xref: /dragonfly/sys/kern/lwkt_thread.c (revision 2038fb68)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.120 2008/10/26 04:29:19 sephe Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/proc.h>
48 #include <sys/rtprio.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/caps.h>
55 #include <sys/spinlock.h>
56 #include <sys/ktr.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_pager.h>
68 #include <vm/vm_extern.h>
69 
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
72 
73 
74 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
75 
76 static int untimely_switch = 0;
77 #ifdef	INVARIANTS
78 static int panic_on_cscount = 0;
79 #endif
80 static __int64_t switch_count = 0;
81 static __int64_t preempt_hit = 0;
82 static __int64_t preempt_miss = 0;
83 static __int64_t preempt_weird = 0;
84 static __int64_t token_contention_count = 0;
85 static __int64_t mplock_contention_count = 0;
86 static int lwkt_use_spin_port;
87 #ifdef SMP
88 static int chain_mplock = 0;
89 #endif
90 static struct objcache *thread_cache;
91 
92 volatile cpumask_t mp_lock_contention_mask;
93 
94 extern void cpu_heavy_restore(void);
95 extern void cpu_lwkt_restore(void);
96 extern void cpu_kthread_restore(void);
97 extern void cpu_idle_restore(void);
98 
99 #ifdef __amd64__
100 
101 static int
102 jg_tos_ok(struct thread *td)
103 {
104 	void *tos;
105 	int tos_ok;
106 
107 	if (td == NULL) {
108 		return 1;
109 	}
110 	KKASSERT(td->td_sp != NULL);
111 	tos = ((void **)td->td_sp)[0];
112 	tos_ok = 0;
113 	if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
114 	    (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
115 		tos_ok = 1;
116 	}
117 	return tos_ok;
118 }
119 
120 #endif
121 
122 /*
123  * We can make all thread ports use the spin backend instead of the thread
124  * backend.  This should only be set to debug the spin backend.
125  */
126 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
127 
128 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
129 #ifdef	INVARIANTS
130 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
131 #endif
132 #ifdef SMP
133 SYSCTL_INT(_lwkt, OID_AUTO, chain_mplock, CTLFLAG_RW, &chain_mplock, 0, "");
134 #endif
135 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
136 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
137 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
138 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
139 #ifdef	INVARIANTS
140 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
141 	&token_contention_count, 0, "spinning due to token contention");
142 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
143 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
144 #endif
145 
146 /*
147  * Kernel Trace
148  */
149 #if !defined(KTR_GIANT_CONTENTION)
150 #define KTR_GIANT_CONTENTION	KTR_ALL
151 #endif
152 
153 KTR_INFO_MASTER(giant);
154 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
155 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
156 
157 #define loggiant(name)	KTR_LOG(giant_ ## name, curthread)
158 
159 /*
160  * These helper procedures handle the runq, they can only be called from
161  * within a critical section.
162  *
163  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
164  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
165  * instead of 'mycpu' when referencing the globaldata structure.   Once
166  * SMP live enqueuing and dequeueing only occurs on the current cpu.
167  */
168 static __inline
169 void
170 _lwkt_dequeue(thread_t td)
171 {
172     if (td->td_flags & TDF_RUNQ) {
173 	int nq = td->td_pri & TDPRI_MASK;
174 	struct globaldata *gd = td->td_gd;
175 
176 	td->td_flags &= ~TDF_RUNQ;
177 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
178 	/* runqmask is passively cleaned up by the switcher */
179     }
180 }
181 
182 static __inline
183 void
184 _lwkt_enqueue(thread_t td)
185 {
186     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
187 	int nq = td->td_pri & TDPRI_MASK;
188 	struct globaldata *gd = td->td_gd;
189 
190 	td->td_flags |= TDF_RUNQ;
191 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
192 	gd->gd_runqmask |= 1 << nq;
193     }
194 }
195 
196 static __boolean_t
197 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
198 {
199 	struct thread *td = (struct thread *)obj;
200 
201 	td->td_kstack = NULL;
202 	td->td_kstack_size = 0;
203 	td->td_flags = TDF_ALLOCATED_THREAD;
204 	return (1);
205 }
206 
207 static void
208 _lwkt_thread_dtor(void *obj, void *privdata)
209 {
210 	struct thread *td = (struct thread *)obj;
211 
212 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
213 	    ("_lwkt_thread_dtor: not allocated from objcache"));
214 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
215 		td->td_kstack_size > 0,
216 	    ("_lwkt_thread_dtor: corrupted stack"));
217 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
218 }
219 
220 /*
221  * Initialize the lwkt s/system.
222  */
223 void
224 lwkt_init(void)
225 {
226     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
227     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
228 			NULL, CACHE_NTHREADS/2,
229 			_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
230 }
231 
232 /*
233  * Schedule a thread to run.  As the current thread we can always safely
234  * schedule ourselves, and a shortcut procedure is provided for that
235  * function.
236  *
237  * (non-blocking, self contained on a per cpu basis)
238  */
239 void
240 lwkt_schedule_self(thread_t td)
241 {
242     crit_enter_quick(td);
243     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
244     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
245     _lwkt_enqueue(td);
246     crit_exit_quick(td);
247 }
248 
249 /*
250  * Deschedule a thread.
251  *
252  * (non-blocking, self contained on a per cpu basis)
253  */
254 void
255 lwkt_deschedule_self(thread_t td)
256 {
257     crit_enter_quick(td);
258     _lwkt_dequeue(td);
259     crit_exit_quick(td);
260 }
261 
262 /*
263  * LWKTs operate on a per-cpu basis
264  *
265  * WARNING!  Called from early boot, 'mycpu' may not work yet.
