xref: /dragonfly/sys/kern/lwkt_thread.c (revision 86fe9e07)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.68 2004/07/29 09:02:33 dillon Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #ifdef _KERNEL
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/thread2.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 #include <machine/cpu.h>
56 #include <sys/lock.h>
57 #include <sys/caps.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_object.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_pager.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_zone.h>
68 
69 #include <machine/stdarg.h>
70 #include <machine/ipl.h>
71 #include <machine/smp.h>
72 
73 #else
74 
75 #include <sys/stdint.h>
76 #include <libcaps/thread.h>
77 #include <sys/thread.h>
78 #include <sys/msgport.h>
79 #include <sys/errno.h>
80 #include <libcaps/globaldata.h>
81 #include <machine/cpufunc.h>
82 #include <sys/thread2.h>
83 #include <sys/msgport2.h>
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <machine/lock.h>
88 
89 #endif
90 
91 static int untimely_switch = 0;
92 #ifdef	INVARIANTS
93 static int panic_on_cscount = 0;
94 #endif
95 static __int64_t switch_count = 0;
96 static __int64_t preempt_hit = 0;
97 static __int64_t preempt_miss = 0;
98 static __int64_t preempt_weird = 0;
99 
100 #ifdef _KERNEL
101 
102 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
103 #ifdef	INVARIANTS
104 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
105 #endif
106 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
107 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
108 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
109 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
110 
111 #endif
112 
113 /*
114  * These helper procedures handle the runq, they can only be called from
115  * within a critical section.
116  *
117  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
118  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
119  * instead of 'mycpu' when referencing the globaldata structure.   Once
120  * SMP live enqueuing and dequeueing only occurs on the current cpu.
121  */
122 static __inline
123 void
124 _lwkt_dequeue(thread_t td)
125 {
126     if (td->td_flags & TDF_RUNQ) {
127 	int nq = td->td_pri & TDPRI_MASK;
128 	struct globaldata *gd = td->td_gd;
129 
130 	td->td_flags &= ~TDF_RUNQ;
131 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
132 	/* runqmask is passively cleaned up by the switcher */
133     }
134 }
135 
136 static __inline
137 void
138 _lwkt_enqueue(thread_t td)
139 {
140     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING)) == 0) {
141 	int nq = td->td_pri & TDPRI_MASK;
142 	struct globaldata *gd = td->td_gd;
143 
144 	td->td_flags |= TDF_RUNQ;
145 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
146 	gd->gd_runqmask |= 1 << nq;
147     }
148 }
149 
150 /*
151  * Schedule a thread to run.  As the current thread we can always safely
152  * schedule ourselves, and a shortcut procedure is provided for that
153  * function.
154  *
155  * (non-blocking, self contained on a per cpu basis)
156  */
157 void
158 lwkt_schedule_self(thread_t td)
159 {
160     crit_enter_quick(td);
161     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
162     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
163     _lwkt_enqueue(td);
164 #ifdef _KERNEL
165     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
166 	panic("SCHED SELF PANIC");
167 #endif
168     crit_exit_quick(td);
169 }
170 
171 /*
172  * Deschedule a thread.
173  *
174  * (non-blocking, self contained on a per cpu basis)
175  */
176 void
177 lwkt_deschedule_self(thread_t td)
178 {
179     crit_enter_quick(td);
180     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
181     _lwkt_dequeue(td);
182     crit_exit_quick(td);
183 }
184 
185 #ifdef _KERNEL
186 
187 /*
188  * LWKTs operate on a per-cpu basis
189  *
190  * WARNING!  Called from early boot, 'mycpu' may not work yet.
191  */
192 void
193 lwkt_gdinit(struct globaldata *gd)
194 {
195     int i;
196 
197     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
198 	TAILQ_INIT(&gd->gd_tdrunq[i]);
199     gd->gd_runqmask = 0;
200     TAILQ_INIT(&gd->gd_tdallq);
201 }
202 
203 #endif /* _KERNEL */
204 
205 /*
206  * Initialize a thread wait structure prior to first use.
207  *
208  * NOTE!  called from low level boot code, we cannot do anything fancy!
209  */
210 void
211 lwkt_wait_init(lwkt_wait_t w)
212 {
213     lwkt_token_init(&w->wa_token);
214     TAILQ_INIT(&w->wa_waitq);
215     w->wa_gen = 0;
216     w->wa_count = 0;
217 }
218 
219 /*
220  * Create a new thread.  The thread must be associated with a process context
221  * or LWKT start address before it can be scheduled.  If the target cpu is
222  * -1 the thread will be created on the current cpu.
223  *
224  * If you intend to create a thread without a process context this function
225  * does everything except load the startup and switcher function.
