xref: /dragonfly/sys/kern/subr_bus.c (revision 2038fb68)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  * $DragonFly: src/sys/kern/subr_bus.c,v 1.46 2008/10/03 00:26:21 hasso Exp $
28  */
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/queue.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/kobj.h>
38 #include <sys/bus_private.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/device.h>
44 #include <sys/lock.h>
45 #include <sys/conf.h>
46 #include <sys/selinfo.h>
47 #include <sys/uio.h>
48 #include <sys/filio.h>
49 #include <sys/poll.h>
50 #include <sys/signalvar.h>
51 
52 #include <machine/stdarg.h>	/* for device_printf() */
53 
54 #include <sys/thread2.h>
55 
56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
57 
58 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
59 
60 #ifdef BUS_DEBUG
61 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
62 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
63 #define DRIVERNAME(d)	((d)? d->name : "no driver")
64 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
65 
66 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
67  * prevent syslog from deleting initial spaces
68  */
69 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
70 
71 static void	print_device_short(device_t dev, int indent);
72 static void	print_device(device_t dev, int indent);
73 void		print_device_tree_short(device_t dev, int indent);
74 void		print_device_tree(device_t dev, int indent);
75 static void	print_driver_short(driver_t *driver, int indent);
76 static void	print_driver(driver_t *driver, int indent);
77 static void	print_driver_list(driver_list_t drivers, int indent);
78 static void	print_devclass_short(devclass_t dc, int indent);
79 static void	print_devclass(devclass_t dc, int indent);
80 void		print_devclass_list_short(void);
81 void		print_devclass_list(void);
82 
83 #else
84 /* Make the compiler ignore the function calls */
85 #define PDEBUG(a)			/* nop */
86 #define DEVICENAME(d)			/* nop */
87 #define DRIVERNAME(d)			/* nop */
88 #define DEVCLANAME(d)			/* nop */
89 
90 #define print_device_short(d,i)		/* nop */
91 #define print_device(d,i)		/* nop */
92 #define print_device_tree_short(d,i)	/* nop */
93 #define print_device_tree(d,i)		/* nop */
94 #define print_driver_short(d,i)		/* nop */
95 #define print_driver(d,i)		/* nop */
96 #define print_driver_list(d,i)		/* nop */
97 #define print_devclass_short(d,i)	/* nop */
98 #define print_devclass(d,i)		/* nop */
99 #define print_devclass_list_short()	/* nop */
100 #define print_devclass_list()		/* nop */
101 #endif
102 
103 static void	device_attach_async(device_t dev);
104 static void	device_attach_thread(void *arg);
105 static int	device_doattach(device_t dev);
106 
107 static int do_async_attach = 0;
108 static int numasyncthreads;
109 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
110 
111 /*
112  * /dev/devctl implementation
113  */
114 
115 /*
116  * This design allows only one reader for /dev/devctl.  This is not desirable
117  * in the long run, but will get a lot of hair out of this implementation.
118  * Maybe we should make this device a clonable device.
119  *
120  * Also note: we specifically do not attach a device to the device_t tree
121  * to avoid potential chicken and egg problems.  One could argue that all
122  * of this belongs to the root node.  One could also further argue that the
123  * sysctl interface that we have not might more properly be an ioctl
124  * interface, but at this stage of the game, I'm not inclined to rock that
125  * boat.
126  *
127  * I'm also not sure that the SIGIO support is done correctly or not, as
128  * I copied it from a driver that had SIGIO support that likely hasn't been
129  * tested since 3.4 or 2.2.8!
