xref: /dragonfly/sys/kern/lwkt_thread.c (revision aa8d5dcb)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.56 2004/03/01 06:33:17 dillon Exp $
27  */
28 
29 /*
30  * Each cpu in a system has its own self-contained light weight kernel
31  * thread scheduler, which means that generally speaking we only need
32  * to use a critical section to avoid problems.  Foreign thread
33  * scheduling is queued via (async) IPIs.
34  */
35 
36 #ifdef _KERNEL
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/rtprio.h>
43 #include <sys/queue.h>
44 #include <sys/thread2.h>
45 #include <sys/sysctl.h>
46 #include <sys/kthread.h>
47 #include <machine/cpu.h>
48 #include <sys/lock.h>
49 #include <sys/caps.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_page.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/vm_extern.h>
59 #include <vm/vm_zone.h>
60 
61 #include <machine/stdarg.h>
62 #include <machine/ipl.h>
63 #include <machine/smp.h>
64 
65 #define THREAD_STACK	(UPAGES * PAGE_SIZE)
66 
67 #else
68 
69 #include <sys/stdint.h>
70 #include <libcaps/thread.h>
71 #include <sys/thread.h>
72 #include <sys/msgport.h>
73 #include <sys/errno.h>
74 #include <libcaps/globaldata.h>
75 #include <sys/thread2.h>
76 #include <sys/msgport2.h>
77 #include <stdio.h>
78 #include <stdlib.h>
79 #include <string.h>
80 #include <machine/cpufunc.h>
81 #include <machine/lock.h>
82 
83 #endif
84 
85 static int untimely_switch = 0;
86 #ifdef	INVARIANTS
87 static int panic_on_cscount = 0;
88 #endif
89 static __int64_t switch_count = 0;
90 static __int64_t preempt_hit = 0;
91 static __int64_t preempt_miss = 0;
92 static __int64_t preempt_weird = 0;
93 
94 #ifdef _KERNEL
95 
96 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
97 #ifdef	INVARIANTS
98 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
99 #endif
100 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
101 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
102 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
103 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
104 
105 #endif
106 
107 /*
108  * These helper procedures handle the runq, they can only be called from
109  * within a critical section.
110  *
111  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
112  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
113  * instead of 'mycpu' when referencing the globaldata structure.   Once
114  * SMP live enqueuing and dequeueing only occurs on the current cpu.
115  */
116 static __inline
117 void
118 _lwkt_dequeue(thread_t td)
119 {
120     if (td->td_flags & TDF_RUNQ) {
121 	int nq = td->td_pri & TDPRI_MASK;
122 	struct globaldata *gd = td->td_gd;
123 
124 	td->td_flags &= ~TDF_RUNQ;
125 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
126 	/* runqmask is passively cleaned up by the switcher */
127     }
128 }
129 
130 static __inline
131 void
132 _lwkt_enqueue(thread_t td)
133 {
134     if ((td->td_flags & TDF_RUNQ) == 0) {
135 	int nq = td->td_pri & TDPRI_MASK;
136 	struct globaldata *gd = td->td_gd;
137 
138 	td->td_flags |= TDF_RUNQ;
139 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
140 	gd->gd_runqmask |= 1 << nq;
141     }
142 }
143 
144 static __inline
145 int
146 _lwkt_wantresched(thread_t ntd, thread_t cur)
147 {
148     return((ntd->td_pri & TDPRI_MASK) > (cur->td_pri & TDPRI_MASK));
149 }
150 
151 #ifdef _KERNEL
152 
153 /*
154  * LWKTs operate on a per-cpu basis
155  *
156  * WARNING!  Called from early boot, 'mycpu' may not work yet.
157  */
158 void
159 lwkt_gdinit(struct globaldata *gd)
160 {
161     int i;
162 
163     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
164 	TAILQ_INIT(&gd->gd_tdrunq[i]);
165     gd->gd_runqmask = 0;
166     TAILQ_INIT(&gd->gd_tdallq);
167 }
168 
169 #endif /* _KERNEL */
170 
171 /*
172  * Initialize a thread wait structure prior to first use.
173  *
174  * NOTE!  called from low level boot code, we cannot do anything fancy!
175  */
176 void
177 lwkt_wait_init(lwkt_wait_t w)
178 {
179     lwkt_token_init(&w->wa_token);
180     TAILQ_INIT(&w->wa_waitq);
181     w->wa_gen = 0;
182     w->wa_count = 0;
183 }
184 
185 /*
186  * Create a new thread.  The thread must be associated with a process context
187  * or LWKT start address before it can be scheduled.  If the target cpu is
188  * -1 the thread will be created on the current cpu.
189  *
190  * If you intend to create a thread without a process context this function
191  * does everything except load the startup and switcher function.
