xref: /dragonfly/sys/kern/lwkt_thread.c (revision 4362c066)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 
59 #include <sys/dsched.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_pager.h>
68 #include <vm/vm_extern.h>
69 
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
72 #include <machine/clock.h>
73 
74 #ifdef _KERNEL_VIRTUAL
75 #include <pthread.h>
76 #endif
77 
78 #define LOOPMASK
79 
80 #if !defined(KTR_CTXSW)
81 #define KTR_CTXSW KTR_ALL
82 #endif
83 KTR_INFO_MASTER(ctxsw);
84 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
85 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
86 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
87 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
88 
89 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
90 
91 #ifdef	INVARIANTS
92 static int panic_on_cscount = 0;
93 #endif
94 static int64_t switch_count = 0;
95 static int64_t preempt_hit = 0;
96 static int64_t preempt_miss = 0;
97 static int64_t preempt_weird = 0;
98 static int lwkt_use_spin_port;
99 static struct objcache *thread_cache;
100 int cpu_mwait_spin = 0;
101 
102 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
103 static void lwkt_setcpu_remote(void *arg);
104 
105 /*
106  * We can make all thread ports use the spin backend instead of the thread
107  * backend.  This should only be set to debug the spin backend.
108  */
109 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
110 
111 #ifdef	INVARIANTS
112 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
113     "Panic if attempting to switch lwkt's while mastering cpusync");
114 #endif
115 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
116     "Number of switched threads");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
118     "Successful preemption events");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
120     "Failed preemption events");
121 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
122     "Number of preempted threads.");
123 static int fairq_enable = 0;
124 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
125 	&fairq_enable, 0, "Turn on fairq priority accumulators");
126 static int fairq_bypass = -1;
127 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
128 	&fairq_bypass, 0, "Allow fairq to bypass td on token failure");
129 extern int lwkt_sched_debug;
130 int lwkt_sched_debug = 0;
131 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
132 	&lwkt_sched_debug, 0, "Scheduler debug");
133 static u_int lwkt_spin_loops = 10;
134 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
135 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
136 static int preempt_enable = 1;
137 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
138 	&preempt_enable, 0, "Enable preemption");
139 static int lwkt_cache_threads = 0;
140 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
141 	&lwkt_cache_threads, 0, "thread+kstack cache");
142 
143 /*
144  * These helper procedures handle the runq, they can only be called from
145  * within a critical section.
146  *
147  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
148  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
149  * instead of 'mycpu' when referencing the globaldata structure.   Once
150  * SMP live enqueuing and dequeueing only occurs on the current cpu.
151  */
152 static __inline
153 void
154 _lwkt_dequeue(thread_t td)
155 {
156     if (td->td_flags & TDF_RUNQ) {
157 	struct globaldata *gd = td->td_gd;
158 
159 	td->td_flags &= ~TDF_RUNQ;
160 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
161 	--gd->gd_tdrunqcount;
162 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
163 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
164     }
165 }
166 
167 /*
168  * Priority enqueue.
169  *
170  * There are a limited number of lwkt threads runnable since user
171  * processes only schedule one at a time per cpu.  However, there can
172  * be many user processes in kernel mode exiting from a tsleep() which
173  * become runnable.
174  *
175  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
176  *	 will ignore user priority.  This is to ensure that user threads in
177  *	 kernel mode get cpu at some point regardless of what the user
178  *	 scheduler thinks.
179  */
180 static __inline
181 void
182 _lwkt_enqueue(thread_t td)
183 {
184     thread_t xtd;
185 
186     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
187 	struct globaldata *gd = td->td_gd;
188 
189 	td->td_flags |= TDF_RUNQ;
190 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
191 	if (xtd == NULL) {
192 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
193 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
194 	} else {
195 	    /*
196 	     * NOTE: td_upri - higher numbers more desireable, same sense
197 	     *	     as td_pri (typically reversed from lwp_upri).
198 	     *
199 	     *	     In the equal priority case we want the best selection
200 	     *	     at the beginning so the less desireable selections know
201 	     *	     that they have to setrunqueue/go-to-another-cpu, even
202 	     *	     though it means switching back to the 'best' selection.
203 	     *	     This also avoids degenerate situations when many threads
204 	     *	     are runnable or waking up at the same time.
205 	     *
206 	     *	     If upri matches exactly place at end/round-robin.
207 	     */
208 	    while (xtd &&
209 		   (xtd->td_pri >= td->td_pri ||
210 		    (xtd->td_pri == td->td_pri &&
211 		     xtd->td_upri >= td->td_upri))) {
212 		xtd = TAILQ_NEXT(xtd, td_threadq);
213 	    }
214 	    if (xtd)
215 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
216 	    else
217 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
218 	}
219 	++gd->gd_tdrunqcount;
220 
221 	/*
222 	 * Request a LWKT reschedule if we are now at the head of the queue.
223 	 */
224 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
225 	    need_lwkt_resched();
226     }
227 }
228 
229 static boolean_t
230 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
231 {
232 	struct thread *td = (struct thread *)obj;
233 
234 	td->td_kstack = NULL;
235 	td->td_kstack_size = 0;
236 	td->td_flags = TDF_ALLOCATED_THREAD;
237 	td->td_mpflags = 0;
238 	return (1);
239 }
240 
241 static void
242 _lwkt_thread_dtor(void *obj, void *privdata)
243 {
244 	struct thread *td = (struct thread *)obj;
245 
246 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
247 	    ("_lwkt_thread_dtor: not allocated from objcache"));
248 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
249 		td->td_kstack_size > 0,
250 	    ("_lwkt_thread_dtor: corrupted stack"));
251 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
252 	td->td_kstack = NULL;
253 	td->td_flags = 0;
254 }
255 
256 /*
257  * Initialize the lwkt s/system.
258  *
259  * Nominally cache up to 32 thread + kstack structures.  Cache more on
260  * systems with a lot of cpu cores.
261  */
262 static void
263 lwkt_init(void)
264 {
265     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
266     if (lwkt_cache_threads == 0) {
267 	lwkt_cache_threads = ncpus * 4;
268 	if (lwkt_cache_threads < 32)
269 	    lwkt_cache_threads = 32;
270     }
271     thread_cache = objcache_create_mbacked(
272 				M_THREAD, sizeof(struct thread),
273 				0, lwkt_cache_threads,
274 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
275 }
276 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
277 
278 /*
279  * Schedule a thread to run.  As the current thread we can always safely
280  * schedule ourselves, and a shortcut procedure is provided for that
281  * function.
