xref: /dragonfly/sys/kern/lwkt_thread.c (revision 2ee85085)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.82 2005/07/21 06:28:50 dillon Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #ifdef _KERNEL
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/thread2.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 #include <machine/cpu.h>
56 #include <sys/lock.h>
57 #include <sys/caps.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_object.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_pager.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_zone.h>
68 
69 #include <machine/stdarg.h>
70 #include <machine/ipl.h>
71 #include <machine/smp.h>
72 
73 #else
74 
75 #include <sys/stdint.h>
76 #include <libcaps/thread.h>
77 #include <sys/thread.h>
78 #include <sys/msgport.h>
79 #include <sys/errno.h>
80 #include <libcaps/globaldata.h>
81 #include <machine/cpufunc.h>
82 #include <sys/thread2.h>
83 #include <sys/msgport2.h>
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <machine/lock.h>
88 #include <machine/atomic.h>
89 #include <machine/cpu.h>
90 
91 #endif
92 
93 static int untimely_switch = 0;
94 #ifdef	INVARIANTS
95 static int panic_on_cscount = 0;
96 #endif
97 static __int64_t switch_count = 0;
98 static __int64_t preempt_hit = 0;
99 static __int64_t preempt_miss = 0;
100 static __int64_t preempt_weird = 0;
101 static __int64_t token_contention_count = 0;
102 static __int64_t mplock_contention_count = 0;
103 
104 #ifdef _KERNEL
105 
106 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
107 #ifdef	INVARIANTS
108 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
109 #endif
110 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
111 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
112 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
113 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
114 #ifdef	INVARIANTS
115 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
116 	&token_contention_count, 0, "spinning due to token contention");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
118 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
119 #endif
120 #endif
121 
122 /*
123  * These helper procedures handle the runq, they can only be called from
124  * within a critical section.
125  *
126  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
127  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
128  * instead of 'mycpu' when referencing the globaldata structure.   Once
129  * SMP live enqueuing and dequeueing only occurs on the current cpu.
130  */
131 static __inline
132 void
133 _lwkt_dequeue(thread_t td)
134 {
135     if (td->td_flags & TDF_RUNQ) {
136 	int nq = td->td_pri & TDPRI_MASK;
137 	struct globaldata *gd = td->td_gd;
138 
139 	td->td_flags &= ~TDF_RUNQ;
140 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
141 	/* runqmask is passively cleaned up by the switcher */
142     }
143 }
144 
145 static __inline
146 void
147 _lwkt_enqueue(thread_t td)
148 {
149     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING)) == 0) {
150 	int nq = td->td_pri & TDPRI_MASK;
151 	struct globaldata *gd = td->td_gd;
152 
153 	td->td_flags |= TDF_RUNQ;
154 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
155 	gd->gd_runqmask |= 1 << nq;
156     }
157 }
158 
159 /*
160  * Schedule a thread to run.  As the current thread we can always safely
161  * schedule ourselves, and a shortcut procedure is provided for that
162  * function.
163  *
164  * (non-blocking, self contained on a per cpu basis)
165  */
166 void
167 lwkt_schedule_self(thread_t td)
168 {
169     crit_enter_quick(td);
170     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
171     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
172     _lwkt_enqueue(td);
173 #ifdef _KERNEL
174     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
175 	panic("SCHED SELF PANIC");
176 #endif
177     crit_exit_quick(td);
178 }
179 
180 /*
181  * Deschedule a thread.
182  *
183  * (non-blocking, self contained on a per cpu basis)
184  */
185 void
186 lwkt_deschedule_self(thread_t td)
187 {
188     crit_enter_quick(td);
189     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
190     _lwkt_dequeue(td);
191     crit_exit_quick(td);
192 }
193 
194 #ifdef _KERNEL
195 
196 /*
197  * LWKTs operate on a per-cpu basis
198  *
199  * WARNING!  Called from early boot, 'mycpu' may not work yet.
200  */
201 void
202 lwkt_gdinit(struct globaldata *gd)
203 {
204     int i;
205 
206     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
207 	TAILQ_INIT(&gd->gd_tdrunq[i]);
208     gd->gd_runqmask = 0;
209     TAILQ_INIT(&gd->gd_tdallq);
210 }
211 
212 #endif /* _KERNEL */
213 
214 /*
215  * Initialize a thread wait structure prior to first use.
216  *
217  * NOTE!  called from low level boot code, we cannot do anything fancy!
218  */
219 void
220 lwkt_wait_init(lwkt_wait_t w)
221 {
222     lwkt_token_init(&w->wa_token);
223     TAILQ_INIT(&w->wa_waitq);
224     w->wa_gen = 0;
225     w->wa_count = 0;
226 }
227 
228 /*
229  * Create a new thread.  The thread must be associated with a process context
230  * or LWKT start address before it can be scheduled.  If the target cpu is
231  * -1 the thread will be created on the current cpu.
232  *
233  * If you intend to create a thread without a process context this function
234  * does everything except load the startup and switcher function.
