the case if the thread
722 	 * is returning to userland (not a kernel thread) AND the thread
723 	 * has a lower upri.
724 	 */
725 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
726 	    if (ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri)
727 		break;
728 	    upri = ntd->td_upri;
729 
730 	    /*
731 	     * Try this one.
732 	     */
733 	    if (TD_TOKS_NOT_HELD(ntd) ||
734 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
735 		    goto havethread;
736 	    }
737 	    ++ntd->td_contended;	/* overflow ok */
738 	    ++gd->gd_cnt.v_lock_colls;
739 	}
740 
741 	/*
742 	 * Fall through, switch to idle thread to get us out of the current
743 	 * context.  Since we were contended, prevent HLT by flagging a
744 	 * LWKT reschedule.
745 	 */
746 	need_lwkt_resched();
747     }
748 
749     /*
750      * We either contended on ntd or the runq is empty.  We must switch
751      * through the idle thread to get out of the current context.
752      */
753     ntd = &gd->gd_idlethread;
754     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
755 	ASSERT_NO_TOKENS_HELD(ntd);
756     cpu_time.cp_msg[0] = 0;
757     goto haveidle;
758 
759 havethread:
760     /*
761      * Clear gd_idle_repeat when doing a normal switch to a non-idle
762      * thread.
763      */
764     ntd->td_wmesg = NULL;
765     ntd->td_contended = 0;	/* reset once scheduled */
766     ++gd->gd_cnt.v_swtch;
767     gd->gd_idle_repeat = 0;
768 
769 havethread_preempted:
770     /*
771      * If the new target does not need the MP lock and we are holding it,
772      * release the MP lock.  If the new target requires the MP lock we have
773      * already acquired it for the target.
774      */
775     ;
776 haveidle:
777     KASSERT(ntd->td_critcount,
778 	    ("priority problem in lwkt_switch %d %d",
779 	    td->td_critcount, ntd->td_critcount));
780 
781     if (td != ntd) {
782 	/*
783 	 * Execute the actual thread switch operation.  This function
784 	 * returns to the current thread and returns the previous thread
785 	 * (which may be different from the thread we switched to).
786 	 *
787 	 * We are responsible for marking ntd as TDF_RUNNING.
788 	 */
789 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
790 	++switch_count;
791 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
792 	ntd->td_flags |= TDF_RUNNING;
793 	lwkt_switch_return(td->td_switch(ntd));
794 	/* ntd invalid, td_switch() can return a different thread_t */
795     }
796 
797     /*
798      * catch-all.  XXX is this strictly needed?
799      */
800     splz_check();
801 
802     /* NOTE: current cpu may have changed after switch */
803     crit_exit_quick(td);
804 }
805 
806 /*
807  * Called by assembly in the td_switch (thread restore path) for thread
808  * bootstrap cases which do not 'return' to lwkt_switch().
809  */
810 void
811 lwkt_switch_return(thread_t otd)
812 {
813 	globaldata_t rgd;
814 #ifdef LOOPMASK
815 	uint64_t tsc_base = rdtsc();
816 #endif
817 	int exiting;
818 
819 	exiting = otd->td_flags & TDF_EXITING;
820 	cpu_ccfence();
821 
822 	/*
823 	 * Check if otd was migrating.  Now that we are on ntd we can finish
824 	 * up the migration.  This is a bit messy but it is the only place
825 	 * where td is known to be fully descheduled.
826 	 *
827 	 * We can only activate the migration if otd was migrating but not
828 	 * held on the cpu due to a preemption chain.  We still have to
829 	 * clear TDF_RUNNING on the old thread either way.
830 	 *
831 	 * We are responsible for clearing the previously running thread's
832 	 * TDF_RUNNING.
833 	 */
834 	if ((rgd = otd->td_migrate_gd) != NULL &&
835 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
836 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
837 			 (TDF_MIGRATING | TDF_RUNNING));
838 		otd->td_migrate_gd = NULL;
839 		otd->td_flags &= ~TDF_RUNNING;
840 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
841 	} else {
842 		otd->td_flags &= ~TDF_RUNNING;
843 	}
844 
845 	/*
846 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
847 	 * invalid the *instant* we set TDF_MP_EXITSIG.
