xref: /dragonfly/sys/kern/lwkt_thread.c (revision 8a7bdfea)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.112 2008/03/01 06:21:28 dillon Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #ifdef _KERNEL
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/sysctl.h>
53 #include <sys/kthread.h>
54 #include <machine/cpu.h>
55 #include <sys/lock.h>
56 #include <sys/caps.h>
57 #include <sys/spinlock.h>
58 #include <sys/ktr.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_zone.h>
72 
73 #include <machine/stdarg.h>
74 #include <machine/smp.h>
75 
76 #else
77 
78 #include <sys/stdint.h>
79 #include <libcaps/thread.h>
80 #include <sys/thread.h>
81 #include <sys/msgport.h>
82 #include <sys/errno.h>
83 #include <libcaps/globaldata.h>
84 #include <machine/cpufunc.h>
85 #include <sys/thread2.h>
86 #include <sys/msgport2.h>
87 #include <stdio.h>
88 #include <stdlib.h>
89 #include <string.h>
90 #include <machine/lock.h>
91 #include <machine/atomic.h>
92 #include <machine/cpu.h>
93 
94 #endif
95 
96 static int untimely_switch = 0;
97 #ifdef	INVARIANTS
98 static int panic_on_cscount = 0;
99 #endif
100 static __int64_t switch_count = 0;
101 static __int64_t preempt_hit = 0;
102 static __int64_t preempt_miss = 0;
103 static __int64_t preempt_weird = 0;
104 static __int64_t token_contention_count = 0;
105 static __int64_t mplock_contention_count = 0;
106 static int lwkt_use_spin_port;
107 
108 #ifdef _KERNEL
109 
110 /*
111  * We can make all thread ports use the spin backend instead of the thread
112  * backend.  This should only be set to debug the spin backend.
113  */
114 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
115 
116 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
117 #ifdef	INVARIANTS
118 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
119 #endif
120 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
121 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
123 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
124 #ifdef	INVARIANTS
125 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
126 	&token_contention_count, 0, "spinning due to token contention");
127 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
128 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
129 #endif
130 #endif
131 
132 /*
133  * Kernel Trace
134  */
135 #ifdef _KERNEL
136 
137 #if !defined(KTR_GIANT_CONTENTION)
138 #define KTR_GIANT_CONTENTION	KTR_ALL
139 #endif
140 
141 KTR_INFO_MASTER(giant);
142 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
143 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
144 
145 #define loggiant(name)	KTR_LOG(giant_ ## name, curthread)
146 
147 #endif
148 
149 /*
150  * These helper procedures handle the runq, they can only be called from
151  * within a critical section.
152  *
153  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
154  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
155  * instead of 'mycpu' when referencing the globaldata structure.   Once
156  * SMP live enqueuing and dequeueing only occurs on the current cpu.
157  */
158 static __inline
159 void
160 _lwkt_dequeue(thread_t td)
161 {
162     if (td->td_flags & TDF_RUNQ) {
163 	int nq = td->td_pri & TDPRI_MASK;
164 	struct globaldata *gd = td->td_gd;
165 
166 	td->td_flags &= ~TDF_RUNQ;
167 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
168 	/* runqmask is passively cleaned up by the switcher */
169     }
170 }
171 
172 static __inline
173 void
174 _lwkt_enqueue(thread_t td)
175 {
176     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
177 	int nq = td->td_pri & TDPRI_MASK;
178 	struct globaldata *gd = td->td_gd;
179 
180 	td->td_flags |= TDF_RUNQ;
181 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
182 	gd->gd_runqmask |= 1 << nq;
183     }
184 }
185 
186 /*
187  * Schedule a thread to run.  As the current thread we can always safely
188  * schedule ourselves, and a shortcut procedure is provided for that
189  * function.
190  *
191  * (non-blocking, self contained on a per cpu basis)
192  */
193 void
194 lwkt_schedule_self(thread_t td)
195 {
196     crit_enter_quick(td);
197     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
198     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
199     _lwkt_enqueue(td);
200     crit_exit_quick(td);
201 }
202 
203 /*
204  * Deschedule a thread.
205  *
206  * (non-blocking, self contained on a per cpu basis)
207  */
208 void
209 lwkt_deschedule_self(thread_t td)
210 {
211     crit_enter_quick(td);
212     _lwkt_dequeue(td);
213     crit_exit_quick(td);
214 }
215 
216 #ifdef _KERNEL
217 
218 /*
219  * LWKTs operate on a per-cpu basis
220  *
221  * WARNING!  Called from early boot, 'mycpu' may not work yet.
222  */
223 void
224 lwkt_gdinit(struct globaldata *gd)
225 {
226     int i;
227 
228     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
229 	TAILQ_INIT(&gd->gd_tdrunq[i]);
230     gd->gd_runqmask = 0;
231     TAILQ_INIT(&gd->gd_tdallq);
232 }
233 
234 #endif /* _KERNEL */
235 
236 /*
237  * Create a new thread.  The thread must be associated with a process context
238  * or LWKT start address before it can be scheduled.  If the target cpu is
239  * -1 the thread will be created on the current cpu.
240  *
241  * If you intend to create a thread without a process context this function
242  * does everything except load the startup and switcher function.