235  */
236 thread_t
237 lwkt_alloc_thread(struct thread *td, int stksize, int cpu)
238 {
239     void *stack;
240     int flags = 0;
241     globaldata_t gd = mycpu;
242 
243     if (td == NULL) {
244 	crit_enter_gd(gd);
245 	if (gd->gd_tdfreecount > 0) {
246 	    --gd->gd_tdfreecount;
247 	    td = TAILQ_FIRST(&gd->gd_tdfreeq);
248 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
249 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
250 	    TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
251 	    crit_exit_gd(gd);
252 	    flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
253 	} else {
254 	    crit_exit_gd(gd);
255 #ifdef _KERNEL
256 	    td = zalloc(thread_zone);
257 #else
258 	    td = malloc(sizeof(struct thread));
259 #endif
260 	    td->td_kstack = NULL;
261 	    td->td_kstack_size = 0;
262 	    flags |= TDF_ALLOCATED_THREAD;
263 	}
264     }
265     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
266 	if (flags & TDF_ALLOCATED_STACK) {
267 #ifdef _KERNEL
268 	    kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size);
269 #else
270 	    libcaps_free_stack(stack, td->td_kstack_size);
271 #endif
272 	    stack = NULL;
273 	}
274     }
275     if (stack == NULL) {
276 #ifdef _KERNEL
277 	stack = (void *)kmem_alloc(kernel_map, stksize);
278 #else
279 	stack = libcaps_alloc_stack(stksize);
280 #endif
281 	flags |= TDF_ALLOCATED_STACK;
282     }
283     if (cpu < 0)
284 	lwkt_init_thread(td, stack, stksize, flags, mycpu);
285     else
286 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
287     return(td);
288 }
289 
290 #ifdef _KERNEL
291 
292 /*
293  * Initialize a preexisting thread structure.  This function is used by
294  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
295  *
296  * All threads start out in a critical section at a priority of
297  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
298  * appropriate.  This function may send an IPI message when the
299  * requested cpu is not the current cpu and consequently gd_tdallq may
300  * not be initialized synchronously from the point of view of the originating
301  * cpu.
302  *
303  * NOTE! we have to be careful in regards to creating threads for other cpus
304  * if SMP has not yet been activated.
305  */
306 #ifdef SMP
307 
308 static void
309 lwkt_init_thread_remote(void *arg)
310 {
311     thread_t td = arg;
312 
313     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
314 }
315 
316 #endif
317 
318 void
319 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
320 		struct globaldata *gd)
321 {
322     globaldata_t mygd = mycpu;
323 
324     bzero(td, sizeof(struct thread));
325     td->td_kstack = stack;
326     td->td_kstack_size = stksize;
327     td->td_flags |= flags;
328     td->td_gd = gd;
329     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
330     lwkt_initport(&td->td_msgport, td);
331     pmap_init_thread(td);
332 #ifdef SMP
333     /*
334      * Normally initializing a thread for a remote cpu requires sending an
335      * IPI.  However, the idlethread is setup before the other cpus are
336      * activated so we have to treat it as a special case.  XXX manipulation
337      * of gd_tdallq requires the BGL.
338      */
339     if (gd == mygd || td == &gd->gd_idlethread) {
340 	crit_enter_gd(mygd);
341 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
342 	crit_exit_gd(mygd);
343     } else {
344 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
345     }
346 #else
347     crit_enter_gd(mygd);
348     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
349     crit_exit_gd(mygd);
350 #endif
351 }
352 
353 #endif /* _KERNEL */
354 
355 void
356 lwkt_set_comm(thread_t td, const char *ctl, ...)
357 {
358     __va_list va;
359 
360     __va_start(va, ctl);
361     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
362     __va_end(va);
363 }
364 
365 void
366 lwkt_hold(thread_t td)
367 {
368     ++td->td_refs;
369 }
370 
371 void
372 lwkt_rele(thread_t td)
373 {
374     KKASSERT(td->td_refs > 0);
375     --td->td_refs;
376 }
377 
378 #ifdef _KERNEL
379 
380 void
381 lwkt_wait_free(thread_t td)
382 {
383     while (td->td_refs)
384 	tsleep(td, 0, "tdreap", hz);
385 }
386 
387 #endif
388 
389 void
390 lwkt_free_thread(thread_t td)
391 {
392     struct globaldata *gd = mycpu;
393 
394     KASSERT((td->td_flags & TDF_RUNNING) == 0,
395 	("lwkt_free_thread: did not exit! %p", td));
396 
397     crit_enter_gd(gd);
398     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
399     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
400 	(td->td_flags & TDF_ALLOCATED_THREAD)
401     ) {
402 	++gd->gd_tdfreecount;
403 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
404 	crit_exit_gd(gd);
405     } else {
406 	crit_exit_gd(gd);
407 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
408 #ifdef _KERNEL
409 	    kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
410 #else
411 	    libcaps_free_stack(td->td_kstack, td->td_kstack_size);
412 #endif
413 	    /* gd invalid */
414 	    td->td_kstack = NULL;
415 	    td->td_kstack_size = 0;
416 	}
417 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
418 #ifdef _KERNEL
419 	    zfree(thread_zone, td);
420 #else
421 	    free(td);
422 #endif
423 	}
424     }
425 }
426 
427 
428 /*
429  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
430  * switch to the idlethread.  Switching must occur within a critical
431  * section to avoid races with the scheduling queue.
432  *
433  * We always have full control over our cpu's run queue.  Other cpus
434  * that wish to manipulate our queue must use the cpu_*msg() calls to
435  * talk to our cpu, so a critical section is all that is needed and
436  * the result is very, very fast thread switching.
437  *
438  * The LWKT scheduler uses a fixed priority model and round-robins at
439  * each priority level.  User process scheduling is a totally
440  * different beast and LWKT priorities should not be confused with
441  * user process priorities.