848 	 *
849 	 * Use the EXITING status loaded from before we clear TDF_RUNNING,
850 	 * because if it is not set otd becomes invalid the instant we clear
851 	 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
852 	 * might 'steal' TDF_EXITING from another switch-return!).
853 	 */
854 	while (exiting) {
855 		u_int mpflags;
856 
857 		mpflags = otd->td_mpflags;
858 		cpu_ccfence();
859 
860 		if (mpflags & TDF_MP_EXITWAIT) {
861 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
862 					      mpflags | TDF_MP_EXITSIG)) {
863 				wakeup(otd);
864 				break;
865 			}
866 		} else {
867 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
868 					      mpflags | TDF_MP_EXITSIG)) {
869 				wakeup(otd);
870 				break;
871 			}
872 		}
873 
874 #ifdef LOOPMASK
875 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
876 			kprintf("lwkt_switch_return: excessive TDF_EXITING "
877 				"thread %p\n", otd);
878 			tsc_base = rdtsc();
879 		}
880 #endif
881 	}
882 }
883 
884 /*
885  * Request that the target thread preempt the current thread.  Preemption
886  * can only occur only:
887  *
888  *	- If our critical section is the one that we were called with
889  *	- The relative priority of the target thread is higher
890  *	- The target is not excessively interrupt-nested via td_nest_count
891  *	- The target thread holds no tokens.
892  *	- The target thread is not already scheduled and belongs to the
893  *	  current cpu.
894  *	- The current thread is not holding any spin-locks.
895  *
896  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
897  * this is called via lwkt_schedule() through the td_preemptable callback.
898  * critcount is the managed critical priority that we should ignore in order
899  * to determine whether preemption is possible (aka usually just the crit
900  * priority of lwkt_schedule() itself).
901  *
902  * Preemption is typically limited to interrupt threads.
903  *
904  * Operation works in a fairly straight-forward manner.  The normal
905  * scheduling code is bypassed and we switch directly to the target
906  * thread.  When the target thread attempts to block or switch away
907  * code at the base of lwkt_switch() will switch directly back to our
908  * thread.  Our thread is able to retain whatever tokens it holds and
909  * if the target needs one of them the target will switch back to us
910  * and reschedule itself normally.
911  */
912 void
913 lwkt_preempt(thread_t ntd, int critcount)
914 {
915     struct globaldata *gd = mycpu;
916     thread_t xtd;
917     thread_t td;
918     int save_gd_intr_nesting_level;
919 
920     /*
921      * The caller has put us in a critical section.  We can only preempt
922      * if the caller of the caller was not in a critical section (basically
923      * a local interrupt), as determined by the 'critcount' parameter.  We
924      * also can't preempt if the caller is holding any spinlocks (even if
925      * he isn't in a critical section).  This also handles the tokens test.
926      *
927      * YYY The target thread must be in a critical section (else it must
928      * inherit our critical section?  I dunno yet).
929      */
930     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
931 
932     td = gd->gd_curthread;
933     if (preempt_enable == 0) {
934 	++preempt_miss;
935 	return;
936     }
937     if (ntd->td_pri <= td->td_pri) {
938 	++preempt_miss;
939 	return;
940     }
941     if (td->td_critcount > critcount) {
942 	++preempt_miss;
943 	return;
944     }
945     if (td->td_nest_count >= 2) {
946 	++preempt_miss;
947 	return;
948     }
949     if (td->td_cscount) {
950 	++preempt_miss;
951 	return;
952     }
953     if (ntd->td_gd != gd) {
954 	++preempt_miss;
955 	return;
956     }
957 
958     /*
959      * We don't have to check spinlocks here as they will also bump
960      * td_critcount.
961      *
962      * Do not try to preempt if the target thread is holding any tokens.
963      * We could try to acquire the tokens but this case is so rare there
964      * is no need to support it.
