xref: /dragonfly/sys/kern/subr_blist.c (revision aa8d5dcb)
1 
2 /*
3  * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
4  *
5  *	(c)Copyright 1998, Matthew Dillon.  Terms for use and redistribution
6  *	are covered by the BSD Copyright as found in /usr/src/COPYRIGHT.
7  *
8  *	This module implements a general bitmap allocator/deallocator.  The
9  *	allocator eats around 2 bits per 'block'.  The module does not
10  *	try to interpret the meaning of a 'block' other then to return
11  *	SWAPBLK_NONE on an allocation failure.
12  *
13  *	A radix tree is used to maintain the bitmap.  Two radix constants are
14  *	involved:  One for the bitmaps contained in the leaf nodes (typically
15  *	32), and one for the meta nodes (typically 16).  Both meta and leaf
16  *	nodes have a hint field.  This field gives us a hint as to the largest
17  *	free contiguous range of blocks under the node.  It may contain a
18  *	value that is too high, but will never contain a value that is too
19  *	low.  When the radix tree is searched, allocation failures in subtrees
20  *	update the hint.
21  *
22  *	The radix tree also implements two collapsed states for meta nodes:
23  *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
24  *	in either of these two states, all information contained underneath
25  *	the node is considered stale.  These states are used to optimize
26  *	allocation and freeing operations.
27  *
28  * 	The hinting greatly increases code efficiency for allocations while
29  *	the general radix structure optimizes both allocations and frees.  The
30  *	radix tree should be able to operate well no matter how much
31  *	fragmentation there is and no matter how large a bitmap is used.
32  *
33  *	Unlike the rlist code, the blist code wires all necessary memory at
34  *	creation time.  Neither allocations nor frees require interaction with
35  *	the memory subsystem.  In contrast, the rlist code may allocate memory
36  *	on an rlist_free() call.  The non-blocking features of the blist code
37  *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
38  *	rlist code uses a little less overall memory then the blist code (but
39  *	due to swap interleaving not all that much less), but the blist code
40  *	scales much, much better.
41  *
42  *	LAYOUT: The radix tree is layed out recursively using a
43  *	linear array.  Each meta node is immediately followed (layed out
44  *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
45  *	is a recursive structure but one that can be easily scanned through
46  *	a very simple 'skip' calculation.  In order to support large radixes,
47  *	portions of the tree may reside outside our memory allocation.  We
48  *	handle this with an early-termination optimization (when bighint is
49  *	set to -1) on the scan.  The memory allocation is only large enough
50  *	to cover the number of blocks requested at creation time even if it
51  *	must be encompassed in larger root-node radix.
52  *
53  *	NOTE: the allocator cannot currently allocate more then
54  *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
55  *	large' if you try.  This is an area that could use improvement.  The
56  *	radix is large enough that this restriction does not effect the swap
57  *	system, though.  Currently only the allocation code is effected by
58  *	this algorithmic unfeature.  The freeing code can handle arbitrary
59  *	ranges.
60  *
61  *	This code can be compiled stand-alone for debugging.