442  *
443  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
444  * cleans it up.  Note that the td_switch() function cannot do anything that
445  * requires the MP lock since the MP lock will have already been setup for
446  * the target thread (not the current thread).  It's nice to have a scheduler
447  * that does not need the MP lock to work because it allows us to do some
448  * really cool high-performance MP lock optimizations.
449  */
450 
451 void
452 lwkt_switch(void)
453 {
454     globaldata_t gd = mycpu;
455     thread_t td = gd->gd_curthread;
456     thread_t ntd;
457 #ifdef SMP
458     int mpheld;
459 #endif
460 
461     /*
462      * Switching from within a 'fast' (non thread switched) interrupt or IPI
463      * is illegal.  However, we may have to do it anyway if we hit a fatal
464      * kernel trap or we have paniced.
465      *
466      * If this case occurs save and restore the interrupt nesting level.
467      */
468     if (gd->gd_intr_nesting_level) {
469 	int savegdnest;
470 	int savegdtrap;
471 
472 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
473 	    panic("lwkt_switch: cannot switch from within "
474 		  "a fast interrupt, yet, td %p\n", td);
475 	} else {
476 	    savegdnest = gd->gd_intr_nesting_level;
477 	    savegdtrap = gd->gd_trap_nesting_level;
478 	    gd->gd_intr_nesting_level = 0;
479 	    gd->gd_trap_nesting_level = 0;
480 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
481 		td->td_flags |= TDF_PANICWARN;
482 		printf("Warning: thread switch from interrupt or IPI, "
483 			"thread %p (%s)\n", td, td->td_comm);
484 #ifdef DDB
485 		db_print_backtrace();
486 #endif
487 	    }
488 	    lwkt_switch();
489 	    gd->gd_intr_nesting_level = savegdnest;
490 	    gd->gd_trap_nesting_level = savegdtrap;
491 	    return;
492 	}
493     }
494 
495     /*
496      * Passive release (used to transition from user to kernel mode
497      * when we block or switch rather then when we enter the kernel).
498      * This function is NOT called if we are switching into a preemption
499      * or returning from a preemption.  Typically this causes us to lose
500      * our current process designation (if we have one) and become a true
501      * LWKT thread, and may also hand the current process designation to
502      * another process and schedule thread.
503      */
504     if (td->td_release)
505 	    td->td_release(td);
506 
507     crit_enter_gd(gd);
508 
509 #ifdef SMP
510     /*
511      * td_mpcount cannot be used to determine if we currently hold the
512      * MP lock because get_mplock() will increment it prior to attempting
513      * to get the lock, and switch out if it can't.  Our ownership of
514      * the actual lock will remain stable while we are in a critical section
515      * (but, of course, another cpu may own or release the lock so the
516      * actual value of mp_lock is not stable).
517      */
518     mpheld = MP_LOCK_HELD();
519 #ifdef	INVARIANTS
520     if (td->td_cscount) {
521 	printf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
522 		td);
523 	if (panic_on_cscount)
524 	    panic("switching while mastering cpusync");
525     }
526 #endif
527 #endif
528     if ((ntd = td->td_preempted) != NULL) {
529 	/*
530 	 * We had preempted another thread on this cpu, resume the preempted
531 	 * thread.  This occurs transparently, whether the preempted thread
532 	 * was scheduled or not (it may have been preempted after descheduling
533 	 * itself).
534 	 *
535 	 * We have to setup the MP lock for the original thread after backing
536 	 * out the adjustment that was made to curthread when the original
537 	 * was preempted.
538 	 */
539 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
540 #ifdef SMP
541 	if (ntd->td_mpcount && mpheld == 0) {
542 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
543 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
544 	}
545 	if (ntd->td_mpcount) {
546 	    td->td_mpcount -= ntd->td_mpcount;
547 	    KKASSERT(td->td_mpcount >= 0);
548 	}
549 #endif
550 	ntd->td_flags |= TDF_PREEMPT_DONE;
551 
552 	/*
553 	 * XXX.  The interrupt may have woken a thread up, we need to properly
554 	 * set the reschedule flag if the originally interrupted thread is at
555 	 * a lower priority.
556 	 */
557 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
558 	    need_lwkt_resched();
559 	/* YYY release mp lock on switchback if original doesn't need it */
560     } else {
561 	/*
562 	 * Priority queue / round-robin at each priority.  Note that user
563 	 * processes run at a fixed, low priority and the user process
564 	 * scheduler deals with interactions between user processes
565 	 * by scheduling and descheduling them from the LWKT queue as
566 	 * necessary.
567 	 *
568 	 * We have to adjust the MP lock for the target thread.  If we
569 	 * need the MP lock and cannot obtain it we try to locate a
570 	 * thread that does not need the MP lock.  If we cannot, we spin
571 	 * instead of HLT.
572 	 *
573 	 * A similar issue exists for the tokens held by the target thread.
574 	 * If we cannot obtain ownership of the tokens we cannot immediately
575 	 * schedule the thread.
576 	 */
577 
578 	/*
579 	 * We are switching threads.  If there are any pending requests for
580 	 * tokens we can satisfy all of them here.
581 	 */
582 #ifdef SMP
583 	if (gd->gd_tokreqbase)
584 		lwkt_drain_token_requests();
585 #endif
586 
587 	/*
588 	 * If an LWKT reschedule was requested, well that is what we are
589 	 * doing now so clear it.