226  */
227 thread_t
228 lwkt_alloc_thread(struct thread *td, int stksize, int cpu)
229 {
230     void *stack;
231     int flags = 0;
232     globaldata_t gd = mycpu;
233 
234     if (td == NULL) {
235 	crit_enter_gd(gd);
236 	if (gd->gd_tdfreecount > 0) {
237 	    --gd->gd_tdfreecount;
238 	    td = TAILQ_FIRST(&gd->gd_tdfreeq);
239 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
240 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
241 	    TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
242 	    crit_exit_gd(gd);
243 	    flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
244 	} else {
245 	    crit_exit_gd(gd);
246 #ifdef _KERNEL
247 	    td = zalloc(thread_zone);
248 #else
249 	    td = malloc(sizeof(struct thread));
250 #endif
251 	    td->td_kstack = NULL;
252 	    td->td_kstack_size = 0;
253 	    flags |= TDF_ALLOCATED_THREAD;
254 	}
255     }
256     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
257 	if (flags & TDF_ALLOCATED_STACK) {
258 	    kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size);
259 	    stack = NULL;
260 	}
261     }
262     if (stack == NULL) {
263 #ifdef _KERNEL
264 	stack = (void *)kmem_alloc(kernel_map, stksize);
265 #else
266 	stack = libcaps_alloc_stack(stksize);
267 #endif
268 	flags |= TDF_ALLOCATED_STACK;
269     }
270     if (cpu < 0)
271 	lwkt_init_thread(td, stack, stksize, flags, mycpu);
272     else
273 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
274     return(td);
275 }
276 
277 #ifdef _KERNEL
278 
279 /*
280  * Initialize a preexisting thread structure.  This function is used by
281  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
282  *
283  * All threads start out in a critical section at a priority of
284  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
285  * appropriate.  This function may send an IPI message when the
286  * requested cpu is not the current cpu and consequently gd_tdallq may
287  * not be initialized synchronously from the point of view of the originating
288  * cpu.
289  *
290  * NOTE! we have to be careful in regards to creating threads for other cpus
291  * if SMP has not yet been activated.
292  */
293 #ifdef SMP
294 
295 static void
296 lwkt_init_thread_remote(void *arg)
297 {
298     thread_t td = arg;
299 
300     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
301 }
302 
303 #endif
304 
305 void
306 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
307 		struct globaldata *gd)
308 {
309     globaldata_t mygd = mycpu;
310 
311     bzero(td, sizeof(struct thread));
312     td->td_kstack = stack;
313     td->td_kstack_size = stksize;
314     td->td_flags |= flags;
315     td->td_gd = gd;
316     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
317     lwkt_initport(&td->td_msgport, td);
318     pmap_init_thread(td);
319 #ifdef SMP
320     /*
321      * Normally initializing a thread for a remote cpu requires sending an
322      * IPI.  However, the idlethread is setup before the other cpus are
323      * activated so we have to treat it as a special case.  XXX manipulation
324      * of gd_tdallq requires the BGL.
325      */
326     if (gd == mygd || td == &gd->gd_idlethread) {
327 	crit_enter_gd(mygd);
328 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
329 	crit_exit_gd(mygd);
330     } else {
331 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
332     }
333 #else
334     crit_enter_gd(mygd);
335     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
336     crit_exit_gd(mygd);
337 #endif
338 }
339 
340 #endif /* _KERNEL */
341 
342 void
343 lwkt_set_comm(thread_t td, const char *ctl, ...)
344 {
345     __va_list va;
346 
347     __va_start(va, ctl);
348     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
349     __va_end(va);
350 }
351 
352 void
353 lwkt_hold(thread_t td)
354 {
355     ++td->td_refs;
356 }
357 
358 void
359 lwkt_rele(thread_t td)
360 {
361     KKASSERT(td->td_refs > 0);
362     --td->td_refs;
363 }
364 
365 #ifdef _KERNEL
366 
367 void
368 lwkt_wait_free(thread_t td)
369 {
370     while (td->td_refs)
371 	tsleep(td, 0, "tdreap", hz);
372 }
373 
374 #endif
375 
376 void
377 lwkt_free_thread(thread_t td)
378 {
379     struct globaldata *gd = mycpu;
380 
381     KASSERT((td->td_flags & TDF_RUNNING) == 0,
382 	("lwkt_free_thread: did not exit! %p", td));
383 
384     crit_enter_gd(gd);
385     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
386     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
387 	(td->td_flags & TDF_ALLOCATED_THREAD)
388     ) {
389 	++gd->gd_tdfreecount;
390 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
391 	crit_exit_gd(gd);
392     } else {
393 	crit_exit_gd(gd);
394 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
395 #ifdef _KERNEL
396 	    kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
397 #else
398 	    libcaps_free_stack(td->td_kstack, td->td_kstack_size);
399 #endif
400 	    /* gd invalid */
401 	    td->td_kstack = NULL;
402 	    td->td_kstack_size = 0;
403 	}
404 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
405 #ifdef _KERNEL
406 	    zfree(thread_zone, td);
407 #else
408 	    free(td);
409 #endif
410 	}
411     }
412 }
413 
414 
415 /*
416  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
417  * switch to the idlethread.  Switching must occur within a critical
418  * section to avoid races with the scheduling queue.