192  */
193 thread_t
194 lwkt_alloc_thread(struct thread *td, int cpu)
195 {
196     void *stack;
197     int flags = 0;
198 
199     if (td == NULL) {
200 	crit_enter();
201 	if (mycpu->gd_tdfreecount > 0) {
202 	    --mycpu->gd_tdfreecount;
203 	    td = TAILQ_FIRST(&mycpu->gd_tdfreeq);
204 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
205 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
206 	    TAILQ_REMOVE(&mycpu->gd_tdfreeq, td, td_threadq);
207 	    crit_exit();
208 	    stack = td->td_kstack;
209 	    flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
210 	} else {
211 	    crit_exit();
212 #ifdef _KERNEL
213 	    td = zalloc(thread_zone);
214 #else
215 	    td = malloc(sizeof(struct thread));
216 #endif
217 	    td->td_kstack = NULL;
218 	    flags |= TDF_ALLOCATED_THREAD;
219 	}
220     }
221     if ((stack = td->td_kstack) == NULL) {
222 #ifdef _KERNEL
223 	stack = (void *)kmem_alloc(kernel_map, THREAD_STACK);
224 #else
225 	stack = libcaps_alloc_stack(THREAD_STACK);
226 #endif
227 	flags |= TDF_ALLOCATED_STACK;
228     }
229     if (cpu < 0)
230 	lwkt_init_thread(td, stack, flags, mycpu);
231     else
232 	lwkt_init_thread(td, stack, flags, globaldata_find(cpu));
233     return(td);
234 }
235 
236 #ifdef _KERNEL
237 
238 /*
239  * Initialize a preexisting thread structure.  This function is used by
240  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
241  *
242  * All threads start out in a critical section at a priority of
243  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
244  * appropriate.  This function may send an IPI message when the
245  * requested cpu is not the current cpu and consequently gd_tdallq may
246  * not be initialized synchronously from the point of view of the originating
247  * cpu.
248  *
249  * NOTE! we have to be careful in regards to creating threads for other cpus
250  * if SMP has not yet been activated.
251  */
252 #ifdef SMP
253 
254 static void
255 lwkt_init_thread_remote(void *arg)
256 {
257     thread_t td = arg;
258 
259     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
260 }
261 
262 #endif
263 
264 void
265 lwkt_init_thread(thread_t td, void *stack, int flags, struct globaldata *gd)
266 {
267     bzero(td, sizeof(struct thread));
268     td->td_kstack = stack;
269     td->td_flags |= flags;
270     td->td_gd = gd;
271     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
272     lwkt_initport(&td->td_msgport, td);
273     pmap_init_thread(td);
274 #ifdef SMP
275     if (gd == mycpu) {
276 	crit_enter();
277 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
278 	crit_exit();
279     } else {
280 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
281     }
282 #else
283     crit_enter();
284     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
285     crit_exit();
286 #endif
287 }
288 
289 #endif /* _KERNEL */
290 
291 void
292 lwkt_set_comm(thread_t td, const char *ctl, ...)
293 {
294     __va_list va;
295 
296     __va_start(va, ctl);
297     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
298     __va_end(va);
299 }
300 
301 void
302 lwkt_hold(thread_t td)
303 {
304     ++td->td_refs;
305 }
306 
307 void
308 lwkt_rele(thread_t td)
309 {
310     KKASSERT(td->td_refs > 0);
311     --td->td_refs;
312 }
313 
314 #ifdef _KERNEL
315 
316 void
317 lwkt_wait_free(thread_t td)
318 {
319     while (td->td_refs)
320 	tsleep(td, 0, "tdreap", hz);
321 }
322 
323 #endif
324 
325 void
326 lwkt_free_thread(thread_t td)
327 {
328     struct globaldata *gd = mycpu;
329 
330     KASSERT((td->td_flags & TDF_RUNNING) == 0,
331 	("lwkt_free_thread: did not exit! %p", td));
332 
333     crit_enter();
334     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
335     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
336 	(td->td_flags & TDF_ALLOCATED_THREAD)
337     ) {
338 	++gd->gd_tdfreecount;
339 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
340 	crit_exit();
341     } else {
342 	crit_exit();
343 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
344 #ifdef _KERNEL
345 	    kmem_free(kernel_map, (vm_offset_t)td->td_kstack, THREAD_STACK);
346 #else
347 	    libcaps_free_stack(td->td_kstack, THREAD_STACK);
348 #endif
349 	    /* gd invalid */
350 	    td->td_kstack = NULL;
351 	}
352 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
353 #ifdef _KERNEL
354 	    zfree(thread_zone, td);
355 #else
356 	    free(td);
357 #endif
358 	}
359     }
360 }
361 
362 
363 /*
364  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
365  * switch to the idlethread.  Switching must occur within a critical
366  * section to avoid races with the scheduling queue.
