xref: /dragonfly/sys/kern/lwkt_thread.c (revision c03f08f3)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.109 2007/07/02 01:37:08 dillon Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #ifdef _KERNEL
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/sysctl.h>
53 #include <sys/kthread.h>
54 #include <machine/cpu.h>
55 #include <sys/lock.h>
56 #include <sys/caps.h>
57 #include <sys/spinlock.h>
58 #include <sys/ktr.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_zone.h>
72 
73 #include <machine/stdarg.h>
74 #include <machine/smp.h>
75 
76 #else
77 
78 #include <sys/stdint.h>
79 #include <libcaps/thread.h>
80 #include <sys/thread.h>
81 #include <sys/msgport.h>
82 #include <sys/errno.h>
83 #include <libcaps/globaldata.h>
84 #include <machine/cpufunc.h>
85 #include <sys/thread2.h>
86 #include <sys/msgport2.h>
87 #include <stdio.h>
88 #include <stdlib.h>
89 #include <string.h>
90 #include <machine/lock.h>
91 #include <machine/atomic.h>
92 #include <machine/cpu.h>
93 
94 #endif
95 
96 static int untimely_switch = 0;
97 #ifdef	INVARIANTS
98 static int panic_on_cscount = 0;
99 #endif
100 static __int64_t switch_count = 0;
101 static __int64_t preempt_hit = 0;
102 static __int64_t preempt_miss = 0;
103 static __int64_t preempt_weird = 0;
104 static __int64_t token_contention_count = 0;
105 static __int64_t mplock_contention_count = 0;
106 static int lwkt_use_spin_port;
107 
108 #ifdef _KERNEL
109 
110 /*
111  * We can make all thread ports use the spin backend instead of the thread
112  * backend.  This should only be set to debug the spin backend.
113  */
114 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
115 
116 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
117 #ifdef	INVARIANTS
118 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
119 #endif
120 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
121 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
123 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
124 #ifdef	INVARIANTS
125 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
126 	&token_contention_count, 0, "spinning due to token contention");
127 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
128 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
129 #endif
130 #endif
131 
132 /*
133  * Kernel Trace
134  */
135 #ifdef _KERNEL
136 
137 #if !defined(KTR_GIANT_CONTENTION)
138 #define KTR_GIANT_CONTENTION	KTR_ALL
139 #endif
140 
141 KTR_INFO_MASTER(giant);
142 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
143 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
144 
145 #define loggiant(name)	KTR_LOG(giant_ ## name, curthread)
146 
147 #endif
148 
149 /*
150  * These helper procedures handle the runq, they can only be called from
151  * within a critical section.
152  *
153  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
154  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
155  * instead of 'mycpu' when referencing the globaldata structure.   Once
156  * SMP live enqueuing and dequeueing only occurs on the current cpu.
157  */
158 static __inline
159 void
160 _lwkt_dequeue(thread_t td)
161 {
162     if (td->td_flags & TDF_RUNQ) {
163 	int nq = td->td_pri & TDPRI_MASK;
164 	struct globaldata *gd = td->td_gd;
165 
166 	td->td_flags &= ~TDF_RUNQ;
167 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
168 	/* runqmask is passively cleaned up by the switcher */
169     }
170 }
171 
172 static __inline
173 void
174 _lwkt_enqueue(thread_t td)
175 {
176     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
177 	int nq = td->td_pri & TDPRI_MASK;
178 	struct globaldata *gd = td->td_gd;
179 
180 	td->td_flags |= TDF_RUNQ;
181 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
182 	gd->gd_runqmask |= 1 << nq;
183     }
184 }
185 
186 /*
187  * Schedule a thread to run.  As the current thread we can always safely
188  * schedule ourselves, and a shortcut procedure is provided for that
189  * function.
190  *
191  * (non-blocking, self contained on a per cpu basis)
192  */
193 void
194 lwkt_schedule_self(thread_t td)
195 {
196     crit_enter_quick(td);
197     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
198     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
199     _lwkt_enqueue(td);
200     crit_exit_quick(td);
201 }
202 
203 /*
204  * Deschedule a thread.
205  *
206  * (non-blocking, self contained on a per cpu basis)
207  */
208 void
209 lwkt_deschedule_self(thread_t td)
210 {
211     crit_enter_quick(td);
212     _lwkt_dequeue(td);
213     crit_exit_quick(td);
214 }
215 
216 #ifdef _KERNEL
217 
218 /*
219  * LWKTs operate on a per-cpu basis
220  *
221  * WARNING!  Called from early boot, 'mycpu' may not work yet.
222  */
223 void
224 lwkt_gdinit(struct globaldata *gd)
225 {
226     int i;
227 
228     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
229 	TAILQ_INIT(&gd->gd_tdrunq[i]);
230     gd->gd_runqmask = 0;
231     TAILQ_INIT(&gd->gd_tdallq);
232 }
233 
234 #endif /* _KERNEL */
235 
236 /*
237  * Create a new thread.  The thread must be associated with a process context
238  * or LWKT start address before it can be scheduled.  If the target cpu is
239  * -1 the thread will be created on the current cpu.
240  *
241  * If you intend to create a thread without a process context this function
242  * does everything except load the startup and switcher function.