266  */
267 void
268 lwkt_gdinit(struct globaldata *gd)
269 {
270     int i;
271 
272     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
273 	TAILQ_INIT(&gd->gd_tdrunq[i]);
274     gd->gd_runqmask = 0;
275     TAILQ_INIT(&gd->gd_tdallq);
276 }
277 
278 /*
279  * Create a new thread.  The thread must be associated with a process context
280  * or LWKT start address before it can be scheduled.  If the target cpu is
281  * -1 the thread will be created on the current cpu.
282  *
283  * If you intend to create a thread without a process context this function
284  * does everything except load the startup and switcher function.
285  */
286 thread_t
287 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
288 {
289     globaldata_t gd = mycpu;
290     void *stack;
291 
292     /*
293      * If static thread storage is not supplied allocate a thread.  Reuse
294      * a cached free thread if possible.  gd_freetd is used to keep an exiting
295      * thread intact through the exit.
296      */
297     if (td == NULL) {
298 	if ((td = gd->gd_freetd) != NULL)
299 	    gd->gd_freetd = NULL;
300 	else
301 	    td = objcache_get(thread_cache, M_WAITOK);
302     	KASSERT((td->td_flags &
303 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
304 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
305     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
306     }
307 
308     /*
309      * Try to reuse cached stack.
310      */
311     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
312 	if (flags & TDF_ALLOCATED_STACK) {
313 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
314 	    stack = NULL;
315 	}
316     }
317     if (stack == NULL) {
318 	stack = (void *)kmem_alloc(&kernel_map, stksize);
319 	flags |= TDF_ALLOCATED_STACK;
320     }
321     if (cpu < 0)
322 	lwkt_init_thread(td, stack, stksize, flags, gd);
323     else
324 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
325     return(td);
326 }
327 
328 /*
329  * Initialize a preexisting thread structure.  This function is used by
330  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
331  *
332  * All threads start out in a critical section at a priority of
333  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
334  * appropriate.  This function may send an IPI message when the
335  * requested cpu is not the current cpu and consequently gd_tdallq may
336  * not be initialized synchronously from the point of view of the originating
337  * cpu.
338  *
339  * NOTE! we have to be careful in regards to creating threads for other cpus
340  * if SMP has not yet been activated.
341  */
342 #ifdef SMP
343 
344 static void
345 lwkt_init_thread_remote(void *arg)
346 {
347     thread_t td = arg;
348 
349     /*
350      * Protected by critical section held by IPI dispatch
351      */
352     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
353 }
354 
355 #endif
356 
357 void
358 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
359 		struct globaldata *gd)
360 {
361     globaldata_t mygd = mycpu;
362 
363     bzero(td, sizeof(struct thread));
364     td->td_kstack = stack;
365     td->td_kstack_size = stksize;
366     td->td_flags = flags;
367     td->td_gd = gd;
368     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
369 #ifdef SMP
370     if ((flags & TDF_MPSAFE) == 0)
371 	td->td_mpcount = 1;
372 #endif
373     if (lwkt_use_spin_port)
374 	lwkt_initport_spin(&td->td_msgport);
375     else
376 	lwkt_initport_thread(&td->td_msgport, td);
377     pmap_init_thread(td);
378 #ifdef SMP
379     /*
380      * Normally initializing a thread for a remote cpu requires sending an
381      * IPI.  However, the idlethread is setup before the other cpus are
382      * activated so we have to treat it as a special case.  XXX manipulation
383      * of gd_tdallq requires the BGL.
384      */
385     if (gd == mygd || td == &gd->gd_idlethread) {
386 	crit_enter_gd(mygd);
387 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
388 	crit_exit_gd(mygd);
389     } else {
390 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
391     }
392 #else
393     crit_enter_gd(mygd);
394     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
395     crit_exit_gd(mygd);
396 #endif
397 }
398 
399 void
400 lwkt_set_comm(thread_t td, const char *ctl, ...)
401 {
402     __va_list va;
403 
404     __va_start(va, ctl);
405     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
406     __va_end(va);
407 }
408 
409 void
410 lwkt_hold(thread_t td)
411 {
412     ++td->td_refs;
413 }
414 
415 void
416 lwkt_rele(thread_t td)
417 {
418     KKASSERT(td->td_refs > 0);
419     --td->td_refs;
420 }
421 
422 void
423 lwkt_wait_free(thread_t td)
424 {
425     while (td->td_refs)
426 	tsleep(td, 0, "tdreap", hz);
427 }
428 
429 void
430 lwkt_free_thread(thread_t td)
431 {
432     KASSERT((td->td_flags & TDF_RUNNING) == 0,
433 	("lwkt_free_thread: did not exit! %p", td));
434 
435     if (td->td_flags & TDF_ALLOCATED_THREAD) {
436     	objcache_put(thread_cache, td);
437     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
438 	/* client-allocated struct with internally allocated stack */
439 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
440 	    ("lwkt_free_thread: corrupted stack"));
441 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
442 	td->td_kstack = NULL;
443 	td->td_kstack_size = 0;
444     }
445 }
446 
447 
448 /*
449  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
450  * switch to the idlethread.  Switching must occur within a critical
451  * section to avoid races with the scheduling queue.
452  *
453  * We always have full control over our cpu's run queue.  Other cpus
454  * that wish to manipulate our queue must use the cpu_*msg() calls to
455  * talk to our cpu, so a critical section is all that is needed and
456  * the result is very, very fast thread switching.
457  *
458  * The LWKT scheduler uses a fixed priority model and round-robins at
459  * each priority level.  User process scheduling is a totally
460  * different beast and LWKT priorities should not be confused with
461  * user process priorities.
462  *
463  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
464  * cleans it up.  Note that the td_switch() function cannot do anything that
465  * requires the MP lock since the MP lock will have already been setup for
466  * the target thread (not the current thread).  It's nice to have a scheduler
467  * that does not need the MP lock to work because it allows us to do some
468  * really cool high-performance MP lock optimizations.