367  *
368  * We always have full control over our cpu's run queue.  Other cpus
369  * that wish to manipulate our queue must use the cpu_*msg() calls to
370  * talk to our cpu, so a critical section is all that is needed and
371  * the result is very, very fast thread switching.
372  *
373  * The LWKT scheduler uses a fixed priority model and round-robins at
374  * each priority level.  User process scheduling is a totally
375  * different beast and LWKT priorities should not be confused with
376  * user process priorities.
377  *
378  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
379  * cleans it up.  Note that the td_switch() function cannot do anything that
380  * requires the MP lock since the MP lock will have already been setup for
381  * the target thread (not the current thread).  It's nice to have a scheduler
382  * that does not need the MP lock to work because it allows us to do some
383  * really cool high-performance MP lock optimizations.
384  */
385 
386 void
387 lwkt_switch(void)
388 {
389     globaldata_t gd;
390     thread_t td = curthread;
391     thread_t ntd;
392 #ifdef SMP
393     int mpheld;
394 #endif
395 
396     /*
397      * Switching from within a 'fast' (non thread switched) interrupt is
398      * illegal.
399      */
400     if (mycpu->gd_intr_nesting_level && panicstr == NULL) {
401 	panic("lwkt_switch: cannot switch from within a fast interrupt, yet\n");
402     }
403 
404     /*
405      * Passive release (used to transition from user to kernel mode
406      * when we block or switch rather then when we enter the kernel).
407      * This function is NOT called if we are switching into a preemption
408      * or returning from a preemption.  Typically this causes us to lose
409      * our P_CURPROC designation (if we have one) and become a true LWKT
410      * thread, and may also hand P_CURPROC to another process and schedule
411      * its thread.
412      */
413     if (td->td_release)
414 	    td->td_release(td);
415 
416     crit_enter();
417     ++switch_count;
418 
419 #ifdef SMP
420     /*
421      * td_mpcount cannot be used to determine if we currently hold the
422      * MP lock because get_mplock() will increment it prior to attempting
423      * to get the lock, and switch out if it can't.  Our ownership of
424      * the actual lock will remain stable while we are in a critical section
425      * (but, of course, another cpu may own or release the lock so the
426      * actual value of mp_lock is not stable).
427      */
428     mpheld = MP_LOCK_HELD();
429 #ifdef	INVARIANTS
430     if (td->td_cscount) {
431 	printf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
432 		td);
433 	if (panic_on_cscount)
434 	    panic("switching while mastering cpusync");
435     }
436 #endif
437 #endif
438     if ((ntd = td->td_preempted) != NULL) {
439 	/*
440 	 * We had preempted another thread on this cpu, resume the preempted
441 	 * thread.  This occurs transparently, whether the preempted thread
442 	 * was scheduled or not (it may have been preempted after descheduling
443 	 * itself).
444 	 *
445 	 * We have to setup the MP lock for the original thread after backing
446 	 * out the adjustment that was made to curthread when the original
447 	 * was preempted.
448 	 */
449 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
450 #ifdef SMP
451 	if (ntd->td_mpcount && mpheld == 0) {
452 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d\n",
453 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
454 	}
455 	if (ntd->td_mpcount) {
456 	    td->td_mpcount -= ntd->td_mpcount;
457 	    KKASSERT(td->td_mpcount >= 0);
458 	}
459 #endif
460 	ntd->td_flags |= TDF_PREEMPT_DONE;
461 	/* YYY release mp lock on switchback if original doesn't need it */
462     } else {
463 	/*
464 	 * Priority queue / round-robin at each priority.  Note that user
465 	 * processes run at a fixed, low priority and the user process
466 	 * scheduler deals with interactions between user processes
467 	 * by scheduling and descheduling them from the LWKT queue as
468 	 * necessary.
469 	 *
470 	 * We have to adjust the MP lock for the target thread.  If we
471 	 * need the MP lock and cannot obtain it we try to locate a
472 	 * thread that does not need the MP lock.  If we cannot, we spin
473 	 * instead of HLT.
474 	 *
475 	 * A similar issue exists for the tokens held by the target thread.
476 	 * If we cannot obtain ownership of the tokens we cannot immediately
477 	 * schedule the thread.
478 	 */
479 
480 	/*
481 	 * We are switching threads.  If there are any pending requests for
482 	 * tokens we can satisfy all of them here.
