xref: /dragonfly/sys/kern/subr_blist.c (revision 333227be)
1 /*
2  * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
3  *
4  * Copyright (c) 1998,2004 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *
37  *	This module implements a general bitmap allocator/deallocator.  The
38  *	allocator eats around 2 bits per 'block'.  The module does not
39  *	try to interpret the meaning of a 'block' other then to return
40  *	SWAPBLK_NONE on an allocation failure.
41  *
42  *	A radix tree is used to maintain the bitmap.  Two radix constants are
43  *	involved:  One for the bitmaps contained in the leaf nodes (typically
44  *	32), and one for the meta nodes (typically 16).  Both meta and leaf
45  *	nodes have a hint field.  This field gives us a hint as to the largest
46  *	free contiguous range of blocks under the node.  It may contain a
47  *	value that is too high, but will never contain a value that is too
48  *	low.  When the radix tree is searched, allocation failures in subtrees
49  *	update the hint.
50  *
51  *	The radix tree also implements two collapsed states for meta nodes:
52  *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
53  *	in either of these two states, all information contained underneath
54  *	the node is considered stale.  These states are used to optimize
55  *	allocation and freeing operations.
56  *
57  * 	The hinting greatly increases code efficiency for allocations while
58  *	the general radix structure optimizes both allocations and frees.  The
59  *	radix tree should be able to operate well no matter how much
60  *	fragmentation there is and no matter how large a bitmap is used.
61  *
62  *	Unlike the rlist code, the blist code wires all necessary memory at
63  *	creation time.  Neither allocations nor frees require interaction with
64  *	the memory subsystem.  In contrast, the rlist code may allocate memory
65  *	on an rlist_free() call.  The non-blocking features of the blist code
66  *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
67  *	rlist code uses a little less overall memory then the blist code (but
68  *	due to swap interleaving not all that much less), but the blist code
69  *	scales much, much better.
70  *
71  *	LAYOUT: The radix tree is layed out recursively using a
72  *	linear array.  Each meta node is immediately followed (layed out
73  *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
74  *	is a recursive structure but one that can be easily scanned through
75  *	a very simple 'skip' calculation.  In order to support large radixes,
76  *	portions of the tree may reside outside our memory allocation.  We
77  *	handle this with an early-termination optimization (when bighint is
78  *	set to -1) on the scan.  The memory allocation is only large enough
79  *	to cover the number of blocks requested at creation time even if it
80  *	must be encompassed in larger root-node radix.
81  *
82  *	NOTE: the allocator cannot currently allocate more then
83  *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
84  *	large' if you try.  This is an area that could use improvement.  The
85  *	radix is large enough that this restriction does not effect the swap
86  *	system, though.  Currently only the allocation code is effected by
87  *	this algorithmic unfeature.  The freeing code can handle arbitrary
88  *	ranges.
89  *
90  *	This code can be compiled stand-alone for debugging.
91  *
92  * $FreeBSD: src/sys/kern/subr_blist.c,v 1.5.2.2 2003/01/12 09:23:12 dillon Exp $
93  * $DragonFly: src/sys/kern/subr_blist.c,v 1.5 2004/07/16 05:51:10 dillon Exp $
94  */
95 
96 #ifdef _KERNEL
97 
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/lock.h>
101 #include <sys/kernel.h>
102 #include <sys/blist.h>
103 #include <sys/malloc.h>
104 #include <vm/vm.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_page.h>
109 
110 #else
111 
112 #ifndef BLIST_NO_DEBUG
113 #define BLIST_DEBUG
114 #endif
115 
116 #define SWAPBLK_NONE ((daddr_t)-1)
117 
118 #include <sys/types.h>
119 #include <stdio.h>
120 #include <string.h>
121 #include <stdlib.h>
122 #include <stdarg.h>
123 
124 #define malloc(a,b,c)	malloc(a)
125 #define free(a,b)	free(a)
126 
127 typedef unsigned int u_daddr_t;
128 
129 #include <sys/blist.h>
130 
131 void panic(const char *ctl, ...);
132 
133 #endif
134 
135 /*
136  * static support functions
137  */
138 
139 static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
140 static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
141 				daddr_t count, daddr_t radix, int skip);
142 static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
143 static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
144 					daddr_t radix, int skip, daddr_t blk);
145 static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
146 				daddr_t skip, blist_t dest, daddr_t count);
147 static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix,
148 						int skip, daddr_t count);
149 #ifndef _KERNEL
150 static void	blst_radix_print(blmeta_t *scan, daddr_t blk,
151 					daddr_t radix, int skip, int tab);
152 #endif
153 
154 #ifdef _KERNEL
155 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
156 #endif
157 
158 /*
159  * blist_create() - create a blist capable of handling up to the specified
160  *		    number of blocks
161  *
162  *	blocks must be greater then 0
163  *
164  *	The smallest blist consists of a single leaf node capable of
165  *	managing BLIST_BMAP_RADIX blocks.