419  *
420  * We always have full control over our cpu's run queue.  Other cpus
421  * that wish to manipulate our queue must use the cpu_*msg() calls to
422  * talk to our cpu, so a critical section is all that is needed and
423  * the result is very, very fast thread switching.
424  *
425  * The LWKT scheduler uses a fixed priority model and round-robins at
426  * each priority level.  User process scheduling is a totally
427  * different beast and LWKT priorities should not be confused with
428  * user process priorities.
429  *
430  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
431  * cleans it up.  Note that the td_switch() function cannot do anything that
432  * requires the MP lock since the MP lock will have already been setup for
433  * the target thread (not the current thread).  It's nice to have a scheduler
434  * that does not need the MP lock to work because it allows us to do some
435  * really cool high-performance MP lock optimizations.
436  */
437 
438 void
439 lwkt_switch(void)
440 {
441     globaldata_t gd = mycpu;
442     thread_t td = gd->gd_curthread;
443     thread_t ntd;
444 #ifdef SMP
445     int mpheld;
446 #endif
447 
448     /*
449      * Switching from within a 'fast' (non thread switched) interrupt is
450      * illegal.
451      */
452     if (gd->gd_intr_nesting_level && panicstr == NULL) {
453 	panic("lwkt_switch: cannot switch from within a fast interrupt, yet");
454     }
455 
456     /*
457      * Passive release (used to transition from user to kernel mode
458      * when we block or switch rather then when we enter the kernel).
459      * This function is NOT called if we are switching into a preemption
460      * or returning from a preemption.  Typically this causes us to lose
461      * our current process designation (if we have one) and become a true
462      * LWKT thread, and may also hand the current process designation to
463      * another process and schedule thread.
464      */
465     if (td->td_release)
466 	    td->td_release(td);
467 
468     crit_enter_gd(gd);
469     ++switch_count;
470 
471 #ifdef SMP
472     /*
473      * td_mpcount cannot be used to determine if we currently hold the
474      * MP lock because get_mplock() will increment it prior to attempting
475      * to get the lock, and switch out if it can't.  Our ownership of
476      * the actual lock will remain stable while we are in a critical section
477      * (but, of course, another cpu may own or release the lock so the
478      * actual value of mp_lock is not stable).
479      */
480     mpheld = MP_LOCK_HELD();
481 #ifdef	INVARIANTS
482     if (td->td_cscount) {
483 	printf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
484 		td);
485 	if (panic_on_cscount)
486 	    panic("switching while mastering cpusync");
487     }
488 #endif
489 #endif
490     if ((ntd = td->td_preempted) != NULL) {
491 	/*
492 	 * We had preempted another thread on this cpu, resume the preempted
493 	 * thread.  This occurs transparently, whether the preempted thread
494 	 * was scheduled or not (it may have been preempted after descheduling
495 	 * itself).
496 	 *
497 	 * We have to setup the MP lock for the original thread after backing
498 	 * out the adjustment that was made to curthread when the original
499 	 * was preempted.
500 	 */
501 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
502 #ifdef SMP
503 	if (ntd->td_mpcount && mpheld == 0) {
504 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
505 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
506 	}
507 	if (ntd->td_mpcount) {
508 	    td->td_mpcount -= ntd->td_mpcount;
509 	    KKASSERT(td->td_mpcount >= 0);
510 	}
511 #endif
512 	ntd->td_flags |= TDF_PREEMPT_DONE;
513 
514 	/*
515 	 * XXX.  The interrupt may have woken a thread up, we need to properly
516 	 * set the reschedule flag if the originally interrupted thread is at
517 	 * a lower priority.
518 	 */
519 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
520 	    need_lwkt_resched();
521 	/* YYY release mp lock on switchback if original doesn't need it */
522     } else {
523 	/*
524 	 * Priority queue / round-robin at each priority.  Note that user
525 	 * processes run at a fixed, low priority and the user process
526 	 * scheduler deals with interactions between user processes
527 	 * by scheduling and descheduling them from the LWKT queue as
528 	 * necessary.
529 	 *
530 	 * We have to adjust the MP lock for the target thread.  If we
531 	 * need the MP lock and cannot obtain it we try to locate a
532 	 * thread that does not need the MP lock.  If we cannot, we spin
533 	 * instead of HLT.
534 	 *
535 	 * A similar issue exists for the tokens held by the target thread.
536 	 * If we cannot obtain ownership of the tokens we cannot immediately
537 	 * schedule the thread.
538 	 */
539 
540 	/*
541 	 * We are switching threads.  If there are any pending requests for
542 	 * tokens we can satisfy all of them here.