590 	 */
591 	clear_lwkt_resched();
592 again:
593 	if (gd->gd_runqmask) {
594 	    int nq = bsrl(gd->gd_runqmask);
595 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
596 		gd->gd_runqmask &= ~(1 << nq);
597 		goto again;
598 	    }
599 #ifdef SMP
600 	    /*
601 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
602 	     *
603 	     * If the target needs the MP lock and we couldn't get it,
604 	     * or if the target is holding tokens and we could not
605 	     * gain ownership of the tokens, continue looking for a
606 	     * thread to schedule and spin instead of HLT if we can't.
607 	     *
608 	     * NOTE: the mpheld variable invalid after this conditional, it
609 	     * can change due to both cpu_try_mplock() returning success
610 	     * AND interactions in lwkt_chktokens() due to the fact that
611 	     * we are trying to check the mpcount of a thread other then
612 	     * the current thread.  Because of this, if the current thread
613 	     * is not holding td_mpcount, an IPI indirectly run via
614 	     * lwkt_chktokens() can obtain and release the MP lock and
615 	     * cause the core MP lock to be released.
616 	     */
617 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
618 		(ntd->td_toks && lwkt_chktokens(ntd) == 0)
619 	    ) {
620 		u_int32_t rqmask = gd->gd_runqmask;
621 
622 		mpheld = MP_LOCK_HELD();
623 		ntd = NULL;
624 		while (rqmask) {
625 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
626 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
627 			    /* spinning due to MP lock being held */
628 #ifdef	INVARIANTS
629 			    ++mplock_contention_count;
630 #endif
631 			    /* mplock still not held, 'mpheld' still valid */
632 			    continue;
633 			}
634 
635 			/*
636 			 * mpheld state invalid after chktokens call returns
637 			 * failure, but the variable is only needed for
638 			 * the loop.
639 			 */
640 			if (ntd->td_toks && !lwkt_chktokens(ntd)) {
641 			    /* spinning due to token contention */
642 #ifdef	INVARIANTS
643 			    ++token_contention_count;
644 #endif
645 			    mpheld = MP_LOCK_HELD();
646 			    continue;
647 			}
648 			break;
649 		    }
650 		    if (ntd)
651 			break;
652 		    rqmask &= ~(1 << nq);
653 		    nq = bsrl(rqmask);
654 		}
655 		if (ntd == NULL) {
656 		    ntd = &gd->gd_idlethread;
657 		    ntd->td_flags |= TDF_IDLE_NOHLT;
658 		    goto using_idle_thread;
659 		} else {
660 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
661 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
662 		}
663 	    } else {
664 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
665 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
666 	    }
667 #else
668 	    /*
669 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
670 	     * worry about tokens or the BGL.
671 	     */
672 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
673 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
674 #endif
675 	} else {
676 	    /*
677 	     * We have nothing to run but only let the idle loop halt
678 	     * the cpu if there are no pending interrupts.
679 	     */
680 	    ntd = &gd->gd_idlethread;
681 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
682 		ntd->td_flags |= TDF_IDLE_NOHLT;
683 #ifdef SMP
684 using_idle_thread:
685 	    /*
686 	     * The idle thread should not be holding the MP lock unless we
687 	     * are trapping in the kernel or in a panic.  Since we select the
688 	     * idle thread unconditionally when no other thread is available,
689 	     * if the MP lock is desired during a panic or kernel trap, we
690 	     * have to loop in the scheduler until we get it.
691 	     */
692 	    if (ntd->td_mpcount) {
693 		mpheld = MP_LOCK_HELD();
694 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
695 		    panic("Idle thread %p was holding the BGL!", ntd);
696 		else if (mpheld == 0)
697 		    goto again;
698 	    }
699 #endif
700 	}
701     }
702     KASSERT(ntd->td_pri >= TDPRI_CRIT,
703 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
704 
705     /*
706      * Do the actual switch.  If the new target does not need the MP lock
707      * and we are holding it, release the MP lock.  If the new target requires
708      * the MP lock we have already acquired it for the target.
709      */
710 #ifdef SMP
711     if (ntd->td_mpcount == 0 ) {
712 	if (MP_LOCK_HELD())
713 	    cpu_rel_mplock();
714     } else {
715 	ASSERT_MP_LOCK_HELD(ntd);
716     }
717 #endif
718     if (td != ntd) {
719 	++switch_count;
720 	td->td_switch(ntd);
721     }
722     /* NOTE: current cpu may have changed after switch */
723     crit_exit_quick(td);
724 }
725 
726 /*
727  * Request that the target thread preempt the current thread.  Preemption
728  * only works under a specific set of conditions:
729  *
730  *	- We are not preempting ourselves
731  *	- The target thread is owned by the current cpu
732  *	- We are not currently being preempted
733  *	- The target is not currently being preempted
734  *	- We are able to satisfy the target's MP lock requirements (if any).
735  *
736  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
737  * this is called via lwkt_schedule() through the td_preemptable callback.
738  * critpri is the managed critical priority that we should ignore in order
739  * to determine whether preemption is possible (aka usually just the crit
740  * priority of lwkt_schedule() itself).
741  *
742  * XXX at the moment we run the target thread in a critical section during
743  * the preemption in order to prevent the target from taking interrupts
744  * that *WE* can't.  Preemption is strictly limited to interrupt threads
745  * and interrupt-like threads, outside of a critical section, and the
746  * preempted source thread will be resumed the instant the target blocks
747  * whether or not the source is scheduled (i.e. preemption is supposed to
748  * be as transparent as possible).