243  */
244 thread_t
245 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
246 {
247     void *stack;
248     globaldata_t gd = mycpu;
249 
250     if (td == NULL) {
251 	crit_enter_gd(gd);
252 	if (gd->gd_tdfreecount > 0) {
253 	    --gd->gd_tdfreecount;
254 	    td = TAILQ_FIRST(&gd->gd_tdfreeq);
255 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
256 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
257 	    TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
258 	    crit_exit_gd(gd);
259 	    flags |= td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
260 	} else {
261 	    crit_exit_gd(gd);
262 #ifdef _KERNEL
263 	    td = zalloc(thread_zone);
264 #else
265 	    td = malloc(sizeof(struct thread));
266 #endif
267 	    td->td_kstack = NULL;
268 	    td->td_kstack_size = 0;
269 	    flags |= TDF_ALLOCATED_THREAD;
270 	}
271     }
272     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
273 	if (flags & TDF_ALLOCATED_STACK) {
274 #ifdef _KERNEL
275 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
276 #else
277 	    libcaps_free_stack(stack, td->td_kstack_size);
278 #endif
279 	    stack = NULL;
280 	}
281     }
282     if (stack == NULL) {
283 #ifdef _KERNEL
284 	stack = (void *)kmem_alloc(&kernel_map, stksize);
285 #else
286 	stack = libcaps_alloc_stack(stksize);
287 #endif
288 	flags |= TDF_ALLOCATED_STACK;
289     }
290     if (cpu < 0)
291 	lwkt_init_thread(td, stack, stksize, flags, mycpu);
292     else
293 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
294     return(td);
295 }
296 
297 #ifdef _KERNEL
298 
299 /*
300  * Initialize a preexisting thread structure.  This function is used by
301  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
302  *
303  * All threads start out in a critical section at a priority of
304  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
305  * appropriate.  This function may send an IPI message when the
306  * requested cpu is not the current cpu and consequently gd_tdallq may
307  * not be initialized synchronously from the point of view of the originating
308  * cpu.
309  *
310  * NOTE! we have to be careful in regards to creating threads for other cpus
311  * if SMP has not yet been activated.
312  */
313 #ifdef SMP
314 
315 static void
316 lwkt_init_thread_remote(void *arg)
317 {
318     thread_t td = arg;
319 
320     /*
321      * Protected by critical section held by IPI dispatch
322      */
323     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
324 }
325 
326 #endif
327 
328 void
329 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
330 		struct globaldata *gd)
331 {
332     globaldata_t mygd = mycpu;
333 
334     bzero(td, sizeof(struct thread));
335     td->td_kstack = stack;
336     td->td_kstack_size = stksize;
337     td->td_flags = flags;
338     td->td_gd = gd;
339     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
340 #ifdef SMP
341     if ((flags & TDF_MPSAFE) == 0)
342 	td->td_mpcount = 1;
343 #endif
344     if (lwkt_use_spin_port)
345 	lwkt_initport_spin(&td->td_msgport);
346     else
347 	lwkt_initport_thread(&td->td_msgport, td);
348     pmap_init_thread(td);
349 #ifdef SMP
350     /*
351      * Normally initializing a thread for a remote cpu requires sending an
352      * IPI.  However, the idlethread is setup before the other cpus are
353      * activated so we have to treat it as a special case.  XXX manipulation
354      * of gd_tdallq requires the BGL.
355      */
356     if (gd == mygd || td == &gd->gd_idlethread) {
357 	crit_enter_gd(mygd);
358 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
359 	crit_exit_gd(mygd);
360     } else {
361 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
362     }
363 #else
364     crit_enter_gd(mygd);
365     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
366     crit_exit_gd(mygd);
367 #endif
368 }
369 
370 #endif /* _KERNEL */
371 
372 void
373 lwkt_set_comm(thread_t td, const char *ctl, ...)
374 {
375     __va_list va;
376 
377     __va_start(va, ctl);
378     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
379     __va_end(va);
380 }
381 
382 void
383 lwkt_hold(thread_t td)
384 {
385     ++td->td_refs;
386 }
387 
388 void
389 lwkt_rele(thread_t td)
390 {
391     KKASSERT(td->td_refs > 0);
392     --td->td_refs;
393 }
394 
395 #ifdef _KERNEL
396 
397 void
398 lwkt_wait_free(thread_t td)
399 {
400     while (td->td_refs)
401 	tsleep(td, 0, "tdreap", hz);
402 }
403 
404 #endif
405 
406 void
407 lwkt_free_thread(thread_t td)
408 {
409     struct globaldata *gd = mycpu;
410 
411     KASSERT((td->td_flags & TDF_RUNNING) == 0,
412 	("lwkt_free_thread: did not exit! %p", td));
413 
414     crit_enter_gd(gd);
415     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
416 	(td->td_flags & TDF_ALLOCATED_THREAD)
417     ) {
418 	++gd->gd_tdfreecount;
419 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
420 	crit_exit_gd(gd);
421     } else {
422 	crit_exit_gd(gd);
423 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
424 #ifdef _KERNEL
425 	    kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
426 #else
427 	    libcaps_free_stack(td->td_kstack, td->td_kstack_size);
428 #endif
429 	    /* gd invalid */
430 	    td->td_kstack = NULL;
431 	    td->td_kstack_size = 0;
432 	}
433 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
434 #ifdef _KERNEL
435 	    zfree(thread_zone, td);
436 #else
437 	    free(td);
438 #endif
439 	}
440     }
441 }
442 
443 
444 /*
445  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
446  * switch to the idlethread.  Switching must occur within a critical
447  * section to avoid races with the scheduling queue.