483 	 */
484 	gd = mycpu;
485 #ifdef SMP
486 	if (gd->gd_tokreqbase)
487 		lwkt_drain_token_requests();
488 #endif
489 
490 again:
491 	if (gd->gd_runqmask) {
492 	    int nq = bsrl(gd->gd_runqmask);
493 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
494 		gd->gd_runqmask &= ~(1 << nq);
495 		goto again;
496 	    }
497 #ifdef SMP
498 	    /*
499 	     * If the target needs the MP lock and we couldn't get it,
500 	     * or if the target is holding tokens and we could not
501 	     * gain ownership of the tokens, continue looking for a
502 	     * thread to schedule and spin instead of HLT if we can't.
503 	     */
504 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
505 		(ntd->td_toks && lwkt_chktokens(ntd) == 0)
506 	    ) {
507 		u_int32_t rqmask = gd->gd_runqmask;
508 		while (rqmask) {
509 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
510 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock())
511 			    continue;
512 			mpheld = MP_LOCK_HELD();
513 			if (ntd->td_toks && !lwkt_chktokens(ntd))
514 			    continue;
515 			break;
516 		    }
517 		    if (ntd)
518 			break;
519 		    rqmask &= ~(1 << nq);
520 		    nq = bsrl(rqmask);
521 		}
522 		if (ntd == NULL) {
523 		    ntd = &gd->gd_idlethread;
524 		    ntd->td_flags |= TDF_IDLE_NOHLT;
525 		} else {
526 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
527 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
528 		}
529 	    } else {
530 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
531 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
532 	    }
533 #else
534 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
535 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
536 #endif
537 	} else {
538 	    /*
539 	     * We have nothing to run but only let the idle loop halt
540 	     * the cpu if there are no pending interrupts.
541 	     */
542 	    ntd = &gd->gd_idlethread;
543 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
544 		ntd->td_flags |= TDF_IDLE_NOHLT;
545 	}
546     }
547     KASSERT(ntd->td_pri >= TDPRI_CRIT,
548 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
549 
550     /*
551      * Do the actual switch.  If the new target does not need the MP lock
552      * and we are holding it, release the MP lock.  If the new target requires
553      * the MP lock we have already acquired it for the target.
554      */
555 #ifdef SMP
556     if (ntd->td_mpcount == 0 ) {
557 	if (MP_LOCK_HELD())
558 	    cpu_rel_mplock();
559     } else {
560 	ASSERT_MP_LOCK_HELD();
561     }
562 #endif
563     if (td != ntd) {
564 	td->td_switch(ntd);
565     }
566 
567     crit_exit();
568 }
569 
570 /*
571  * Switch if another thread has a higher priority.  Do not switch to other
572  * threads at the same priority.
573  */
574 void
575 lwkt_maybe_switch()
576 {
577     struct globaldata *gd = mycpu;
578     struct thread *td = gd->gd_curthread;
579 
580     if ((td->td_pri & TDPRI_MASK) < bsrl(gd->gd_runqmask)) {
581 	lwkt_switch();
582     }
583 }
584 
585 /*
586  * Request that the target thread preempt the current thread.  Preemption
587  * only works under a specific set of conditions:
588  *
589  *	- We are not preempting ourselves
590  *	- The target thread is owned by the current cpu
591  *	- We are not currently being preempted
592  *	- The target is not currently being preempted
593  *	- We are able to satisfy the target's MP lock requirements (if any).
594  *
595  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
596  * this is called via lwkt_schedule() through the td_preemptable callback.
597  * critpri is the managed critical priority that we should ignore in order
598  * to determine whether preemption is possible (aka usually just the crit
599  * priority of lwkt_schedule() itself).
600  *
601  * XXX at the moment we run the target thread in a critical section during
602  * the preemption in order to prevent the target from taking interrupts
603  * that *WE* can't.  Preemption is strictly limited to interrupt threads
604  * and interrupt-like threads, outside of a critical section, and the
605  * preempted source thread will be resumed the instant the target blocks
606  * whether or not the source is scheduled (i.e. preemption is supposed to
607  * be as transparent as possible).
608  *
609  * The target thread inherits our MP count (added to its own) for the
610  * duration of the preemption in order to preserve the atomicy of the
611  * MP lock during the preemption.  Therefore, any preempting targets must be
612  * careful in regards to MP assertions.  Note that the MP count may be
613  * out of sync with the physical mp_lock, but we do not have to preserve
614  * the original ownership of the lock if it was out of synch (that is, we
615  * can leave it synchronized on return).
616  */
617 void
618 lwkt_preempt(thread_t ntd, int critpri)
619 {
620     struct globaldata *gd = mycpu;
621     thread_t td = gd->gd_curthread;
622 #ifdef SMP
623     int mpheld;
624     int savecnt;
625 #endif
626 
627     /*
628      * The caller has put us in a critical section.  We can only preempt
629      * if the caller of the caller was not in a critical section (basically
630      * a local interrupt), as determined by the 'critpri' parameter.   If
631      * we are unable to preempt
632      *
633      * YYY The target thread must be in a critical section (else it must
634      * inherit our critical section?  I dunno yet).