543 	 */
544 #ifdef SMP
545 	if (gd->gd_tokreqbase)
546 		lwkt_drain_token_requests();
547 #endif
548 
549 	/*
550 	 * If an LWKT reschedule was requested, well that is what we are
551 	 * doing now so clear it.
552 	 */
553 	clear_lwkt_resched();
554 again:
555 	if (gd->gd_runqmask) {
556 	    int nq = bsrl(gd->gd_runqmask);
557 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
558 		gd->gd_runqmask &= ~(1 << nq);
559 		goto again;
560 	    }
561 #ifdef SMP
562 	    /*
563 	     * If the target needs the MP lock and we couldn't get it,
564 	     * or if the target is holding tokens and we could not
565 	     * gain ownership of the tokens, continue looking for a
566 	     * thread to schedule and spin instead of HLT if we can't.
567 	     */
568 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
569 		(ntd->td_toks && lwkt_chktokens(ntd) == 0)
570 	    ) {
571 		u_int32_t rqmask = gd->gd_runqmask;
572 		while (rqmask) {
573 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
574 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock())
575 			    continue;
576 			mpheld = MP_LOCK_HELD();
577 			if (ntd->td_toks && !lwkt_chktokens(ntd))
578 			    continue;
579 			break;
580 		    }
581 		    if (ntd)
582 			break;
583 		    rqmask &= ~(1 << nq);
584 		    nq = bsrl(rqmask);
585 		}
586 		if (ntd == NULL) {
587 		    ntd = &gd->gd_idlethread;
588 		    ntd->td_flags |= TDF_IDLE_NOHLT;
589 		} else {
590 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
591 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
592 		}
593 	    } else {
594 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
595 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
596 	    }
597 #else
598 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
599 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
600 #endif
601 	} else {
602 	    /*
603 	     * We have nothing to run but only let the idle loop halt
604 	     * the cpu if there are no pending interrupts.
605 	     */
606 	    ntd = &gd->gd_idlethread;
607 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
608 		ntd->td_flags |= TDF_IDLE_NOHLT;
609 	}
610     }
611     KASSERT(ntd->td_pri >= TDPRI_CRIT,
612 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
613 
614     /*
615      * Do the actual switch.  If the new target does not need the MP lock
616      * and we are holding it, release the MP lock.  If the new target requires
617      * the MP lock we have already acquired it for the target.
618      */
619 #ifdef SMP
620     if (ntd->td_mpcount == 0 ) {
621 	if (MP_LOCK_HELD())
622 	    cpu_rel_mplock();
623     } else {
624 	ASSERT_MP_LOCK_HELD();
625     }
626 #endif
627     if (td != ntd)
628 	td->td_switch(ntd);
629     /* NOTE: current cpu may have changed after switch */
630     crit_exit_quick(td);
631 }
632 
633 /*
634  * Request that the target thread preempt the current thread.  Preemption
635  * only works under a specific set of conditions:
636  *
637  *	- We are not preempting ourselves
638  *	- The target thread is owned by the current cpu
639  *	- We are not currently being preempted
640  *	- The target is not currently being preempted
641  *	- We are able to satisfy the target's MP lock requirements (if any).
642  *
643  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
644  * this is called via lwkt_schedule() through the td_preemptable callback.
645  * critpri is the managed critical priority that we should ignore in order
646  * to determine whether preemption is possible (aka usually just the crit
647  * priority of lwkt_schedule() itself).
648  *
649  * XXX at the moment we run the target thread in a critical section during
650  * the preemption in order to prevent the target from taking interrupts
651  * that *WE* can't.  Preemption is strictly limited to interrupt threads
652  * and interrupt-like threads, outside of a critical section, and the
653  * preempted source thread will be resumed the instant the target blocks
654  * whether or not the source is scheduled (i.e. preemption is supposed to
655  * be as transparent as possible).
656  *
657  * The target thread inherits our MP count (added to its own) for the
658  * duration of the preemption in order to preserve the atomicy of the
659  * MP lock during the preemption.  Therefore, any preempting targets must be
660  * careful in regards to MP assertions.  Note that the MP count may be
661  * out of sync with the physical mp_lock, but we do not have to preserve
662  * the original ownership of the lock if it was out of synch (that is, we
663  * can leave it synchronized on return).
664  */
665 void
666 lwkt_preempt(thread_t ntd, int critpri)
667 {
668     struct globaldata *gd = mycpu;
669     thread_t td;
670 #ifdef SMP
671     int mpheld;
672     int savecnt;
673 #endif
674 
675     /*
676      * The caller has put us in a critical section.  We can only preempt
677      * if the caller of the caller was not in a critical section (basically
678      * a local interrupt), as determined by the 'critpri' parameter.
679      *
680      * YYY The target thread must be in a critical section (else it must
681      * inherit our critical section?  I dunno yet).
682      *
683      * Any tokens held by the target may not be held by thread(s) being
684      * preempted.  We take the easy way out and do not preempt if
685      * the target is holding tokens.