448  *
449  * We always have full control over our cpu's run queue.  Other cpus
450  * that wish to manipulate our queue must use the cpu_*msg() calls to
451  * talk to our cpu, so a critical section is all that is needed and
452  * the result is very, very fast thread switching.
453  *
454  * The LWKT scheduler uses a fixed priority model and round-robins at
455  * each priority level.  User process scheduling is a totally
456  * different beast and LWKT priorities should not be confused with
457  * user process priorities.
458  *
459  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
460  * cleans it up.  Note that the td_switch() function cannot do anything that
461  * requires the MP lock since the MP lock will have already been setup for
462  * the target thread (not the current thread).  It's nice to have a scheduler
463  * that does not need the MP lock to work because it allows us to do some
464  * really cool high-performance MP lock optimizations.
465  *
466  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
467  * is not called by the current thread in the preemption case, only when
468  * the preempting thread blocks (in order to return to the original thread).
469  */
470 void
471 lwkt_switch(void)
472 {
473     globaldata_t gd = mycpu;
474     thread_t td = gd->gd_curthread;
475     thread_t ntd;
476 #ifdef SMP
477     int mpheld;
478 #endif
479 
480     /*
481      * Switching from within a 'fast' (non thread switched) interrupt or IPI
482      * is illegal.  However, we may have to do it anyway if we hit a fatal
483      * kernel trap or we have paniced.
484      *
485      * If this case occurs save and restore the interrupt nesting level.
486      */
487     if (gd->gd_intr_nesting_level) {
488 	int savegdnest;
489 	int savegdtrap;
490 
491 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
492 	    panic("lwkt_switch: cannot switch from within "
493 		  "a fast interrupt, yet, td %p\n", td);
494 	} else {
495 	    savegdnest = gd->gd_intr_nesting_level;
496 	    savegdtrap = gd->gd_trap_nesting_level;
497 	    gd->gd_intr_nesting_level = 0;
498 	    gd->gd_trap_nesting_level = 0;
499 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
500 		td->td_flags |= TDF_PANICWARN;
501 		kprintf("Warning: thread switch from interrupt or IPI, "
502 			"thread %p (%s)\n", td, td->td_comm);
503 #ifdef DDB
504 		db_print_backtrace();
505 #endif
506 	    }
507 	    lwkt_switch();
508 	    gd->gd_intr_nesting_level = savegdnest;
509 	    gd->gd_trap_nesting_level = savegdtrap;
510 	    return;
511 	}
512     }
513 
514     /*
515      * Passive release (used to transition from user to kernel mode
516      * when we block or switch rather then when we enter the kernel).
517      * This function is NOT called if we are switching into a preemption
518      * or returning from a preemption.  Typically this causes us to lose
519      * our current process designation (if we have one) and become a true
520      * LWKT thread, and may also hand the current process designation to
521      * another process and schedule thread.
522      */
523     if (td->td_release)
524 	    td->td_release(td);
525 
526     crit_enter_gd(gd);
527     if (td->td_toks)
528 	    lwkt_relalltokens(td);
529 
530     /*
531      * We had better not be holding any spin locks, but don't get into an
532      * endless panic loop.
533      */
534     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
535 	    ("lwkt_switch: still holding a shared spinlock %p!",
536 	     gd->gd_spinlock_rd));
537     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
538 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
539 	     gd->gd_spinlocks_wr));
540 
541 
542 #ifdef SMP
543     /*
544      * td_mpcount cannot be used to determine if we currently hold the
545      * MP lock because get_mplock() will increment it prior to attempting
546      * to get the lock, and switch out if it can't.  Our ownership of
547      * the actual lock will remain stable while we are in a critical section
548      * (but, of course, another cpu may own or release the lock so the
549      * actual value of mp_lock is not stable).
550      */
551     mpheld = MP_LOCK_HELD();
552 #ifdef	INVARIANTS
553     if (td->td_cscount) {
554 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
555 		td);
556 	if (panic_on_cscount)
557 	    panic("switching while mastering cpusync");
558     }
559 #endif
560 #endif
561     if ((ntd = td->td_preempted) != NULL) {
562 	/*
563 	 * We had preempted another thread on this cpu, resume the preempted
564 	 * thread.  This occurs transparently, whether the preempted thread
565 	 * was scheduled or not (it may have been preempted after descheduling
566 	 * itself).
567 	 *
568 	 * We have to setup the MP lock for the original thread after backing
569 	 * out the adjustment that was made to curthread when the original
570 	 * was preempted.
571 	 */
572 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
573 #ifdef SMP
574 	if (ntd->td_mpcount && mpheld == 0) {
575 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
576 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
577 	}
578 	if (ntd->td_mpcount) {
579 	    td->td_mpcount -= ntd->td_mpcount;
580 	    KKASSERT(td->td_mpcount >= 0);
581 	}
582 #endif
583 	ntd->td_flags |= TDF_PREEMPT_DONE;
584 
585 	/*
586 	 * XXX.  The interrupt may have woken a thread up, we need to properly
587 	 * set the reschedule flag if the originally interrupted thread is at
588 	 * a lower priority.