166  */
167 
168 blist_t
169 blist_create(daddr_t blocks)
170 {
171 	blist_t bl;
172 	int radix;
173 	int skip = 0;
174 
175 	/*
176 	 * Calculate radix and skip field used for scanning.
177 	 */
178 	radix = BLIST_BMAP_RADIX;
179 
180 	while (radix < blocks) {
181 		radix *= BLIST_META_RADIX;
182 		skip = (skip + 1) * BLIST_META_RADIX;
183 	}
184 
185 	bl = malloc(sizeof(struct blist), M_SWAP, M_WAITOK);
186 
187 	bzero(bl, sizeof(*bl));
188 
189 	bl->bl_blocks = blocks;
190 	bl->bl_radix = radix;
191 	bl->bl_skip = skip;
192 	bl->bl_rootblks = 1 +
193 	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
194 	bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
195 
196 #if defined(BLIST_DEBUG)
197 	printf(
198 		"BLIST representing %d blocks (%d MB of swap)"
199 		", requiring %dK of ram\n",
200 		bl->bl_blocks,
201 		bl->bl_blocks * 4 / 1024,
202 		(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
203 	);
204 	printf("BLIST raw radix tree contains %d records\n", bl->bl_rootblks);
205 #endif
206 	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
207 
208 	return(bl);
209 }
210 
211 void
212 blist_destroy(blist_t bl)
213 {
214 	free(bl->bl_root, M_SWAP);
215 	free(bl, M_SWAP);
216 }
217 
218 /*
219  * blist_alloc() - reserve space in the block bitmap.  Return the base
220  *		     of a contiguous region or SWAPBLK_NONE if space could
221  *		     not be allocated.
222  */
223 
224 daddr_t
225 blist_alloc(blist_t bl, daddr_t count)
226 {
227 	daddr_t blk = SWAPBLK_NONE;
228 
229 	if (bl) {
230 		if (bl->bl_radix == BLIST_BMAP_RADIX)
231 			blk = blst_leaf_alloc(bl->bl_root, 0, count);
232 		else
233 			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
234 		if (blk != SWAPBLK_NONE)
235 			bl->bl_free -= count;
236 	}
237 	return(blk);
238 }
239 
240 /*
241  * blist_free() -	free up space in the block bitmap.  Return the base
242  *		     	of a contiguous region.  Panic if an inconsistancy is
243  *			found.
244  */
245 
246 void
247 blist_free(blist_t bl, daddr_t blkno, daddr_t count)
248 {
249 	if (bl) {
250 		if (bl->bl_radix == BLIST_BMAP_RADIX)
251 			blst_leaf_free(bl->bl_root, blkno, count);
252 		else
253 			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
254 		bl->bl_free += count;
255 	}
256 }
257 
258 /*
259  * blist_resize() -	resize an existing radix tree to handle the
260  *			specified number of blocks.  This will reallocate
261  *			the tree and transfer the previous bitmap to the new
262  *			one.  When extending the tree you can specify whether
263  *			the new blocks are to left allocated or freed.