62  *
63  * $FreeBSD: src/sys/kern/subr_blist.c,v 1.5.2.2 2003/01/12 09:23:12 dillon Exp $
64  * $DragonFly: src/sys/kern/subr_blist.c,v 1.3 2003/11/09 02:22:36 dillon Exp $
65  */
66 
67 #ifdef _KERNEL
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/lock.h>
72 #include <sys/kernel.h>
73 #include <sys/blist.h>
74 #include <sys/malloc.h>
75 #include <vm/vm.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_extern.h>
79 #include <vm/vm_page.h>
80 
81 #else
82 
83 #ifndef BLIST_NO_DEBUG
84 #define BLIST_DEBUG
85 #endif
86 
87 #define SWAPBLK_NONE ((daddr_t)-1)
88 
89 #include <sys/types.h>
90 #include <stdio.h>
91 #include <string.h>
92 #include <stdlib.h>
93 #include <stdarg.h>
94 
95 #define malloc(a,b,c)	malloc(a)
96 #define free(a,b)	free(a)
97 
98 typedef unsigned int u_daddr_t;
99 
100 #include <sys/blist.h>
101 
102 void panic(const char *ctl, ...);
103 
104 #endif
105 
106 /*
107  * static support functions
108  */
109 
110 static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
111 static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
112 				daddr_t count, daddr_t radix, int skip);
113 static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
114 static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
115 					daddr_t radix, int skip, daddr_t blk);
116 static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
117 				daddr_t skip, blist_t dest, daddr_t count);
118 static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix,
119 						int skip, daddr_t count);
120 #ifndef _KERNEL
121 static void	blst_radix_print(blmeta_t *scan, daddr_t blk,
122 					daddr_t radix, int skip, int tab);
123 #endif
124 
125 #ifdef _KERNEL
126 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
127 #endif
128 
129 /*
130  * blist_create() - create a blist capable of handling up to the specified
131  *		    number of blocks
132  *
133  *	blocks must be greater then 0
134  *
135  *	The smallest blist consists of a single leaf node capable of
136  *	managing BLIST_BMAP_RADIX blocks.
137  */
138 
139 blist_t
140 blist_create(daddr_t blocks)
141 {
142 	blist_t bl;
143 	int radix;
144 	int skip = 0;
145 
146 	/*
147 	 * Calculate radix and skip field used for scanning.
148 	 */
149 	radix = BLIST_BMAP_RADIX;
150 
151 	while (radix < blocks) {
152 		radix *= BLIST_META_RADIX;
153 		skip = (skip + 1) * BLIST_META_RADIX;
154 	}
155 
156 	bl = malloc(sizeof(struct blist), M_SWAP, M_WAITOK);
157 
158 	bzero(bl, sizeof(*bl));
159 
160 	bl->bl_blocks = blocks;
161 	bl->bl_radix = radix;
162 	bl->bl_skip = skip;
163 	bl->bl_rootblks = 1 +
164 	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
165 	bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
166 
167 #if defined(BLIST_DEBUG)
168 	printf(
169 		"BLIST representing %d blocks (%d MB of swap)"
170 		", requiring %dK of ram\n",
171 		bl->bl_blocks,
172 		bl->bl_blocks * 4 / 1024,
173 		(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
174 	);
175 	printf("BLIST raw radix tree contains %d records\n", bl->bl_rootblks);
176 #endif
177 	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
178 
179 	return(bl);
180 }
181 
182 void
183 blist_destroy(blist_t bl)
184 {
185 	free(bl->bl_root, M_SWAP);
186 	free(bl, M_SWAP);
187 }
188 
189 /*
190  * blist_alloc() - reserve space in the block bitmap.  Return the base
191  *		     of a contiguous region or SWAPBLK_NONE if space could
192  *		     not be allocated.
193  */
194 
195 daddr_t
196 blist_alloc(blist_t bl, daddr_t count)
197 {
198 	daddr_t blk = SWAPBLK_NONE;
199 
200 	if (bl) {
201 		if (bl->bl_radix == BLIST_BMAP_RADIX)
202 			blk = blst_leaf_alloc(bl->bl_root, 0, count);
203 		else
204 			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
205 		if (blk != SWAPBLK_NONE)
206 			bl->bl_free -= count;
207 	}
208 	return(blk);
209 }
210 
211 /*
212  * blist_free() -	free up space in the block bitmap.  Return the base
213  *		     	of a contiguous region.  Panic if an inconsistancy is
214  *			found.
215  */
216 
217 void
218 blist_free(blist_t bl, daddr_t blkno, daddr_t count)
219 {
220 	if (bl) {
221 		if (bl->bl_radix == BLIST_BMAP_RADIX)
222 			blst_leaf_free(bl->bl_root, blkno, count);
223 		else
224 			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
225 		bl->bl_free += count;
226 	}
227 }
228 
229 /*
230  * blist_resize() -	resize an existing radix tree to handle the
231  *			specified number of blocks.  This will reallocate
232  *			the tree and transfer the previous bitmap to the new
233  *			one.  When extending the tree you can specify whether
234  *			the new blocks are to left allocated or freed.