589 	 */
590 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
591 	    need_lwkt_resched();
592 	/* YYY release mp lock on switchback if original doesn't need it */
593     } else {
594 	/*
595 	 * Priority queue / round-robin at each priority.  Note that user
596 	 * processes run at a fixed, low priority and the user process
597 	 * scheduler deals with interactions between user processes
598 	 * by scheduling and descheduling them from the LWKT queue as
599 	 * necessary.
600 	 *
601 	 * We have to adjust the MP lock for the target thread.  If we
602 	 * need the MP lock and cannot obtain it we try to locate a
603 	 * thread that does not need the MP lock.  If we cannot, we spin
604 	 * instead of HLT.
605 	 *
606 	 * A similar issue exists for the tokens held by the target thread.
607 	 * If we cannot obtain ownership of the tokens we cannot immediately
608 	 * schedule the thread.
609 	 */
610 
611 	/*
612 	 * If an LWKT reschedule was requested, well that is what we are
613 	 * doing now so clear it.
614 	 */
615 	clear_lwkt_resched();
616 again:
617 	if (gd->gd_runqmask) {
618 	    int nq = bsrl(gd->gd_runqmask);
619 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
620 		gd->gd_runqmask &= ~(1 << nq);
621 		goto again;
622 	    }
623 #ifdef SMP
624 	    /*
625 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
626 	     *
627 	     * If the target needs the MP lock and we couldn't get it,
628 	     * or if the target is holding tokens and we could not
629 	     * gain ownership of the tokens, continue looking for a
630 	     * thread to schedule and spin instead of HLT if we can't.
631 	     *
632 	     * NOTE: the mpheld variable invalid after this conditional, it
633 	     * can change due to both cpu_try_mplock() returning success
634 	     * AND interactions in lwkt_getalltokens() due to the fact that
635 	     * we are trying to check the mpcount of a thread other then
636 	     * the current thread.  Because of this, if the current thread
637 	     * is not holding td_mpcount, an IPI indirectly run via
638 	     * lwkt_getalltokens() can obtain and release the MP lock and
639 	     * cause the core MP lock to be released.
640 	     */
641 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
642 		(ntd->td_toks && lwkt_getalltokens(ntd) == 0)
643 	    ) {
644 		u_int32_t rqmask = gd->gd_runqmask;
645 
646 		mpheld = MP_LOCK_HELD();
647 		ntd = NULL;
648 		while (rqmask) {
649 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
650 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
651 			    /* spinning due to MP lock being held */
652 #ifdef	INVARIANTS
653 			    ++mplock_contention_count;
654 #endif
655 			    /* mplock still not held, 'mpheld' still valid */
656 			    continue;
657 			}
658 
659 			/*
660 			 * mpheld state invalid after getalltokens call returns
661 			 * failure, but the variable is only needed for
662 			 * the loop.
663 			 */
664 			if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
665 			    /* spinning due to token contention */
666 #ifdef	INVARIANTS
667 			    ++token_contention_count;
668 #endif
669 			    mpheld = MP_LOCK_HELD();
670 			    continue;
671 			}
672 			break;
673 		    }
674 		    if (ntd)
675 			break;
676 		    rqmask &= ~(1 << nq);
677 		    nq = bsrl(rqmask);
678 		}
679 		if (ntd == NULL) {
680 		    cpu_mplock_contested();
681 		    ntd = &gd->gd_idlethread;
682 		    ntd->td_flags |= TDF_IDLE_NOHLT;
683 		    goto using_idle_thread;
684 		} else {
685 		    ++gd->gd_cnt.v_swtch;
686 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
687 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
688 		}
689 	    } else {
690 		++gd->gd_cnt.v_swtch;
691 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
692 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
693 	    }
694 #else
695 	    /*
696 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
697 	     * worry about tokens or the BGL.  However, we still have
698 	     * to call lwkt_getalltokens() in order to properly detect
699 	     * stale tokens.  This call cannot fail for a UP build!
700 	     */
701 	    lwkt_getalltokens(ntd);
702 	    ++gd->gd_cnt.v_swtch;
703 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
704 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
705 #endif
706 	} else {
707 	    /*
708 	     * We have nothing to run but only let the idle loop halt
709 	     * the cpu if there are no pending interrupts.
710 	     */
711 	    ntd = &gd->gd_idlethread;
712 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
713 		ntd->td_flags |= TDF_IDLE_NOHLT;
714 #ifdef SMP
715 using_idle_thread:
716 	    /*
717 	     * The idle thread should not be holding the MP lock unless we
718 	     * are trapping in the kernel or in a panic.  Since we select the
719 	     * idle thread unconditionally when no other thread is available,
720 	     * if the MP lock is desired during a panic or kernel trap, we
721 	     * have to loop in the scheduler until we get it.
722 	     */
723 	    if (ntd->td_mpcount) {
724 		mpheld = MP_LOCK_HELD();
725 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
726 		    panic("Idle thread %p was holding the BGL!", ntd);
727 		} else if (mpheld == 0) {
728 		    cpu_mplock_contested();
729 		    goto again;
730 		}
731 	    }
732 #endif
733 	}
734     }
735     KASSERT(ntd->td_pri >= TDPRI_CRIT,
736 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
737 
738     /*
739      * Do the actual switch.  If the new target does not need the MP lock
740      * and we are holding it, release the MP lock.  If the new target requires
741      * the MP lock we have already acquired it for the target.