282  *
283  * (non-blocking, self contained on a per cpu basis)
284  */
285 void
286 lwkt_schedule_self(thread_t td)
287 {
288     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
289     crit_enter_quick(td);
290     KASSERT(td != &td->td_gd->gd_idlethread,
291 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
292     KKASSERT(td->td_lwp == NULL ||
293 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
294     _lwkt_enqueue(td);
295     crit_exit_quick(td);
296 }
297 
298 /*
299  * Deschedule a thread.
300  *
301  * (non-blocking, self contained on a per cpu basis)
302  */
303 void
304 lwkt_deschedule_self(thread_t td)
305 {
306     crit_enter_quick(td);
307     _lwkt_dequeue(td);
308     crit_exit_quick(td);
309 }
310 
311 /*
312  * LWKTs operate on a per-cpu basis
313  *
314  * WARNING!  Called from early boot, 'mycpu' may not work yet.
315  */
316 void
317 lwkt_gdinit(struct globaldata *gd)
318 {
319     TAILQ_INIT(&gd->gd_tdrunq);
320     TAILQ_INIT(&gd->gd_tdallq);
321 }
322 
323 /*
324  * Create a new thread.  The thread must be associated with a process context
325  * or LWKT start address before it can be scheduled.  If the target cpu is
326  * -1 the thread will be created on the current cpu.
327  *
328  * If you intend to create a thread without a process context this function
329  * does everything except load the startup and switcher function.
330  */
331 thread_t
332 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
333 {
334     static int cpu_rotator;
335     globaldata_t gd = mycpu;
336     void *stack;
337 
338     /*
339      * If static thread storage is not supplied allocate a thread.  Reuse
340      * a cached free thread if possible.  gd_freetd is used to keep an exiting
341      * thread intact through the exit.
342      */
343     if (td == NULL) {
344 	crit_enter_gd(gd);
345 	if ((td = gd->gd_freetd) != NULL) {
346 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
347 				      TDF_RUNQ)) == 0);
348 	    gd->gd_freetd = NULL;
349 	} else {
350 	    td = objcache_get(thread_cache, M_WAITOK);
351 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
352 				      TDF_RUNQ)) == 0);
353 	}
354 	crit_exit_gd(gd);
355     	KASSERT((td->td_flags &
356 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
357 		 TDF_ALLOCATED_THREAD,
358 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
359     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
360     }
361 
362     /*
363      * Try to reuse cached stack.
364      */
365     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
366 	if (flags & TDF_ALLOCATED_STACK) {
367 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
368 	    stack = NULL;
369 	}
370     }
371     if (stack == NULL) {
372 	if (cpu < 0)
373 		stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 0);
374 	else
375 		stack = (void *)kmem_alloc_stack(&kernel_map, stksize,
376 						 KM_CPU(cpu));
377 	flags |= TDF_ALLOCATED_STACK;
378     }
379     if (cpu < 0) {
380 	cpu = ++cpu_rotator;
381 	cpu_ccfence();
382 	cpu %= ncpus;
383     }
384     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
385     return(td);
386 }
387 
388 /*
389  * Initialize a preexisting thread structure.  This function is used by
390  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
391  *
392  * All threads start out in a critical section at a priority of
393  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
394  * appropriate.  This function may send an IPI message when the
395  * requested cpu is not the current cpu and consequently gd_tdallq may
396  * not be initialized synchronously from the point of view of the originating
397  * cpu.
398  *
399  * NOTE! we have to be careful in regards to creating threads for other cpus
400  * if SMP has not yet been activated.
401  */
402 static void
403 lwkt_init_thread_remote(void *arg)
404 {
405     thread_t td = arg;
406 
407     /*
408      * Protected by critical section held by IPI dispatch
409      */
410     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
411 }
412 
413 /*
414  * lwkt core thread structural initialization.
415  *
416  * NOTE: All threads are initialized as mpsafe threads.
417  */
418 void
419 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
420 		struct globaldata *gd)
421 {
422     globaldata_t mygd = mycpu;
423 
424     bzero(td, sizeof(struct thread));
425     td->td_kstack = stack;
426     td->td_kstack_size = stksize;
427     td->td_flags = flags;
428     td->td_mpflags = 0;
429     td->td_type = TD_TYPE_GENERIC;
430     td->td_gd = gd;
431     td->td_pri = TDPRI_KERN_DAEMON;
432     td->td_critcount = 1;
433     td->td_toks_have = NULL;
434     td->td_toks_stop = &td->td_toks_base;
435     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
436 	lwkt_initport_spin(&td->td_msgport, td,
437 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
438     } else {
439 	lwkt_initport_thread(&td->td_msgport, td);
440     }
441     pmap_init_thread(td);
442     /*
443      * Normally initializing a thread for a remote cpu requires sending an
444      * IPI.  However, the idlethread is setup before the other cpus are
445      * activated so we have to treat it as a special case.  XXX manipulation
446      * of gd_tdallq requires the BGL.
447      */
448     if (gd == mygd || td == &gd->gd_idlethread) {
449 	crit_enter_gd(mygd);
450 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
451 	crit_exit_gd(mygd);
452     } else {
453 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
454     }
455     dsched_enter_thread(td);
456 }
457 
458 void
459 lwkt_set_comm(thread_t td, const char *ctl, ...)
460 {
461     __va_list va;
462 
463     __va_start(va, ctl);
464     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
465     __va_end(va);
466     KTR_LOG(ctxsw_newtd, td, td->td_comm);
467 }
468 
469 /*
470  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
471  * this does not prevent the thread from migrating to another cpu so the
472  * gd_tdallq state is not protected by this.
473  */
474 void
475 lwkt_hold(thread_t td)
476 {
477     atomic_add_int(&td->td_refs, 1);
478 }
479 
480 void
481 lwkt_rele(thread_t td)
482 {
483     KKASSERT(td->td_refs > 0);
484     atomic_add_int(&td->td_refs, -1);
485 }
486 
487 void
488 lwkt_free_thread(thread_t td)
489 {
490     KKASSERT(td->td_refs == 0);
491     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
492 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
493     if (td->td_flags & TDF_ALLOCATED_THREAD) {
494     	objcache_put(thread_cache, td);
495     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
496 	/* client-allocated struct with internally allocated stack */
497 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
498 	    ("lwkt_free_thread: corrupted stack"));
499 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
500 	td->td_kstack = NULL;
501 	td->td_kstack_size = 0;
502     }
503 
504     KTR_LOG(ctxsw_deadtd, td);
505 }
506 
507 
508 /*
509  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
510  * switch to the idlethread.  Switching must occur within a critical
511  * section to avoid races with the scheduling queue.