235  */
236 
237 void
238 blist_resize(blist_t *pbl, daddr_t count, int freenew)
239 {
240     blist_t newbl = blist_create(count);
241     blist_t save = *pbl;
242 
243     *pbl = newbl;
244     if (count > save->bl_blocks)
245 	    count = save->bl_blocks;
246     blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
247 
248     /*
249      * If resizing upwards, should we free the new space or not?
250      */
251     if (freenew && count < newbl->bl_blocks) {
252 	    blist_free(newbl, count, newbl->bl_blocks - count);
253     }
254     blist_destroy(save);
255 }
256 
257 #ifdef BLIST_DEBUG
258 
259 /*
260  * blist_print()    - dump radix tree
261  */
262 
263 void
264 blist_print(blist_t bl)
265 {
266 	printf("BLIST {\n");
267 	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
268 	printf("}\n");
269 }
270 
271 #endif
272 
273 /************************************************************************
274  *			  ALLOCATION SUPPORT FUNCTIONS			*
275  ************************************************************************
276  *
277  *	These support functions do all the actual work.  They may seem
278  *	rather longish, but that's because I've commented them up.  The
279  *	actual code is straight forward.
280  *
281  */
282 
283 /*
284  * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
285  *
286  *	This is the core of the allocator and is optimized for the 1 block
287  *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
288  *	somewhat slower.  The 1 block allocation case is log2 and extremely
289  *	quick.
290  */
291 
292 static daddr_t
293 blst_leaf_alloc(
294 	blmeta_t *scan,
295 	daddr_t blk,
296 	int count
297 ) {
298 	u_daddr_t orig = scan->u.bmu_bitmap;
299 
300 	if (orig == 0) {
301 		/*
302 		 * Optimize bitmap all-allocated case.  Also, count = 1
303 		 * case assumes at least 1 bit is free in the bitmap, so
304 		 * we have to take care of this case here.
305 		 */
306 		scan->bm_bighint = 0;
307 		return(SWAPBLK_NONE);
308 	}
309 	if (count == 1) {
310 		/*
311 		 * Optimized code to allocate one bit out of the bitmap
312 		 */
313 		u_daddr_t mask;
314 		int j = BLIST_BMAP_RADIX/2;
315 		int r = 0;
316 
317 		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
318 
319 		while (j) {
320 			if ((orig & mask) == 0) {
321 			    r += j;
322 			    orig >>= j;
323 			}
324 			j >>= 1;
325 			mask >>= j;
326 		}
327 		scan->u.bmu_bitmap &= ~(1 << r);
328 		return(blk + r);
329 	}
330 	if (count <= BLIST_BMAP_RADIX) {
331 		/*
332 		 * non-optimized code to allocate N bits out of the bitmap.
333 		 * The more bits, the faster the code runs.  It will run
334 		 * the slowest allocating 2 bits, but since there aren't any
335 		 * memory ops in the core loop (or shouldn't be, anyway),
336 		 * you probably won't notice the difference.
337 		 */
338 		int j;
339 		int n = BLIST_BMAP_RADIX - count;
340 		u_daddr_t mask;
341 
342 		mask = (u_daddr_t)-1 >> n;
343 
344 		for (j = 0; j <= n; ++j) {
345 			if ((orig & mask) == mask) {
346 				scan->u.bmu_bitmap &= ~mask;
347 				return(blk + j);
348 			}
349 			mask = (mask << 1);
350 		}
351 	}
352 	/*
353 	 * We couldn't allocate count in this subtree, update bighint.
354 	 */
355 	scan->bm_bighint = count - 1;
356 	return(SWAPBLK_NONE);
357 }
358 
359 /*
360  * blist_meta_alloc() -	allocate at a meta in the radix tree.
361  *
362  *	Attempt to allocate at a meta node.  If we can't, we update
363  *	bighint and return a failure.  Updating bighint optimize future
364  *	calls that hit this node.  We have to check for our collapse cases
365  *	and we have a few optimizations strewn in as well.