742      */
743 #ifdef SMP
744     if (ntd->td_mpcount == 0 ) {
745 	if (MP_LOCK_HELD())
746 	    cpu_rel_mplock();
747     } else {
748 	ASSERT_MP_LOCK_HELD(ntd);
749     }
750 #endif
751     if (td != ntd) {
752 	++switch_count;
753 	td->td_switch(ntd);
754     }
755     /* NOTE: current cpu may have changed after switch */
756     crit_exit_quick(td);
757 }
758 
759 /*
760  * Request that the target thread preempt the current thread.  Preemption
761  * only works under a specific set of conditions:
762  *
763  *	- We are not preempting ourselves
764  *	- The target thread is owned by the current cpu
765  *	- We are not currently being preempted
766  *	- The target is not currently being preempted
767  *	- We are not holding any spin locks
768  *	- The target thread is not holding any tokens
769  *	- We are able to satisfy the target's MP lock requirements (if any).
770  *
771  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
772  * this is called via lwkt_schedule() through the td_preemptable callback.
773  * critpri is the managed critical priority that we should ignore in order
774  * to determine whether preemption is possible (aka usually just the crit
775  * priority of lwkt_schedule() itself).
776  *
777  * XXX at the moment we run the target thread in a critical section during
778  * the preemption in order to prevent the target from taking interrupts
779  * that *WE* can't.  Preemption is strictly limited to interrupt threads
780  * and interrupt-like threads, outside of a critical section, and the
781  * preempted source thread will be resumed the instant the target blocks
782  * whether or not the source is scheduled (i.e. preemption is supposed to
783  * be as transparent as possible).
784  *
785  * The target thread inherits our MP count (added to its own) for the
786  * duration of the preemption in order to preserve the atomicy of the
787  * MP lock during the preemption.  Therefore, any preempting targets must be
788  * careful in regards to MP assertions.  Note that the MP count may be
789  * out of sync with the physical mp_lock, but we do not have to preserve
790  * the original ownership of the lock if it was out of synch (that is, we
791  * can leave it synchronized on return).
792  */
793 void
794 lwkt_preempt(thread_t ntd, int critpri)
795 {
796     struct globaldata *gd = mycpu;
797     thread_t td;
798 #ifdef SMP
799     int mpheld;
800     int savecnt;
801 #endif
802 
803     /*
804      * The caller has put us in a critical section.  We can only preempt
805      * if the caller of the caller was not in a critical section (basically
806      * a local interrupt), as determined by the 'critpri' parameter.  We
807      * also can't preempt if the caller is holding any spinlocks (even if
808      * he isn't in a critical section).  This also handles the tokens test.
809      *
810      * YYY The target thread must be in a critical section (else it must
811      * inherit our critical section?  I dunno yet).
812      *
813      * Set need_lwkt_resched() unconditionally for now YYY.
814      */
815     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
816 
817     td = gd->gd_curthread;
818     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
819 	++preempt_miss;
820 	return;
821     }
822     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
823 	++preempt_miss;
824 	need_lwkt_resched();
825 	return;
826     }
827 #ifdef SMP
828     if (ntd->td_gd != gd) {
829 	++preempt_miss;
830 	need_lwkt_resched();
831 	return;
832     }
833 #endif
834     /*
835      * Take the easy way out and do not preempt if we are holding
836      * any spinlocks.  We could test whether the thread(s) being
837      * preempted interlock against the target thread's tokens and whether
838      * we can get all the target thread's tokens, but this situation
839      * should not occur very often so its easier to simply not preempt.
840      * Also, plain spinlocks are impossible to figure out at this point so
841      * just don't preempt.
842      *
843      * Do not try to preempt if the target thread is holding any tokens.
844      * We could try to acquire the tokens but this case is so rare there
845      * is no need to support it.
846      */
847     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
848 	++preempt_miss;
849 	need_lwkt_resched();
850 	return;
851     }
852     if (ntd->td_toks) {
853 	++preempt_miss;
854 	need_lwkt_resched();
855 	return;
856     }
857     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
858 	++preempt_weird;
859 	need_lwkt_resched();
860 	return;
861     }
862     if (ntd->td_preempted) {
863 	++preempt_hit;
864 	need_lwkt_resched();
865 	return;
866     }
867 #ifdef SMP
868     /*
869      * note: an interrupt might have occured just as we were transitioning
870      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
871      * (non-zero) but not actually synchronized with the actual state of the
872      * lock.  We can use it to imply an MP lock requirement for the
873      * preemption but we cannot use it to test whether we hold the MP lock
874      * or not.
875      */
876     savecnt = td->td_mpcount;
877     mpheld = MP_LOCK_HELD();
878     ntd->td_mpcount += td->td_mpcount;
879     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
880 	ntd->td_mpcount -= td->td_mpcount;
881 	++preempt_miss;
882 	need_lwkt_resched();
883 	return;
884     }
885 #endif
886 
887     /*
888      * Since we are able to preempt the current thread, there is no need to
889      * call need_lwkt_resched().