749  *
750  * The target thread inherits our MP count (added to its own) for the
751  * duration of the preemption in order to preserve the atomicy of the
752  * MP lock during the preemption.  Therefore, any preempting targets must be
753  * careful in regards to MP assertions.  Note that the MP count may be
754  * out of sync with the physical mp_lock, but we do not have to preserve
755  * the original ownership of the lock if it was out of synch (that is, we
756  * can leave it synchronized on return).
757  */
758 void
759 lwkt_preempt(thread_t ntd, int critpri)
760 {
761     struct globaldata *gd = mycpu;
762     thread_t td;
763 #ifdef SMP
764     int mpheld;
765     int savecnt;
766 #endif
767 
768     /*
769      * The caller has put us in a critical section.  We can only preempt
770      * if the caller of the caller was not in a critical section (basically
771      * a local interrupt), as determined by the 'critpri' parameter.
772      *
773      * YYY The target thread must be in a critical section (else it must
774      * inherit our critical section?  I dunno yet).
775      *
776      * Any tokens held by the target may not be held by thread(s) being
777      * preempted.  We take the easy way out and do not preempt if
778      * the target is holding tokens.
779      *
780      * Set need_lwkt_resched() unconditionally for now YYY.
781      */
782     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
783 
784     td = gd->gd_curthread;
785     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
786 	++preempt_miss;
787 	return;
788     }
789     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
790 	++preempt_miss;
791 	need_lwkt_resched();
792 	return;
793     }
794 #ifdef SMP
795     if (ntd->td_gd != gd) {
796 	++preempt_miss;
797 	need_lwkt_resched();
798 	return;
799     }
800 #endif
801     /*
802      * Take the easy way out and do not preempt if the target is holding
803      * one or more tokens.  We could test whether the thread(s) being
804      * preempted interlock against the target thread's tokens and whether
805      * we can get all the target thread's tokens, but this situation
806      * should not occur very often so its easier to simply not preempt.
807      */
808     if (ntd->td_toks != NULL) {
809 	++preempt_miss;
810 	need_lwkt_resched();
811 	return;
812     }
813     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
814 	++preempt_weird;
815 	need_lwkt_resched();
816 	return;
817     }
818     if (ntd->td_preempted) {
819 	++preempt_hit;
820 	need_lwkt_resched();
821 	return;
822     }
823 #ifdef SMP
824     /*
825      * note: an interrupt might have occured just as we were transitioning
826      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
827      * (non-zero) but not actually synchronized with the actual state of the
828      * lock.  We can use it to imply an MP lock requirement for the
829      * preemption but we cannot use it to test whether we hold the MP lock
830      * or not.
831      */
832     savecnt = td->td_mpcount;
833     mpheld = MP_LOCK_HELD();
834     ntd->td_mpcount += td->td_mpcount;
835     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
836 	ntd->td_mpcount -= td->td_mpcount;
837 	++preempt_miss;
838 	need_lwkt_resched();
839 	return;
840     }
841 #endif
842 
843     /*
844      * Since we are able to preempt the current thread, there is no need to
845      * call need_lwkt_resched().
846      */
847     ++preempt_hit;
848     ntd->td_preempted = td;
849     td->td_flags |= TDF_PREEMPT_LOCK;
850     td->td_switch(ntd);
851     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
852 #ifdef SMP
853     KKASSERT(savecnt == td->td_mpcount);
854     mpheld = MP_LOCK_HELD();
855     if (mpheld && td->td_mpcount == 0)
856 	cpu_rel_mplock();
857     else if (mpheld == 0 && td->td_mpcount)
858 	panic("lwkt_preempt(): MP lock was not held through");
859 #endif
860     ntd->td_preempted = NULL;
861     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
862 }
863 
864 /*
865  * Yield our thread while higher priority threads are pending.  This is
866  * typically called when we leave a critical section but it can be safely
867  * called while we are in a critical section.
868  *
869  * This function will not generally yield to equal priority threads but it
870  * can occur as a side effect.  Note that lwkt_switch() is called from
871  * inside the critical section to prevent its own crit_exit() from reentering
872  * lwkt_yield_quick().
873  *
874  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
875  * came along but was blocked and made pending.
876  *
877  * (self contained on a per cpu basis)
878  */
879 void
880 lwkt_yield_quick(void)
881 {
882     globaldata_t gd = mycpu;
883     thread_t td = gd->gd_curthread;
884 
885     /*
886      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
887      * it with a non-zero cpl then we might not wind up calling splz after
888      * a task switch when the critical section is exited even though the
889      * new task could accept the interrupt.
890      *
891      * XXX from crit_exit() only called after last crit section is released.
892      * If called directly will run splz() even if in a critical section.
893      *
894      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
895      * except for this special case, we MUST call splz() here to handle any
896      * pending ints, particularly after we switch, or we might accidently
897      * halt the cpu with interrupts pending.
898      */
899     if (gd->gd_reqflags && td->td_nest_count < 2)
900 	splz();
901 
902     /*
903      * YYY enabling will cause wakeup() to task-switch, which really
904      * confused the old 4.x code.  This is a good way to simulate
905      * preemption and MP without actually doing preemption or MP, because a
906      * lot of code assumes that wakeup() does not block.
907      */
908     if (untimely_switch && td->td_nest_count == 0 &&
909 	gd->gd_intr_nesting_level == 0
910     ) {
911 	crit_enter_quick(td);
912 	/*
913 	 * YYY temporary hacks until we disassociate the userland scheduler
914 	 * from the LWKT scheduler.