264  */
265 
266 void
267 blist_resize(blist_t *pbl, daddr_t count, int freenew)
268 {
269     blist_t newbl = blist_create(count);
270     blist_t save = *pbl;
271 
272     *pbl = newbl;
273     if (count > save->bl_blocks)
274 	    count = save->bl_blocks;
275     blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
276 
277     /*
278      * If resizing upwards, should we free the new space or not?
279      */
280     if (freenew && count < newbl->bl_blocks) {
281 	    blist_free(newbl, count, newbl->bl_blocks - count);
282     }
283     blist_destroy(save);
284 }
285 
286 #ifdef BLIST_DEBUG
287 
288 /*
289  * blist_print()    - dump radix tree
290  */
291 
292 void
293 blist_print(blist_t bl)
294 {
295 	printf("BLIST {\n");
296 	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
297 	printf("}\n");
298 }
299 
300 #endif
301 
302 /************************************************************************
303  *			  ALLOCATION SUPPORT FUNCTIONS			*
304  ************************************************************************
305  *
306  *	These support functions do all the actual work.  They may seem
307  *	rather longish, but that's because I've commented them up.  The
308  *	actual code is straight forward.
309  *
310  */
311 
312 /*
313  * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
314  *
315  *	This is the core of the allocator and is optimized for the 1 block
316  *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
317  *	somewhat slower.  The 1 block allocation case is log2 and extremely
318  *	quick.
319  */
320 
321 static daddr_t
322 blst_leaf_alloc(
323 	blmeta_t *scan,
324 	daddr_t blk,
325 	int count
326 ) {
327 	u_daddr_t orig = scan->u.bmu_bitmap;
328 
329 	if (orig == 0) {
330 		/*
331 		 * Optimize bitmap all-allocated case.  Also, count = 1
332 		 * case assumes at least 1 bit is free in the bitmap, so
333 		 * we have to take care of this case here.
334 		 */
335 		scan->bm_bighint = 0;
336 		return(SWAPBLK_NONE);
337 	}
338 	if (count == 1) {
339 		/*
340 		 * Optimized code to allocate one bit out of the bitmap
341 		 */
342 		u_daddr_t mask;
343 		int j = BLIST_BMAP_RADIX/2;
344 		int r = 0;
345 
346 		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
347 
348 		while (j) {
349 			if ((orig & mask) == 0) {
350 			    r += j;
351 			    orig >>= j;
352 			}
353 			j >>= 1;
354 			mask >>= j;
355 		}
356 		scan->u.bmu_bitmap &= ~(1 << r);
357 		return(blk + r);
358 	}
359 	if (count <= BLIST_BMAP_RADIX) {
360 		/*
361 		 * non-optimized code to allocate N bits out of the bitmap.
362 		 * The more bits, the faster the code runs.  It will run
363 		 * the slowest allocating 2 bits, but since there aren't any
364 		 * memory ops in the core loop (or shouldn't be, anyway),
365 		 * you probably won't notice the difference.
366 		 */
367 		int j;
368 		int n = BLIST_BMAP_RADIX - count;
369 		u_daddr_t mask;
370 
371 		mask = (u_daddr_t)-1 >> n;
372 
373 		for (j = 0; j <= n; ++j) {
374 			if ((orig & mask) == mask) {
375 				scan->u.bmu_bitmap &= ~mask;
376 				return(blk + j);
377 			}
378 			mask = (mask << 1);
379 		}
380 	}
381 	/*
382 	 * We couldn't allocate count in this subtree, update bighint.
383 	 */
384 	scan->bm_bighint = count - 1;
385 	return(SWAPBLK_NONE);
386 }
387 
388 /*
389  * blist_meta_alloc() -	allocate at a meta in the radix tree.
390  *
391  *	Attempt to allocate at a meta node.  If we can't, we update
392  *	bighint and return a failure.  Updating bighint optimize future
393  *	calls that hit this node.  We have to check for our collapse cases
394  *	and we have a few optimizations strewn in as well.