890      */
891     ++preempt_hit;
892     ntd->td_preempted = td;
893     td->td_flags |= TDF_PREEMPT_LOCK;
894     td->td_switch(ntd);
895     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
896 #ifdef SMP
897     KKASSERT(savecnt == td->td_mpcount);
898     mpheld = MP_LOCK_HELD();
899     if (mpheld && td->td_mpcount == 0)
900 	cpu_rel_mplock();
901     else if (mpheld == 0 && td->td_mpcount)
902 	panic("lwkt_preempt(): MP lock was not held through");
903 #endif
904     ntd->td_preempted = NULL;
905     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
906 }
907 
908 /*
909  * Yield our thread while higher priority threads are pending.  This is
910  * typically called when we leave a critical section but it can be safely
911  * called while we are in a critical section.
912  *
913  * This function will not generally yield to equal priority threads but it
914  * can occur as a side effect.  Note that lwkt_switch() is called from
915  * inside the critical section to prevent its own crit_exit() from reentering
916  * lwkt_yield_quick().
917  *
918  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
919  * came along but was blocked and made pending.
920  *
921  * (self contained on a per cpu basis)
922  */
923 void
924 lwkt_yield_quick(void)
925 {
926     globaldata_t gd = mycpu;
927     thread_t td = gd->gd_curthread;
928 
929     /*
930      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
931      * it with a non-zero cpl then we might not wind up calling splz after
932      * a task switch when the critical section is exited even though the
933      * new task could accept the interrupt.
934      *
935      * XXX from crit_exit() only called after last crit section is released.
936      * If called directly will run splz() even if in a critical section.
937      *
938      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
939      * except for this special case, we MUST call splz() here to handle any
940      * pending ints, particularly after we switch, or we might accidently
941      * halt the cpu with interrupts pending.
942      */
943     if (gd->gd_reqflags && td->td_nest_count < 2)
944 	splz();
945 
946     /*
947      * YYY enabling will cause wakeup() to task-switch, which really
948      * confused the old 4.x code.  This is a good way to simulate
949      * preemption and MP without actually doing preemption or MP, because a
950      * lot of code assumes that wakeup() does not block.
951      */
952     if (untimely_switch && td->td_nest_count == 0 &&
953 	gd->gd_intr_nesting_level == 0
954     ) {
955 	crit_enter_quick(td);
956 	/*
957 	 * YYY temporary hacks until we disassociate the userland scheduler
958 	 * from the LWKT scheduler.
959 	 */
960 	if (td->td_flags & TDF_RUNQ) {
961 	    lwkt_switch();		/* will not reenter yield function */
962 	} else {
963 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
964 	    lwkt_switch();		/* will not reenter yield function */
965 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
966 	}
967 	crit_exit_noyield(td);
968     }
969 }
970 
971 /*
972  * This implements a normal yield which, unlike _quick, will yield to equal
973  * priority threads as well.  Note that gd_reqflags tests will be handled by
974  * the crit_exit() call in lwkt_switch().
975  *
976  * (self contained on a per cpu basis)
977  */
978 void
979 lwkt_yield(void)
980 {
981     lwkt_schedule_self(curthread);
982     lwkt_switch();
983 }
984 
985 /*
986  * Generic schedule.  Possibly schedule threads belonging to other cpus and
987  * deal with threads that might be blocked on a wait queue.
988  *
989  * We have a little helper inline function which does additional work after
990  * the thread has been enqueued, including dealing with preemption and
991  * setting need_lwkt_resched() (which prevents the kernel from returning
992  * to userland until it has processed higher priority threads).
993  *
994  * It is possible for this routine to be called after a failed _enqueue
995  * (due to the target thread migrating, sleeping, or otherwise blocked).
996  * We have to check that the thread is actually on the run queue!
997  */
998 static __inline
999 void
1000 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
1001 {
1002     if (ntd->td_flags & TDF_RUNQ) {
1003 	if (ntd->td_preemptable) {
1004 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
1005 	} else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
1006 	    (ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
1007 	) {
1008 	    need_lwkt_resched();
1009 	}
1010     }
1011 }
1012 
1013 void
1014 lwkt_schedule(thread_t td)
1015 {
1016     globaldata_t mygd = mycpu;
1017 
1018     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1019     crit_enter_gd(mygd);
1020     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1021     if (td == mygd->gd_curthread) {
1022 	_lwkt_enqueue(td);
1023     } else {
1024 	/*
1025 	 * If we own the thread, there is no race (since we are in a
1026 	 * critical section).  If we do not own the thread there might
1027 	 * be a race but the target cpu will deal with it.
1028 	 */
1029 #ifdef SMP
1030 	if (td->td_gd == mygd) {
1031 	    _lwkt_enqueue(td);
1032 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1033 	} else {
1034 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1035 	}
1036 #else
1037 	_lwkt_enqueue(td);
1038 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1039 #endif
1040     }
1041     crit_exit_gd(mygd);
1042 }
1043 
1044 #ifdef SMP
1045 
1046 /*
1047  * Thread migration using a 'Pull' method.  The thread may or may not be
1048  * the current thread.  It MUST be descheduled and in a stable state.
1049  * lwkt_giveaway() must be called on the cpu owning the thread.
1050  *
1051  * At any point after lwkt_giveaway() is called, the target cpu may
1052  * 'pull' the thread by calling lwkt_acquire().
1053  *
1054  * MPSAFE - must be called under very specific conditions.