915 	 */
916 	if (td->td_flags & TDF_RUNQ) {
917 	    lwkt_switch();		/* will not reenter yield function */
918 	} else {
919 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
920 	    lwkt_switch();		/* will not reenter yield function */
921 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
922 	}
923 	crit_exit_noyield(td);
924     }
925 }
926 
927 /*
928  * This implements a normal yield which, unlike _quick, will yield to equal
929  * priority threads as well.  Note that gd_reqflags tests will be handled by
930  * the crit_exit() call in lwkt_switch().
931  *
932  * (self contained on a per cpu basis)
933  */
934 void
935 lwkt_yield(void)
936 {
937     lwkt_schedule_self(curthread);
938     lwkt_switch();
939 }
940 
941 /*
942  * Generic schedule.  Possibly schedule threads belonging to other cpus and
943  * deal with threads that might be blocked on a wait queue.
944  *
945  * We have a little helper inline function which does additional work after
946  * the thread has been enqueued, including dealing with preemption and
947  * setting need_lwkt_resched() (which prevents the kernel from returning
948  * to userland until it has processed higher priority threads).
949  */
950 static __inline
951 void
952 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
953 {
954     if (ntd->td_preemptable) {
955 	ntd->td_preemptable(ntd, cpri);	/* YYY +token */
956     } else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
957 	(ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
958     ) {
959 	need_lwkt_resched();
960     }
961 }
962 
963 void
964 lwkt_schedule(thread_t td)
965 {
966     globaldata_t mygd = mycpu;
967 
968 #ifdef	INVARIANTS
969     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
970     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc
971 	&& td->td_proc->p_stat == SSLEEP
972     ) {
973 	printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
974 	    curthread,
975 	    curthread->td_proc ? curthread->td_proc->p_pid : -1,
976 	    curthread->td_proc ? curthread->td_proc->p_stat : -1,
977 	    td,
978 	    td->td_proc ? td->td_proc->p_pid : -1,
979 	    td->td_proc ? td->td_proc->p_stat : -1
980 	);
981 	panic("SCHED PANIC");
982     }
983 #endif
984     crit_enter_gd(mygd);
985     if (td == mygd->gd_curthread) {
986 	_lwkt_enqueue(td);
987     } else {
988 	lwkt_wait_t w;
989 
990 	/*
991 	 * If the thread is on a wait list we have to send our scheduling
992 	 * request to the owner of the wait structure.  Otherwise we send
993 	 * the scheduling request to the cpu owning the thread.  Races
994 	 * are ok, the target will forward the message as necessary (the
995 	 * message may chase the thread around before it finally gets
996 	 * acted upon).
997 	 *
998 	 * (remember, wait structures use stable storage)
999 	 *
1000 	 * NOTE: we have to account for the number of critical sections
1001 	 * under our control when calling _lwkt_schedule_post() so it
1002 	 * can figure out whether preemption is allowed.
1003 	 *
1004 	 * NOTE: The wait structure algorithms are a mess and need to be
1005 	 * rewritten.
1006 	 *
1007 	 * NOTE: We cannot safely acquire or release a token, even
1008 	 * non-blocking, because this routine may be called in the context
1009 	 * of a thread already holding the token and thus not provide any
1010 	 * interlock protection.  We cannot safely manipulate the td_toks
1011 	 * list for the same reason.  Instead we depend on our critical
1012 	 * section if the token is owned by our cpu.
1013 	 */
1014 	if ((w = td->td_wait) != NULL) {
1015 	    if (w->wa_token.t_cpu == mygd) {
1016 		TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1017 		--w->wa_count;
1018 		td->td_wait = NULL;
1019 #ifdef SMP
1020 		if (td->td_gd == mygd) {
1021 		    _lwkt_enqueue(td);
1022 		    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1023 		} else {
1024 		    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
1025 		}
1026 #else
1027 		_lwkt_enqueue(td);
1028 		_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1029 #endif
1030 	    } else {
1031 		lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td);
1032 	    }
1033 	} else {
1034 	    /*
1035 	     * If the wait structure is NULL and we own the thread, there
1036 	     * is no race (since we are in a critical section).  If we
1037 	     * do not own the thread there might be a race but the
1038 	     * target cpu will deal with it.
1039 	     */
1040 #ifdef SMP
1041 	    if (td->td_gd == mygd) {
1042 		_lwkt_enqueue(td);
1043 		_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1044 	    } else {
1045 		lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
1046 	    }
1047 #else
1048 	    _lwkt_enqueue(td);
1049 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1050 #endif
1051 	}
1052     }
1053     crit_exit_gd(mygd);
1054 }
1055 
1056 /*
1057  * Managed acquisition.  This code assumes that the MP lock is held for
1058  * the tdallq operation and that the thread has been descheduled from its
1059  * original cpu.  We also have to wait for the thread to be entirely switched
1060  * out on its original cpu (this is usually fast enough that we never loop)
1061  * since the LWKT system does not have to hold the MP lock while switching
1062  * and the target may have released it before switching.
1063  */
1064 void
1065 lwkt_acquire(thread_t td)
1066 {
1067     globaldata_t gd;
1068     globaldata_t mygd;
1069 
1070     gd = td->td_gd;
1071     mygd = mycpu;
1072     cpu_lfence();
1073     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1074     while (td->td_flags & TDF_RUNNING)	/* XXX spin */
1075 	cpu_lfence();
1076     if (gd != mygd) {
1077 	crit_enter_gd(mygd);
1078 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);	/* protected by BGL */
1079 	td->td_gd = mygd;
1080 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); /* protected by BGL */
1081 	crit_exit_gd(mygd);
1082     }
1083 }
1084 
1085 /*
1086  * Generic deschedule.  Descheduling threads other then your own should be
1087  * done only in carefully controlled circumstances.  Descheduling is
1088  * asynchronous.