635      *
636      * Any tokens held by the target may not be held by thread(s) being
637      * preempted.  We take the easy way out and do not preempt if
638      * the target is holding tokens.
639      */
640     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
641 
642     need_resched();
643     if (!_lwkt_wantresched(ntd, td)) {
644 	++preempt_miss;
645 	return;
646     }
647     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
648 	++preempt_miss;
649 	return;
650     }
651 #ifdef SMP
652     if (ntd->td_gd != gd) {
653 	++preempt_miss;
654 	return;
655     }
656 #endif
657     /*
658      * Take the easy way out and do not preempt if the target is holding
659      * one or more tokens.  We could test whether the thread(s) being
660      * preempted interlock against the target thread's tokens and whether
661      * we can get all the target thread's tokens, but this situation
662      * should not occur very often so its easier to simply not preempt.
663      */
664     if (ntd->td_toks != NULL) {
665 	++preempt_miss;
666 	return;
667     }
668     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
669 	++preempt_weird;
670 	return;
671     }
672     if (ntd->td_preempted) {
673 	++preempt_hit;
674 	return;
675     }
676 #ifdef SMP
677     /*
678      * note: an interrupt might have occured just as we were transitioning
679      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
680      * (non-zero) but not actually synchronized with the actual state of the
681      * lock.  We can use it to imply an MP lock requirement for the
682      * preemption but we cannot use it to test whether we hold the MP lock
683      * or not.
684      */
685     savecnt = td->td_mpcount;
686     mpheld = MP_LOCK_HELD();
687     ntd->td_mpcount += td->td_mpcount;
688     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
689 	ntd->td_mpcount -= td->td_mpcount;
690 	++preempt_miss;
691 	return;
692     }
693 #endif
694 
695     ++preempt_hit;
696     ntd->td_preempted = td;
697     td->td_flags |= TDF_PREEMPT_LOCK;
698     td->td_switch(ntd);
699     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
700 #ifdef SMP
701     KKASSERT(savecnt == td->td_mpcount);
702     mpheld = MP_LOCK_HELD();
703     if (mpheld && td->td_mpcount == 0)
704 	cpu_rel_mplock();
705     else if (mpheld == 0 && td->td_mpcount)
706 	panic("lwkt_preempt(): MP lock was not held through");
707 #endif
708     ntd->td_preempted = NULL;
709     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
710 }
711 
712 /*
713  * Yield our thread while higher priority threads are pending.  This is
714  * typically called when we leave a critical section but it can be safely
715  * called while we are in a critical section.
716  *
717  * This function will not generally yield to equal priority threads but it
718  * can occur as a side effect.  Note that lwkt_switch() is called from
719  * inside the critical section to prevent its own crit_exit() from reentering
720  * lwkt_yield_quick().
721  *
722  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
723  * came along but was blocked and made pending.
724  *
725  * (self contained on a per cpu basis)
726  */
727 void
728 lwkt_yield_quick(void)
729 {
730     globaldata_t gd = mycpu;
731     thread_t td = gd->gd_curthread;
732 
733     /*
734      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
735      * it with a non-zero cpl then we might not wind up calling splz after
736      * a task switch when the critical section is exited even though the
737      * new task could accept the interrupt.
738      *
739      * XXX from crit_exit() only called after last crit section is released.
740      * If called directly will run splz() even if in a critical section.
741      *
742      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
743      * except for this special case, we MUST call splz() here to handle any
744      * pending ints, particularly after we switch, or we might accidently
745      * halt the cpu with interrupts pending.
746      */
747     if (gd->gd_reqflags && td->td_nest_count < 2)
748 	splz();
749 
750     /*
751      * YYY enabling will cause wakeup() to task-switch, which really
752      * confused the old 4.x code.  This is a good way to simulate
753      * preemption and MP without actually doing preemption or MP, because a
754      * lot of code assumes that wakeup() does not block.
755      */
756     if (untimely_switch && td->td_nest_count == 0 &&
757 	gd->gd_intr_nesting_level == 0
758     ) {
759 	crit_enter();
760 	/*
761 	 * YYY temporary hacks until we disassociate the userland scheduler
762 	 * from the LWKT scheduler.
763 	 */
764 	if (td->td_flags & TDF_RUNQ) {
765 	    lwkt_switch();		/* will not reenter yield function */
766 	} else {
767 	    lwkt_schedule_self();	/* make sure we are scheduled */
768 	    lwkt_switch();		/* will not reenter yield function */
769 	    lwkt_deschedule_self();	/* make sure we are descheduled */
770 	}
771 	crit_exit_noyield(td);
772     }
773 }
774 
775 /*
776  * This implements a normal yield which, unlike _quick, will yield to equal
777  * priority threads as well.  Note that gd_reqflags tests will be handled by
778  * the crit_exit() call in lwkt_switch().