243  */
244 thread_t
245 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
246 {
247     void *stack;
248     globaldata_t gd = mycpu;
249 
250     if (td == NULL) {
251 	crit_enter_gd(gd);
252 	if (gd->gd_tdfreecount > 0) {
253 	    --gd->gd_tdfreecount;
254 	    td = TAILQ_FIRST(&gd->gd_tdfreeq);
255 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
256 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
257 	    TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
258 	    crit_exit_gd(gd);
259 	    flags |= td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
260 	} else {
261 	    crit_exit_gd(gd);
262 #ifdef _KERNEL
263 	    td = zalloc(thread_zone);
264 #else
265 	    td = malloc(sizeof(struct thread));
266 #endif
267 	    td->td_kstack = NULL;
268 	    td->td_kstack_size = 0;
269 	    flags |= TDF_ALLOCATED_THREAD;
270 	}
271     }
272     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
273 	if (flags & TDF_ALLOCATED_STACK) {
274 #ifdef _KERNEL
275 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
276 #else
277 	    libcaps_free_stack(stack, td->td_kstack_size);
278 #endif
279 	    stack = NULL;
280 	}
281     }
282     if (stack == NULL) {
283 #ifdef _KERNEL
284 	stack = (void *)kmem_alloc(&kernel_map, stksize);
285 #else
286 	stack = libcaps_alloc_stack(stksize);
287 #endif
288 	flags |= TDF_ALLOCATED_STACK;
289     }
290     if (cpu < 0)
291 	lwkt_init_thread(td, stack, stksize, flags, mycpu);
292     else
293 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
294     return(td);
295 }
296 
297 #ifdef _KERNEL
298 
299 /*
300  * Initialize a preexisting thread structure.  This function is used by
301  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
302  *
303  * All threads start out in a critical section at a priority of
304  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
305  * appropriate.  This function may send an IPI message when the
306  * requested cpu is not the current cpu and consequently gd_tdallq may
307  * not be initialized synchronously from the point of view of the originating
308  * cpu.
309  *
310  * NOTE! we have to be careful in regards to creating threads for other cpus
311  * if SMP has not yet been activated.
312  */
313 #ifdef SMP
314 
315 static void
316 lwkt_init_thread_remote(void *arg)
317 {
318     thread_t td = arg;
319 
320     /*
321      * Protected by critical section held by IPI dispatch
322      */
323     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
324 }
325 
326 #endif
327 
328 void
329 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
330 		struct globaldata *gd)
331 {
332     globaldata_t mygd = mycpu;
333 
334     bzero(td, sizeof(struct thread));
335     td->td_kstack = stack;
336     td->td_kstack_size = stksize;
337     td->td_flags = flags;
338     td->td_gd = gd;
339     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
340 #ifdef SMP
341     if ((flags & TDF_MPSAFE) == 0)
342 	td->td_mpcount = 1;
343 #endif
344     if (lwkt_use_spin_port)
345 	lwkt_initport_spin(&td->td_msgport);
346     else
347 	lwkt_initport_thread(&td->td_msgport, td);
348     pmap_init_thread(td);
349 #ifdef SMP
350     /*
351      * Normally initializing a thread for a remote cpu requires sending an
352      * IPI.  However, the idlethread is setup before the other cpus are
353      * activated so we have to treat it as a special case.  XXX manipulation
354      * of gd_tdallq requires the BGL.
355      */
356     if (gd == mygd || td == &gd->gd_idlethread) {
357 	crit_enter_gd(mygd);
358 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
359 	crit_exit_gd(mygd);
360     } else {
361 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
362     }
363 #else
364     crit_enter_gd(mygd);
365     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
366     crit_exit_gd(mygd);
367 #endif
368 }
369 
370 #endif /* _KERNEL */
371 
372 void
373 lwkt_set_comm(thread_t td, const char *ctl, ...)
374 {
375     __va_list va;
376 
377     __va_start(va, ctl);
378     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
379     __va_end(va);
380 }
381 
382 void
383 lwkt_hold(thread_t td)
384 {
385     ++td->td_refs;
386 }
387 
388 void
389 lwkt_rele(thread_t td)
390 {
391     KKASSERT(td->td_refs > 0);
392     --td->td_refs;
393 }
394 
395 #ifdef _KERNEL
396 
397 void
398 lwkt_wait_free(thread_t td)
399 {
400     while (td->td_refs)
401 	tsleep(td, 0, "tdreap", hz);
402 }
403 
404 #endif
405 
406 void
407 lwkt_free_thread(thread_t td)
408 {
409     struct globaldata *gd = mycpu;
410 
411     KASSERT((td->td_flags & TDF_RUNNING) == 0,
412 	("lwkt_free_thread: did not exit! %p", td));
413 
414     crit_enter_gd(gd);
415     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
416 	(td->td_flags & TDF_ALLOCATED_THREAD)
417     ) {
418 	++gd->gd_tdfreecount;
419 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
420 	crit_exit_gd(gd);
421     } else {
422 	crit_exit_gd(gd);
423 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
424 #ifdef _KERNEL
425 	    kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
426 #else
427 	    libcaps_free_stack(td->td_kstack, td->td_kstack_size);
428 #endif
429 	    /* gd invalid */
430 	    td->td_kstack = NULL;
431 	    td->td_kstack_size = 0;
432 	}
433 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
434 #ifdef _KERNEL
435 	    zfree(thread_zone, td);
436 #else
437 	    free(td);
438 #endif
439 	}
440     }
441 }
442 
443 
444 /*
445  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
446  * switch to the idlethread.  Switching must occur within a critical
447  * section to avoid races with the scheduling queue.