1055  */
1056 void
1057 lwkt_giveaway(thread_t td)
1058 {
1059 	globaldata_t gd = mycpu;
1060 
1061 	crit_enter_gd(gd);
1062 	KKASSERT(td->td_gd == gd);
1063 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1064 	td->td_flags |= TDF_MIGRATING;
1065 	crit_exit_gd(gd);
1066 }
1067 
1068 void
1069 lwkt_acquire(thread_t td)
1070 {
1071     globaldata_t gd;
1072     globaldata_t mygd;
1073 
1074     KKASSERT(td->td_flags & TDF_MIGRATING);
1075     gd = td->td_gd;
1076     mygd = mycpu;
1077     if (gd != mycpu) {
1078 	cpu_lfence();
1079 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1080 	crit_enter_gd(mygd);
1081 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK))
1082 	    cpu_lfence();
1083 	td->td_gd = mygd;
1084 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1085 	td->td_flags &= ~TDF_MIGRATING;
1086 	crit_exit_gd(mygd);
1087     } else {
1088 	crit_enter_gd(mygd);
1089 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1090 	td->td_flags &= ~TDF_MIGRATING;
1091 	crit_exit_gd(mygd);
1092     }
1093 }
1094 
1095 #endif
1096 
1097 /*
1098  * Generic deschedule.  Descheduling threads other then your own should be
1099  * done only in carefully controlled circumstances.  Descheduling is
1100  * asynchronous.
1101  *
1102  * This function may block if the cpu has run out of messages.
1103  */
1104 void
1105 lwkt_deschedule(thread_t td)
1106 {
1107     crit_enter();
1108 #ifdef SMP
1109     if (td == curthread) {
1110 	_lwkt_dequeue(td);
1111     } else {
1112 	if (td->td_gd == mycpu) {
1113 	    _lwkt_dequeue(td);
1114 	} else {
1115 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1116 	}
1117     }
1118 #else
1119     _lwkt_dequeue(td);
1120 #endif
1121     crit_exit();
1122 }
1123 
1124 /*
1125  * Set the target thread's priority.  This routine does not automatically
1126  * switch to a higher priority thread, LWKT threads are not designed for
1127  * continuous priority changes.  Yield if you want to switch.
1128  *
1129  * We have to retain the critical section count which uses the high bits
1130  * of the td_pri field.  The specified priority may also indicate zero or
1131  * more critical sections by adding TDPRI_CRIT*N.
1132  *
1133  * Note that we requeue the thread whether it winds up on a different runq
1134  * or not.  uio_yield() depends on this and the routine is not normally
1135  * called with the same priority otherwise.
1136  */
1137 void
1138 lwkt_setpri(thread_t td, int pri)
1139 {
1140     KKASSERT(pri >= 0);
1141     KKASSERT(td->td_gd == mycpu);
1142     crit_enter();
1143     if (td->td_flags & TDF_RUNQ) {
1144 	_lwkt_dequeue(td);
1145 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1146 	_lwkt_enqueue(td);
1147     } else {
1148 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1149     }
1150     crit_exit();
1151 }
1152 
1153 void
1154 lwkt_setpri_self(int pri)
1155 {
1156     thread_t td = curthread;
1157 
1158     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1159     crit_enter();
1160     if (td->td_flags & TDF_RUNQ) {
1161 	_lwkt_dequeue(td);
1162 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1163 	_lwkt_enqueue(td);
1164     } else {
1165 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1166     }
1167     crit_exit();
1168 }
1169 
1170 /*
1171  * Determine if there is a runnable thread at a higher priority then
1172  * the current thread.  lwkt_setpri() does not check this automatically.
1173  * Return 1 if there is, 0 if there isn't.
1174  *
1175  * Example: if bit 31 of runqmask is set and the current thread is priority
1176  * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1177  *
1178  * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1179  * up comparing against 0xffffffff, a comparison that will always be false.
1180  */
1181 int
1182 lwkt_checkpri_self(void)
1183 {
1184     globaldata_t gd = mycpu;
1185     thread_t td = gd->gd_curthread;
1186     int nq = td->td_pri & TDPRI_MASK;
1187 
1188     while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1189 	if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1190 	    return(1);
1191 	++nq;
1192     }
1193     return(0);
1194 }
1195 
1196 /*
1197  * Migrate the current thread to the specified cpu.
1198  *
1199  * This is accomplished by descheduling ourselves from the current cpu,
1200  * moving our thread to the tdallq of the target cpu, IPI messaging the
1201  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1202  * races while the thread is being migrated.
1203  */
1204 #ifdef SMP
1205 static void lwkt_setcpu_remote(void *arg);
1206 #endif
1207 
1208 void
1209 lwkt_setcpu_self(globaldata_t rgd)
1210 {
1211 #ifdef SMP
1212     thread_t td = curthread;
1213 
1214     if (td->td_gd != rgd) {
1215 	crit_enter_quick(td);
1216 	td->td_flags |= TDF_MIGRATING;
1217 	lwkt_deschedule_self(td);
1218 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1219 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1220 	lwkt_switch();
1221 	/* we are now on the target cpu */
1222 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1223 	crit_exit_quick(td);
1224     }
1225 #endif
1226 }
1227 
1228 void
1229 lwkt_migratecpu(int cpuid)
1230 {
1231 #ifdef SMP
1232 	globaldata_t rgd;
1233 
1234 	rgd = globaldata_find(cpuid);
1235 	lwkt_setcpu_self(rgd);
1236 #endif
1237 }
1238 
1239 /*
1240  * Remote IPI for cpu migration (called while in a critical section so we
1241  * do not have to enter another one).  The thread has already been moved to
1242  * our cpu's allq, but we must wait for the thread to be completely switched
1243  * out on the originating cpu before we schedule it on ours or the stack
1244  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1245  * change to main memory.