366  */
367 
368 static daddr_t
369 blst_meta_alloc(
370 	blmeta_t *scan,
371 	daddr_t blk,
372 	daddr_t count,
373 	daddr_t radix,
374 	int skip
375 ) {
376 	int i;
377 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
378 
379 	if (scan->u.bmu_avail == 0)  {
380 		/*
381 		 * ALL-ALLOCATED special case
382 		 */
383 		scan->bm_bighint = count;
384 		return(SWAPBLK_NONE);
385 	}
386 
387 	if (scan->u.bmu_avail == radix) {
388 		radix /= BLIST_META_RADIX;
389 
390 		/*
391 		 * ALL-FREE special case, initialize uninitialize
392 		 * sublevel.
393 		 */
394 		for (i = 1; i <= skip; i += next_skip) {
395 			if (scan[i].bm_bighint == (daddr_t)-1)
396 				break;
397 			if (next_skip == 1) {
398 				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
399 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
400 			} else {
401 				scan[i].bm_bighint = radix;
402 				scan[i].u.bmu_avail = radix;
403 			}
404 		}
405 	} else {
406 		radix /= BLIST_META_RADIX;
407 	}
408 
409 	for (i = 1; i <= skip; i += next_skip) {
410 		if (count <= scan[i].bm_bighint) {
411 			/*
412 			 * count fits in object
413 			 */
414 			daddr_t r;
415 			if (next_skip == 1) {
416 				r = blst_leaf_alloc(&scan[i], blk, count);
417 			} else {
418 				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
419 			}
420 			if (r != SWAPBLK_NONE) {
421 				scan->u.bmu_avail -= count;
422 				if (scan->bm_bighint > scan->u.bmu_avail)
423 					scan->bm_bighint = scan->u.bmu_avail;
424 				return(r);
425 			}
426 		} else if (scan[i].bm_bighint == (daddr_t)-1) {
427 			/*
428 			 * Terminator
429 			 */
430 			break;
431 		} else if (count > radix) {
432 			/*
433 			 * count does not fit in object even if it were
434 			 * complete free.
435 			 */
436 			panic("blist_meta_alloc: allocation too large");
437 		}
438 		blk += radix;
439 	}
440 
441 	/*
442 	 * We couldn't allocate count in this subtree, update bighint.
443 	 */
444 	if (scan->bm_bighint >= count)
445 		scan->bm_bighint = count - 1;
446 	return(SWAPBLK_NONE);
447 }
448 
449 /*
450  * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
451  *
452  */
453 
454 static void
455 blst_leaf_free(
456 	blmeta_t *scan,
457 	daddr_t blk,
458 	int count
459 ) {
460 	/*
461 	 * free some data in this bitmap
462 	 *
463 	 * e.g.
464 	 *	0000111111111110000
465 	 *          \_________/\__/
466 	 *		v        n
467 	 */
468 	int n = blk & (BLIST_BMAP_RADIX - 1);
469 	u_daddr_t mask;
470 
471 	mask = ((u_daddr_t)-1 << n) &
472 	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
473 
474 	if (scan->u.bmu_bitmap & mask)
475 		panic("blst_radix_free: freeing free block");
476 	scan->u.bmu_bitmap |= mask;
477 
478 	/*
479 	 * We could probably do a better job here.  We are required to make
480 	 * bighint at least as large as the biggest contiguous block of
481 	 * data.  If we just shoehorn it, a little extra overhead will
482 	 * be incured on the next allocation (but only that one typically).
483 	 */
484 	scan->bm_bighint = BLIST_BMAP_RADIX;
485 }
486 
487 /*
488  * BLST_META_FREE() - free allocated blocks from radix tree meta info
489  *
490  *	This support routine frees a range of blocks from the bitmap.
491  *	The range must be entirely enclosed by this radix node.  If a
492  *	meta node, we break the range down recursively to free blocks
493  *	in subnodes (which means that this code can free an arbitrary
494  *	range whereas the allocation code cannot allocate an arbitrary
495  *	range).