469  *
470  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
471  * is not called by the current thread in the preemption case, only when
472  * the preempting thread blocks (in order to return to the original thread).
473  */
474 void
475 lwkt_switch(void)
476 {
477     globaldata_t gd = mycpu;
478     thread_t td = gd->gd_curthread;
479     thread_t ntd;
480 #ifdef SMP
481     int mpheld;
482 #endif
483 
484     /*
485      * Switching from within a 'fast' (non thread switched) interrupt or IPI
486      * is illegal.  However, we may have to do it anyway if we hit a fatal
487      * kernel trap or we have paniced.
488      *
489      * If this case occurs save and restore the interrupt nesting level.
490      */
491     if (gd->gd_intr_nesting_level) {
492 	int savegdnest;
493 	int savegdtrap;
494 
495 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
496 	    panic("lwkt_switch: cannot switch from within "
497 		  "a fast interrupt, yet, td %p\n", td);
498 	} else {
499 	    savegdnest = gd->gd_intr_nesting_level;
500 	    savegdtrap = gd->gd_trap_nesting_level;
501 	    gd->gd_intr_nesting_level = 0;
502 	    gd->gd_trap_nesting_level = 0;
503 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
504 		td->td_flags |= TDF_PANICWARN;
505 		kprintf("Warning: thread switch from interrupt or IPI, "
506 			"thread %p (%s)\n", td, td->td_comm);
507 		print_backtrace();
508 	    }
509 	    lwkt_switch();
510 	    gd->gd_intr_nesting_level = savegdnest;
511 	    gd->gd_trap_nesting_level = savegdtrap;
512 	    return;
513 	}
514     }
515 
516     /*
517      * Passive release (used to transition from user to kernel mode
518      * when we block or switch rather then when we enter the kernel).
519      * This function is NOT called if we are switching into a preemption
520      * or returning from a preemption.  Typically this causes us to lose
521      * our current process designation (if we have one) and become a true
522      * LWKT thread, and may also hand the current process designation to
523      * another process and schedule thread.
524      */
525     if (td->td_release)
526 	    td->td_release(td);
527 
528     crit_enter_gd(gd);
529     if (td->td_toks)
530 	    lwkt_relalltokens(td);
531 
532     /*
533      * We had better not be holding any spin locks, but don't get into an
534      * endless panic loop.
535      */
536     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
537 	    ("lwkt_switch: still holding a shared spinlock %p!",
538 	     gd->gd_spinlock_rd));
539     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
540 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
541 	     gd->gd_spinlocks_wr));
542 
543 
544 #ifdef SMP
545     /*
546      * td_mpcount cannot be used to determine if we currently hold the
547      * MP lock because get_mplock() will increment it prior to attempting
548      * to get the lock, and switch out if it can't.  Our ownership of
549      * the actual lock will remain stable while we are in a critical section
550      * (but, of course, another cpu may own or release the lock so the
551      * actual value of mp_lock is not stable).
552      */
553     mpheld = MP_LOCK_HELD();
554 #ifdef	INVARIANTS
555     if (td->td_cscount) {
556 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
557 		td);
558 	if (panic_on_cscount)
559 	    panic("switching while mastering cpusync");
560     }
561 #endif
562 #endif
563     if ((ntd = td->td_preempted) != NULL) {
564 	/*
565 	 * We had preempted another thread on this cpu, resume the preempted
566 	 * thread.  This occurs transparently, whether the preempted thread
567 	 * was scheduled or not (it may have been preempted after descheduling
568 	 * itself).
569 	 *
570 	 * We have to setup the MP lock for the original thread after backing
571 	 * out the adjustment that was made to curthread when the original
572 	 * was preempted.
573 	 */
574 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
575 #ifdef SMP
576 	if (ntd->td_mpcount && mpheld == 0) {
577 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
578 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
579 	}
580 	if (ntd->td_mpcount) {
581 	    td->td_mpcount -= ntd->td_mpcount;
582 	    KKASSERT(td->td_mpcount >= 0);
583 	}
584 #endif
585 	ntd->td_flags |= TDF_PREEMPT_DONE;
586 
587 	/*
588 	 * The interrupt may have woken a thread up, we need to properly
589 	 * set the reschedule flag if the originally interrupted thread is
590 	 * at a lower priority.
591 	 */
592 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
593 	    need_lwkt_resched();
594 	/* YYY release mp lock on switchback if original doesn't need it */
595     } else {
596 	/*
597 	 * Priority queue / round-robin at each priority.  Note that user
598 	 * processes run at a fixed, low priority and the user process
599 	 * scheduler deals with interactions between user processes
600 	 * by scheduling and descheduling them from the LWKT queue as
601 	 * necessary.
602 	 *
603 	 * We have to adjust the MP lock for the target thread.  If we
604 	 * need the MP lock and cannot obtain it we try to locate a
605 	 * thread that does not need the MP lock.  If we cannot, we spin
606 	 * instead of HLT.
607 	 *
608 	 * A similar issue exists for the tokens held by the target thread.
609 	 * If we cannot obtain ownership of the tokens we cannot immediately
610 	 * schedule the thread.
611 	 */
612 
613 	/*
614 	 * If an LWKT reschedule was requested, well that is what we are
615 	 * doing now so clear it.
616 	 */
617 	clear_lwkt_resched();
618 again:
619 	if (gd->gd_runqmask) {
620 	    int nq = bsrl(gd->gd_runqmask);
621 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
622 		gd->gd_runqmask &= ~(1 << nq);
623 		goto again;
624 	    }
625 #ifdef SMP
626 	    /*
627 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
628 	     *
629 	     * If the target needs the MP lock and we couldn't get it,
630 	     * or if the target is holding tokens and we could not
631 	     * gain ownership of the tokens, continue looking for a
632 	     * thread to schedule and spin instead of HLT if we can't.