965      */
966     KKASSERT(gd->gd_spinlocks == 0);
967 
968     if (TD_TOKS_HELD(ntd)) {
969 	++preempt_miss;
970 	return;
971     }
972     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
973 	++preempt_weird;
974 	return;
975     }
976     if (ntd->td_preempted) {
977 	++preempt_hit;
978 	return;
979     }
980     KKASSERT(gd->gd_processing_ipiq == 0);
981 
982     /*
983      * Since we are able to preempt the current thread, there is no need to
984      * call need_lwkt_resched().
985      *
986      * We must temporarily clear gd_intr_nesting_level around the switch
987      * since switchouts from the target thread are allowed (they will just
988      * return to our thread), and since the target thread has its own stack.
989      *
990      * A preemption must switch back to the original thread, assert the
991      * case.
992      */
993     ++preempt_hit;
994     ntd->td_preempted = td;
995     td->td_flags |= TDF_PREEMPT_LOCK;
996     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
997     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
998     gd->gd_intr_nesting_level = 0;
999 
1000     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1001     ntd->td_flags |= TDF_RUNNING;
1002     xtd = td->td_switch(ntd);
1003     KKASSERT(xtd == ntd);
1004     lwkt_switch_return(xtd);
1005     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1006 
1007     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1008     ntd->td_preempted = NULL;
1009     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1010 }
1011 
1012 /*
1013  * Conditionally call splz() if gd_reqflags indicates work is pending.
1014  * This will work inside a critical section but not inside a hard code
1015  * section.
1016  *
1017  * (self contained on a per cpu basis)
1018  */
1019 void
1020 splz_check(void)
1021 {
1022     globaldata_t gd = mycpu;
1023     thread_t td = gd->gd_curthread;
1024 
1025     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1026 	gd->gd_intr_nesting_level == 0 &&
1027 	td->td_nest_count < 2)
1028     {
1029 	splz();
1030     }
1031 }
1032 
1033 /*
1034  * This version is integrated into crit_exit, reqflags has already
1035  * been tested but td_critcount has not.
1036  *
1037  * We only want to execute the splz() on the 1->0 transition of
1038  * critcount and not in a hard code section or if too deeply nested.
1039  *
1040  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1041  */
1042 void
1043 lwkt_maybe_splz(thread_t td)
1044 {
1045     globaldata_t gd = td->td_gd;
1046 
1047     if (td->td_critcount == 0 &&
1048 	gd->gd_intr_nesting_level == 0 &&
1049 	td->td_nest_count < 2)
1050     {
1051 	splz();
1052     }
1053 }
1054 
1055 /*
1056  * Drivers which set up processing co-threads can call this function to
1057  * run the co-thread at a higher priority and to allow it to preempt
1058  * normal threads.
1059  */
1060 void
1061 lwkt_set_interrupt_support_thread(void)
1062 {
1063 	thread_t td = curthread;
1064 
1065         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1066 	td->td_flags |= TDF_INTTHREAD;
1067 	td->td_preemptable = lwkt_preempt;
1068 }
1069 
1070 
1071 /*
1072  * This function is used to negotiate a passive release of the current
1073  * process/lwp designation with the user scheduler, allowing the user
1074  * scheduler to schedule another user thread.  The related kernel thread
1075  * (curthread) continues running in the released state.
1076  */
1077 void
1078 lwkt_passive_release(struct thread *td)
1079 {
1080     struct lwp *lp = td->td_lwp;
1081 
1082     td->td_release = NULL;
1083     lwkt_setpri_self(TDPRI_KERN_USER);
1084 
1085     lp->lwp_proc->p_usched->release_curproc(lp);
1086 }
1087 
1088 
1089 /*
1090  * This implements a LWKT yield, allowing a kernel thread to yield to other
1091  * kernel threads at the same or higher priority.  This function can be
1092  * called in a tight loop and will typically only yield once per tick.
1093  *
1094  * Most kernel threads run at the same priority in order to allow equal
1095  * sharing.
1096  *
1097  * (self contained on a per cpu basis)
1098  */
1099 void
1100 lwkt_yield(void)
1101 {
1102     globaldata_t gd = mycpu;
1103     thread_t td = gd->gd_curthread;
1104 
1105     /*
1106      * Should never be called with spinlocks held but there is a path
1107      * via ACPI where it might happen.