1246  *
1247  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1248  * against wakeups.  It is best if this interface is used only when there
1249  * are no pending events that might try to schedule the thread.
1250  */
1251 #ifdef SMP
1252 static void
1253 lwkt_setcpu_remote(void *arg)
1254 {
1255     thread_t td = arg;
1256     globaldata_t gd = mycpu;
1257 
1258     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK))
1259 	cpu_lfence();
1260     td->td_gd = gd;
1261     cpu_sfence();
1262     td->td_flags &= ~TDF_MIGRATING;
1263     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1264     _lwkt_enqueue(td);
1265 }
1266 #endif
1267 
1268 struct lwp *
1269 lwkt_preempted_proc(void)
1270 {
1271     thread_t td = curthread;
1272     while (td->td_preempted)
1273 	td = td->td_preempted;
1274     return(td->td_lwp);
1275 }
1276 
1277 /*
1278  * Create a kernel process/thread/whatever.  It shares it's address space
1279  * with proc0 - ie: kernel only.
1280  *
1281  * NOTE!  By default new threads are created with the MP lock held.  A
1282  * thread which does not require the MP lock should release it by calling
1283  * rel_mplock() at the start of the new thread.
1284  */
1285 int
1286 lwkt_create(void (*func)(void *), void *arg,
1287     struct thread **tdp, thread_t template, int tdflags, int cpu,
1288     const char *fmt, ...)
1289 {
1290     thread_t td;
1291     __va_list ap;
1292 
1293     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1294 			   tdflags);
1295     if (tdp)
1296 	*tdp = td;
1297     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1298 
1299     /*
1300      * Set up arg0 for 'ps' etc
1301      */
1302     __va_start(ap, fmt);
1303     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1304     __va_end(ap);
1305 
1306     /*
1307      * Schedule the thread to run
1308      */
1309     if ((td->td_flags & TDF_STOPREQ) == 0)
1310 	lwkt_schedule(td);
1311     else
1312 	td->td_flags &= ~TDF_STOPREQ;
1313     return 0;
1314 }
1315 
1316 /*
1317  * kthread_* is specific to the kernel and is not needed by userland.
1318  */
1319 #ifdef _KERNEL
1320 
1321 /*
1322  * Destroy an LWKT thread.   Warning!  This function is not called when
1323  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1324  * uses a different reaping mechanism.
1325  */
1326 void
1327 lwkt_exit(void)
1328 {
1329     thread_t td = curthread;
1330     globaldata_t gd;
1331 
1332     if (td->td_flags & TDF_VERBOSE)
1333 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1334     caps_exit(td);
1335     crit_enter_quick(td);
1336     lwkt_deschedule_self(td);
1337     gd = mycpu;
1338     lwkt_remove_tdallq(td);
1339     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1340 	++gd->gd_tdfreecount;
1341 	TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1342     }
1343     cpu_thread_exit();
1344 }
1345 
1346 void
1347 lwkt_remove_tdallq(thread_t td)
1348 {
1349     KKASSERT(td->td_gd == mycpu);
1350     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1351 }
1352 
1353 #endif /* _KERNEL */
1354 
1355 void
1356 crit_panic(void)
1357 {
1358     thread_t td = curthread;
1359     int lpri = td->td_pri;
1360 
1361     td->td_pri = 0;
1362     panic("td_pri is/would-go negative! %p %d", td, lpri);
1363 }
1364 
1365 #ifdef SMP
1366 
1367 /*
1368  * Called from debugger/panic on cpus which have been stopped.  We must still
1369  * process the IPIQ while stopped, even if we were stopped while in a critical
1370  * section (XXX).
1371  *
1372  * If we are dumping also try to process any pending interrupts.  This may
1373  * or may not work depending on the state of the cpu at the point it was
1374  * stopped.
1375  */
1376 void
1377 lwkt_smp_stopped(void)
1378 {
1379     globaldata_t gd = mycpu;
1380 
1381     crit_enter_gd(gd);
1382     if (dumping) {
1383 	lwkt_process_ipiq();
1384 	splz();
1385     } else {
1386 	lwkt_process_ipiq();
1387     }
1388     crit_exit_gd(gd);
1389 }
1390 
1391 /*
1392  * get_mplock() calls this routine if it is unable to obtain the MP lock.
1393  * get_mplock() has already incremented td_mpcount.  We must block and
1394  * not return until giant is held.
1395  *
1396  * All we have to do is lwkt_switch() away.  The LWKT scheduler will not
1397  * reschedule the thread until it can obtain the giant lock for it.
1398  */
1399 void
1400 lwkt_mp_lock_contested(void)
1401 {
1402 #ifdef _KERNEL
1403     loggiant(beg);
1404 #endif
1405     lwkt_switch();
1406 #ifdef _KERNEL
1407     loggiant(end);
1408 #endif
1409 }
1410 
1411 #endif
1412