686      *
687      * Set need_lwkt_resched() unconditionally for now YYY.
688      */
689     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
690 
691     td = gd->gd_curthread;
692     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
693 	++preempt_miss;
694 	return;
695     }
696     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
697 	++preempt_miss;
698 	need_lwkt_resched();
699 	return;
700     }
701 #ifdef SMP
702     if (ntd->td_gd != gd) {
703 	++preempt_miss;
704 	need_lwkt_resched();
705 	return;
706     }
707 #endif
708     /*
709      * Take the easy way out and do not preempt if the target is holding
710      * one or more tokens.  We could test whether the thread(s) being
711      * preempted interlock against the target thread's tokens and whether
712      * we can get all the target thread's tokens, but this situation
713      * should not occur very often so its easier to simply not preempt.
714      */
715     if (ntd->td_toks != NULL) {
716 	++preempt_miss;
717 	need_lwkt_resched();
718 	return;
719     }
720     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
721 	++preempt_weird;
722 	need_lwkt_resched();
723 	return;
724     }
725     if (ntd->td_preempted) {
726 	++preempt_hit;
727 	need_lwkt_resched();
728 	return;
729     }
730 #ifdef SMP
731     /*
732      * note: an interrupt might have occured just as we were transitioning
733      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
734      * (non-zero) but not actually synchronized with the actual state of the
735      * lock.  We can use it to imply an MP lock requirement for the
736      * preemption but we cannot use it to test whether we hold the MP lock
737      * or not.
738      */
739     savecnt = td->td_mpcount;
740     mpheld = MP_LOCK_HELD();
741     ntd->td_mpcount += td->td_mpcount;
742     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
743 	ntd->td_mpcount -= td->td_mpcount;
744 	++preempt_miss;
745 	need_lwkt_resched();
746 	return;
747     }
748 #endif
749 
750     /*
751      * Since we are able to preempt the current thread, there is no need to
752      * call need_lwkt_resched().
753      */
754     ++preempt_hit;
755     ntd->td_preempted = td;
756     td->td_flags |= TDF_PREEMPT_LOCK;
757     td->td_switch(ntd);
758     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
759 #ifdef SMP
760     KKASSERT(savecnt == td->td_mpcount);
761     mpheld = MP_LOCK_HELD();
762     if (mpheld && td->td_mpcount == 0)
763 	cpu_rel_mplock();
764     else if (mpheld == 0 && td->td_mpcount)
765 	panic("lwkt_preempt(): MP lock was not held through");
766 #endif
767     ntd->td_preempted = NULL;
768     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
769 }
770 
771 /*
772  * Yield our thread while higher priority threads are pending.  This is
773  * typically called when we leave a critical section but it can be safely
774  * called while we are in a critical section.
775  *
776  * This function will not generally yield to equal priority threads but it
777  * can occur as a side effect.  Note that lwkt_switch() is called from
778  * inside the critical section to prevent its own crit_exit() from reentering
779  * lwkt_yield_quick().
780  *
781  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
782  * came along but was blocked and made pending.
783  *
784  * (self contained on a per cpu basis)
785  */
786 void
787 lwkt_yield_quick(void)
788 {
789     globaldata_t gd = mycpu;
790     thread_t td = gd->gd_curthread;
791 
792     /*
793      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
794      * it with a non-zero cpl then we might not wind up calling splz after
795      * a task switch when the critical section is exited even though the
796      * new task could accept the interrupt.
797      *
798      * XXX from crit_exit() only called after last crit section is released.
799      * If called directly will run splz() even if in a critical section.
800      *
801      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
802      * except for this special case, we MUST call splz() here to handle any
803      * pending ints, particularly after we switch, or we might accidently
804      * halt the cpu with interrupts pending.
805      */
806     if (gd->gd_reqflags && td->td_nest_count < 2)
807 	splz();
808 
809     /*
810      * YYY enabling will cause wakeup() to task-switch, which really
811      * confused the old 4.x code.  This is a good way to simulate
812      * preemption and MP without actually doing preemption or MP, because a
813      * lot of code assumes that wakeup() does not block.
814      */
815     if (untimely_switch && td->td_nest_count == 0 &&
816 	gd->gd_intr_nesting_level == 0
817     ) {
818 	crit_enter_quick(td);
819 	/*
820 	 * YYY temporary hacks until we disassociate the userland scheduler
821 	 * from the LWKT scheduler.
822 	 */
823 	if (td->td_flags & TDF_RUNQ) {
824 	    lwkt_switch();		/* will not reenter yield function */
825 	} else {
826 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
827 	    lwkt_switch();		/* will not reenter yield function */
828 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
829 	}
830 	crit_exit_noyield(td);
831     }
832 }
833 
834 /*
835  * This implements a normal yield which, unlike _quick, will yield to equal
836  * priority threads as well.  Note that gd_reqflags tests will be handled by
837  * the crit_exit() call in lwkt_switch().