1108      */
1109     if (gd->gd_spinlocks)
1110 	return;
1111 
1112     /*
1113      * Safe to call splz if we are not too-heavily nested.
1114      */
1115     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1116 	splz();
1117 
1118     /*
1119      * Caller allows switching
1120      */
1121     if (lwkt_resched_wanted()) {
1122 	lwkt_schedule_self(curthread);
1123 	lwkt_switch();
1124     }
1125 }
1126 
1127 /*
1128  * The quick version processes pending interrupts and higher-priority
1129  * LWKT threads but will not round-robin same-priority LWKT threads.
1130  *
1131  * When called while attempting to return to userland the only same-pri
1132  * threads are the ones which have already tried to become the current
1133  * user process.
1134  */
1135 void
1136 lwkt_yield_quick(void)
1137 {
1138     globaldata_t gd = mycpu;
1139     thread_t td = gd->gd_curthread;
1140 
1141     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1142 	splz();
1143     if (lwkt_resched_wanted()) {
1144 	crit_enter();
1145 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1146 	    clear_lwkt_resched();
1147 	} else {
1148 	    lwkt_schedule_self(curthread);
1149 	    lwkt_switch();
1150 	}
1151 	crit_exit();
1152     }
1153 }
1154 
1155 /*
1156  * This yield is designed for kernel threads with a user context.
1157  *
1158  * The kernel acting on behalf of the user is potentially cpu-bound,
1159  * this function will efficiently allow other threads to run and also
1160  * switch to other processes by releasing.
1161  *
1162  * The lwkt_user_yield() function is designed to have very low overhead
1163  * if no yield is determined to be needed.
1164  */
1165 void
1166 lwkt_user_yield(void)
1167 {
1168     globaldata_t gd = mycpu;
1169     thread_t td = gd->gd_curthread;
1170 
1171     /*
1172      * Should never be called with spinlocks held but there is a path
1173      * via ACPI where it might happen.
1174      */
1175     if (gd->gd_spinlocks)
1176 	return;
1177 
1178     /*
1179      * Always run any pending interrupts in case we are in a critical
1180      * section.
1181      */
1182     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1183 	splz();
1184 
1185     /*
1186      * Switch (which forces a release) if another kernel thread needs
1187      * the cpu, if userland wants us to resched, or if our kernel
1188      * quantum has run out.
1189      */
1190     if (lwkt_resched_wanted() ||
1191 	user_resched_wanted())
1192     {
1193 	lwkt_switch();
1194     }
1195 
1196 #if 0
1197     /*
1198      * Reacquire the current process if we are released.
1199      *
1200      * XXX not implemented atm.  The kernel may be holding locks and such,
1201      *     so we want the thread to continue to receive cpu.
1202      */
1203     if (td->td_release == NULL && lp) {
1204 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1205 	td->td_release = lwkt_passive_release;
1206 	lwkt_setpri_self(TDPRI_USER_NORM);
1207     }
1208 #endif
1209 }
1210 
1211 /*
1212  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1213  * deal with threads that might be blocked on a wait queue.
1214  *
1215  * We have a little helper inline function which does additional work after
1216  * the thread has been enqueued, including dealing with preemption and
1217  * setting need_lwkt_resched() (which prevents the kernel from returning
1218  * to userland until it has processed higher priority threads).
1219  *
1220  * It is possible for this routine to be called after a failed _enqueue
1221  * (due to the target thread migrating, sleeping, or otherwise blocked).
1222  * We have to check that the thread is actually on the run queue!
1223  */
1224 static __inline
1225 void
1226 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1227 {
1228     if (ntd->td_flags & TDF_RUNQ) {
1229 	if (ntd->td_preemptable) {
1230 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1231 	}
1232     }
1233 }
1234 
1235 static __inline
1236 void
1237 _lwkt_schedule(thread_t td)
1238 {
1239     globaldata_t mygd = mycpu;
1240 
1241     KASSERT(td != &td->td_gd->gd_idlethread,
1242 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1243     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1244     crit_enter_gd(mygd);
1245     KKASSERT(td->td_lwp == NULL ||
1246 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1247 
1248     if (td == mygd->gd_curthread) {
1249 	_lwkt_enqueue(td);
1250     } else {
1251 	/*
1252 	 * If we own the thread, there is no race (since we are in a
1253 	 * critical section).  If we do not own the thread there might
1254 	 * be a race but the target cpu will deal with it.