395  */
396 
397 static daddr_t
398 blst_meta_alloc(
399 	blmeta_t *scan,
400 	daddr_t blk,
401 	daddr_t count,
402 	daddr_t radix,
403 	int skip
404 ) {
405 	int i;
406 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
407 
408 	if (scan->u.bmu_avail == 0)  {
409 		/*
410 		 * ALL-ALLOCATED special case
411 		 */
412 		scan->bm_bighint = count;
413 		return(SWAPBLK_NONE);
414 	}
415 
416 	if (scan->u.bmu_avail == radix) {
417 		radix /= BLIST_META_RADIX;
418 
419 		/*
420 		 * ALL-FREE special case, initialize uninitialize
421 		 * sublevel.
422 		 */
423 		for (i = 1; i <= skip; i += next_skip) {
424 			if (scan[i].bm_bighint == (daddr_t)-1)
425 				break;
426 			if (next_skip == 1) {
427 				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
428 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
429 			} else {
430 				scan[i].bm_bighint = radix;
431 				scan[i].u.bmu_avail = radix;
432 			}
433 		}
434 	} else {
435 		radix /= BLIST_META_RADIX;
436 	}
437 
438 	for (i = 1; i <= skip; i += next_skip) {
439 		if (count <= scan[i].bm_bighint) {
440 			/*
441 			 * count fits in object
442 			 */
443 			daddr_t r;
444 			if (next_skip == 1) {
445 				r = blst_leaf_alloc(&scan[i], blk, count);
446 			} else {
447 				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
448 			}
449 			if (r != SWAPBLK_NONE) {
450 				scan->u.bmu_avail -= count;
451 				if (scan->bm_bighint > scan->u.bmu_avail)
452 					scan->bm_bighint = scan->u.bmu_avail;
453 				return(r);
454 			}
455 		} else if (scan[i].bm_bighint == (daddr_t)-1) {
456 			/*
457 			 * Terminator
458 			 */
459 			break;
460 		} else if (count > radix) {
461 			/*
462 			 * count does not fit in object even if it were
463 			 * complete free.
464 			 */
465 			panic("blist_meta_alloc: allocation too large");
466 		}
467 		blk += radix;
468 	}
469 
470 	/*
471 	 * We couldn't allocate count in this subtree, update bighint.
472 	 */
473 	if (scan->bm_bighint >= count)
474 		scan->bm_bighint = count - 1;
475 	return(SWAPBLK_NONE);
476 }
477 
478 /*
479  * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
480  *
481  */
482 
483 static void
484 blst_leaf_free(
485 	blmeta_t *scan,
486 	daddr_t blk,
487 	int count
488 ) {
489 	/*
490 	 * free some data in this bitmap
491 	 *
492 	 * e.g.
493 	 *	0000111111111110000
494 	 *          \_________/\__/
495 	 *		v        n
496 	 */
497 	int n = blk & (BLIST_BMAP_RADIX - 1);
498 	u_daddr_t mask;
499 
500 	mask = ((u_daddr_t)-1 << n) &
501 	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
502 
503 	if (scan->u.bmu_bitmap & mask)
504 		panic("blst_radix_free: freeing free block");
505 	scan->u.bmu_bitmap |= mask;
506 
507 	/*
508 	 * We could probably do a better job here.  We are required to make
509 	 * bighint at least as large as the biggest contiguous block of
510 	 * data.  If we just shoehorn it, a little extra overhead will
511 	 * be incured on the next allocation (but only that one typically).
512 	 */
513 	scan->bm_bighint = BLIST_BMAP_RADIX;
514 }
515 
516 /*
517  * BLST_META_FREE() - free allocated blocks from radix tree meta info
518  *
519  *	This support routine frees a range of blocks from the bitmap.
520  *	The range must be entirely enclosed by this radix node.  If a
521  *	meta node, we break the range down recursively to free blocks
522  *	in subnodes (which means that this code can free an arbitrary
523  *	range whereas the allocation code cannot allocate an arbitrary
524  *	range).