496  */
497 
498 static void
499 blst_meta_free(
500 	blmeta_t *scan,
501 	daddr_t freeBlk,
502 	daddr_t count,
503 	daddr_t radix,
504 	int skip,
505 	daddr_t blk
506 ) {
507 	int i;
508 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
509 
510 #if 0
511 	printf("FREE (%x,%d) FROM (%x,%d)\n",
512 	    freeBlk, count,
513 	    blk, radix
514 	);
515 #endif
516 
517 	if (scan->u.bmu_avail == 0) {
518 		/*
519 		 * ALL-ALLOCATED special case, with possible
520 		 * shortcut to ALL-FREE special case.
521 		 */
522 		scan->u.bmu_avail = count;
523 		scan->bm_bighint = count;
524 
525 		if (count != radix)  {
526 			for (i = 1; i <= skip; i += next_skip) {
527 				if (scan[i].bm_bighint == (daddr_t)-1)
528 					break;
529 				scan[i].bm_bighint = 0;
530 				if (next_skip == 1) {
531 					scan[i].u.bmu_bitmap = 0;
532 				} else {
533 					scan[i].u.bmu_avail = 0;
534 				}
535 			}
536 			/* fall through */
537 		}
538 	} else {
539 		scan->u.bmu_avail += count;
540 		/* scan->bm_bighint = radix; */
541 	}
542 
543 	/*
544 	 * ALL-FREE special case.
545 	 */
546 
547 	if (scan->u.bmu_avail == radix)
548 		return;
549 	if (scan->u.bmu_avail > radix)
550 		panic("blst_meta_free: freeing already free blocks (%d) %d/%d", count, scan->u.bmu_avail, radix);
551 
552 	/*
553 	 * Break the free down into its components
554 	 */
555 
556 	radix /= BLIST_META_RADIX;
557 
558 	i = (freeBlk - blk) / radix;
559 	blk += i * radix;
560 	i = i * next_skip + 1;
561 
562 	while (i <= skip && blk < freeBlk + count) {
563 		daddr_t v;
564 
565 		v = blk + radix - freeBlk;
566 		if (v > count)
567 			v = count;
568 
569 		if (scan->bm_bighint == (daddr_t)-1)
570 			panic("blst_meta_free: freeing unexpected range");
571 
572 		if (next_skip == 1) {
573 			blst_leaf_free(&scan[i], freeBlk, v);
574 		} else {
575 			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
576 		}
577 		if (scan->bm_bighint < scan[i].bm_bighint)
578 		    scan->bm_bighint = scan[i].bm_bighint;
579 		count -= v;
580 		freeBlk += v;
581 		blk += radix;
582 		i += next_skip;
583 	}
584 }
585 
586 /*
587  * BLIST_RADIX_COPY() - copy one radix tree to another
588  *
589  *	Locates free space in the source tree and frees it in the destination
590  *	tree.  The space may not already be free in the destination.