448  *
449  * We always have full control over our cpu's run queue.  Other cpus
450  * that wish to manipulate our queue must use the cpu_*msg() calls to
451  * talk to our cpu, so a critical section is all that is needed and
452  * the result is very, very fast thread switching.
453  *
454  * The LWKT scheduler uses a fixed priority model and round-robins at
455  * each priority level.  User process scheduling is a totally
456  * different beast and LWKT priorities should not be confused with
457  * user process priorities.
458  *
459  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
460  * cleans it up.  Note that the td_switch() function cannot do anything that
461  * requires the MP lock since the MP lock will have already been setup for
462  * the target thread (not the current thread).  It's nice to have a scheduler
463  * that does not need the MP lock to work because it allows us to do some
464  * really cool high-performance MP lock optimizations.
465  *
466  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
467  * is not called by the current thread in the preemption case, only when
468  * the preempting thread blocks (in order to return to the original thread).
469  */
470 void
471 lwkt_switch(void)
472 {
473     globaldata_t gd = mycpu;
474     thread_t td = gd->gd_curthread;
475     thread_t ntd;
476 #ifdef SMP
477     int mpheld;
478 #endif
479 
480     /*
481      * Switching from within a 'fast' (non thread switched) interrupt or IPI
482      * is illegal.  However, we may have to do it anyway if we hit a fatal
483      * kernel trap or we have paniced.
484      *
485      * If this case occurs save and restore the interrupt nesting level.
486      */
487     if (gd->gd_intr_nesting_level) {
488 	int savegdnest;
489 	int savegdtrap;
490 
491 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
492 	    panic("lwkt_switch: cannot switch from within "
493 		  "a fast interrupt, yet, td %p\n", td);
494 	} else {
495 	    savegdnest = gd->gd_intr_nesting_level;
496 	    savegdtrap = gd->gd_trap_nesting_level;
497 	    gd->gd_intr_nesting_level = 0;
498 	    gd->gd_trap_nesting_level = 0;
499 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
500 		td->td_flags |= TDF_PANICWARN;
501 		kprintf("Warning: thread switch from interrupt or IPI, "
502 			"thread %p (%s)\n", td, td->td_comm);
503 #ifdef DDB
504 		db_print_backtrace();
505 #endif
506 	    }
507 	    lwkt_switch();
508 	    gd->gd_intr_nesting_level = savegdnest;
509 	    gd->gd_trap_nesting_level = savegdtrap;
510 	    return;
511 	}
512     }
513 
514     /*
515      * Passive release (used to transition from user to kernel mode
516      * when we block or switch rather then when we enter the kernel).
517      * This function is NOT called if we are switching into a preemption
518      * or returning from a preemption.  Typically this causes us to lose
519      * our current process designation (if we have one) and become a true
520      * LWKT thread, and may also hand the current process designation to
521      * another process and schedule thread.
522      */
523     if (td->td_release)
524 	    td->td_release(td);
525 
526     crit_enter_gd(gd);
527 #ifdef SMP
528     if (td->td_toks)
529 	    lwkt_relalltokens(td);
530 #endif
531 
532     /*
533      * We had better not be holding any spin locks, but don't get into an
534      * endless panic loop.
535      */
536     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
537 	    ("lwkt_switch: still holding a shared spinlock %p!",
538 	     gd->gd_spinlock_rd));
539     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
540 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
541 	     gd->gd_spinlocks_wr));
542 
543 
544 #ifdef SMP
545     /*
546      * td_mpcount cannot be used to determine if we currently hold the
547      * MP lock because get_mplock() will increment it prior to attempting
548      * to get the lock, and switch out if it can't.  Our ownership of
549      * the actual lock will remain stable while we are in a critical section
550      * (but, of course, another cpu may own or release the lock so the
551      * actual value of mp_lock is not stable).
552      */
553     mpheld = MP_LOCK_HELD();
554 #ifdef	INVARIANTS
555     if (td->td_cscount) {
556 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
557 		td);
558 	if (panic_on_cscount)
559 	    panic("switching while mastering cpusync");
560     }
561 #endif
562 #endif
563     if ((ntd = td->td_preempted) != NULL) {
564 	/*
565 	 * We had preempted another thread on this cpu, resume the preempted
566 	 * thread.  This occurs transparently, whether the preempted thread
567 	 * was scheduled or not (it may have been preempted after descheduling
568 	 * itself).
569 	 *
570 	 * We have to setup the MP lock for the original thread after backing
571 	 * out the adjustment that was made to curthread when the original
572 	 * was preempted.
573 	 */
574 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
575 #ifdef SMP
576 	if (ntd->td_mpcount && mpheld == 0) {
577 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
578 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
579 	}
580 	if (ntd->td_mpcount) {
581 	    td->td_mpcount -= ntd->td_mpcount;
582 	    KKASSERT(td->td_mpcount >= 0);
583 	}
584 #endif
585 	ntd->td_flags |= TDF_PREEMPT_DONE;
586 
587 	/*
588 	 * XXX.  The interrupt may have woken a thread up, we need to properly
589 	 * set the reschedule flag if the originally interrupted thread is at
590 	 * a lower priority.