525  */
526 
527 static void
528 blst_meta_free(
529 	blmeta_t *scan,
530 	daddr_t freeBlk,
531 	daddr_t count,
532 	daddr_t radix,
533 	int skip,
534 	daddr_t blk
535 ) {
536 	int i;
537 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
538 
539 #if 0
540 	printf("FREE (%x,%d) FROM (%x,%d)\n",
541 	    freeBlk, count,
542 	    blk, radix
543 	);
544 #endif
545 
546 	if (scan->u.bmu_avail == 0) {
547 		/*
548 		 * ALL-ALLOCATED special case, with possible
549 		 * shortcut to ALL-FREE special case.
550 		 */
551 		scan->u.bmu_avail = count;
552 		scan->bm_bighint = count;
553 
554 		if (count != radix)  {
555 			for (i = 1; i <= skip; i += next_skip) {
556 				if (scan[i].bm_bighint == (daddr_t)-1)
557 					break;
558 				scan[i].bm_bighint = 0;
559 				if (next_skip == 1) {
560 					scan[i].u.bmu_bitmap = 0;
561 				} else {
562 					scan[i].u.bmu_avail = 0;
563 				}
564 			}
565 			/* fall through */
566 		}
567 	} else {
568 		scan->u.bmu_avail += count;
569 		/* scan->bm_bighint = radix; */
570 	}
571 
572 	/*
573 	 * ALL-FREE special case.
574 	 */
575 
576 	if (scan->u.bmu_avail == radix)
577 		return;
578 	if (scan->u.bmu_avail > radix)
579 		panic("blst_meta_free: freeing already free blocks (%d) %d/%d", count, scan->u.bmu_avail, radix);
580 
581 	/*
582 	 * Break the free down into its components
583 	 */
584 
585 	radix /= BLIST_META_RADIX;
586 
587 	i = (freeBlk - blk) / radix;
588 	blk += i * radix;
589 	i = i * next_skip + 1;
590 
591 	while (i <= skip && blk < freeBlk + count) {
592 		daddr_t v;
593 
594 		v = blk + radix - freeBlk;
595 		if (v > count)
596 			v = count;
597 
598 		if (scan->bm_bighint == (daddr_t)-1)
599 			panic("blst_meta_free: freeing unexpected range");
600 
601 		if (next_skip == 1) {
602 			blst_leaf_free(&scan[i], freeBlk, v);
603 		} else {
604 			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
605 		}
606 		if (scan->bm_bighint < scan[i].bm_bighint)
607 		    scan->bm_bighint = scan[i].bm_bighint;
608 		count -= v;
609 		freeBlk += v;
610 		blk += radix;
611 		i += next_skip;
612 	}
613 }
614 
615 /*
616  * BLIST_RADIX_COPY() - copy one radix tree to another
617  *
618  *	Locates free space in the source tree and frees it in the destination
619  *	tree.  The space may not already be free in the destination.