779  *
780  * (self contained on a per cpu basis)
781  */
782 void
783 lwkt_yield(void)
784 {
785     lwkt_schedule_self();
786     lwkt_switch();
787 }
788 
789 /*
790  * Schedule a thread to run.  As the current thread we can always safely
791  * schedule ourselves, and a shortcut procedure is provided for that
792  * function.
793  *
794  * (non-blocking, self contained on a per cpu basis)
795  */
796 void
797 lwkt_schedule_self(void)
798 {
799     thread_t td = curthread;
800 
801     crit_enter_quick(td);
802     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
803     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
804     _lwkt_enqueue(td);
805 #ifdef _KERNEL
806     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
807 	panic("SCHED SELF PANIC");
808 #endif
809     crit_exit_quick(td);
810 }
811 
812 /*
813  * Generic schedule.  Possibly schedule threads belonging to other cpus and
814  * deal with threads that might be blocked on a wait queue.
815  *
816  * YYY this is one of the best places to implement load balancing code.
817  * Load balancing can be accomplished by requesting other sorts of actions
818  * for the thread in question.
819  */
820 void
821 lwkt_schedule(thread_t td)
822 {
823 #ifdef	INVARIANTS
824     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
825     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc
826 	&& td->td_proc->p_stat == SSLEEP
827     ) {
828 	printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
829 	    curthread,
830 	    curthread->td_proc ? curthread->td_proc->p_pid : -1,
831 	    curthread->td_proc ? curthread->td_proc->p_stat : -1,
832 	    td,
833 	    td->td_proc ? curthread->td_proc->p_pid : -1,
834 	    td->td_proc ? curthread->td_proc->p_stat : -1
835 	);
836 	panic("SCHED PANIC");
837     }
838 #endif
839     crit_enter();
840     if (td == curthread) {
841 	_lwkt_enqueue(td);
842     } else {
843 	lwkt_wait_t w;
844 
845 	/*
846 	 * If the thread is on a wait list we have to send our scheduling
847 	 * request to the owner of the wait structure.  Otherwise we send
848 	 * the scheduling request to the cpu owning the thread.  Races
849 	 * are ok, the target will forward the message as necessary (the
850 	 * message may chase the thread around before it finally gets
851 	 * acted upon).
852 	 *
853 	 * (remember, wait structures use stable storage)
854 	 */
855 	if ((w = td->td_wait) != NULL) {
856 	    lwkt_tokref wref;
857 
858 	    if (lwkt_trytoken(&wref, &w->wa_token)) {
859 		TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
860 		--w->wa_count;
861 		td->td_wait = NULL;
862 #ifdef SMP
863 		if (td->td_gd == mycpu) {
864 		    _lwkt_enqueue(td);
865 		    if (td->td_preemptable)
866 			td->td_preemptable(td, TDPRI_CRIT*2); /* YYY +token */
867 		    else if (_lwkt_wantresched(td, curthread))
868 			need_resched();
869 		} else {
870 		    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
871 		}
872 #else
873 		_lwkt_enqueue(td);
874 		if (td->td_preemptable)
875 		    td->td_preemptable(td, TDPRI_CRIT*2); /* YYY +token */
876 		else if (_lwkt_wantresched(td, curthread))
877 		    need_resched();
878 #endif
879 		lwkt_reltoken(&wref);
880 	    } else {
881 		lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td);
882 	    }
883 	} else {
884 	    /*
885 	     * If the wait structure is NULL and we own the thread, there
886 	     * is no race (since we are in a critical section).  If we
887 	     * do not own the thread there might be a race but the
888 	     * target cpu will deal with it.
889 	     */
890 #ifdef SMP
891 	    if (td->td_gd == mycpu) {
892 		_lwkt_enqueue(td);
893 		if (td->td_preemptable) {
894 		    td->td_preemptable(td, TDPRI_CRIT);
895 		} else if (_lwkt_wantresched(td, curthread)) {
896 		    need_resched();
897 		}
898 	    } else {
899 		lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
900 	    }
901 #else
902 	    _lwkt_enqueue(td);
903 	    if (td->td_preemptable) {
904 		td->td_preemptable(td, TDPRI_CRIT);
905 	    } else if (_lwkt_wantresched(td, curthread)) {
906 		need_resched();
907 	    }
908 #endif
909 	}
910     }
911     crit_exit();
912 }
913 
914 /*
915  * Managed acquisition.  This code assumes that the MP lock is held for
916  * the tdallq operation and that the thread has been descheduled from its
917  * original cpu.  We also have to wait for the thread to be entirely switched
918  * out on its original cpu (this is usually fast enough that we never loop)
919  * since the LWKT system does not have to hold the MP lock while switching
920  * and the target may have released it before switching.