1255 	 */
1256 	if (td->td_gd == mygd) {
1257 	    _lwkt_enqueue(td);
1258 	    _lwkt_schedule_post(mygd, td, 1);
1259 	} else {
1260 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1261 	}
1262     }
1263     crit_exit_gd(mygd);
1264 }
1265 
1266 void
1267 lwkt_schedule(thread_t td)
1268 {
1269     _lwkt_schedule(td);
1270 }
1271 
1272 void
1273 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1274 {
1275     _lwkt_schedule(td);
1276 }
1277 
1278 /*
1279  * When scheduled remotely if frame != NULL the IPIQ is being
1280  * run via doreti or an interrupt then preemption can be allowed.
1281  *
1282  * To allow preemption we have to drop the critical section so only
1283  * one is present in _lwkt_schedule_post.
1284  */
1285 static void
1286 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1287 {
1288     thread_t td = curthread;
1289     thread_t ntd = arg;
1290 
1291     if (frame && ntd->td_preemptable) {
1292 	crit_exit_noyield(td);
1293 	_lwkt_schedule(ntd);
1294 	crit_enter_quick(td);
1295     } else {
1296 	_lwkt_schedule(ntd);
1297     }
1298 }
1299 
1300 /*
1301  * Thread migration using a 'Pull' method.  The thread may or may not be
1302  * the current thread.  It MUST be descheduled and in a stable state.
1303  * lwkt_giveaway() must be called on the cpu owning the thread.
1304  *
1305  * At any point after lwkt_giveaway() is called, the target cpu may
1306  * 'pull' the thread by calling lwkt_acquire().
1307  *
1308  * We have to make sure the thread is not sitting on a per-cpu tsleep
1309  * queue or it will blow up when it moves to another cpu.
1310  *
1311  * MPSAFE - must be called under very specific conditions.
1312  */
1313 void
1314 lwkt_giveaway(thread_t td)
1315 {
1316     globaldata_t gd = mycpu;
1317 
1318     crit_enter_gd(gd);
1319     if (td->td_flags & TDF_TSLEEPQ)
1320 	tsleep_remove(td);
1321     KKASSERT(td->td_gd == gd);
1322     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1323     td->td_flags |= TDF_MIGRATING;
1324     crit_exit_gd(gd);
1325 }
1326 
1327 void
1328 lwkt_acquire(thread_t td)
1329 {
1330     globaldata_t gd;
1331     globaldata_t mygd;
1332 
1333     KKASSERT(td->td_flags & TDF_MIGRATING);
1334     gd = td->td_gd;
1335     mygd = mycpu;
1336     if (gd != mycpu) {
1337 #ifdef LOOPMASK
1338 	uint64_t tsc_base = rdtsc();
1339 #endif
1340 	cpu_lfence();
1341 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1342 	crit_enter_gd(mygd);
1343 	DEBUG_PUSH_INFO("lwkt_acquire");
1344 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1345 	    lwkt_process_ipiq();
1346 	    cpu_lfence();
1347 #ifdef _KERNEL_VIRTUAL
1348 	    pthread_yield();
1349 #endif
1350 #ifdef LOOPMASK
1351 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1352 		    kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1353 			    td, td->td_flags);
1354 		    tsc_base = rdtsc();
1355 	    }
1356 #endif
1357 	}
1358 	DEBUG_POP_INFO();
1359 	cpu_mfence();
1360 	td->td_gd = mygd;
1361 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1362 	td->td_flags &= ~TDF_MIGRATING;
1363 	crit_exit_gd(mygd);
1364     } else {
1365 	crit_enter_gd(mygd);
1366 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1367 	td->td_flags &= ~TDF_MIGRATING;
1368 	crit_exit_gd(mygd);
1369     }
1370 }
1371 
1372 /*
1373  * Generic deschedule.  Descheduling threads other then your own should be
1374  * done only in carefully controlled circumstances.  Descheduling is
1375  * asynchronous.