591  */
592 
593 static void blst_copy(
594 	blmeta_t *scan,
595 	daddr_t blk,
596 	daddr_t radix,
597 	daddr_t skip,
598 	blist_t dest,
599 	daddr_t count
600 ) {
601 	int next_skip;
602 	int i;
603 
604 	/*
605 	 * Leaf node
606 	 */
607 
608 	if (radix == BLIST_BMAP_RADIX) {
609 		u_daddr_t v = scan->u.bmu_bitmap;
610 
611 		if (v == (u_daddr_t)-1) {
612 			blist_free(dest, blk, count);
613 		} else if (v != 0) {
614 			int i;
615 
616 			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
617 				if (v & (1 << i))
618 					blist_free(dest, blk + i, 1);
619 			}
620 		}
621 		return;
622 	}
623 
624 	/*
625 	 * Meta node
626 	 */
627 
628 	if (scan->u.bmu_avail == 0) {
629 		/*
630 		 * Source all allocated, leave dest allocated
631 		 */
632 		return;
633 	}
634 	if (scan->u.bmu_avail == radix) {
635 		/*
636 		 * Source all free, free entire dest
637 		 */
638 		if (count < radix)
639 			blist_free(dest, blk, count);
640 		else
641 			blist_free(dest, blk, radix);
642 		return;
643 	}
644 
645 
646 	radix /= BLIST_META_RADIX;
647 	next_skip = ((u_int)skip / BLIST_META_RADIX);
648 
649 	for (i = 1; count && i <= skip; i += next_skip) {
650 		if (scan[i].bm_bighint == (daddr_t)-1)
651 			break;
652 
653 		if (count >= radix) {
654 			blst_copy(
655 			    &scan[i],
656 			    blk,
657 			    radix,
658 			    next_skip - 1,
659 			    dest,
660 			    radix
661 			);
662 			count -= radix;
663 		} else {
664 			if (count) {
665 				blst_copy(
666 				    &scan[i],
667 				    blk,
668 				    radix,
669 				    next_skip - 1,
670 				    dest,
671 				    count
672 				);
673 			}
674 			count = 0;
675 		}
676 		blk += radix;
677 	}
678 }
679 
680 /*
681  * BLST_RADIX_INIT() - initialize radix tree
682  *
683  *	Initialize our meta structures and bitmaps and calculate the exact
684  *	amount of space required to manage 'count' blocks - this space may
685  *	be considerably less then the calculated radix due to the large
686  *	RADIX values we use.
687  */
688 
689 static daddr_t
690 blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
691 {
692 	int i;
693 	int next_skip;
694 	daddr_t memindex = 0;
695 
696 	/*
697 	 * Leaf node
698 	 */
699 
700 	if (radix == BLIST_BMAP_RADIX) {
701 		if (scan) {
702 			scan->bm_bighint = 0;
703 			scan->u.bmu_bitmap = 0;
704 		}
705 		return(memindex);
706 	}
707 
708 	/*
709 	 * Meta node.  If allocating the entire object we can special
710 	 * case it.  However, we need to figure out how much memory
711 	 * is required to manage 'count' blocks, so we continue on anyway.
712 	 */
713 
714 	if (scan) {
715 		scan->bm_bighint = 0;
716 		scan->u.bmu_avail = 0;
717 	}
718 
719 	radix /= BLIST_META_RADIX;
720 	next_skip = ((u_int)skip / BLIST_META_RADIX);
721 
722 	for (i = 1; i <= skip; i += next_skip) {
723 		if (count >= radix) {
724 			/*
725 			 * Allocate the entire object
726 			 */
727 			memindex = i + blst_radix_init(
728 			    ((scan) ? &scan[i] : NULL),
729 			    radix,
730 			    next_skip - 1,
731 			    radix
732 			);
733 			count -= radix;
734 		} else if (count > 0) {
735 			/*
736 			 * Allocate a partial object
737 			 */
738 			memindex = i + blst_radix_init(
739 			    ((scan) ? &scan[i] : NULL),
740 			    radix,
741 			    next_skip - 1,
742 			    count
743 			);
744 			count = 0;
745 		} else {
746 			/*
747 			 * Add terminator and break out
748 			 */
749 			if (scan)
750 				scan[i].bm_bighint = (daddr_t)-1;
751 			break;
752 		}
753 	}