591 	 */
592 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
593 	    need_lwkt_resched();
594 	/* YYY release mp lock on switchback if original doesn't need it */
595     } else {
596 	/*
597 	 * Priority queue / round-robin at each priority.  Note that user
598 	 * processes run at a fixed, low priority and the user process
599 	 * scheduler deals with interactions between user processes
600 	 * by scheduling and descheduling them from the LWKT queue as
601 	 * necessary.
602 	 *
603 	 * We have to adjust the MP lock for the target thread.  If we
604 	 * need the MP lock and cannot obtain it we try to locate a
605 	 * thread that does not need the MP lock.  If we cannot, we spin
606 	 * instead of HLT.
607 	 *
608 	 * A similar issue exists for the tokens held by the target thread.
609 	 * If we cannot obtain ownership of the tokens we cannot immediately
610 	 * schedule the thread.
611 	 */
612 
613 	/*
614 	 * If an LWKT reschedule was requested, well that is what we are
615 	 * doing now so clear it.
616 	 */
617 	clear_lwkt_resched();
618 again:
619 	if (gd->gd_runqmask) {
620 	    int nq = bsrl(gd->gd_runqmask);
621 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
622 		gd->gd_runqmask &= ~(1 << nq);
623 		goto again;
624 	    }
625 #ifdef SMP
626 	    /*
627 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
628 	     *
629 	     * If the target needs the MP lock and we couldn't get it,
630 	     * or if the target is holding tokens and we could not
631 	     * gain ownership of the tokens, continue looking for a
632 	     * thread to schedule and spin instead of HLT if we can't.
633 	     *
634 	     * NOTE: the mpheld variable invalid after this conditional, it
635 	     * can change due to both cpu_try_mplock() returning success
636 	     * AND interactions in lwkt_getalltokens() due to the fact that
637 	     * we are trying to check the mpcount of a thread other then
638 	     * the current thread.  Because of this, if the current thread
639 	     * is not holding td_mpcount, an IPI indirectly run via
640 	     * lwkt_getalltokens() can obtain and release the MP lock and
641 	     * cause the core MP lock to be released.
642 	     */
643 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
644 		(ntd->td_toks && lwkt_getalltokens(ntd) == 0)
645 	    ) {
646 		u_int32_t rqmask = gd->gd_runqmask;
647 
648 		mpheld = MP_LOCK_HELD();
649 		ntd = NULL;
650 		while (rqmask) {
651 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
652 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
653 			    /* spinning due to MP lock being held */
654 #ifdef	INVARIANTS
655 			    ++mplock_contention_count;
656 #endif
657 			    /* mplock still not held, 'mpheld' still valid */
658 			    continue;
659 			}
660 
661 			/*
662 			 * mpheld state invalid after getalltokens call returns
663 			 * failure, but the variable is only needed for
664 			 * the loop.
665 			 */
666 			if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
667 			    /* spinning due to token contention */
668 #ifdef	INVARIANTS
669 			    ++token_contention_count;
670 #endif
671 			    mpheld = MP_LOCK_HELD();
672 			    continue;
673 			}
674 			break;
675 		    }
676 		    if (ntd)
677 			break;
678 		    rqmask &= ~(1 << nq);
679 		    nq = bsrl(rqmask);
680 		}
681 		if (ntd == NULL) {
682 		    cpu_mplock_contested();
683 		    ntd = &gd->gd_idlethread;
684 		    ntd->td_flags |= TDF_IDLE_NOHLT;
685 		    goto using_idle_thread;
686 		} else {
687 		    ++gd->gd_cnt.v_swtch;
688 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
689 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
690 		}
691 	    } else {
692 		++gd->gd_cnt.v_swtch;
693 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
694 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
695 	    }
696 #else
697 	    /*
698 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
699 	     * worry about tokens or the BGL.
700 	     */
701 	    ++gd->gd_cnt.v_swtch;
702 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
703 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
704 #endif
705 	} else {
706 	    /*
707 	     * We have nothing to run but only let the idle loop halt
708 	     * the cpu if there are no pending interrupts.
709 	     */
710 	    ntd = &gd->gd_idlethread;
711 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
712 		ntd->td_flags |= TDF_IDLE_NOHLT;
713 #ifdef SMP
714 using_idle_thread:
715 	    /*
716 	     * The idle thread should not be holding the MP lock unless we
717 	     * are trapping in the kernel or in a panic.  Since we select the
718 	     * idle thread unconditionally when no other thread is available,
719 	     * if the MP lock is desired during a panic or kernel trap, we
720 	     * have to loop in the scheduler until we get it.
721 	     */
722 	    if (ntd->td_mpcount) {
723 		mpheld = MP_LOCK_HELD();
724 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
725 		    panic("Idle thread %p was holding the BGL!", ntd);
726 		} else if (mpheld == 0) {
727 		    cpu_mplock_contested();
728 		    goto again;
729 		}
730 	    }
731 #endif
732 	}
733     }
734     KASSERT(ntd->td_pri >= TDPRI_CRIT,
735 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
736 
737     /*
738      * Do the actual switch.  If the new target does not need the MP lock
739      * and we are holding it, release the MP lock.  If the new target requires
740      * the MP lock we have already acquired it for the target.