633 	     *
634 	     * NOTE: the mpheld variable invalid after this conditional, it
635 	     * can change due to both cpu_try_mplock() returning success
636 	     * AND interactions in lwkt_getalltokens() due to the fact that
637 	     * we are trying to check the mpcount of a thread other then
638 	     * the current thread.  Because of this, if the current thread
639 	     * is not holding td_mpcount, an IPI indirectly run via
640 	     * lwkt_getalltokens() can obtain and release the MP lock and
641 	     * cause the core MP lock to be released.
642 	     */
643 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
644 		(ntd->td_toks && lwkt_getalltokens(ntd) == 0)
645 	    ) {
646 		u_int32_t rqmask = gd->gd_runqmask;
647 
648 		mpheld = MP_LOCK_HELD();
649 		ntd = NULL;
650 		while (rqmask) {
651 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
652 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
653 			    /* spinning due to MP lock being held */
654 #ifdef	INVARIANTS
655 			    ++mplock_contention_count;
656 #endif
657 			    /* mplock still not held, 'mpheld' still valid */
658 			    continue;
659 			}
660 
661 			/*
662 			 * mpheld state invalid after getalltokens call returns
663 			 * failure, but the variable is only needed for
664 			 * the loop.
665 			 */
666 			if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
667 			    /* spinning due to token contention */
668 #ifdef	INVARIANTS
669 			    ++token_contention_count;
670 #endif
671 			    mpheld = MP_LOCK_HELD();
672 			    continue;
673 			}
674 			break;
675 		    }
676 		    if (ntd)
677 			break;
678 		    rqmask &= ~(1 << nq);
679 		    nq = bsrl(rqmask);
680 
681 		    /*
682 		     * We have two choices. We can either refuse to run a
683 		     * user thread when a kernel thread needs the MP lock
684 		     * but could not get it, or we can allow it to run but
685 		     * then expect an IPI (hopefully) later on to force a
686 		     * reschedule when the MP lock might become available.
687 		     */
688 		    if (nq < TDPRI_KERN_LPSCHED) {
689 			if (chain_mplock == 0)
690 				break;
691 			atomic_set_int(&mp_lock_contention_mask,
692 				       gd->gd_cpumask);
693 			/* continue loop, allow user threads to be scheduled */
694 		    }
695 		}
696 		if (ntd == NULL) {
697 		    cpu_mplock_contested();
698 		    ntd = &gd->gd_idlethread;
699 		    ntd->td_flags |= TDF_IDLE_NOHLT;
700 		    goto using_idle_thread;
701 		} else {
702 		    ++gd->gd_cnt.v_swtch;
703 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
704 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
705 		}
706 	    } else {
707 		++gd->gd_cnt.v_swtch;
708 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
709 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
710 	    }
711 #else
712 	    /*
713 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
714 	     * worry about tokens or the BGL.  However, we still have
715 	     * to call lwkt_getalltokens() in order to properly detect
716 	     * stale tokens.  This call cannot fail for a UP build!
717 	     */
718 	    lwkt_getalltokens(ntd);
719 	    ++gd->gd_cnt.v_swtch;
720 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
721 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
722 #endif
723 	} else {
724 	    /*
725 	     * We have nothing to run but only let the idle loop halt
726 	     * the cpu if there are no pending interrupts.
727 	     */
728 	    ntd = &gd->gd_idlethread;
729 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
730 		ntd->td_flags |= TDF_IDLE_NOHLT;
731 #ifdef SMP
732 using_idle_thread:
733 	    /*
734 	     * The idle thread should not be holding the MP lock unless we
735 	     * are trapping in the kernel or in a panic.  Since we select the
736 	     * idle thread unconditionally when no other thread is available,
737 	     * if the MP lock is desired during a panic or kernel trap, we
738 	     * have to loop in the scheduler until we get it.
739 	     */
740 	    if (ntd->td_mpcount) {
741 		mpheld = MP_LOCK_HELD();
742 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
743 		    panic("Idle thread %p was holding the BGL!", ntd);
744 		} else if (mpheld == 0) {
745 		    cpu_mplock_contested();
746 		    goto again;
747 		}
748 	    }
749 #endif
750 	}
751     }
752     KASSERT(ntd->td_pri >= TDPRI_CRIT,
753 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
754 
755     /*
756      * Do the actual switch.  If the new target does not need the MP lock
757      * and we are holding it, release the MP lock.  If the new target requires
758      * the MP lock we have already acquired it for the target.
759      */
760 #ifdef SMP
761     if (ntd->td_mpcount == 0 ) {
762 	if (MP_LOCK_HELD())
763 	    cpu_rel_mplock();
764     } else {
765 	ASSERT_MP_LOCK_HELD(ntd);
766     }
767 #endif
768     if (td != ntd) {
769 	++switch_count;
770 #ifdef __amd64__
771 	KKASSERT(jg_tos_ok(ntd));
772 #endif
773 	td->td_switch(ntd);
774     }
775     /* NOTE: current cpu may have changed after switch */
776     crit_exit_quick(td);
777 }
778 
779 /*
780  * Request that the target thread preempt the current thread.  Preemption
781  * only works under a specific set of conditions:
782  *
783  *	- We are not preempting ourselves
784  *	- The target thread is owned by the current cpu
785  *	- We are not currently being preempted
786  *	- The target is not currently being preempted
787  *	- We are not holding any spin locks
788  *	- The target thread is not holding any tokens
789  *	- We are able to satisfy the target's MP lock requirements (if any).
790  *
791  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
792  * this is called via lwkt_schedule() through the td_preemptable callback.