754 	if (memindex < i)
755 		memindex = i;
756 	return(memindex);
757 }
758 
759 #ifdef BLIST_DEBUG
760 
761 static void
762 blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
763 {
764 	int i;
765 	int next_skip;
766 	int lastState = 0;
767 
768 	if (radix == BLIST_BMAP_RADIX) {
769 		printf(
770 		    "%*.*s(%04x,%d): bitmap %08x big=%d\n",
771 		    tab, tab, "",
772 		    blk, radix,
773 		    scan->u.bmu_bitmap,
774 		    scan->bm_bighint
775 		);
776 		return;
777 	}
778 
779 	if (scan->u.bmu_avail == 0) {
780 		printf(
781 		    "%*.*s(%04x,%d) ALL ALLOCATED\n",
782 		    tab, tab, "",
783 		    blk,
784 		    radix
785 		);
786 		return;
787 	}
788 	if (scan->u.bmu_avail == radix) {
789 		printf(
790 		    "%*.*s(%04x,%d) ALL FREE\n",
791 		    tab, tab, "",
792 		    blk,
793 		    radix
794 		);
795 		return;
796 	}
797 
798 	printf(
799 	    "%*.*s(%04x,%d): subtree (%d/%d) big=%d {\n",
800 	    tab, tab, "",
801 	    blk, radix,
802 	    scan->u.bmu_avail,
803 	    radix,
804 	    scan->bm_bighint
805 	);
806 
807 	radix /= BLIST_META_RADIX;
808 	next_skip = ((u_int)skip / BLIST_META_RADIX);
809 	tab += 4;
810 
811 	for (i = 1; i <= skip; i += next_skip) {
812 		if (scan[i].bm_bighint == (daddr_t)-1) {
813 			printf(
814 			    "%*.*s(%04x,%d): Terminator\n",
815 			    tab, tab, "",
816 			    blk, radix
817 			);
818 			lastState = 0;
819 			break;
820 		}
821 		blst_radix_print(
822 		    &scan[i],
823 		    blk,
824 		    radix,
825 		    next_skip - 1,
826 		    tab
827 		);
828 		blk += radix;
829 	}
830 	tab -= 4;
831 
832 	printf(
833 	    "%*.*s}\n",
834 	    tab, tab, ""
835 	);
836 }
837 
838 #endif
839 
840 #ifdef BLIST_DEBUG
841 
842 int
843 main(int ac, char **av)
844 {
845 	int size = 1024;
846 	int i;
847 	blist_t bl;
848 
849 	for (i = 1; i < ac; ++i) {
850 		const char *ptr = av[i];
851 		if (*ptr != '-') {
852 			size = strtol(ptr, NULL, 0);
853 			continue;
854 		}
855 		ptr += 2;
856 		fprintf(stderr, "Bad option: %s\n", ptr - 2);
857 		exit(1);
858 	}
859 	bl = blist_create(size);
860 	blist_free(bl, 0, size);
861 
862 	for (;;) {
863 		char buf[1024];
864 		daddr_t da = 0;
865 		daddr_t count = 0;
866 
867 
868 		printf("%d/%d/%d> ", bl->bl_free, size, bl->bl_radix);
869 		fflush(stdout);
870 		if (fgets(buf, sizeof(buf), stdin) == NULL)
871 			break;
872 		switch(buf[0]) {
873 		case 'r':
874 			if (sscanf(buf + 1, "%d", &count) == 1) {
875 				blist_resize(&bl, count, 1);
876 			} else {
877 				printf("?\n");
878 			}
879 		case 'p':
880 			blist_print(bl);
881 			break;
882 		case 'a':
883 			if (sscanf(buf + 1, "%d", &count) == 1) {
884 				daddr_t blk = blist_alloc(bl, count);
885 				printf("    R=%04x\n", blk);
886 			} else {
887 				printf("?\n");
888 			}
889 			break;
890 		case 'f':
891 			if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
892 				blist_free(bl, da, count);
893 			} else {
894 				printf("?\n");
895 			}
896 			break;
897 		case '?':
898 		case 'h':
899 			puts(
900 			    "p          -print\n"
901 			    "a %d       -allocate\n"
902 			    "f %x %d    -free\n"
903 			    "r %d       -resize\n"
904 			    "h/?        -help"
905 			);
906 			break;
907 		default:
908 			printf("?\n");
909 			break;
910 		}
911 	}
912 	return(0);
913 }
914 
915 void
916 panic(const char *ctl, ...)
917 {
918 	__va_list va;
919 
920 	__va_start(va, ctl);
921 	vfprintf(stderr, ctl, va);
922 	fprintf(stderr, "\n");
923 	__va_end(va);
924 	exit(1);
925 }
926 
927 #endif
928 
929