741      */
742 #ifdef SMP
743     if (ntd->td_mpcount == 0 ) {
744 	if (MP_LOCK_HELD())
745 	    cpu_rel_mplock();
746     } else {
747 	ASSERT_MP_LOCK_HELD(ntd);
748     }
749 #endif
750     if (td != ntd) {
751 	++switch_count;
752 	td->td_switch(ntd);
753     }
754     /* NOTE: current cpu may have changed after switch */
755     crit_exit_quick(td);
756 }
757 
758 /*
759  * Request that the target thread preempt the current thread.  Preemption
760  * only works under a specific set of conditions:
761  *
762  *	- We are not preempting ourselves
763  *	- The target thread is owned by the current cpu
764  *	- We are not currently being preempted
765  *	- The target is not currently being preempted
766  *	- We are able to satisfy the target's MP lock requirements (if any).
767  *
768  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
769  * this is called via lwkt_schedule() through the td_preemptable callback.
770  * critpri is the managed critical priority that we should ignore in order
771  * to determine whether preemption is possible (aka usually just the crit
772  * priority of lwkt_schedule() itself).
773  *
774  * XXX at the moment we run the target thread in a critical section during
775  * the preemption in order to prevent the target from taking interrupts
776  * that *WE* can't.  Preemption is strictly limited to interrupt threads
777  * and interrupt-like threads, outside of a critical section, and the
778  * preempted source thread will be resumed the instant the target blocks
779  * whether or not the source is scheduled (i.e. preemption is supposed to
780  * be as transparent as possible).
781  *
782  * The target thread inherits our MP count (added to its own) for the
783  * duration of the preemption in order to preserve the atomicy of the
784  * MP lock during the preemption.  Therefore, any preempting targets must be
785  * careful in regards to MP assertions.  Note that the MP count may be
786  * out of sync with the physical mp_lock, but we do not have to preserve
787  * the original ownership of the lock if it was out of synch (that is, we
788  * can leave it synchronized on return).
789  */
790 void
791 lwkt_preempt(thread_t ntd, int critpri)
792 {
793     struct globaldata *gd = mycpu;
794     thread_t td;
795 #ifdef SMP
796     int mpheld;
797     int savecnt;
798 #endif
799 
800     /*
801      * The caller has put us in a critical section.  We can only preempt
802      * if the caller of the caller was not in a critical section (basically
803      * a local interrupt), as determined by the 'critpri' parameter.  We
804      * also acn't preempt if the caller is holding any spinlocks (even if
805      * he isn't in a critical section).  This also handles the tokens test.
806      *
807      * YYY The target thread must be in a critical section (else it must
808      * inherit our critical section?  I dunno yet).
809      *
810      * Set need_lwkt_resched() unconditionally for now YYY.
811      */
812     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
813 
814     td = gd->gd_curthread;
815     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
816 	++preempt_miss;
817 	return;
818     }
819     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
820 	++preempt_miss;
821 	need_lwkt_resched();
822 	return;
823     }
824 #ifdef SMP
825     if (ntd->td_gd != gd) {
826 	++preempt_miss;
827 	need_lwkt_resched();
828 	return;
829     }
830 #endif
831     /*
832      * Take the easy way out and do not preempt if the target is holding
833      * any spinlocks.  We could test whether the thread(s) being
834      * preempted interlock against the target thread's tokens and whether
835      * we can get all the target thread's tokens, but this situation
836      * should not occur very often so its easier to simply not preempt.
837      * Also, plain spinlocks are impossible to figure out at this point so
838      * just don't preempt.
839      */
840     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
841 	++preempt_miss;
842 	need_lwkt_resched();
843 	return;
844     }
845     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
846 	++preempt_weird;
847 	need_lwkt_resched();
848 	return;
849     }
850     if (ntd->td_preempted) {
851 	++preempt_hit;
852 	need_lwkt_resched();
853 	return;
854     }
855 #ifdef SMP
856     /*
857      * note: an interrupt might have occured just as we were transitioning
858      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
859      * (non-zero) but not actually synchronized with the actual state of the
860      * lock.  We can use it to imply an MP lock requirement for the
861      * preemption but we cannot use it to test whether we hold the MP lock
862      * or not.
863      */
864     savecnt = td->td_mpcount;
865     mpheld = MP_LOCK_HELD();
866     ntd->td_mpcount += td->td_mpcount;
867     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
868 	ntd->td_mpcount -= td->td_mpcount;
869 	++preempt_miss;
870 	need_lwkt_resched();
871 	return;
872     }
873 #endif
874 
875     /*
876      * Since we are able to preempt the current thread, there is no need to
877      * call need_lwkt_resched().