793  * critpri is the managed critical priority that we should ignore in order
794  * to determine whether preemption is possible (aka usually just the crit
795  * priority of lwkt_schedule() itself).
796  *
797  * XXX at the moment we run the target thread in a critical section during
798  * the preemption in order to prevent the target from taking interrupts
799  * that *WE* can't.  Preemption is strictly limited to interrupt threads
800  * and interrupt-like threads, outside of a critical section, and the
801  * preempted source thread will be resumed the instant the target blocks
802  * whether or not the source is scheduled (i.e. preemption is supposed to
803  * be as transparent as possible).
804  *
805  * The target thread inherits our MP count (added to its own) for the
806  * duration of the preemption in order to preserve the atomicy of the
807  * MP lock during the preemption.  Therefore, any preempting targets must be
808  * careful in regards to MP assertions.  Note that the MP count may be
809  * out of sync with the physical mp_lock, but we do not have to preserve
810  * the original ownership of the lock if it was out of synch (that is, we
811  * can leave it synchronized on return).
812  */
813 void
814 lwkt_preempt(thread_t ntd, int critpri)
815 {
816     struct globaldata *gd = mycpu;
817     thread_t td;
818 #ifdef SMP
819     int mpheld;
820     int savecnt;
821 #endif
822 
823     /*
824      * The caller has put us in a critical section.  We can only preempt
825      * if the caller of the caller was not in a critical section (basically
826      * a local interrupt), as determined by the 'critpri' parameter.  We
827      * also can't preempt if the caller is holding any spinlocks (even if
828      * he isn't in a critical section).  This also handles the tokens test.
829      *
830      * YYY The target thread must be in a critical section (else it must
831      * inherit our critical section?  I dunno yet).
832      *
833      * Set need_lwkt_resched() unconditionally for now YYY.
834      */
835     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
836 
837     td = gd->gd_curthread;
838     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
839 	++preempt_miss;
840 	return;
841     }
842     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
843 	++preempt_miss;
844 	need_lwkt_resched();
845 	return;
846     }
847 #ifdef SMP
848     if (ntd->td_gd != gd) {
849 	++preempt_miss;
850 	need_lwkt_resched();
851 	return;
852     }
853 #endif
854     /*
855      * Take the easy way out and do not preempt if we are holding
856      * any spinlocks.  We could test whether the thread(s) being
857      * preempted interlock against the target thread's tokens and whether
858      * we can get all the target thread's tokens, but this situation
859      * should not occur very often so its easier to simply not preempt.
860      * Also, plain spinlocks are impossible to figure out at this point so
861      * just don't preempt.
862      *
863      * Do not try to preempt if the target thread is holding any tokens.
864      * We could try to acquire the tokens but this case is so rare there
865      * is no need to support it.
866      */
867     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
868 	++preempt_miss;
869 	need_lwkt_resched();
870 	return;
871     }
872     if (ntd->td_toks) {
873 	++preempt_miss;
874 	need_lwkt_resched();
875 	return;
876     }
877     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
878 	++preempt_weird;
879 	need_lwkt_resched();
880 	return;
881     }
882     if (ntd->td_preempted) {
883 	++preempt_hit;
884 	need_lwkt_resched();
885 	return;
886     }
887 #ifdef SMP
888     /*
889      * note: an interrupt might have occured just as we were transitioning
890      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
891      * (non-zero) but not actually synchronized with the actual state of the
892      * lock.  We can use it to imply an MP lock requirement for the
893      * preemption but we cannot use it to test whether we hold the MP lock
894      * or not.
895      */
896     savecnt = td->td_mpcount;
897     mpheld = MP_LOCK_HELD();
898     ntd->td_mpcount += td->td_mpcount;
899     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
900 	ntd->td_mpcount -= td->td_mpcount;
901 	++preempt_miss;
902 	need_lwkt_resched();
903 	return;
904     }
905 #endif
906 
907     /*
908      * Since we are able to preempt the current thread, there is no need to
909      * call need_lwkt_resched().
910      */
911     ++preempt_hit;
912     ntd->td_preempted = td;
913     td->td_flags |= TDF_PREEMPT_LOCK;
914     td->td_switch(ntd);
915 
916     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
917 #ifdef SMP
918     KKASSERT(savecnt == td->td_mpcount);
919     mpheld = MP_LOCK_HELD();
920     if (mpheld && td->td_mpcount == 0)
921 	cpu_rel_mplock();
922     else if (mpheld == 0 && td->td_mpcount)
923 	panic("lwkt_preempt(): MP lock was not held through");
924 #endif
925     ntd->td_preempted = NULL;
926     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
927 }
928 
929 /*
930  * Yield our thread while higher priority threads are pending.  This is
931  * typically called when we leave a critical section but it can be safely
932  * called while we are in a critical section.
933  *
934  * This function will not generally yield to equal priority threads but it
935  * can occur as a side effect.  Note that lwkt_switch() is called from
936  * inside the critical section to prevent its own crit_exit() from reentering
937  * lwkt_yield_quick().
938  *
939  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
940  * came along but was blocked and made pending.
941  *
942  * (self contained on a per cpu basis)
943  */
944 void
945 lwkt_yield_quick(void)
946 {
947     globaldata_t gd = mycpu;
948     thread_t td = gd->gd_curthread;
949 
950     /*
951      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
952      * it with a non-zero cpl then we might not wind up calling splz after
953      * a task switch when the critical section is exited even though the
954      * new task could accept the interrupt.
955      *
956      * XXX from crit_exit() only called after last crit section is released.
957      * If called directly will run splz() even if in a critical section.
958      *
959      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
960      * except for this special case, we MUST call splz() here to handle any
961      * pending ints, particularly after we switch, or we might accidently
962      * halt the cpu with interrupts pending.