512  *
513  * We always have full control over our cpu's run queue.  Other cpus
514  * that wish to manipulate our queue must use the cpu_*msg() calls to
515  * talk to our cpu, so a critical section is all that is needed and
516  * the result is very, very fast thread switching.
517  *
518  * The LWKT scheduler uses a fixed priority model and round-robins at
519  * each priority level.  User process scheduling is a totally
520  * different beast and LWKT priorities should not be confused with
521  * user process priorities.
522  *
523  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
524  * is not called by the current thread in the preemption case, only when
525  * the preempting thread blocks (in order to return to the original thread).
526  *
527  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
528  * migration and tsleep deschedule the current lwkt thread and call
529  * lwkt_switch().  In particular, the target cpu of the migration fully
530  * expects the thread to become non-runnable and can deadlock against
531  * cpusync operations if we run any IPIs prior to switching the thread out.
532  *
533  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
534  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
535  */
536 void
537 lwkt_switch(void)
538 {
539     globaldata_t gd = mycpu;
540     thread_t td = gd->gd_curthread;
541     thread_t ntd;
542     int upri;
543 #ifdef LOOPMASK
544     uint64_t tsc_base = rdtsc();
545 #endif
546 
547     KKASSERT(gd->gd_processing_ipiq == 0);
548     KKASSERT(td->td_flags & TDF_RUNNING);
549 
550     /*
551      * Switching from within a 'fast' (non thread switched) interrupt or IPI
552      * is illegal.  However, we may have to do it anyway if we hit a fatal
553      * kernel trap or we have paniced.
554      *
555      * If this case occurs save and restore the interrupt nesting level.
556      */
557     if (gd->gd_intr_nesting_level) {
558 	int savegdnest;
559 	int savegdtrap;
560 
561 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
562 	    panic("lwkt_switch: Attempt to switch from a "
563 		  "fast interrupt, ipi, or hard code section, "
564 		  "td %p\n",
565 		  td);
566 	} else {
567 	    savegdnest = gd->gd_intr_nesting_level;
568 	    savegdtrap = gd->gd_trap_nesting_level;
569 	    gd->gd_intr_nesting_level = 0;
570 	    gd->gd_trap_nesting_level = 0;
571 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
572 		td->td_flags |= TDF_PANICWARN;
573 		kprintf("Warning: thread switch from interrupt, IPI, "
574 			"or hard code section.\n"
575 			"thread %p (%s)\n", td, td->td_comm);
576 		print_backtrace(-1);
577 	    }
578 	    lwkt_switch();
579 	    gd->gd_intr_nesting_level = savegdnest;
580 	    gd->gd_trap_nesting_level = savegdtrap;
581 	    return;
582 	}
583     }
584 
585     /*
586      * Release our current user process designation if we are blocking
587      * or if a user reschedule was requested.
588      *
589      * NOTE: This function is NOT called if we are switching into or
590      *	     returning from a preemption.
591      *
592      * NOTE: Releasing our current user process designation may cause
593      *	     it to be assigned to another thread, which in turn will
594      *	     cause us to block in the usched acquire code when we attempt
595      *	     to return to userland.
596      *
597      * NOTE: On SMP systems this can be very nasty when heavy token
598      *	     contention is present so we want to be careful not to
599      *	     release the designation gratuitously.
600      */
601     if (td->td_release &&
602 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
603 	    td->td_release(td);
604     }
605 
606     /*
607      * Release all tokens.  Once we do this we must remain in the critical
608      * section and cannot run IPIs or other interrupts until we switch away
609      * because they may implode if they try to get a token using our thread
610      * context.
611      */
612     crit_enter_gd(gd);
613     if (TD_TOKS_HELD(td))
614 	    lwkt_relalltokens(td);
615 
616     /*
617      * We had better not be holding any spin locks, but don't get into an
618      * endless panic loop.
619      */
620     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
621 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
622 	     gd->gd_spinlocks));
623 
624 #ifdef	INVARIANTS
625     if (td->td_cscount) {
626 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
627 		td);
628 	if (panic_on_cscount)
629 	    panic("switching while mastering cpusync");
630     }
631 #endif
632 
633     /*
634      * If we had preempted another thread on this cpu, resume the preempted
635      * thread.  This occurs transparently, whether the preempted thread
636      * was scheduled or not (it may have been preempted after descheduling
637      * itself).
638      *
639      * We have to setup the MP lock for the original thread after backing
640      * out the adjustment that was made to curthread when the original
641      * was preempted.
642      */
643     if ((ntd = td->td_preempted) != NULL) {
644 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
645 	ntd->td_flags |= TDF_PREEMPT_DONE;
646 	ntd->td_contended = 0;		/* reset contended */
647 
648 	/*
649 	 * The interrupt may have woken a thread up, we need to properly
650 	 * set the reschedule flag if the originally interrupted thread is
651 	 * at a lower priority.
652 	 *
653 	 * The interrupt may not have descheduled.
654 	 */
655 	if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
656 	    need_lwkt_resched();
657 	goto havethread_preempted;
658     }
659 
660     /*
661      * Figure out switch target.  If we cannot switch to our desired target
662      * look for a thread that we can switch to.
663      *
664      * NOTE! The limited spin loop and related parameters are extremely
665      *	     important for system performance, particularly for pipes and
666      *	     concurrent conflicting VM faults.
667      */
668     clear_lwkt_resched();
669     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
670 
671     if (ntd) {
672 	do {
673 	    if (TD_TOKS_NOT_HELD(ntd) ||
674 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
675 	    {
676 		goto havethread;
677 	    }
678 	    ++gd->gd_cnt.v_lock_colls;
679 	    ++ntd->td_contended;	/* overflow ok */
680 #ifdef LOOPMASK
681 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
682 		    kprintf("lwkt_switch: excessive contended %d "
683 			    "thread %p\n", ntd->td_contended, ntd);
684 		    tsc_base = rdtsc();
685 	    }
686 #endif
687 	} while (ntd->td_contended < (lwkt_spin_loops >> 1));
688 	upri = ntd->td_upri;
689 
690 	/*
691 	 * Bleh, the thread we wanted to switch to has a contended token.