1089  *
1090  * This function may block if the cpu has run out of messages.
1091  */
1092 void
1093 lwkt_deschedule(thread_t td)
1094 {
1095     crit_enter();
1096     if (td == curthread) {
1097 	_lwkt_dequeue(td);
1098     } else {
1099 	if (td->td_gd == mycpu) {
1100 	    _lwkt_dequeue(td);
1101 	} else {
1102 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_deschedule, td);
1103 	}
1104     }
1105     crit_exit();
1106 }
1107 
1108 /*
1109  * Set the target thread's priority.  This routine does not automatically
1110  * switch to a higher priority thread, LWKT threads are not designed for
1111  * continuous priority changes.  Yield if you want to switch.
1112  *
1113  * We have to retain the critical section count which uses the high bits
1114  * of the td_pri field.  The specified priority may also indicate zero or
1115  * more critical sections by adding TDPRI_CRIT*N.
1116  *
1117  * Note that we requeue the thread whether it winds up on a different runq
1118  * or not.  uio_yield() depends on this and the routine is not normally
1119  * called with the same priority otherwise.
1120  */
1121 void
1122 lwkt_setpri(thread_t td, int pri)
1123 {
1124     KKASSERT(pri >= 0);
1125     KKASSERT(td->td_gd == mycpu);
1126     crit_enter();
1127     if (td->td_flags & TDF_RUNQ) {
1128 	_lwkt_dequeue(td);
1129 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1130 	_lwkt_enqueue(td);
1131     } else {
1132 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1133     }
1134     crit_exit();
1135 }
1136 
1137 void
1138 lwkt_setpri_self(int pri)
1139 {
1140     thread_t td = curthread;
1141 
1142     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1143     crit_enter();
1144     if (td->td_flags & TDF_RUNQ) {
1145 	_lwkt_dequeue(td);
1146 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1147 	_lwkt_enqueue(td);
1148     } else {
1149 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1150     }
1151     crit_exit();
1152 }
1153 
1154 /*
1155  * Determine if there is a runnable thread at a higher priority then
1156  * the current thread.  lwkt_setpri() does not check this automatically.
1157  * Return 1 if there is, 0 if there isn't.
1158  *
1159  * Example: if bit 31 of runqmask is set and the current thread is priority
1160  * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1161  *
1162  * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1163  * up comparing against 0xffffffff, a comparison that will always be false.
1164  */
1165 int
1166 lwkt_checkpri_self(void)
1167 {
1168     globaldata_t gd = mycpu;
1169     thread_t td = gd->gd_curthread;
1170     int nq = td->td_pri & TDPRI_MASK;
1171 
1172     while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1173 	if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1174 	    return(1);
1175 	++nq;
1176     }
1177     return(0);
1178 }
1179 
1180 /*
1181  * Migrate the current thread to the specified cpu.  The BGL must be held
1182  * (for the gd_tdallq manipulation XXX).  This is accomplished by
1183  * descheduling ourselves from the current cpu, moving our thread to the
1184  * tdallq of the target cpu, IPI messaging the target cpu, and switching out.
1185  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1186  */
1187 #ifdef SMP
1188 static void lwkt_setcpu_remote(void *arg);
1189 #endif
1190 
1191 void
1192 lwkt_setcpu_self(globaldata_t rgd)
1193 {
1194 #ifdef SMP
1195     thread_t td = curthread;
1196 
1197     if (td->td_gd != rgd) {
1198 	crit_enter_quick(td);
1199 	td->td_flags |= TDF_MIGRATING;
1200 	lwkt_deschedule_self(td);
1201 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); /* protected by BGL */
1202 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); /* protected by BGL */
1203 	lwkt_send_ipiq(rgd, (ipifunc_t)lwkt_setcpu_remote, td);
1204 	lwkt_switch();
1205 	/* we are now on the target cpu */
1206 	crit_exit_quick(td);
1207     }
1208 #endif
1209 }
1210 
1211 /*
1212  * Remote IPI for cpu migration (called while in a critical section so we
1213  * do not have to enter another one).  The thread has already been moved to
1214  * our cpu's allq, but we must wait for the thread to be completely switched
1215  * out on the originating cpu before we schedule it on ours or the stack
1216  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1217  * change to main memory.
1218  *
1219  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1220  * against wakeups.  It is best if this interface is used only when there
1221  * are no pending events that might try to schedule the thread.
1222  */
1223 #ifdef SMP
1224 static void
1225 lwkt_setcpu_remote(void *arg)
1226 {
1227     thread_t td = arg;
1228     globaldata_t gd = mycpu;
1229 
1230     while (td->td_flags & TDF_RUNNING)
1231 	cpu_lfence();
1232     td->td_gd = gd;
1233     cpu_sfence();
1234     td->td_flags &= ~TDF_MIGRATING;
1235     _lwkt_enqueue(td);
1236 }
1237 #endif
1238 
1239 struct proc *
1240 lwkt_preempted_proc(void)
1241 {
1242     thread_t td = curthread;
1243     while (td->td_preempted)
1244 	td = td->td_preempted;
1245     return(td->td_proc);
1246 }
1247 
1248 /*
1249  * Block on the specified wait queue until signaled.  A generation number
1250  * must be supplied to interlock the wait queue.  The function will
1251  * return immediately if the generation number does not match the wait
1252  * structure's generation number.