620  */
621 
622 static void blst_copy(
623 	blmeta_t *scan,
624 	daddr_t blk,
625 	daddr_t radix,
626 	daddr_t skip,
627 	blist_t dest,
628 	daddr_t count
629 ) {
630 	int next_skip;
631 	int i;
632 
633 	/*
634 	 * Leaf node
635 	 */
636 
637 	if (radix == BLIST_BMAP_RADIX) {
638 		u_daddr_t v = scan->u.bmu_bitmap;
639 
640 		if (v == (u_daddr_t)-1) {
641 			blist_free(dest, blk, count);
642 		} else if (v != 0) {
643 			int i;
644 
645 			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
646 				if (v & (1 << i))
647 					blist_free(dest, blk + i, 1);
648 			}
649 		}
650 		return;
651 	}
652 
653 	/*
654 	 * Meta node
655 	 */
656 
657 	if (scan->u.bmu_avail == 0) {
658 		/*
659 		 * Source all allocated, leave dest allocated
660 		 */
661 		return;
662 	}
663 	if (scan->u.bmu_avail == radix) {
664 		/*
665 		 * Source all free, free entire dest
666 		 */
667 		if (count < radix)
668 			blist_free(dest, blk, count);
669 		else
670 			blist_free(dest, blk, radix);
671 		return;
672 	}
673 
674 
675 	radix /= BLIST_META_RADIX;
676 	next_skip = ((u_int)skip / BLIST_META_RADIX);
677 
678 	for (i = 1; count && i <= skip; i += next_skip) {
679 		if (scan[i].bm_bighint == (daddr_t)-1)
680 			break;
681 
682 		if (count >= radix) {
683 			blst_copy(
684 			    &scan[i],
685 			    blk,
686 			    radix,
687 			    next_skip - 1,
688 			    dest,
689 			    radix
690 			);
691 			count -= radix;
692 		} else {
693 			if (count) {
694 				blst_copy(
695 				    &scan[i],
696 				    blk,
697 				    radix,
698 				    next_skip - 1,
699 				    dest,
700 				    count
701 				);
702 			}
703 			count = 0;
704 		}
705 		blk += radix;
706 	}
707 }
708 
709 /*
710  * BLST_RADIX_INIT() - initialize radix tree
711  *
712  *	Initialize our meta structures and bitmaps and calculate the exact
713  *	amount of space required to manage 'count' blocks - this space may
714  *	be considerably less then the calculated radix due to the large
715  *	RADIX values we use.
716  */
717 
718 static daddr_t
719 blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
720 {
721 	int i;
722 	int next_skip;
723 	daddr_t memindex = 0;
724 
725 	/*
726 	 * Leaf node
727 	 */
728 
729 	if (radix == BLIST_BMAP_RADIX) {
730 		if (scan) {
731 			scan->bm_bighint = 0;
732 			scan->u.bmu_bitmap = 0;
733 		}
734 		return(memindex);
735 	}
736 
737 	/*
738 	 * Meta node.  If allocating the entire object we can special
739 	 * case it.  However, we need to figure out how much memory
740 	 * is required to manage 'count' blocks, so we continue on anyway.
741 	 */
742 
743 	if (scan) {
744 		scan->bm_bighint = 0;
745 		scan->u.bmu_avail = 0;
746 	}
747 
748 	radix /= BLIST_META_RADIX;
749 	next_skip = ((u_int)skip / BLIST_META_RADIX);
750 
751 	for (i = 1; i <= skip; i += next_skip) {
752 		if (count >= radix) {
753 			/*
754 			 * Allocate the entire object
755 			 */
756 			memindex = i + blst_radix_init(
757 			    ((scan) ? &scan[i] : NULL),
758 			    radix,
759 			    next_skip - 1,
760 			    radix
761 			);
762 			count -= radix;
763 		} else if (count > 0) {
764 			/*
765 			 * Allocate a partial object
766 			 */
767 			memindex = i + blst_radix_init(
768 			    ((scan) ? &scan[i] : NULL),
769 			    radix,
770 			    next_skip - 1,
771 			    count
772 			);
773 			count = 0;
774 		} else {
775 			/*
776 			 * Add terminator and break out
777 			 */
778 			if (scan)
779 				scan[i].bm_bighint = (daddr_t)-1;
780 			break;
781 		}
782 	}