692 	 * See if we can switch to another thread.
693 	 *
694 	 * We generally don't want to do this because it represents a
695 	 * priority inversion.  Do not allow the case if the thread
696 	 * is returning to userland (not a kernel thread) AND the thread
697 	 * has a lower upri.
698 	 */
699 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
700 	    if (ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri)
701 		break;
702 	    upri = ntd->td_upri;
703 
704 	    /*
705 	     * Try this one.
706 	     */
707 	    if (TD_TOKS_NOT_HELD(ntd) ||
708 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
709 		    goto havethread;
710 	    }
711 	    ++ntd->td_contended;	/* overflow ok */
712 	    ++gd->gd_cnt.v_lock_colls;
713 	}
714 
715 	/*
716 	 * Fall through, switch to idle thread to get us out of the current
717 	 * context.  Since we were contended, prevent HLT by flagging a
718 	 * LWKT reschedule.
719 	 */
720 	need_lwkt_resched();
721     }
722 
723     /*
724      * We either contended on ntd or the runq is empty.  We must switch
725      * through the idle thread to get out of the current context.
726      */
727     ntd = &gd->gd_idlethread;
728     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
729 	ASSERT_NO_TOKENS_HELD(ntd);
730     cpu_time.cp_msg[0] = 0;
731     goto haveidle;
732 
733 havethread:
734     /*
735      * Clear gd_idle_repeat when doing a normal switch to a non-idle
736      * thread.
737      */
738     ntd->td_wmesg = NULL;
739     ntd->td_contended = 0;	/* reset once scheduled */
740     ++gd->gd_cnt.v_swtch;
741     gd->gd_idle_repeat = 0;
742 
743 havethread_preempted:
744     /*
745      * If the new target does not need the MP lock and we are holding it,
746      * release the MP lock.  If the new target requires the MP lock we have
747      * already acquired it for the target.
748      */
749     ;
750 haveidle:
751     KASSERT(ntd->td_critcount,
752 	    ("priority problem in lwkt_switch %d %d",
753 	    td->td_critcount, ntd->td_critcount));
754 
755     if (td != ntd) {
756 	/*
757 	 * Execute the actual thread switch operation.  This function
758 	 * returns to the current thread and returns the previous thread
759 	 * (which may be different from the thread we switched to).
760 	 *
761 	 * We are responsible for marking ntd as TDF_RUNNING.
762 	 */
763 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
764 	++switch_count;
765 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
766 	ntd->td_flags |= TDF_RUNNING;
767 	lwkt_switch_return(td->td_switch(ntd));
768 	/* ntd invalid, td_switch() can return a different thread_t */
769     }
770 
771     /*
772      * catch-all.  XXX is this strictly needed?
773      */
774     splz_check();
775 
776     /* NOTE: current cpu may have changed after switch */
777     crit_exit_quick(td);
778 }
779 
780 /*
781  * Called by assembly in the td_switch (thread restore path) for thread
782  * bootstrap cases which do not 'return' to lwkt_switch().
783  */
784 void
785 lwkt_switch_return(thread_t otd)
786 {
787 	globaldata_t rgd;
788 #ifdef LOOPMASK
789 	uint64_t tsc_base = rdtsc();
790 #endif
791 	int exiting;
792 
793 	exiting = otd->td_flags & TDF_EXITING;
794 	cpu_ccfence();
795 
796 	/*
797 	 * Check if otd was migrating.  Now that we are on ntd we can finish
798 	 * up the migration.  This is a bit messy but it is the only place
799 	 * where td is known to be fully descheduled.
800 	 *
801 	 * We can only activate the migration if otd was migrating but not
802 	 * held on the cpu due to a preemption chain.  We still have to
803 	 * clear TDF_RUNNING on the old thread either way.
804 	 *
805 	 * We are responsible for clearing the previously running thread's
806 	 * TDF_RUNNING.
807 	 */
808 	if ((rgd = otd->td_migrate_gd) != NULL &&
809 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
810 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
811 			 (TDF_MIGRATING | TDF_RUNNING));
812 		otd->td_migrate_gd = NULL;
813 		otd->td_flags &= ~TDF_RUNNING;
814 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
815 	} else {
816 		otd->td_flags &= ~TDF_RUNNING;
817 	}
818 
819 	/*
820 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
821 	 * invalid the *instant* we set TDF_MP_EXITSIG.
822 	 *
823 	 * Use the EXITING status loaded from before we clear TDF_RUNNING,
824 	 * because if it is not set otd becomes invalid the instant we clear
825 	 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
826 	 * might 'steal' TDF_EXITING from another switch-return!).
827 	 */
828 	while (exiting) {
829 		u_int mpflags;
830 
831 		mpflags = otd->td_mpflags;
832 		cpu_ccfence();
833 
834 		if (mpflags & TDF_MP_EXITWAIT) {
835 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
836 					      mpflags | TDF_MP_EXITSIG)) {
837 				wakeup(otd);
838 				break;
839 			}
840 		} else {
841 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
842 					      mpflags | TDF_MP_EXITSIG)) {
843 				wakeup(otd);
844 				break;
845 			}
846 		}
847 
848 #ifdef LOOPMASK
849 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
850 			kprintf("lwkt_switch_return: excessive TDF_EXITING "
851 				"thread %p\n", otd);
852 			tsc_base = rdtsc();
853 		}
854 #endif
855 	}
856 }
857 
858 /*
859  * Request that the target thread preempt the current thread.  Preemption
860  * can only occur if our only critical section is the one that we were called
861  * with, the relative priority of the target thread is higher, and the target
862  * thread holds no tokens.  This also only works if we are not holding any
863  * spinlocks (obviously).
864  *
865  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
866  * this is called via lwkt_schedule() through the td_preemptable callback.
867  * critcount is the managed critical priority that we should ignore in order
868  * to determine whether preemption is possible (aka usually just the crit
869  * priority of lwkt_schedule() itself).
870  *
871  * Preemption is typically limited to interrupt threads.
872  *
873  * Operation works in a fairly straight-forward manner.  The normal
874  * scheduling code is bypassed and we switch directly to the target
875  * thread.  When the target thread attempts to block or switch away
876  * code at the base of lwkt_switch() will switch directly back to our
877  * thread.  Our thread is able to retain whatever tokens it holds and
878  * if the target needs one of them the target will switch back to us
879  * and reschedule itself normally.