963      */
964     if (gd->gd_reqflags && td->td_nest_count < 2)
965 	splz();
966 
967     /*
968      * YYY enabling will cause wakeup() to task-switch, which really
969      * confused the old 4.x code.  This is a good way to simulate
970      * preemption and MP without actually doing preemption or MP, because a
971      * lot of code assumes that wakeup() does not block.
972      */
973     if (untimely_switch && td->td_nest_count == 0 &&
974 	gd->gd_intr_nesting_level == 0
975     ) {
976 	crit_enter_quick(td);
977 	/*
978 	 * YYY temporary hacks until we disassociate the userland scheduler
979 	 * from the LWKT scheduler.
980 	 */
981 	if (td->td_flags & TDF_RUNQ) {
982 	    lwkt_switch();		/* will not reenter yield function */
983 	} else {
984 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
985 	    lwkt_switch();		/* will not reenter yield function */
986 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
987 	}
988 	crit_exit_noyield(td);
989     }
990 }
991 
992 /*
993  * This implements a normal yield which, unlike _quick, will yield to equal
994  * priority threads as well.  Note that gd_reqflags tests will be handled by
995  * the crit_exit() call in lwkt_switch().
996  *
997  * (self contained on a per cpu basis)
998  */
999 void
1000 lwkt_yield(void)
1001 {
1002     lwkt_schedule_self(curthread);
1003     lwkt_switch();
1004 }
1005 
1006 /*
1007  * Return 0 if no runnable threads are pending at the same or higher
1008  * priority as the passed thread.
1009  *
1010  * Return 1 if runnable threads are pending at the same priority.
1011  *
1012  * Return 2 if runnable threads are pending at a higher priority.
1013  */
1014 int
1015 lwkt_check_resched(thread_t td)
1016 {
1017 	int pri = td->td_pri & TDPRI_MASK;
1018 
1019 	if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1020 		return(2);
1021 	if (TAILQ_NEXT(td, td_threadq))
1022 		return(1);
1023 	return(0);
1024 }
1025 
1026 /*
1027  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1028  * deal with threads that might be blocked on a wait queue.
1029  *
1030  * We have a little helper inline function which does additional work after
1031  * the thread has been enqueued, including dealing with preemption and
1032  * setting need_lwkt_resched() (which prevents the kernel from returning
1033  * to userland until it has processed higher priority threads).
1034  *
1035  * It is possible for this routine to be called after a failed _enqueue
1036  * (due to the target thread migrating, sleeping, or otherwise blocked).
1037  * We have to check that the thread is actually on the run queue!
1038  *
1039  * reschedok is an optimized constant propagated from lwkt_schedule() or
1040  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1041  * reschedule to be requested if the target thread has a higher priority.
1042  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1043  * be 0, prevented undesired reschedules.
1044  */
1045 static __inline
1046 void
1047 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1048 {
1049     thread_t otd;
1050 
1051     if (ntd->td_flags & TDF_RUNQ) {
1052 	if (ntd->td_preemptable && reschedok) {
1053 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
1054 	} else if (reschedok) {
1055 	    otd = curthread;
1056 	    if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1057 		need_lwkt_resched();
1058 	}
1059     }
1060 }
1061 
1062 static __inline
1063 void
1064 _lwkt_schedule(thread_t td, int reschedok)
1065 {
1066     globaldata_t mygd = mycpu;
1067 
1068     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1069     crit_enter_gd(mygd);
1070     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1071     if (td == mygd->gd_curthread) {
1072 	_lwkt_enqueue(td);
1073     } else {
1074 	/*
1075 	 * If we own the thread, there is no race (since we are in a
1076 	 * critical section).  If we do not own the thread there might
1077 	 * be a race but the target cpu will deal with it.
1078 	 */
1079 #ifdef SMP
1080 	if (td->td_gd == mygd) {
1081 	    _lwkt_enqueue(td);
1082 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1083 	} else {
1084 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1085 	}
1086 #else
1087 	_lwkt_enqueue(td);
1088 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1089 #endif
1090     }
1091     crit_exit_gd(mygd);
1092 }
1093 
1094 void
1095 lwkt_schedule(thread_t td)
1096 {
1097     _lwkt_schedule(td, 1);
1098 }
1099 
1100 void
1101 lwkt_schedule_noresched(thread_t td)
1102 {
1103     _lwkt_schedule(td, 0);
1104 }
1105 
1106 #ifdef SMP
1107 
1108 /*
1109  * Thread migration using a 'Pull' method.  The thread may or may not be
1110  * the current thread.  It MUST be descheduled and in a stable state.
1111  * lwkt_giveaway() must be called on the cpu owning the thread.
1112  *
1113  * At any point after lwkt_giveaway() is called, the target cpu may
1114  * 'pull' the thread by calling lwkt_acquire().
1115  *
1116  * MPSAFE - must be called under very specific conditions.
1117  */
1118 void
1119 lwkt_giveaway(thread_t td)
1120 {
1121 	globaldata_t gd = mycpu;
1122 
1123 	crit_enter_gd(gd);
1124 	KKASSERT(td->td_gd == gd);
1125 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1126 	td->td_flags |= TDF_MIGRATING;
1127 	crit_exit_gd(gd);
1128 }
1129 
1130 void
1131 lwkt_acquire(thread_t td)
1132 {
1133     globaldata_t gd;
1134     globaldata_t mygd;
1135 
1136     KKASSERT(td->td_flags & TDF_MIGRATING);
1137     gd = td->td_gd;
1138     mygd = mycpu;
1139     if (gd != mycpu) {
1140 	cpu_lfence();
1141 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1142 	crit_enter_gd(mygd);
1143 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1144 #ifdef SMP
1145 	    lwkt_process_ipiq();
1146 #endif
1147 	    cpu_lfence();
1148 	}
1149 	td->td_gd = mygd;
1150 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1151 	td->td_flags &= ~TDF_MIGRATING;
1152 	crit_exit_gd(mygd);
1153     } else {
1154 	crit_enter_gd(mygd);
1155 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1156 	td->td_flags &= ~TDF_MIGRATING;
1157 	crit_exit_gd(mygd);
1158     }
1159 }
1160 
1161 #endif
1162 
1163 /*
1164  * Generic deschedule.  Descheduling threads other then your own should be
1165  * done only in carefully controlled circumstances.  Descheduling is
1166  * asynchronous.