1376  *
1377  * This function may block if the cpu has run out of messages.
1378  */
1379 void
1380 lwkt_deschedule(thread_t td)
1381 {
1382     crit_enter();
1383     if (td == curthread) {
1384 	_lwkt_dequeue(td);
1385     } else {
1386 	if (td->td_gd == mycpu) {
1387 	    _lwkt_dequeue(td);
1388 	} else {
1389 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1390 	}
1391     }
1392     crit_exit();
1393 }
1394 
1395 /*
1396  * Set the target thread's priority.  This routine does not automatically
1397  * switch to a higher priority thread, LWKT threads are not designed for
1398  * continuous priority changes.  Yield if you want to switch.
1399  */
1400 void
1401 lwkt_setpri(thread_t td, int pri)
1402 {
1403     if (td->td_pri != pri) {
1404 	KKASSERT(pri >= 0);
1405 	crit_enter();
1406 	if (td->td_flags & TDF_RUNQ) {
1407 	    KKASSERT(td->td_gd == mycpu);
1408 	    _lwkt_dequeue(td);
1409 	    td->td_pri = pri;
1410 	    _lwkt_enqueue(td);
1411 	} else {
1412 	    td->td_pri = pri;
1413 	}
1414 	crit_exit();
1415     }
1416 }
1417 
1418 /*
1419  * Set the initial priority for a thread prior to it being scheduled for
1420  * the first time.  The thread MUST NOT be scheduled before or during
1421  * this call.  The thread may be assigned to a cpu other then the current
1422  * cpu.
1423  *
1424  * Typically used after a thread has been created with TDF_STOPPREQ,
1425  * and before the thread is initially scheduled.
1426  */
1427 void
1428 lwkt_setpri_initial(thread_t td, int pri)
1429 {
1430     KKASSERT(pri >= 0);
1431     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1432     td->td_pri = pri;
1433 }
1434 
1435 void
1436 lwkt_setpri_self(int pri)
1437 {
1438     thread_t td = curthread;
1439 
1440     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1441     crit_enter();
1442     if (td->td_flags & TDF_RUNQ) {
1443 	_lwkt_dequeue(td);
1444 	td->td_pri = pri;
1445 	_lwkt_enqueue(td);
1446     } else {
1447 	td->td_pri = pri;
1448     }
1449     crit_exit();
1450 }
1451 
1452 /*
1453  * hz tick scheduler clock for LWKT threads
1454  */
1455 void
1456 lwkt_schedulerclock(thread_t td)
1457 {
1458     globaldata_t gd = td->td_gd;
1459     thread_t xtd;
1460 
1461     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1462     if (xtd == td) {
1463 	/*
1464 	 * If the current thread is at the head of the runq shift it to the
1465 	 * end of any equal-priority threads and request a LWKT reschedule
1466 	 * if it moved.
1467 	 *
1468 	 * Ignore upri in this situation.  There will only be one user thread
1469 	 * in user mode, all others will be user threads running in kernel
1470 	 * mode and we have to make sure they get some cpu.
1471 	 */
1472 	xtd = TAILQ_NEXT(td, td_threadq);
1473 	if (xtd && xtd->td_pri == td->td_pri) {
1474 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1475 	    while (xtd && xtd->td_pri == td->td_pri)
1476 		xtd = TAILQ_NEXT(xtd, td_threadq);
1477 	    if (xtd)
1478 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1479 	    else
1480 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1481 	    need_lwkt_resched();
1482 	}
1483     } else if (xtd) {
1484 	/*
1485 	 * If we scheduled a thread other than the one at the head of the
1486 	 * queue always request a reschedule every tick.
1487 	 */
1488 	need_lwkt_resched();
1489     }
1490     /* else curthread probably the idle thread, no need to reschedule */
1491 }
1492 
1493 /*
1494  * Migrate the current thread to the specified cpu.