1253  */
1254 void
1255 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
1256 {
1257     thread_t td = curthread;
1258     lwkt_tokref ilock;
1259 
1260     lwkt_gettoken(&ilock, &w->wa_token);
1261     crit_enter();
1262     if (w->wa_gen == *gen) {
1263 	_lwkt_dequeue(td);
1264 	TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
1265 	++w->wa_count;
1266 	td->td_wait = w;
1267 	td->td_wmesg = wmesg;
1268     again:
1269 	lwkt_switch();
1270 	if (td->td_wmesg != NULL) {
1271 	    _lwkt_dequeue(td);
1272 	    goto again;
1273 	}
1274     }
1275     crit_exit();
1276     *gen = w->wa_gen;
1277     lwkt_reltoken(&ilock);
1278 }
1279 
1280 /*
1281  * Signal a wait queue.  We gain ownership of the wait queue in order to
1282  * signal it.  Once a thread is removed from the wait queue we have to
1283  * deal with the cpu owning the thread.
1284  *
1285  * Note: alternatively we could message the target cpu owning the wait
1286  * queue.  YYY implement as sysctl.
1287  */
1288 void
1289 lwkt_signal(lwkt_wait_t w, int count)
1290 {
1291     thread_t td;
1292     lwkt_tokref ilock;
1293 
1294     lwkt_gettoken(&ilock, &w->wa_token);
1295     ++w->wa_gen;
1296     crit_enter();
1297     if (count < 0)
1298 	count = w->wa_count;
1299     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1300 	--count;
1301 	--w->wa_count;
1302 	TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1303 	td->td_wait = NULL;
1304 	td->td_wmesg = NULL;
1305 	if (td->td_gd == mycpu) {
1306 	    _lwkt_enqueue(td);
1307 	} else {
1308 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
1309 	}
1310     }
1311     crit_exit();
1312     lwkt_reltoken(&ilock);
1313 }
1314 
1315 /*
1316  * Create a kernel process/thread/whatever.  It shares it's address space
1317  * with proc0 - ie: kernel only.
1318  *
1319  * NOTE!  By default new threads are created with the MP lock held.  A
1320  * thread which does not require the MP lock should release it by calling
1321  * rel_mplock() at the start of the new thread.
1322  */
1323 int
1324 lwkt_create(void (*func)(void *), void *arg,
1325     struct thread **tdp, thread_t template, int tdflags, int cpu,
1326     const char *fmt, ...)
1327 {
1328     thread_t td;
1329     __va_list ap;
1330 
1331     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu);
1332     if (tdp)
1333 	*tdp = td;
1334     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1335     td->td_flags |= TDF_VERBOSE | tdflags;
1336 #ifdef SMP
1337     td->td_mpcount = 1;
1338 #endif
1339 
1340     /*
1341      * Set up arg0 for 'ps' etc
1342      */
1343     __va_start(ap, fmt);
1344     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1345     __va_end(ap);
1346 
1347     /*
1348      * Schedule the thread to run
1349      */
1350     if ((td->td_flags & TDF_STOPREQ) == 0)
1351 	lwkt_schedule(td);
1352     else
1353 	td->td_flags &= ~TDF_STOPREQ;
1354     return 0;
1355 }
1356 
1357 /*
1358  * kthread_* is specific to the kernel and is not needed by userland.
1359  */
1360 #ifdef _KERNEL
1361 
1362 /*
1363  * Destroy an LWKT thread.   Warning!  This function is not called when
1364  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1365  * uses a different reaping mechanism.
1366  */
1367 void
1368 lwkt_exit(void)
1369 {
1370     thread_t td = curthread;
1371     globaldata_t gd;
1372 
1373     if (td->td_flags & TDF_VERBOSE)
1374 	printf("kthread %p %s has exited\n", td, td->td_comm);
1375     caps_exit(td);
1376     crit_enter_quick(td);
1377     lwkt_deschedule_self(td);
1378     gd = mycpu;
1379     KKASSERT(gd == td->td_gd);
1380     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1381     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1382 	++gd->gd_tdfreecount;
1383 	TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1384     }
1385     cpu_thread_exit();
1386 }
1387 
1388 #endif /* _KERNEL */
1389 
1390 void
1391 crit_panic(void)
1392 {
1393     thread_t td = curthread;
1394     int lpri = td->td_pri;
1395 
1396     td->td_pri = 0;
1397     panic("td_pri is/would-go negative! %p %d", td, lpri);
1398 }
1399 
1400 #ifdef SMP
1401 
1402 /*
1403  * Called from debugger/panic on cpus which have been stopped.  We must still
1404  * process the IPIQ while stopped, even if we were stopped while in a critical
1405  * section (XXX).
1406  *
1407  * If we are dumping also try to process any pending interrupts.  This may
1408  * or may not work depending on the state of the cpu at the point it was
1409  * stopped.
1410  */
1411 void
1412 lwkt_smp_stopped(void)
1413 {
1414     globaldata_t gd = mycpu;
1415 
1416     crit_enter_gd(gd);
1417     if (dumping) {
1418 	lwkt_process_ipiq();
1419 	splz();
1420     } else {
1421 	lwkt_process_ipiq();
1422     }
1423     crit_exit_gd(gd);
1424 }
1425 
1426 #endif
1427