838  *
839  * (self contained on a per cpu basis)
840  */
841 void
842 lwkt_yield(void)
843 {
844     lwkt_schedule_self(curthread);
845     lwkt_switch();
846 }
847 
848 /*
849  * Generic schedule.  Possibly schedule threads belonging to other cpus and
850  * deal with threads that might be blocked on a wait queue.
851  *
852  * We have a little helper inline function which does additional work after
853  * the thread has been enqueued, including dealing with preemption and
854  * setting need_lwkt_resched() (which prevents the kernel from returning
855  * to userland until it has processed higher priority threads).
856  */
857 static __inline
858 void
859 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
860 {
861     if (ntd->td_preemptable) {
862 	ntd->td_preemptable(ntd, cpri);	/* YYY +token */
863     } else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
864 	(ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
865     ) {
866 	need_lwkt_resched();
867     }
868 }
869 
870 void
871 lwkt_schedule(thread_t td)
872 {
873     globaldata_t mygd = mycpu;
874 
875 #ifdef	INVARIANTS
876     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
877     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc
878 	&& td->td_proc->p_stat == SSLEEP
879     ) {
880 	printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
881 	    curthread,
882 	    curthread->td_proc ? curthread->td_proc->p_pid : -1,
883 	    curthread->td_proc ? curthread->td_proc->p_stat : -1,
884 	    td,
885 	    td->td_proc ? curthread->td_proc->p_pid : -1,
886 	    td->td_proc ? curthread->td_proc->p_stat : -1
887 	);
888 	panic("SCHED PANIC");
889     }
890 #endif
891     crit_enter_gd(mygd);
892     if (td == mygd->gd_curthread) {
893 	_lwkt_enqueue(td);
894     } else {
895 	lwkt_wait_t w;
896 
897 	/*
898 	 * If the thread is on a wait list we have to send our scheduling
899 	 * request to the owner of the wait structure.  Otherwise we send
900 	 * the scheduling request to the cpu owning the thread.  Races
901 	 * are ok, the target will forward the message as necessary (the
902 	 * message may chase the thread around before it finally gets
903 	 * acted upon).
904 	 *
905 	 * (remember, wait structures use stable storage)
906 	 *
907 	 * NOTE: tokens no longer enter a critical section, so we only need
908 	 * to account for the crit_enter() above when calling
909 	 * _lwkt_schedule_post().
910 	 */
911 	if ((w = td->td_wait) != NULL) {
912 	    lwkt_tokref wref;
913 
914 	    if (lwkt_trytoken(&wref, &w->wa_token)) {
915 		TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
916 		--w->wa_count;
917 		td->td_wait = NULL;
918 #ifdef SMP
919 		if (td->td_gd == mygd) {
920 		    _lwkt_enqueue(td);
921 		    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
922 		} else {
923 		    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
924 		}
925 #else
926 		_lwkt_enqueue(td);
927 		_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
928 #endif
929 		lwkt_reltoken(&wref);
930 	    } else {
931 		lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td);
932 	    }
933 	} else {
934 	    /*
935 	     * If the wait structure is NULL and we own the thread, there
936 	     * is no race (since we are in a critical section).  If we
937 	     * do not own the thread there might be a race but the
938 	     * target cpu will deal with it.
939 	     */
940 #ifdef SMP
941 	    if (td->td_gd == mygd) {
942 		_lwkt_enqueue(td);
943 		_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
944 	    } else {
945 		lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
946 	    }
947 #else
948 	    _lwkt_enqueue(td);
949 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
950 #endif
951 	}
952     }
953     crit_exit_gd(mygd);
954 }
955 
956 /*
957  * Managed acquisition.  This code assumes that the MP lock is held for
958  * the tdallq operation and that the thread has been descheduled from its
959  * original cpu.  We also have to wait for the thread to be entirely switched
960  * out on its original cpu (this is usually fast enough that we never loop)
961  * since the LWKT system does not have to hold the MP lock while switching
962  * and the target may have released it before switching.
963  */
964 void
965 lwkt_acquire(thread_t td)
966 {
967     globaldata_t gd;
968     globaldata_t mygd;
969 
970     gd = td->td_gd;
971     mygd = mycpu;
972     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
973     while (td->td_flags & TDF_RUNNING)	/* XXX spin */
974 	cpu_mb1();
975     if (gd != mygd) {
976 	crit_enter_gd(mygd);
977 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);	/* protected by BGL */
978 	td->td_gd = mygd;
979 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); /* protected by BGL */
980 	crit_exit_gd(mygd);
981     }
982 }
983 
984 /*
985  * Generic deschedule.  Descheduling threads other then your own should be
986  * done only in carefully controlled circumstances.  Descheduling is
987  * asynchronous.
988  *
989  * This function may block if the cpu has run out of messages.