1495  *
1496  * This is accomplished by descheduling ourselves from the current cpu
1497  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1498  * 'old' thread wants to migrate after it has been completely switched out
1499  * and will complete the migration.
1500  *
1501  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1502  *
1503  * We must be sure to release our current process designation (if a user
1504  * process) before clearing out any tsleepq we are on because the release
1505  * code may re-add us.
1506  *
1507  * We must be sure to remove ourselves from the current cpu's tsleepq
1508  * before potentially moving to another queue.  The thread can be on
1509  * a tsleepq due to a left-over tsleep_interlock().
1510  */
1511 
1512 void
1513 lwkt_setcpu_self(globaldata_t rgd)
1514 {
1515     thread_t td = curthread;
1516 
1517     if (td->td_gd != rgd) {
1518 	crit_enter_quick(td);
1519 
1520 	if (td->td_release)
1521 	    td->td_release(td);
1522 	if (td->td_flags & TDF_TSLEEPQ)
1523 	    tsleep_remove(td);
1524 
1525 	/*
1526 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1527 	 * trying to deschedule ourselves and switch away, then deschedule
1528 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1529 	 * call lwkt_switch() to complete the operation.
1530 	 */
1531 	td->td_flags |= TDF_MIGRATING;
1532 	lwkt_deschedule_self(td);
1533 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1534 	td->td_migrate_gd = rgd;
1535 	lwkt_switch();
1536 
1537 	/*
1538 	 * We are now on the target cpu
1539 	 */
1540 	KKASSERT(rgd == mycpu);
1541 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1542 	crit_exit_quick(td);
1543     }
1544 }
1545 
1546 void
1547 lwkt_migratecpu(int cpuid)
1548 {
1549 	globaldata_t rgd;
1550 
1551 	rgd = globaldata_find(cpuid);
1552 	lwkt_setcpu_self(rgd);
1553 }
1554 
1555 /*
1556  * Remote IPI for cpu migration (called while in a critical section so we
1557  * do not have to enter another one).
1558  *
1559  * The thread (td) has already been completely descheduled from the
1560  * originating cpu and we can simply assert the case.  The thread is
1561  * assigned to the new cpu and enqueued.
1562  *
1563  * The thread will re-add itself to tdallq when it resumes execution.
1564  */
1565 static void
1566 lwkt_setcpu_remote(void *arg)
1567 {
1568     thread_t td = arg;
1569     globaldata_t gd = mycpu;
1570 
1571     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1572     td->td_gd = gd;
1573     cpu_mfence();
1574     td->td_flags &= ~TDF_MIGRATING;
1575     KKASSERT(td->td_migrate_gd == NULL);
1576     KKASSERT(td->td_lwp == NULL ||
1577 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1578     _lwkt_enqueue(td);
1579 }
1580 
1581 struct lwp *
1582 lwkt_preempted_proc(void)
1583 {
1584     thread_t td = curthread;
1585     while (td->td_preempted)
1586 	td = td->td_preempted;
1587     return(td->td_lwp);
1588 }
1589 
1590 /*
1591  * Create a kernel process/thread/whatever.  It shares it's address space
1592  * with proc0 - ie: kernel only.
1593  *
1594  * If the cpu is not specified one will be selected.  In the future
1595  * specifying a cpu of -1 will enable kernel thread migration between
1596  * cpus.
1597  */
1598 int
1599 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1600 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1601 {
1602     thread_t td;
1603     __va_list ap;
1604 
1605     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1606 			   tdflags);
1607     if (tdp)
1608 	*tdp = td;
1609     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1610 
1611     /*
1612      * Set up arg0 for 'ps' etc
1613      */
1614     __va_start(ap, fmt);
1615     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1616     __va_end(ap);
1617 
1618     /*
1619      * Schedule the thread to run
1620      */
1621     if (td->td_flags & TDF_NOSTART)
1622 	td->td_flags &= ~TDF_NOSTART;
1623     else
1624 	lwkt_schedule(td);
1625     return 0;
1626 }
1627 
1628 /*
1629  * Destroy an LWKT thread.   Warning!  This function is not called when
1630  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1631  * uses a different reaping mechanism.