880  */
881 void
882 lwkt_preempt(thread_t ntd, int critcount)
883 {
884     struct globaldata *gd = mycpu;
885     thread_t xtd;
886     thread_t td;
887     int save_gd_intr_nesting_level;
888 
889     /*
890      * The caller has put us in a critical section.  We can only preempt
891      * if the caller of the caller was not in a critical section (basically
892      * a local interrupt), as determined by the 'critcount' parameter.  We
893      * also can't preempt if the caller is holding any spinlocks (even if
894      * he isn't in a critical section).  This also handles the tokens test.
895      *
896      * YYY The target thread must be in a critical section (else it must
897      * inherit our critical section?  I dunno yet).
898      */
899     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
900 
901     td = gd->gd_curthread;
902     if (preempt_enable == 0) {
903 	++preempt_miss;
904 	return;
905     }
906     if (ntd->td_pri <= td->td_pri) {
907 	++preempt_miss;
908 	return;
909     }
910     if (td->td_critcount > critcount) {
911 	++preempt_miss;
912 	return;
913     }
914     if (td->td_cscount) {
915 	++preempt_miss;
916 	return;
917     }
918     if (ntd->td_gd != gd) {
919 	++preempt_miss;
920 	return;
921     }
922 
923     /*
924      * We don't have to check spinlocks here as they will also bump
925      * td_critcount.
926      *
927      * Do not try to preempt if the target thread is holding any tokens.
928      * We could try to acquire the tokens but this case is so rare there
929      * is no need to support it.
930      */
931     KKASSERT(gd->gd_spinlocks == 0);
932 
933     if (TD_TOKS_HELD(ntd)) {
934 	++preempt_miss;
935 	return;
936     }
937     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
938 	++preempt_weird;
939 	return;
940     }
941     if (ntd->td_preempted) {
942 	++preempt_hit;
943 	return;
944     }
945     KKASSERT(gd->gd_processing_ipiq == 0);
946 
947     /*
948      * Since we are able to preempt the current thread, there is no need to
949      * call need_lwkt_resched().
950      *
951      * We must temporarily clear gd_intr_nesting_level around the switch
952      * since switchouts from the target thread are allowed (they will just
953      * return to our thread), and since the target thread has its own stack.
954      *
955      * A preemption must switch back to the original thread, assert the
956      * case.
957      */
958     ++preempt_hit;
959     ntd->td_preempted = td;
960     td->td_flags |= TDF_PREEMPT_LOCK;
961     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
962     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
963     gd->gd_intr_nesting_level = 0;
964 
965     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
966     ntd->td_flags |= TDF_RUNNING;
967     xtd = td->td_switch(ntd);
968     KKASSERT(xtd == ntd);
969     lwkt_switch_return(xtd);
970     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
971 
972     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
973     ntd->td_preempted = NULL;
974     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
975 }
976 
977 /*
978  * Conditionally call splz() if gd_reqflags indicates work is pending.
979  * This will work inside a critical section but not inside a hard code
980  * section.
981  *
982  * (self contained on a per cpu basis)
983  */
984 void
985 splz_check(void)
986 {
987     globaldata_t gd = mycpu;
988     thread_t td = gd->gd_curthread;
989 
990     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
991 	gd->gd_intr_nesting_level == 0 &&
992 	td->td_nest_count < 2)
993     {
994 	splz();
995     }
996 }
997 
998 /*
999  * This version is integrated into crit_exit, reqflags has already
1000  * been tested but td_critcount has not.
1001  *
1002  * We only want to execute the splz() on the 1->0 transition of
1003  * critcount and not in a hard code section or if too deeply nested.
1004  *
1005  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1006  */
1007 void
1008 lwkt_maybe_splz(thread_t td)
1009 {
1010     globaldata_t gd = td->td_gd;
1011 
1012     if (td->td_critcount == 0 &&
1013 	gd->gd_intr_nesting_level == 0 &&
1014 	td->td_nest_count < 2)
1015     {
1016 	splz();
1017     }
1018 }
1019 
1020 /*
1021  * Drivers which set up processing co-threads can call this function to
1022  * run the co-thread at a higher priority and to allow it to preempt
1023  * normal threads.
1024  */
1025 void
1026 lwkt_set_interrupt_support_thread(void)
1027 {
1028 	thread_t td = curthread;
1029 
1030         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1031 	td->td_flags |= TDF_INTTHREAD;
1032 	td->td_preemptable = lwkt_preempt;
1033 }
1034 
1035 
1036 /*
1037  * This function is used to negotiate a passive release of the current
1038  * process/lwp designation with the user scheduler, allowing the user
1039  * scheduler to schedule another user thread.  The related kernel thread
1040  * (curthread) continues running in the released state.
1041  */
1042 void
1043 lwkt_passive_release(struct thread *td)
1044 {
1045     struct lwp *lp = td->td_lwp;
1046 
1047     td->td_release = NULL;
1048     lwkt_setpri_self(TDPRI_KERN_USER);
1049 
1050     lp->lwp_proc->p_usched->release_curproc(lp);
1051 }
1052 
1053 
1054 /*
1055  * This implements a LWKT yield, allowing a kernel thread to yield to other
1056  * kernel threads at the same or higher priority.  This function can be
1057  * called in a tight loop and will typically only yield once per tick.
1058  *
1059  * Most kernel threads run at the same priority in order to allow equal
1060  * sharing.
1061  *
1062  * (self contained on a per cpu basis)
1063  */
1064 void
1065 lwkt_yield(void)
1066 {
1067     globaldata_t gd = mycpu;
1068     thread_t td = gd->gd_curthread;
1069 
1070     /*
1071      * Should never be called with spinlocks held but there is a path
1072      * via ACPI where it might happen.
1073      */
1074     if (gd->gd_spinlocks)
1075 	return;
1076 
1077     /*
1078      * Safe to call splz if we are not too-heavily nested.
1079      */
1080     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1081 	splz();
1082 
1083     /*
1084      * Caller allows switching
1085      */
1086     if (lwkt_resched_wanted()) {
1087 	lwkt_schedule_self(curthread);
1088 	lwkt_switch();
1089     }
1090 }
1091 
1092 /*
1093  * The quick version processes pending interrupts and higher-priority
1094  * LWKT threads but will not round-robin same-priority LWKT threads.
1095  *
1096  * When called while attempting to return to userland the only same-pri
1097  * threads are the ones which have already tried to become the current
1098  * user process.