921  */
922 void
923 lwkt_acquire(thread_t td)
924 {
925     struct globaldata *gd;
926 
927     gd = td->td_gd;
928     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
929     while (td->td_flags & TDF_RUNNING)	/* XXX spin */
930 	;
931     if (gd != mycpu) {
932 	crit_enter();
933 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);	/* protected by BGL */
934 	gd = mycpu;
935 	td->td_gd = gd;
936 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); /* protected by BGL */
937 	crit_exit();
938     }
939 }
940 
941 /*
942  * Deschedule a thread.
943  *
944  * (non-blocking, self contained on a per cpu basis)
945  */
946 void
947 lwkt_deschedule_self(void)
948 {
949     thread_t td = curthread;
950 
951     crit_enter();
952     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
953     _lwkt_dequeue(td);
954     crit_exit();
955 }
956 
957 /*
958  * Generic deschedule.  Descheduling threads other then your own should be
959  * done only in carefully controlled circumstances.  Descheduling is
960  * asynchronous.
961  *
962  * This function may block if the cpu has run out of messages.
963  */
964 void
965 lwkt_deschedule(thread_t td)
966 {
967     crit_enter();
968     if (td == curthread) {
969 	_lwkt_dequeue(td);
970     } else {
971 	if (td->td_gd == mycpu) {
972 	    _lwkt_dequeue(td);
973 	} else {
974 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_deschedule, td);
975 	}
976     }
977     crit_exit();
978 }
979 
980 /*
981  * Set the target thread's priority.  This routine does not automatically
982  * switch to a higher priority thread, LWKT threads are not designed for
983  * continuous priority changes.  Yield if you want to switch.
984  *
985  * We have to retain the critical section count which uses the high bits
986  * of the td_pri field.  The specified priority may also indicate zero or
987  * more critical sections by adding TDPRI_CRIT*N.
988  */
989 void
990 lwkt_setpri(thread_t td, int pri)
991 {
992     KKASSERT(pri >= 0);
993     KKASSERT(td->td_gd == mycpu);
994     crit_enter();
995     if (td->td_flags & TDF_RUNQ) {
996 	_lwkt_dequeue(td);
997 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
998 	_lwkt_enqueue(td);
999     } else {
1000 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1001     }
1002     crit_exit();
1003 }
1004 
1005 void
1006 lwkt_setpri_self(int pri)
1007 {
1008     thread_t td = curthread;
1009 
1010     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1011     crit_enter();
1012     if (td->td_flags & TDF_RUNQ) {
1013 	_lwkt_dequeue(td);
1014 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1015 	_lwkt_enqueue(td);
1016     } else {
1017 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1018     }
1019     crit_exit();
1020 }
1021 
1022 struct proc *
1023 lwkt_preempted_proc(void)
1024 {
1025     thread_t td = curthread;
1026     while (td->td_preempted)
1027 	td = td->td_preempted;
1028     return(td->td_proc);
1029 }
1030 
1031 /*
1032  * Block on the specified wait queue until signaled.  A generation number
1033  * must be supplied to interlock the wait queue.  The function will
1034  * return immediately if the generation number does not match the wait
1035  * structure's generation number.
1036  */
1037 void
1038 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
1039 {
1040     thread_t td = curthread;
1041     lwkt_tokref ilock;
1042 
1043     lwkt_gettoken(&ilock, &w->wa_token);
1044     crit_enter();
1045     if (w->wa_gen == *gen) {
1046 	_lwkt_dequeue(td);
1047 	TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
1048 	++w->wa_count;
1049 	td->td_wait = w;
1050 	td->td_wmesg = wmesg;
1051     again:
1052 	lwkt_switch();
1053 	if (td->td_wmesg != NULL) {
1054 	    _lwkt_dequeue(td);
1055 	    goto again;
1056 	}
1057     }
1058     crit_exit();
1059     *gen = w->wa_gen;
1060     lwkt_reltoken(&ilock);
1061 }
1062 
1063 /*
1064  * Signal a wait queue.  We gain ownership of the wait queue in order to
1065  * signal it.  Once a thread is removed from the wait queue we have to
1066  * deal with the cpu owning the thread.
1067  *
1068  * Note: alternatively we could message the target cpu owning the wait
1069  * queue.  YYY implement as sysctl.