990  */
991 void
992 lwkt_deschedule(thread_t td)
993 {
994     crit_enter();
995     if (td == curthread) {
996 	_lwkt_dequeue(td);
997     } else {
998 	if (td->td_gd == mycpu) {
999 	    _lwkt_dequeue(td);
1000 	} else {
1001 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_deschedule, td);
1002 	}
1003     }
1004     crit_exit();
1005 }
1006 
1007 /*
1008  * Set the target thread's priority.  This routine does not automatically
1009  * switch to a higher priority thread, LWKT threads are not designed for
1010  * continuous priority changes.  Yield if you want to switch.
1011  *
1012  * We have to retain the critical section count which uses the high bits
1013  * of the td_pri field.  The specified priority may also indicate zero or
1014  * more critical sections by adding TDPRI_CRIT*N.
1015  *
1016  * Note that we requeue the thread whether it winds up on a different runq
1017  * or not.  uio_yield() depends on this and the routine is not normally
1018  * called with the same priority otherwise.
1019  */
1020 void
1021 lwkt_setpri(thread_t td, int pri)
1022 {
1023     KKASSERT(pri >= 0);
1024     KKASSERT(td->td_gd == mycpu);
1025     crit_enter();
1026     if (td->td_flags & TDF_RUNQ) {
1027 	_lwkt_dequeue(td);
1028 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1029 	_lwkt_enqueue(td);
1030     } else {
1031 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1032     }
1033     crit_exit();
1034 }
1035 
1036 void
1037 lwkt_setpri_self(int pri)
1038 {
1039     thread_t td = curthread;
1040 
1041     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1042     crit_enter();
1043     if (td->td_flags & TDF_RUNQ) {
1044 	_lwkt_dequeue(td);
1045 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1046 	_lwkt_enqueue(td);
1047     } else {
1048 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1049     }
1050     crit_exit();
1051 }
1052 
1053 /*
1054  * Determine if there is a runnable thread at a higher priority then
1055  * the current thread.  lwkt_setpri() does not check this automatically.
1056  * Return 1 if there is, 0 if there isn't.
1057  *
1058  * Example: if bit 31 of runqmask is set and the current thread is priority
1059  * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1060  *
1061  * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1062  * up comparing against 0xffffffff, a comparison that will always be false.
1063  */
1064 int
1065 lwkt_checkpri_self(void)
1066 {
1067     globaldata_t gd = mycpu;
1068     thread_t td = gd->gd_curthread;
1069     int nq = td->td_pri & TDPRI_MASK;
1070 
1071     while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1072 	if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1073 	    return(1);
1074 	++nq;
1075     }
1076     return(0);
1077 }
1078 
1079 /*
1080  * Migrate the current thread to the specified cpu.  The BGL must be held
1081  * (for the gd_tdallq manipulation XXX).  This is accomplished by
1082  * descheduling ourselves from the current cpu, moving our thread to the
1083  * tdallq of the target cpu, IPI messaging the target cpu, and switching out.
1084  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1085  */
1086 #ifdef SMP
1087 static void lwkt_setcpu_remote(void *arg);
1088 #endif
1089 
1090 void
1091 lwkt_setcpu_self(globaldata_t rgd)
1092 {
1093 #ifdef SMP
1094     thread_t td = curthread;
1095 
1096     if (td->td_gd != rgd) {
1097 	crit_enter_quick(td);
1098 	td->td_flags |= TDF_MIGRATING;
1099 	lwkt_deschedule_self(td);
1100 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); /* protected by BGL */
1101 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); /* protected by BGL */
1102 	lwkt_send_ipiq(rgd, (ipifunc_t)lwkt_setcpu_remote, td);
1103 	lwkt_switch();
1104 	/* we are now on the target cpu */
1105 	crit_exit_quick(td);
1106     }
1107 #endif
1108 }
1109 
1110 /*
1111  * Remote IPI for cpu migration (called while in a critical section so we
1112  * do not have to enter another one).  The thread has already been moved to
1113  * our cpu's allq, but we must wait for the thread to be completely switched
1114  * out on the originating cpu before we schedule it on ours or the stack
1115  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1116  * change to main memory.
1117  *
1118  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1119  * against wakeups.  It is best if this interface is used only when there
1120  * are no pending events that might try to schedule the thread.
1121  */
1122 #ifdef SMP
1123 static void
1124 lwkt_setcpu_remote(void *arg)
1125 {
1126     thread_t td = arg;
1127     globaldata_t gd = mycpu;
1128 
1129     while (td->td_flags & TDF_RUNNING)
1130 	cpu_mb1();
1131     td->td_gd = gd;
1132     cpu_mb2();
1133     td->td_flags &= ~TDF_MIGRATING;
1134     _lwkt_enqueue(td);
1135 }
1136 #endif
1137 
1138 struct proc *
1139 lwkt_preempted_proc(void)
1140 {
1141     thread_t td = curthread;
1142     while (td->td_preempted)
1143 	td = td->td_preempted;
1144     return(td->td_proc);
1145 }
1146 
1147 /*
1148  * Block on the specified wait queue until signaled.  A generation number
1149  * must be supplied to interlock the wait queue.  The function will
1150  * return immediately if the generation number does not match the wait
1151  * structure's generation number.