1632  */
1633 void
1634 lwkt_exit(void)
1635 {
1636     thread_t td = curthread;
1637     thread_t std;
1638     globaldata_t gd;
1639 
1640     /*
1641      * Do any cleanup that might block here
1642      */
1643     if (td->td_flags & TDF_VERBOSE)
1644 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1645     biosched_done(td);
1646     dsched_exit_thread(td);
1647 
1648     /*
1649      * Get us into a critical section to interlock gd_freetd and loop
1650      * until we can get it freed.
1651      *
1652      * We have to cache the current td in gd_freetd because objcache_put()ing
1653      * it would rip it out from under us while our thread is still active.
1654      *
1655      * We are the current thread so of course our own TDF_RUNNING bit will
1656      * be set, so unlike the lwp reap code we don't wait for it to clear.
1657      */
1658     gd = mycpu;
1659     crit_enter_quick(td);
1660     for (;;) {
1661 	if (td->td_refs) {
1662 	    tsleep(td, 0, "tdreap", 1);
1663 	    continue;
1664 	}
1665 	if ((std = gd->gd_freetd) != NULL) {
1666 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1667 	    gd->gd_freetd = NULL;
1668 	    objcache_put(thread_cache, std);
1669 	    continue;
1670 	}
1671 	break;
1672     }
1673 
1674     /*
1675      * Remove thread resources from kernel lists and deschedule us for
1676      * the last time.  We cannot block after this point or we may end
1677      * up with a stale td on the tsleepq.
1678      *
1679      * None of this may block, the critical section is the only thing
1680      * protecting tdallq and the only thing preventing new lwkt_hold()
1681      * thread refs now.
1682      */
1683     if (td->td_flags & TDF_TSLEEPQ)
1684 	tsleep_remove(td);
1685     lwkt_deschedule_self(td);
1686     lwkt_remove_tdallq(td);
1687     KKASSERT(td->td_refs == 0);
1688 
1689     /*
1690      * Final cleanup
1691      */
1692     KKASSERT(gd->gd_freetd == NULL);
1693     if (td->td_flags & TDF_ALLOCATED_THREAD)
1694 	gd->gd_freetd = td;
1695     cpu_thread_exit();
1696 }
1697 
1698 void
1699 lwkt_remove_tdallq(thread_t td)
1700 {
1701     KKASSERT(td->td_gd == mycpu);
1702     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1703 }
1704 
1705 /*
1706  * Code reduction and branch prediction improvements.  Call/return
1707  * overhead on modern cpus often degenerates into 0 cycles due to
1708  * the cpu's branch prediction hardware and return pc cache.  We
1709  * can take advantage of this by not inlining medium-complexity
1710  * functions and we can also reduce the branch prediction impact
1711  * by collapsing perfectly predictable branches into a single
1712  * procedure instead of duplicating it.
1713  *
1714  * Is any of this noticeable?  Probably not, so I'll take the
1715  * smaller code size.
1716  */
1717 void
1718 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1719 {
1720     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1721 }
1722 
1723 void
1724 crit_panic(void)
1725 {
1726     thread_t td = curthread;
1727     int lcrit = td->td_critcount;
1728 
1729     td->td_critcount = 0;
1730     cpu_ccfence();
1731     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1732     /* NOT REACHED */
1733 }
1734 
1735 /*
1736  * Called from debugger/panic on cpus which have been stopped.  We must still
1737  * process the IPIQ while stopped.
1738  *
1739  * If we are dumping also try to process any pending interrupts.  This may
1740  * or may not work depending on the state of the cpu at the point it was
1741  * stopped.
1742  */
1743 void
1744 lwkt_smp_stopped(void)
1745 {
1746     globaldata_t gd = mycpu;
1747 
1748     if (dumping) {
1749 	lwkt_process_ipiq();
1750 	--gd->gd_intr_nesting_level;
1751 	splz();
1752 	++gd->gd_intr_nesting_level;
1753     } else {
1754 	lwkt_process_ipiq();
1755     }
1756     cpu_smp_stopped();
1757 }
1758