783 	if (memindex < i)
784 		memindex = i;
785 	return(memindex);
786 }
787 
788 #ifdef BLIST_DEBUG
789 
790 static void
791 blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
792 {
793 	int i;
794 	int next_skip;
795 	int lastState = 0;
796 
797 	if (radix == BLIST_BMAP_RADIX) {
798 		printf(
799 		    "%*.*s(%04x,%d): bitmap %08x big=%d\n",
800 		    tab, tab, "",
801 		    blk, radix,
802 		    scan->u.bmu_bitmap,
803 		    scan->bm_bighint
804 		);
805 		return;
806 	}
807 
808 	if (scan->u.bmu_avail == 0) {
809 		printf(
810 		    "%*.*s(%04x,%d) ALL ALLOCATED\n",
811 		    tab, tab, "",
812 		    blk,
813 		    radix
814 		);
815 		return;
816 	}
817 	if (scan->u.bmu_avail == radix) {
818 		printf(
819 		    "%*.*s(%04x,%d) ALL FREE\n",
820 		    tab, tab, "",
821 		    blk,
822 		    radix
823 		);
824 		return;
825 	}
826 
827 	printf(
828 	    "%*.*s(%04x,%d): subtree (%d/%d) big=%d {\n",
829 	    tab, tab, "",
830 	    blk, radix,
831 	    scan->u.bmu_avail,
832 	    radix,
833 	    scan->bm_bighint
834 	);
835 
836 	radix /= BLIST_META_RADIX;
837 	next_skip = ((u_int)skip / BLIST_META_RADIX);
838 	tab += 4;
839 
840 	for (i = 1; i <= skip; i += next_skip) {
841 		if (scan[i].bm_bighint == (daddr_t)-1) {
842 			printf(
843 			    "%*.*s(%04x,%d): Terminator\n",
844 			    tab, tab, "",
845 			    blk, radix
846 			);
847 			lastState = 0;
848 			break;
849 		}
850 		blst_radix_print(
851 		    &scan[i],
852 		    blk,
853 		    radix,
854 		    next_skip - 1,
855 		    tab
856 		);
857 		blk += radix;
858 	}
859 	tab -= 4;
860 
861 	printf(
862 	    "%*.*s}\n",
863 	    tab, tab, ""
864 	);
865 }
866 
867 #endif
868 
869 #ifdef BLIST_DEBUG
870 
871 int
872 main(int ac, char **av)
873 {
874 	int size = 1024;
875 	int i;
876 	blist_t bl;
877 
878 	for (i = 1; i < ac; ++i) {
879 		const char *ptr = av[i];
880 		if (*ptr != '-') {
881 			size = strtol(ptr, NULL, 0);
882 			continue;
883 		}
884 		ptr += 2;
885 		fprintf(stderr, "Bad option: %s\n", ptr - 2);
886 		exit(1);
887 	}
888 	bl = blist_create(size);
889 	blist_free(bl, 0, size);
890 
891 	for (;;) {
892 		char buf[1024];
893 		daddr_t da = 0;
894 		daddr_t count = 0;
895 
896 
897 		printf("%d/%d/%d> ", bl->bl_free, size, bl->bl_radix);
898 		fflush(stdout);
899 		if (fgets(buf, sizeof(buf), stdin) == NULL)
900 			break;
901 		switch(buf[0]) {
902 		case 'r':
903 			if (sscanf(buf + 1, "%d", &count) == 1) {
904 				blist_resize(&bl, count, 1);
905 			} else {
906 				printf("?\n");
907 			}
908 		case 'p':
909 			blist_print(bl);
910 			break;
911 		case 'a':
912 			if (sscanf(buf + 1, "%d", &count) == 1) {
913 				daddr_t blk = blist_alloc(bl, count);
914 				printf("    R=%04x\n", blk);
915 			} else {
916 				printf("?\n");
917 			}
918 			break;
919 		case 'f':
920 			if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
921 				blist_free(bl, da, count);
922 			} else {
923 				printf("?\n");
924 			}
925 			break;
926 		case '?':
927 		case 'h':
928 			puts(
929 			    "p          -print\n"
930 			    "a %d       -allocate\n"
931 			    "f %x %d    -free\n"
932 			    "r %d       -resize\n"
933 			    "h/?        -help"
934 			);
935 			break;
936 		default:
937 			printf("?\n");
938 			break;
939 		}
940 	}
941 	return(0);
942 }
943 
944 void
945 panic(const char *ctl, ...)
946 {
947 	__va_list va;
948 
949 	__va_start(va, ctl);
950 	vfprintf(stderr, ctl, va);
951 	fprintf(stderr, "\n");
952 	__va_end(va);
953 	exit(1);
954 }
955 
956 #endif
957 
958