1152  */
1153 void
1154 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
1155 {
1156     thread_t td = curthread;
1157     lwkt_tokref ilock;
1158 
1159     lwkt_gettoken(&ilock, &w->wa_token);
1160     crit_enter();
1161     if (w->wa_gen == *gen) {
1162 	_lwkt_dequeue(td);
1163 	TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
1164 	++w->wa_count;
1165 	td->td_wait = w;
1166 	td->td_wmesg = wmesg;
1167     again:
1168 	lwkt_switch();
1169 	if (td->td_wmesg != NULL) {
1170 	    _lwkt_dequeue(td);
1171 	    goto again;
1172 	}
1173     }
1174     crit_exit();
1175     *gen = w->wa_gen;
1176     lwkt_reltoken(&ilock);
1177 }
1178 
1179 /*
1180  * Signal a wait queue.  We gain ownership of the wait queue in order to
1181  * signal it.  Once a thread is removed from the wait queue we have to
1182  * deal with the cpu owning the thread.
1183  *
1184  * Note: alternatively we could message the target cpu owning the wait
1185  * queue.  YYY implement as sysctl.
1186  */
1187 void
1188 lwkt_signal(lwkt_wait_t w, int count)
1189 {
1190     thread_t td;
1191     lwkt_tokref ilock;
1192 
1193     lwkt_gettoken(&ilock, &w->wa_token);
1194     ++w->wa_gen;
1195     crit_enter();
1196     if (count < 0)
1197 	count = w->wa_count;
1198     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1199 	--count;
1200 	--w->wa_count;
1201 	TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1202 	td->td_wait = NULL;
1203 	td->td_wmesg = NULL;
1204 	if (td->td_gd == mycpu) {
1205 	    _lwkt_enqueue(td);
1206 	} else {
1207 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
1208 	}
1209     }
1210     crit_exit();
1211     lwkt_reltoken(&ilock);
1212 }
1213 
1214 /*
1215  * Create a kernel process/thread/whatever.  It shares it's address space
1216  * with proc0 - ie: kernel only.
1217  *
1218  * NOTE!  By default new threads are created with the MP lock held.  A
1219  * thread which does not require the MP lock should release it by calling
1220  * rel_mplock() at the start of the new thread.
1221  */
1222 int
1223 lwkt_create(void (*func)(void *), void *arg,
1224     struct thread **tdp, thread_t template, int tdflags, int cpu,
1225     const char *fmt, ...)
1226 {
1227     thread_t td;
1228     __va_list ap;
1229 
1230     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu);
1231     if (tdp)
1232 	*tdp = td;
1233     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1234     td->td_flags |= TDF_VERBOSE | tdflags;
1235 #ifdef SMP
1236     td->td_mpcount = 1;
1237 #endif
1238 
1239     /*
1240      * Set up arg0 for 'ps' etc
1241      */
1242     __va_start(ap, fmt);
1243     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1244     __va_end(ap);
1245 
1246     /*
1247      * Schedule the thread to run
1248      */
1249     if ((td->td_flags & TDF_STOPREQ) == 0)
1250 	lwkt_schedule(td);
1251     else
1252 	td->td_flags &= ~TDF_STOPREQ;
1253     return 0;
1254 }
1255 
1256 /*
1257  * kthread_* is specific to the kernel and is not needed by userland.
1258  */
1259 #ifdef _KERNEL
1260 
1261 /*
1262  * Destroy an LWKT thread.   Warning!  This function is not called when
1263  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1264  * uses a different reaping mechanism.
1265  */
1266 void
1267 lwkt_exit(void)
1268 {
1269     thread_t td = curthread;
1270     globaldata_t gd;
1271 
1272     if (td->td_flags & TDF_VERBOSE)
1273 	printf("kthread %p %s has exited\n", td, td->td_comm);
1274     caps_exit(td);
1275     crit_enter_quick(td);
1276     lwkt_deschedule_self(td);
1277     gd = mycpu;
1278     KKASSERT(gd == td->td_gd);
1279     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1280     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1281 	++gd->gd_tdfreecount;
1282 	TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1283     }
1284     cpu_thread_exit();
1285 }
1286 
1287 #endif /* _KERNEL */
1288 
1289 void
1290 crit_panic(void)
1291 {
1292     thread_t td = curthread;
1293     int lpri = td->td_pri;
1294 
1295     td->td_pri = 0;
1296     panic("td_pri is/would-go negative! %p %d", td, lpri);
1297 }
1298 
1299