1167  *
1168  * This function may block if the cpu has run out of messages.
1169  */
1170 void
1171 lwkt_deschedule(thread_t td)
1172 {
1173     crit_enter();
1174 #ifdef SMP
1175     if (td == curthread) {
1176 	_lwkt_dequeue(td);
1177     } else {
1178 	if (td->td_gd == mycpu) {
1179 	    _lwkt_dequeue(td);
1180 	} else {
1181 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1182 	}
1183     }
1184 #else
1185     _lwkt_dequeue(td);
1186 #endif
1187     crit_exit();
1188 }
1189 
1190 /*
1191  * Set the target thread's priority.  This routine does not automatically
1192  * switch to a higher priority thread, LWKT threads are not designed for
1193  * continuous priority changes.  Yield if you want to switch.
1194  *
1195  * We have to retain the critical section count which uses the high bits
1196  * of the td_pri field.  The specified priority may also indicate zero or
1197  * more critical sections by adding TDPRI_CRIT*N.
1198  *
1199  * Note that we requeue the thread whether it winds up on a different runq
1200  * or not.  uio_yield() depends on this and the routine is not normally
1201  * called with the same priority otherwise.
1202  */
1203 void
1204 lwkt_setpri(thread_t td, int pri)
1205 {
1206     KKASSERT(pri >= 0);
1207     KKASSERT(td->td_gd == mycpu);
1208     crit_enter();
1209     if (td->td_flags & TDF_RUNQ) {
1210 	_lwkt_dequeue(td);
1211 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1212 	_lwkt_enqueue(td);
1213     } else {
1214 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1215     }
1216     crit_exit();
1217 }
1218 
1219 void
1220 lwkt_setpri_self(int pri)
1221 {
1222     thread_t td = curthread;
1223 
1224     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1225     crit_enter();
1226     if (td->td_flags & TDF_RUNQ) {
1227 	_lwkt_dequeue(td);
1228 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1229 	_lwkt_enqueue(td);
1230     } else {
1231 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1232     }
1233     crit_exit();
1234 }
1235 
1236 /*
1237  * Migrate the current thread to the specified cpu.
1238  *
1239  * This is accomplished by descheduling ourselves from the current cpu,
1240  * moving our thread to the tdallq of the target cpu, IPI messaging the
1241  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1242  * races while the thread is being migrated.
1243  */
1244 #ifdef SMP
1245 static void lwkt_setcpu_remote(void *arg);
1246 #endif
1247 
1248 void
1249 lwkt_setcpu_self(globaldata_t rgd)
1250 {
1251 #ifdef SMP
1252     thread_t td = curthread;
1253 
1254     if (td->td_gd != rgd) {
1255 	crit_enter_quick(td);
1256 	td->td_flags |= TDF_MIGRATING;
1257 	lwkt_deschedule_self(td);
1258 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1259 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1260 	lwkt_switch();
1261 	/* we are now on the target cpu */
1262 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1263 	crit_exit_quick(td);
1264     }
1265 #endif
1266 }
1267 
1268 void
1269 lwkt_migratecpu(int cpuid)
1270 {
1271 #ifdef SMP
1272 	globaldata_t rgd;
1273 
1274 	rgd = globaldata_find(cpuid);
1275 	lwkt_setcpu_self(rgd);
1276 #endif
1277 }
1278 
1279 /*
1280  * Remote IPI for cpu migration (called while in a critical section so we
1281  * do not have to enter another one).  The thread has already been moved to
1282  * our cpu's allq, but we must wait for the thread to be completely switched
1283  * out on the originating cpu before we schedule it on ours or the stack
1284  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1285  * change to main memory.
1286  *
1287  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1288  * against wakeups.  It is best if this interface is used only when there
1289  * are no pending events that might try to schedule the thread.
1290  */
1291 #ifdef SMP
1292 static void
1293 lwkt_setcpu_remote(void *arg)
1294 {
1295     thread_t td = arg;
1296     globaldata_t gd = mycpu;
1297 
1298     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1299 #ifdef SMP
1300 	lwkt_process_ipiq();
1301 #endif
1302 	cpu_lfence();
1303     }
1304     td->td_gd = gd;
1305     cpu_sfence();
1306     td->td_flags &= ~TDF_MIGRATING;
1307     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1308     _lwkt_enqueue(td);
1309 }
1310 #endif
1311 
1312 struct lwp *
1313 lwkt_preempted_proc(void)
1314 {
1315     thread_t td = curthread;
1316     while (td->td_preempted)
1317 	td = td->td_preempted;
1318     return(td->td_lwp);
1319 }
1320 
1321 /*
1322  * Create a kernel process/thread/whatever.  It shares it's address space
1323  * with proc0 - ie: kernel only.
1324  *
1325  * NOTE!  By default new threads are created with the MP lock held.  A
1326  * thread which does not require the MP lock should release it by calling
1327  * rel_mplock() at the start of the new thread.
1328  */
1329 int
1330 lwkt_create(void (*func)(void *), void *arg,
1331     struct thread **tdp, thread_t template, int tdflags, int cpu,
1332     const char *fmt, ...)