1099  */
1100 void
1101 lwkt_yield_quick(void)
1102 {
1103     globaldata_t gd = mycpu;
1104     thread_t td = gd->gd_curthread;
1105 
1106     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1107 	splz();
1108     if (lwkt_resched_wanted()) {
1109 	crit_enter();
1110 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1111 	    clear_lwkt_resched();
1112 	} else {
1113 	    lwkt_schedule_self(curthread);
1114 	    lwkt_switch();
1115 	}
1116 	crit_exit();
1117     }
1118 }
1119 
1120 /*
1121  * This yield is designed for kernel threads with a user context.
1122  *
1123  * The kernel acting on behalf of the user is potentially cpu-bound,
1124  * this function will efficiently allow other threads to run and also
1125  * switch to other processes by releasing.
1126  *
1127  * The lwkt_user_yield() function is designed to have very low overhead
1128  * if no yield is determined to be needed.
1129  */
1130 void
1131 lwkt_user_yield(void)
1132 {
1133     globaldata_t gd = mycpu;
1134     thread_t td = gd->gd_curthread;
1135 
1136     /*
1137      * Should never be called with spinlocks held but there is a path
1138      * via ACPI where it might happen.
1139      */
1140     if (gd->gd_spinlocks)
1141 	return;
1142 
1143     /*
1144      * Always run any pending interrupts in case we are in a critical
1145      * section.
1146      */
1147     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1148 	splz();
1149 
1150     /*
1151      * Switch (which forces a release) if another kernel thread needs
1152      * the cpu, if userland wants us to resched, or if our kernel
1153      * quantum has run out.
1154      */
1155     if (lwkt_resched_wanted() ||
1156 	user_resched_wanted())
1157     {
1158 	lwkt_switch();
1159     }
1160 
1161 #if 0
1162     /*
1163      * Reacquire the current process if we are released.
1164      *
1165      * XXX not implemented atm.  The kernel may be holding locks and such,
1166      *     so we want the thread to continue to receive cpu.
1167      */
1168     if (td->td_release == NULL && lp) {
1169 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1170 	td->td_release = lwkt_passive_release;
1171 	lwkt_setpri_self(TDPRI_USER_NORM);
1172     }
1173 #endif
1174 }
1175 
1176 /*
1177  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1178  * deal with threads that might be blocked on a wait queue.
1179  *
1180  * We have a little helper inline function which does additional work after
1181  * the thread has been enqueued, including dealing with preemption and
1182  * setting need_lwkt_resched() (which prevents the kernel from returning
1183  * to userland until it has processed higher priority threads).
1184  *
1185  * It is possible for this routine to be called after a failed _enqueue
1186  * (due to the target thread migrating, sleeping, or otherwise blocked).
1187  * We have to check that the thread is actually on the run queue!
1188  */
1189 static __inline
1190 void
1191 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1192 {
1193     if (ntd->td_flags & TDF_RUNQ) {
1194 	if (ntd->td_preemptable) {
1195 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1196 	}
1197     }
1198 }
1199 
1200 static __inline
1201 void
1202 _lwkt_schedule(thread_t td)
1203 {
1204     globaldata_t mygd = mycpu;
1205 
1206     KASSERT(td != &td->td_gd->gd_idlethread,
1207 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1208     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1209     crit_enter_gd(mygd);
1210     KKASSERT(td->td_lwp == NULL ||
1211 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1212 
1213     if (td == mygd->gd_curthread) {
1214 	_lwkt_enqueue(td);
1215     } else {
1216 	/*
1217 	 * If we own the thread, there is no race (since we are in a
1218 	 * critical section).  If we do not own the thread there might
1219 	 * be a race but the target cpu will deal with it.
1220 	 */
1221 	if (td->td_gd == mygd) {
1222 	    _lwkt_enqueue(td);
1223 	    _lwkt_schedule_post(mygd, td, 1);
1224 	} else {
1225 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1226 	}
1227     }
1228     crit_exit_gd(mygd);
1229 }
1230 
1231 void
1232 lwkt_schedule(thread_t td)
1233 {
1234     _lwkt_schedule(td);
1235 }
1236 
1237 void
1238 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1239 {
1240     _lwkt_schedule(td);
1241 }
1242 
1243 /*
1244  * When scheduled remotely if frame != NULL the IPIQ is being
1245  * run via doreti or an interrupt then preemption can be allowed.
1246  *
1247  * To allow preemption we have to drop the critical section so only
1248  * one is present in _lwkt_schedule_post.
1249  */
1250 static void
1251 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1252 {
1253     thread_t td = curthread;
1254     thread_t ntd = arg;
1255 
1256     if (frame && ntd->td_preemptable) {
1257 	crit_exit_noyield(td);
1258 	_lwkt_schedule(ntd);
1259 	crit_enter_quick(td);
1260     } else {
1261 	_lwkt_schedule(ntd);
1262     }
1263 }
1264 
1265 /*
1266  * Thread migration using a 'Pull' method.  The thread may or may not be
1267  * the current thread.  It MUST be descheduled and in a stable state.
1268  * lwkt_giveaway() must be called on the cpu owning the thread.
1269  *
1270  * At any point after lwkt_giveaway() is called, the target cpu may
1271  * 'pull' the thread by calling lwkt_acquire().
1272  *
1273  * We have to make sure the thread is not sitting on a per-cpu tsleep
1274  * queue or it will blow up when it moves to another cpu.
1275  *
1276  * MPSAFE - must be called under very specific conditions.