878      */
879     ++preempt_hit;
880     ntd->td_preempted = td;
881     td->td_flags |= TDF_PREEMPT_LOCK;
882     td->td_switch(ntd);
883     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
884 #ifdef SMP
885     KKASSERT(savecnt == td->td_mpcount);
886     mpheld = MP_LOCK_HELD();
887     if (mpheld && td->td_mpcount == 0)
888 	cpu_rel_mplock();
889     else if (mpheld == 0 && td->td_mpcount)
890 	panic("lwkt_preempt(): MP lock was not held through");
891 #endif
892     ntd->td_preempted = NULL;
893     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
894 }
895 
896 /*
897  * Yield our thread while higher priority threads are pending.  This is
898  * typically called when we leave a critical section but it can be safely
899  * called while we are in a critical section.
900  *
901  * This function will not generally yield to equal priority threads but it
902  * can occur as a side effect.  Note that lwkt_switch() is called from
903  * inside the critical section to prevent its own crit_exit() from reentering
904  * lwkt_yield_quick().
905  *
906  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
907  * came along but was blocked and made pending.
908  *
909  * (self contained on a per cpu basis)
910  */
911 void
912 lwkt_yield_quick(void)
913 {
914     globaldata_t gd = mycpu;
915     thread_t td = gd->gd_curthread;
916 
917     /*
918      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
919      * it with a non-zero cpl then we might not wind up calling splz after
920      * a task switch when the critical section is exited even though the
921      * new task could accept the interrupt.
922      *
923      * XXX from crit_exit() only called after last crit section is released.
924      * If called directly will run splz() even if in a critical section.
925      *
926      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
927      * except for this special case, we MUST call splz() here to handle any
928      * pending ints, particularly after we switch, or we might accidently
929      * halt the cpu with interrupts pending.
930      */
931     if (gd->gd_reqflags && td->td_nest_count < 2)
932 	splz();
933 
934     /*
935      * YYY enabling will cause wakeup() to task-switch, which really
936      * confused the old 4.x code.  This is a good way to simulate
937      * preemption and MP without actually doing preemption or MP, because a
938      * lot of code assumes that wakeup() does not block.
939      */
940     if (untimely_switch && td->td_nest_count == 0 &&
941 	gd->gd_intr_nesting_level == 0
942     ) {
943 	crit_enter_quick(td);
944 	/*
945 	 * YYY temporary hacks until we disassociate the userland scheduler
946 	 * from the LWKT scheduler.
947 	 */
948 	if (td->td_flags & TDF_RUNQ) {
949 	    lwkt_switch();		/* will not reenter yield function */
950 	} else {
951 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
952 	    lwkt_switch();		/* will not reenter yield function */
953 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
954 	}
955 	crit_exit_noyield(td);
956     }
957 }
958 
959 /*
960  * This implements a normal yield which, unlike _quick, will yield to equal
961  * priority threads as well.  Note that gd_reqflags tests will be handled by
962  * the crit_exit() call in lwkt_switch().
963  *
964  * (self contained on a per cpu basis)
965  */
966 void
967 lwkt_yield(void)
968 {
969     lwkt_schedule_self(curthread);
970     lwkt_switch();
971 }
972 
973 /*
974  * Generic schedule.  Possibly schedule threads belonging to other cpus and
975  * deal with threads that might be blocked on a wait queue.
976  *
977  * We have a little helper inline function which does additional work after
978  * the thread has been enqueued, including dealing with preemption and
979  * setting need_lwkt_resched() (which prevents the kernel from returning
980  * to userland until it has processed higher priority threads).
981  *
982  * It is possible for this routine to be called after a failed _enqueue
983  * (due to the target thread migrating, sleeping, or otherwise blocked).
984  * We have to check that the thread is actually on the run queue!
985  */
986 static __inline
987 void
988 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
989 {
990     if (ntd->td_flags & TDF_RUNQ) {
991 	if (ntd->td_preemptable) {
992 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
993 	} else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
994 	    (ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
995 	) {
996 	    need_lwkt_resched();
997 	}
998     }
999 }
1000 
1001 void
1002 lwkt_schedule(thread_t td)
1003 {
1004     globaldata_t mygd = mycpu;
1005 
1006     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1007     crit_enter_gd(mygd);
1008     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1009     if (td == mygd->gd_curthread) {
1010 	_lwkt_enqueue(td);
1011     } else {
1012 	/*
1013 	 * If we own the thread, there is no race (since we are in a
1014 	 * critical section).  If we do not own the thread there might
1015 	 * be a race but the target cpu will deal with it.
1016 	 */
1017 #ifdef SMP
1018 	if (td->td_gd == mygd) {
1019 	    _lwkt_enqueue(td);
1020 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1021 	} else {
1022 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1023 	}
1024 #else
1025 	_lwkt_enqueue(td);
1026 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1027 #endif
1028     }
1029     crit_exit_gd(mygd);
1030 }
1031 
1032 #ifdef SMP
1033 
1034 /*
1035  * Thread migration using a 'Pull' method.  The thread may or may not be
1036  * the current thread.  It MUST be descheduled and in a stable state.
1037  * lwkt_giveaway() must be called on the cpu owning the thread.
1038  *
1039  * At any point after lwkt_giveaway() is called, the target cpu may
1040  * 'pull' the thread by calling lwkt_acquire().
1041  *
1042  * MPSAFE - must be called under very specific conditions.