1333 {
1334     thread_t td;
1335     __va_list ap;
1336 
1337     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1338 			   tdflags);
1339     if (tdp)
1340 	*tdp = td;
1341     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1342 
1343     /*
1344      * Set up arg0 for 'ps' etc
1345      */
1346     __va_start(ap, fmt);
1347     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1348     __va_end(ap);
1349 
1350     /*
1351      * Schedule the thread to run
1352      */
1353     if ((td->td_flags & TDF_STOPREQ) == 0)
1354 	lwkt_schedule(td);
1355     else
1356 	td->td_flags &= ~TDF_STOPREQ;
1357     return 0;
1358 }
1359 
1360 /*
1361  * Destroy an LWKT thread.   Warning!  This function is not called when
1362  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1363  * uses a different reaping mechanism.
1364  */
1365 void
1366 lwkt_exit(void)
1367 {
1368     thread_t td = curthread;
1369     thread_t std;
1370     globaldata_t gd;
1371 
1372     if (td->td_flags & TDF_VERBOSE)
1373 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1374     caps_exit(td);
1375 
1376     /*
1377      * Get us into a critical section to interlock gd_freetd and loop
1378      * until we can get it freed.
1379      *
1380      * We have to cache the current td in gd_freetd because objcache_put()ing
1381      * it would rip it out from under us while our thread is still active.
1382      */
1383     gd = mycpu;
1384     crit_enter_quick(td);
1385     while ((std = gd->gd_freetd) != NULL) {
1386 	gd->gd_freetd = NULL;
1387 	objcache_put(thread_cache, std);
1388     }
1389     lwkt_deschedule_self(td);
1390     lwkt_remove_tdallq(td);
1391     if (td->td_flags & TDF_ALLOCATED_THREAD)
1392 	gd->gd_freetd = td;
1393     cpu_thread_exit();
1394 }
1395 
1396 void
1397 lwkt_remove_tdallq(thread_t td)
1398 {
1399     KKASSERT(td->td_gd == mycpu);
1400     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1401 }
1402 
1403 void
1404 crit_panic(void)
1405 {
1406     thread_t td = curthread;
1407     int lpri = td->td_pri;
1408 
1409     td->td_pri = 0;
1410     panic("td_pri is/would-go negative! %p %d", td, lpri);
1411 }
1412 
1413 #ifdef SMP
1414 
1415 /*
1416  * Called from debugger/panic on cpus which have been stopped.  We must still
1417  * process the IPIQ while stopped, even if we were stopped while in a critical
1418  * section (XXX).
1419  *
1420  * If we are dumping also try to process any pending interrupts.  This may
1421  * or may not work depending on the state of the cpu at the point it was
1422  * stopped.
1423  */
1424 void
1425 lwkt_smp_stopped(void)
1426 {
1427     globaldata_t gd = mycpu;
1428 
1429     crit_enter_gd(gd);
1430     if (dumping) {
1431 	lwkt_process_ipiq();
1432 	splz();
1433     } else {
1434 	lwkt_process_ipiq();
1435     }
1436     crit_exit_gd(gd);
1437 }
1438 
1439 /*
1440  * get_mplock() calls this routine if it is unable to obtain the MP lock.
1441  * get_mplock() has already incremented td_mpcount.  We must block and
1442  * not return until giant is held.
1443  *
1444  * All we have to do is lwkt_switch() away.  The LWKT scheduler will not
1445  * reschedule the thread until it can obtain the giant lock for it.
1446  */
1447 void
1448 lwkt_mp_lock_contested(void)
1449 {
1450     loggiant(beg);
1451     lwkt_switch();
1452     loggiant(end);
1453 }
1454 
1455 /*
1456  * The rel_mplock() code will call this function after releasing the
1457  * last reference on the MP lock if mp_lock_contention_mask is non-zero.
1458  *
1459  * We then chain an IPI to a single other cpu potentially needing the
1460  * lock.  This is a bit heuristical and we can wind up with IPIs flying
1461  * all over the place.
1462  */
1463 static void lwkt_mp_lock_uncontested_remote(void *arg __unused);
1464 
1465 void
1466 lwkt_mp_lock_uncontested(void)
1467 {
1468     globaldata_t gd;
1469     globaldata_t dgd;
1470     cpumask_t mask;
1471     cpumask_t tmpmask;
1472     int cpuid;
1473 
1474     if (chain_mplock) {
1475 	gd = mycpu;
1476 	atomic_clear_int(&mp_lock_contention_mask, gd->gd_cpumask);
1477 	mask = mp_lock_contention_mask;
1478 	tmpmask = ~((1 << gd->gd_cpuid) - 1);
1479 
1480 	if (mask) {
1481 	    if (mask & tmpmask)
1482 		    cpuid = bsfl(mask & tmpmask);
1483 	    else
1484 		    cpuid = bsfl(mask);
1485 	    atomic_clear_int(&mp_lock_contention_mask, 1 << cpuid);
1486 	    dgd = globaldata_find(cpuid);
1487 	    lwkt_send_ipiq(dgd, lwkt_mp_lock_uncontested_remote, NULL);
1488 	}
1489     }
1490 }
1491 
1492 /*
1493  * The idea is for this IPI to interrupt a potentially lower priority
1494  * thread, such as a user thread, to allow the scheduler to reschedule
1495  * a higher priority kernel thread that needs the MP lock.
1496  *
1497  * For now we set the LWKT reschedule flag which generates an AST in
1498  * doreti, though theoretically it is also possible to possibly preempt
1499  * here if the underlying thread was operating in user mode.  Nah.
1500  */
1501 static void
1502 lwkt_mp_lock_uncontested_remote(void *arg __unused)
1503 {
1504 	need_lwkt_resched();
1505 }
1506 
1507 #endif
1508