1070  */
1071 void
1072 lwkt_signal(lwkt_wait_t w, int count)
1073 {
1074     thread_t td;
1075     lwkt_tokref ilock;
1076 
1077     lwkt_gettoken(&ilock, &w->wa_token);
1078     ++w->wa_gen;
1079     crit_enter();
1080     if (count < 0)
1081 	count = w->wa_count;
1082     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1083 	--count;
1084 	--w->wa_count;
1085 	TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1086 	td->td_wait = NULL;
1087 	td->td_wmesg = NULL;
1088 	if (td->td_gd == mycpu) {
1089 	    _lwkt_enqueue(td);
1090 	} else {
1091 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
1092 	}
1093     }
1094     crit_exit();
1095     lwkt_reltoken(&ilock);
1096 }
1097 
1098 /*
1099  * Create a kernel process/thread/whatever.  It shares it's address space
1100  * with proc0 - ie: kernel only.
1101  *
1102  * NOTE!  By default new threads are created with the MP lock held.  A
1103  * thread which does not require the MP lock should release it by calling
1104  * rel_mplock() at the start of the new thread.
1105  */
1106 int
1107 lwkt_create(void (*func)(void *), void *arg,
1108     struct thread **tdp, thread_t template, int tdflags, int cpu,
1109     const char *fmt, ...)
1110 {
1111     thread_t td;
1112     __va_list ap;
1113 
1114     td = lwkt_alloc_thread(template, cpu);
1115     if (tdp)
1116 	*tdp = td;
1117     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1118     td->td_flags |= TDF_VERBOSE | tdflags;
1119 #ifdef SMP
1120     td->td_mpcount = 1;
1121 #endif
1122 
1123     /*
1124      * Set up arg0 for 'ps' etc
1125      */
1126     __va_start(ap, fmt);
1127     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1128     __va_end(ap);
1129 
1130     /*
1131      * Schedule the thread to run
1132      */
1133     if ((td->td_flags & TDF_STOPREQ) == 0)
1134 	lwkt_schedule(td);
1135     else
1136 	td->td_flags &= ~TDF_STOPREQ;
1137     return 0;
1138 }
1139 
1140 /*
1141  * kthread_* is specific to the kernel and is not needed by userland.
1142  */
1143 #ifdef _KERNEL
1144 
1145 /*
1146  * Destroy an LWKT thread.   Warning!  This function is not called when
1147  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1148  * uses a different reaping mechanism.
1149  */
1150 void
1151 lwkt_exit(void)
1152 {
1153     thread_t td = curthread;
1154 
1155     if (td->td_flags & TDF_VERBOSE)
1156 	printf("kthread %p %s has exited\n", td, td->td_comm);
1157     caps_exit(td);
1158     crit_enter();
1159     lwkt_deschedule_self();
1160     ++mycpu->gd_tdfreecount;
1161     TAILQ_INSERT_TAIL(&mycpu->gd_tdfreeq, td, td_threadq);
1162     cpu_thread_exit();
1163 }
1164 
1165 /*
1166  * Create a kernel process/thread/whatever.  It shares it's address space
1167  * with proc0 - ie: kernel only.  5.x compatible.
1168  *
1169  * NOTE!  By default kthreads are created with the MP lock held.  A
1170  * thread which does not require the MP lock should release it by calling
1171  * rel_mplock() at the start of the new thread.
1172  */
1173 int
1174 kthread_create(void (*func)(void *), void *arg,
1175     struct thread **tdp, const char *fmt, ...)
1176 {
1177     thread_t td;
1178     __va_list ap;
1179 
1180     td = lwkt_alloc_thread(NULL, -1);
1181     if (tdp)
1182 	*tdp = td;
1183     cpu_set_thread_handler(td, kthread_exit, func, arg);
1184     td->td_flags |= TDF_VERBOSE;
1185 #ifdef SMP
1186     td->td_mpcount = 1;
1187 #endif
1188 
1189     /*
1190      * Set up arg0 for 'ps' etc
1191      */
1192     __va_start(ap, fmt);
1193     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1194     __va_end(ap);
1195 
1196     /*
1197      * Schedule the thread to run
1198      */
1199     lwkt_schedule(td);
1200     return 0;
1201 }
1202 
1203 /*
1204  * Destroy an LWKT thread.   Warning!  This function is not called when
1205  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1206  * uses a different reaping mechanism.
1207  *
1208  * XXX duplicates lwkt_exit()
1209  */
1210 void
1211 kthread_exit(void)
1212 {
1213     lwkt_exit();
1214 }
1215 
1216 #endif /* _KERNEL */
1217 
1218 void
1219 crit_panic(void)
1220 {
1221     thread_t td = curthread;
1222     int lpri = td->td_pri;
1223 
1224     td->td_pri = 0;
1225     panic("td_pri is/would-go negative! %p %d", td, lpri);
1226 }
1227 
1228