1043  */
1044 void
1045 lwkt_giveaway(thread_t td)
1046 {
1047 	globaldata_t gd = mycpu;
1048 
1049 	crit_enter_gd(gd);
1050 	KKASSERT(td->td_gd == gd);
1051 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1052 	td->td_flags |= TDF_MIGRATING;
1053 	crit_exit_gd(gd);
1054 }
1055 
1056 void
1057 lwkt_acquire(thread_t td)
1058 {
1059     globaldata_t gd;
1060     globaldata_t mygd;
1061 
1062     KKASSERT(td->td_flags & TDF_MIGRATING);
1063     gd = td->td_gd;
1064     mygd = mycpu;
1065     if (gd != mycpu) {
1066 	cpu_lfence();
1067 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1068 	crit_enter_gd(mygd);
1069 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK))
1070 	    cpu_lfence();
1071 	td->td_gd = mygd;
1072 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1073 	td->td_flags &= ~TDF_MIGRATING;
1074 	crit_exit_gd(mygd);
1075     } else {
1076 	crit_enter_gd(mygd);
1077 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1078 	td->td_flags &= ~TDF_MIGRATING;
1079 	crit_exit_gd(mygd);
1080     }
1081 }
1082 
1083 #endif
1084 
1085 /*
1086  * Generic deschedule.  Descheduling threads other then your own should be
1087  * done only in carefully controlled circumstances.  Descheduling is
1088  * asynchronous.
1089  *
1090  * This function may block if the cpu has run out of messages.
1091  */
1092 void
1093 lwkt_deschedule(thread_t td)
1094 {
1095     crit_enter();
1096 #ifdef SMP
1097     if (td == curthread) {
1098 	_lwkt_dequeue(td);
1099     } else {
1100 	if (td->td_gd == mycpu) {
1101 	    _lwkt_dequeue(td);
1102 	} else {
1103 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1104 	}
1105     }
1106 #else
1107     _lwkt_dequeue(td);
1108 #endif
1109     crit_exit();
1110 }
1111 
1112 /*
1113  * Set the target thread's priority.  This routine does not automatically
1114  * switch to a higher priority thread, LWKT threads are not designed for
1115  * continuous priority changes.  Yield if you want to switch.
1116  *
1117  * We have to retain the critical section count which uses the high bits
1118  * of the td_pri field.  The specified priority may also indicate zero or
1119  * more critical sections by adding TDPRI_CRIT*N.
1120  *
1121  * Note that we requeue the thread whether it winds up on a different runq
1122  * or not.  uio_yield() depends on this and the routine is not normally
1123  * called with the same priority otherwise.
1124  */
1125 void
1126 lwkt_setpri(thread_t td, int pri)
1127 {
1128     KKASSERT(pri >= 0);
1129     KKASSERT(td->td_gd == mycpu);
1130     crit_enter();
1131     if (td->td_flags & TDF_RUNQ) {
1132 	_lwkt_dequeue(td);
1133 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1134 	_lwkt_enqueue(td);
1135     } else {
1136 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1137     }
1138     crit_exit();
1139 }
1140 
1141 void
1142 lwkt_setpri_self(int pri)
1143 {
1144     thread_t td = curthread;
1145 
1146     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1147     crit_enter();
1148     if (td->td_flags & TDF_RUNQ) {
1149 	_lwkt_dequeue(td);
1150 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1151 	_lwkt_enqueue(td);
1152     } else {
1153 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1154     }
1155     crit_exit();
1156 }
1157 
1158 /*
1159  * Determine if there is a runnable thread at a higher priority then
1160  * the current thread.  lwkt_setpri() does not check this automatically.
1161  * Return 1 if there is, 0 if there isn't.
1162  *
1163  * Example: if bit 31 of runqmask is set and the current thread is priority
1164  * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1165  *
1166  * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1167  * up comparing against 0xffffffff, a comparison that will always be false.
1168  */
1169 int
1170 lwkt_checkpri_self(void)
1171 {
1172     globaldata_t gd = mycpu;
1173     thread_t td = gd->gd_curthread;
1174     int nq = td->td_pri & TDPRI_MASK;
1175 
1176     while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1177 	if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1178 	    return(1);
1179 	++nq;
1180     }
1181     return(0);
1182 }
1183 
1184 /*
1185  * Migrate the current thread to the specified cpu.
1186  *
1187  * This is accomplished by descheduling ourselves from the current cpu,
1188  * moving our thread to the tdallq of the target cpu, IPI messaging the
1189  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1190  * races while the thread is being migrated.
1191  */
1192 #ifdef SMP
1193 static void lwkt_setcpu_remote(void *arg);
1194 #endif
1195 
1196 void
1197 lwkt_setcpu_self(globaldata_t rgd)
1198 {
1199 #ifdef SMP
1200     thread_t td = curthread;
1201 
1202     if (td->td_gd != rgd) {
1203 	crit_enter_quick(td);
1204 	td->td_flags |= TDF_MIGRATING;
1205 	lwkt_deschedule_self(td);
1206 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1207 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1208 	lwkt_switch();
1209 	/* we are now on the target cpu */
1210 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1211 	crit_exit_quick(td);
1212     }
1213 #endif
1214 }
1215 
1216 void
1217 lwkt_migratecpu(int cpuid)
1218 {
1219 #ifdef SMP
1220 	globaldata_t rgd;
1221 
1222 	rgd = globaldata_find(cpuid);
1223 	lwkt_setcpu_self(rgd);
1224 #endif
1225 }
1226 
1227 /*
1228  * Remote IPI for cpu migration (called while in a critical section so we
1229  * do not have to enter another one).  The thread has already been moved to
1230  * our cpu's allq, but we must wait for the thread to be completely switched
1231  * out on the originating cpu before we schedule it on ours or the stack
1232  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1233  * change to main memory.