1277  */
1278 void
1279 lwkt_giveaway(thread_t td)
1280 {
1281     globaldata_t gd = mycpu;
1282 
1283     crit_enter_gd(gd);
1284     if (td->td_flags & TDF_TSLEEPQ)
1285 	tsleep_remove(td);
1286     KKASSERT(td->td_gd == gd);
1287     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1288     td->td_flags |= TDF_MIGRATING;
1289     crit_exit_gd(gd);
1290 }
1291 
1292 void
1293 lwkt_acquire(thread_t td)
1294 {
1295     globaldata_t gd;
1296     globaldata_t mygd;
1297 
1298     KKASSERT(td->td_flags & TDF_MIGRATING);
1299     gd = td->td_gd;
1300     mygd = mycpu;
1301     if (gd != mycpu) {
1302 #ifdef LOOPMASK
1303 	uint64_t tsc_base = rdtsc();
1304 #endif
1305 	cpu_lfence();
1306 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1307 	crit_enter_gd(mygd);
1308 	DEBUG_PUSH_INFO("lwkt_acquire");
1309 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1310 	    lwkt_process_ipiq();
1311 	    cpu_lfence();
1312 #ifdef _KERNEL_VIRTUAL
1313 	    pthread_yield();
1314 #endif
1315 #ifdef LOOPMASK
1316 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1317 		    kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1318 			    td, td->td_flags);
1319 		    tsc_base = rdtsc();
1320 	    }
1321 #endif
1322 	}
1323 	DEBUG_POP_INFO();
1324 	cpu_mfence();
1325 	td->td_gd = mygd;
1326 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1327 	td->td_flags &= ~TDF_MIGRATING;
1328 	crit_exit_gd(mygd);
1329     } else {
1330 	crit_enter_gd(mygd);
1331 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1332 	td->td_flags &= ~TDF_MIGRATING;
1333 	crit_exit_gd(mygd);
1334     }
1335 }
1336 
1337 /*
1338  * Generic deschedule.  Descheduling threads other then your own should be
1339  * done only in carefully controlled circumstances.  Descheduling is
1340  * asynchronous.
1341  *
1342  * This function may block if the cpu has run out of messages.
1343  */
1344 void
1345 lwkt_deschedule(thread_t td)
1346 {
1347     crit_enter();
1348     if (td == curthread) {
1349 	_lwkt_dequeue(td);
1350     } else {
1351 	if (td->td_gd == mycpu) {
1352 	    _lwkt_dequeue(td);
1353 	} else {
1354 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1355 	}
1356     }
1357     crit_exit();
1358 }
1359 
1360 /*
1361  * Set the target thread's priority.  This routine does not automatically
1362  * switch to a higher priority thread, LWKT threads are not designed for
1363  * continuous priority changes.  Yield if you want to switch.
1364  */
1365 void
1366 lwkt_setpri(thread_t td, int pri)
1367 {
1368     if (td->td_pri != pri) {
1369 	KKASSERT(pri >= 0);
1370 	crit_enter();
1371 	if (td->td_flags & TDF_RUNQ) {
1372 	    KKASSERT(td->td_gd == mycpu);
1373 	    _lwkt_dequeue(td);
1374 	    td->td_pri = pri;
1375 	    _lwkt_enqueue(td);
1376 	} else {
1377 	    td->td_pri = pri;
1378 	}
1379 	crit_exit();
1380     }
1381 }
1382 
1383 /*
1384  * Set the initial priority for a thread prior to it being scheduled for
1385  * the first time.  The thread MUST NOT be scheduled before or during
1386  * this call.  The thread may be assigned to a cpu other then the current
1387  * cpu.
1388  *
1389  * Typically used after a thread has been created with TDF_STOPPREQ,
1390  * and before the thread is initially scheduled.
1391  */
1392 void
1393 lwkt_setpri_initial(thread_t td, int pri)
1394 {
1395     KKASSERT(pri >= 0);
1396     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1397     td->td_pri = pri;
1398 }
1399 
1400 void
1401 lwkt_setpri_self(int pri)
1402 {
1403     thread_t td = curthread;
1404 
1405     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1406     crit_enter();
1407     if (td->td_flags & TDF_RUNQ) {
1408 	_lwkt_dequeue(td);
1409 	td->td_pri = pri;
1410 	_lwkt_enqueue(td);
1411     } else {
1412 	td->td_pri = pri;
1413     }
1414     crit_exit();
1415 }
1416 
1417 /*
1418  * hz tick scheduler clock for LWKT threads
1419  */
1420 void
1421 lwkt_schedulerclock(thread_t td)
1422 {
1423     globaldata_t gd = td->td_gd;
1424     thread_t xtd;
1425 
1426     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1427 	/*
1428 	 * If the current thread is at the head of the runq shift it to the
1429 	 * end of any equal-priority threads and request a LWKT reschedule
1430 	 * if it moved.
1431 	 *
1432 	 * Ignore upri in this situation.  There will only be one user thread
1433 	 * in user mode, all others will be user threads running in kernel
1434 	 * mode and we have to make sure they get some cpu.
1435 	 */
1436 	xtd = TAILQ_NEXT(td, td_threadq);
1437 	if (xtd && xtd->td_pri == td->td_pri) {
1438 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1439 	    while (xtd && xtd->td_pri == td->td_pri)
1440 		xtd = TAILQ_NEXT(xtd, td_threadq);
1441 	    if (xtd)
1442 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1443 	    else
1444 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1445 	    need_lwkt_resched();
1446 	}
1447     } else {
1448 	/*
1449 	 * If we scheduled a thread other than the one at the head of the
1450 	 * queue always request a reschedule every tick.
1451 	 */
1452 	need_lwkt_resched();
1453     }
1454 }
1455 
1456 /*
1457  * Migrate the current thread to the specified cpu.
1458  *
1459  * This is accomplished by descheduling ourselves from the current cpu
1460  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1461  * 'old' thread wants to migrate after it has been completely switched out
1462  * and will complete the migration.
1463  *
1464  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1465  *
1466  * We must be sure to release our current process designation (if a user
1467  * process) before clearing out any tsleepq we are on because the release
1468  * code may re-add us.
1469  *
1470  * We must be sure to remove ourselves from the current cpu's tsleepq
1471  * before potentially moving to another queue.  The thread can be on
1472  * a tsleepq due to a left-over tsleep_interlock().
1473  */
1474 
1475 void
1476 lwkt_setcpu_self(globaldata_t rgd)
1477 {
1478     thread_t td = curthread;
1479 
1480     if (td->td_gd != rgd) {
1481 	crit_enter_quick(td);
1482 
1483 	if (td->td_release)
1484 	    td->td_release(td);
1485 	if (td->td_flags & TDF_TSLEEPQ)
1486 	    tsleep_remove(td);
1487 
1488 	/*
1489 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1490 	 * trying to deschedule ourselves and switch away, then deschedule
1491 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1492 	 * call lwkt_switch() to complete the operation.
1493 	 */
1494 	td->td_flags |= TDF_MIGRATING;
1495 	lwkt_deschedule_self(td);
1496 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1497 	td->td_migrate_gd = rgd;
1498 	lwkt_switch();
1499 
1500 	/*
1501 	 * We are now on the target cpu
1502 	 */
1503 	KKASSERT(rgd == mycpu);
1504 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1505 	crit_exit_quick(td);
1506     }
1507 }
1508 
1509 void
1510 lwkt_migratecpu(int cpuid)
1511 {
1512 	globaldata_t rgd;
1513 
1514 	rgd = globaldata_find(cpuid);
1515 	lwkt_setcpu_self(rgd);
1516 }
1517 
1518 /*
1519  * Remote IPI for cpu migration (called while in a critical section so we
1520  * do not have to enter another one).
1521  *
1522  * The thread (td) has already been completely descheduled from the
1523  * originating cpu and we can simply assert the case.  The thread is
1524  * assigned to the new cpu and enqueued.
1525  *
1526  * The thread will re-add itself to tdallq when it resumes execution.
1527  */
1528 static void
1529 lwkt_setcpu_remote(void *arg)
1530 {
1531     thread_t td = arg;
1532     globaldata_t gd = mycpu;
1533 
1534     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1535     td->td_gd = gd;
1536     cpu_mfence();
1537     td->td_flags &= ~TDF_MIGRATING;
1538     KKASSERT(td->td_migrate_gd == NULL);
1539     KKASSERT(td->td_lwp == NULL ||
1540 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1541     _lwkt_enqueue(td);
1542 }
1543 
1544 struct lwp *
1545 lwkt_preempted_proc(void)
1546 {
1547     thread_t td = curthread;
1548     while (td->td_preempted)
1549 	td = td->td_preempted;
1550     return(td->td_lwp);
1551 }
1552 
1553 /*
1554  * Create a kernel process/thread/whatever.  It shares it's address space
1555  * with proc0 - ie: kernel only.
1556  *
1557  * If the cpu is not specified one will be selected.  In the future
1558  * specifying a cpu of -1 will enable kernel thread migration between
1559  * cpus.
1560  */
1561 int
1562 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1563 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1564 {
1565     thread_t td;
1566     __va_list ap;
1567 
1568     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1569 			   tdflags);
1570     if (tdp)
1571 	*tdp = td;
1572     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1573 
1574     /*
1575      * Set up arg0 for 'ps' etc
1576      */
1577     __va_start(ap, fmt);
1578     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1579     __va_end(ap);
1580 
1581     /*
1582      * Schedule the thread to run
1583      */
1584     if (td->td_flags & TDF_NOSTART)
1585 	td->td_flags &= ~TDF_NOSTART;
1586     else
1587 	lwkt_schedule(td);
1588     return 0;
1589 }
1590 
1591 /*
1592  * Destroy an LWKT thread.   Warning!  This function is not called when
1593  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1594  * uses a different reaping mechanism.
1595  */
1596 void
1597 lwkt_exit(void)
1598 {
1599     thread_t td = curthread;
1600     thread_t std;
1601     globaldata_t gd;
1602 
1603     /*
1604      * Do any cleanup that might block here
1605      */
1606     if (td->td_flags & TDF_VERBOSE)
1607 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1608     biosched_done(td);
1609     dsched_exit_thread(td);
1610 
1611     /*
1612      * Get us into a critical section to interlock gd_freetd and loop
1613      * until we can get it freed.
1614      *
1615      * We have to cache the current td in gd_freetd because objcache_put()ing
1616      * it would rip it out from under us while our thread is still active.
1617      *
1618      * We are the current thread so of course our own TDF_RUNNING bit will
1619      * be set, so unlike the lwp reap code we don't wait for it to clear.
1620      */
1621     gd = mycpu;
1622     crit_enter_quick(td);
1623     for (;;) {
1624 	if (td->td_refs) {
1625 	    tsleep(td, 0, "tdreap", 1);
1626 	    continue;
1627 	}
1628 	if ((std = gd->gd_freetd) != NULL) {
1629 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1630 	    gd->gd_freetd = NULL;
1631 	    objcache_put(thread_cache, std);
1632 	    continue;
1633 	}
1634 	break;
1635     }
1636 
1637     /*
1638      * Remove thread resources from kernel lists and deschedule us for
1639      * the last time.  We cannot block after this point or we may end
1640      * up with a stale td on the tsleepq.
1641      *
1642      * None of this may block, the critical section is the only thing
1643      * protecting tdallq and the only thing preventing new lwkt_hold()
1644      * thread refs now.
1645      */
1646     if (td->td_flags & TDF_TSLEEPQ)
1647 	tsleep_remove(td);
1648     lwkt_deschedule_self(td);
1649     lwkt_remove_tdallq(td);
1650     KKASSERT(td->td_refs == 0);
1651 
1652     /*
1653      * Final cleanup
1654      */
1655     KKASSERT(gd->gd_freetd == NULL);
1656     if (td->td_flags & TDF_ALLOCATED_THREAD)
1657 	gd->gd_freetd = td;
1658     cpu_thread_exit();
1659 }
1660 
1661 void
1662 lwkt_remove_tdallq(thread_t td)
1663 {
1664     KKASSERT(td->td_gd == mycpu);
1665     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1666 }
1667 
1668 /*
1669  * Code reduction and branch prediction improvements.  Call/return
1670  * overhead on modern cpus often degenerates into 0 cycles due to
1671  * the cpu's branch prediction hardware and return pc cache.  We
1672  * can take advantage of this by not inlining medium-complexity
1673  * functions and we can also reduce the branch prediction impact
1674  * by collapsing perfectly predictable branches into a single
1675  * procedure instead of duplicating it.
1676  *
1677  * Is any of this noticeable?  Probably not, so I'll take the
1678  * smaller code size.
1679  */
1680 void
1681 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1682 {
1683     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1684 }
1685 
1686 void
1687 crit_panic(void)
1688 {
1689     thread_t td = curthread;
1690     int lcrit = td->td_critcount;
1691 
1692     td->td_critcount = 0;
1693     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1694     /* NOT REACHED */
1695 }
1696 
1697 /*
1698  * Called from debugger/panic on cpus which have been stopped.  We must still
1699  * process the IPIQ while stopped.
1700  *
1701  * If we are dumping also try to process any pending interrupts.  This may
1702  * or may not work depending on the state of the cpu at the point it was
1703  * stopped.
1704  */
1705 void
1706 lwkt_smp_stopped(void)
1707 {
1708     globaldata_t gd = mycpu;
1709 
1710     if (dumping) {
1711 	lwkt_process_ipiq();
1712 	--gd->gd_intr_nesting_level;
1713 	splz();
1714 	++gd->gd_intr_nesting_level;
1715     } else {
1716 	lwkt_process_ipiq();
1717     }
1718     cpu_smp_stopped();
1719 }
1720