1234  *
1235  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1236  * against wakeups.  It is best if this interface is used only when there
1237  * are no pending events that might try to schedule the thread.
1238  */
1239 #ifdef SMP
1240 static void
1241 lwkt_setcpu_remote(void *arg)
1242 {
1243     thread_t td = arg;
1244     globaldata_t gd = mycpu;
1245 
1246     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK))
1247 	cpu_lfence();
1248     td->td_gd = gd;
1249     cpu_sfence();
1250     td->td_flags &= ~TDF_MIGRATING;
1251     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1252     _lwkt_enqueue(td);
1253 }
1254 #endif
1255 
1256 struct lwp *
1257 lwkt_preempted_proc(void)
1258 {
1259     thread_t td = curthread;
1260     while (td->td_preempted)
1261 	td = td->td_preempted;
1262     return(td->td_lwp);
1263 }
1264 
1265 /*
1266  * Create a kernel process/thread/whatever.  It shares it's address space
1267  * with proc0 - ie: kernel only.
1268  *
1269  * NOTE!  By default new threads are created with the MP lock held.  A
1270  * thread which does not require the MP lock should release it by calling
1271  * rel_mplock() at the start of the new thread.
1272  */
1273 int
1274 lwkt_create(void (*func)(void *), void *arg,
1275     struct thread **tdp, thread_t template, int tdflags, int cpu,
1276     const char *fmt, ...)
1277 {
1278     thread_t td;
1279     __va_list ap;
1280 
1281     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1282 			   tdflags);
1283     if (tdp)
1284 	*tdp = td;
1285     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1286 
1287     /*
1288      * Set up arg0 for 'ps' etc
1289      */
1290     __va_start(ap, fmt);
1291     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1292     __va_end(ap);
1293 
1294     /*
1295      * Schedule the thread to run
1296      */
1297     if ((td->td_flags & TDF_STOPREQ) == 0)
1298 	lwkt_schedule(td);
1299     else
1300 	td->td_flags &= ~TDF_STOPREQ;
1301     return 0;
1302 }
1303 
1304 /*
1305  * kthread_* is specific to the kernel and is not needed by userland.
1306  */
1307 #ifdef _KERNEL
1308 
1309 /*
1310  * Destroy an LWKT thread.   Warning!  This function is not called when
1311  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1312  * uses a different reaping mechanism.
1313  */
1314 void
1315 lwkt_exit(void)
1316 {
1317     thread_t td = curthread;
1318     globaldata_t gd;
1319 
1320     if (td->td_flags & TDF_VERBOSE)
1321 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1322     caps_exit(td);
1323     crit_enter_quick(td);
1324     lwkt_deschedule_self(td);
1325     gd = mycpu;
1326     lwkt_remove_tdallq(td);
1327     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1328 	++gd->gd_tdfreecount;
1329 	TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1330     }
1331     cpu_thread_exit();
1332 }
1333 
1334 void
1335 lwkt_remove_tdallq(thread_t td)
1336 {
1337     KKASSERT(td->td_gd == mycpu);
1338     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1339 }
1340 
1341 #endif /* _KERNEL */
1342 
1343 void
1344 crit_panic(void)
1345 {
1346     thread_t td = curthread;
1347     int lpri = td->td_pri;
1348 
1349     td->td_pri = 0;
1350     panic("td_pri is/would-go negative! %p %d", td, lpri);
1351 }
1352 
1353 #ifdef SMP
1354 
1355 /*
1356  * Called from debugger/panic on cpus which have been stopped.  We must still
1357  * process the IPIQ while stopped, even if we were stopped while in a critical
1358  * section (XXX).
1359  *
1360  * If we are dumping also try to process any pending interrupts.  This may
1361  * or may not work depending on the state of the cpu at the point it was
1362  * stopped.
1363  */
1364 void
1365 lwkt_smp_stopped(void)
1366 {
1367     globaldata_t gd = mycpu;
1368 
1369     crit_enter_gd(gd);
1370     if (dumping) {
1371 	lwkt_process_ipiq();
1372 	splz();
1373     } else {
1374 	lwkt_process_ipiq();
1375     }
1376     crit_exit_gd(gd);
1377 }
1378 
1379 /*
1380  * get_mplock() calls this routine if it is unable to obtain the MP lock.
1381  * get_mplock() has already incremented td_mpcount.  We must block and
1382  * not return until giant is held.
1383  *
1384  * All we have to do is lwkt_switch() away.  The LWKT scheduler will not
1385  * reschedule the thread until it can obtain the giant lock for it.
1386  */
1387 void
1388 lwkt_mp_lock_contested(void)
1389 {
1390 #ifdef _KERNEL
1391     loggiant(beg);
1392 #endif
1393     lwkt_switch();
1394 #ifdef _KERNEL
1395     loggiant(end);
1396 #endif
1397 }
1398 
1399 #endif
1400