130  */
131 
132 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
133 static int devctl_disable = 0;
134 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
135 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
136     sysctl_devctl_disable, "I", "devctl disable");
137 
138 #define	CDEV_MAJOR	188
139 
140 static d_open_t		devopen;
141 static d_close_t	devclose;
142 static d_read_t		devread;
143 static d_ioctl_t	devioctl;
144 static d_poll_t		devpoll;
145 
146 static struct dev_ops devctl_ops = {
147 	{ "devctl", CDEV_MAJOR, 0 },
148 	.d_open =	devopen,
149 	.d_close =	devclose,
150 	.d_read =	devread,
151 	.d_ioctl =	devioctl,
152 	.d_poll =	devpoll,
153 };
154 
155 struct dev_event_info
156 {
157 	char *dei_data;
158 	TAILQ_ENTRY(dev_event_info) dei_link;
159 };
160 
161 TAILQ_HEAD(devq, dev_event_info);
162 
163 static struct dev_softc
164 {
165 	int	inuse;
166 	int	nonblock;
167 	struct lock lock;
168 	struct selinfo sel;
169 	struct devq devq;
170 	struct proc *async_proc;
171 } devsoftc;
172 
173 static void
174 devinit(void)
175 {
176 	dev_ops_add(&devctl_ops, -1, 0);
177 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
178 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
179 	TAILQ_INIT(&devsoftc.devq);
180 }
181 
182 static int
183 devopen(struct dev_open_args *ap)
184 {
185 	if (devsoftc.inuse)
186 		return (EBUSY);
187 	/* move to init */
188 	devsoftc.inuse = 1;
189 	devsoftc.nonblock = 0;
190 	devsoftc.async_proc = NULL;
191 	return (0);
192 }
193 
194 static int
195 devclose(struct dev_close_args *ap)
196 {
197 	devsoftc.inuse = 0;
198 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
199 	wakeup(&devsoftc);
200 	lockmgr(&devsoftc.lock, LK_RELEASE);
201 
202 	return (0);
203 }
204 
205 /*
206  * The read channel for this device is used to report changes to
207  * userland in realtime.  We are required to free the data as well as
208  * the n1 object because we allocate them separately.  Also note that
209  * we return one record at a time.  If you try to read this device a
210  * character at a time, you will lose the rest of the data.  Listening
211  * programs are expected to cope.
212  */
213 static int
214 devread(struct dev_read_args *ap)
215 {
216 	struct uio *uio = ap->a_uio;
217 	struct dev_event_info *n1;
218 	int rv;
219 
220 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
221 	while (TAILQ_EMPTY(&devsoftc.devq)) {
222 		if (devsoftc.nonblock) {
223 			lockmgr(&devsoftc.lock, LK_RELEASE);
224 			return (EAGAIN);
225 		}
226 		crit_enter();
227 		tsleep_interlock(&devsoftc);
228 		lockmgr(&devsoftc.lock, LK_RELEASE);
229 		rv = tsleep(&devsoftc, PCATCH, "devctl", 0);
230 		crit_exit();
231 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
232 		if (rv) {
233 			/*
234 			 * Need to translate ERESTART to EINTR here? -- jake
235 			 */
236 			lockmgr(&devsoftc.lock, LK_RELEASE);
237 			return (rv);
238 		}
239 	}
240 	n1 = TAILQ_FIRST(&devsoftc.devq);
241 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
242 	lockmgr(&devsoftc.lock, LK_RELEASE);
243 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
244 	kfree(n1->dei_data, M_BUS);
245 	kfree(n1, M_BUS);
246 	return (rv);
247 }
248 
249 static	int
250 devioctl(struct dev_ioctl_args *ap)
251 {
252 	switch (ap->a_cmd) {
253 
254 	case FIONBIO:
255 		if (*(int*)ap->a_data)
256 			devsoftc.nonblock = 1;
257 		else
258 			devsoftc.nonblock = 0;
259 		return (0);
260 	case FIOASYNC:
261 		if (*(int*)ap->a_data)
262 			devsoftc.async_proc = curproc;
263 		else
264 			devsoftc.async_proc = NULL;
265 		return (0);
266 
267 		/* (un)Support for other fcntl() calls. */
268 	case FIOCLEX:
269 	case FIONCLEX:
270 	case FIONREAD:
271 	case FIOSETOWN:
272 	case FIOGETOWN:
273 	default:
274 		break;
275 	}
276 	return (ENOTTY);
277 }
278 
279 static	int
280 devpoll(struct dev_poll_args *ap)
281 {
282 	int	revents = 0;
283 
284 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
285 	if (ap->a_events & (POLLIN | POLLRDNORM)) {
286 		if (!TAILQ_EMPTY(&devsoftc.devq))
287 			revents = ap->a_events & (POLLIN | POLLRDNORM);
288 		else
289 			selrecord(curthread, &devsoftc.sel);
290 	}
291 	lockmgr(&devsoftc.lock, LK_RELEASE);
292 
293 	ap->a_events = revents;
294 	return (0);
295 }
296 
297 /**
298  * @brief Return whether the userland process is running
299  */
300 boolean_t
301 devctl_process_running(void)
302 {
303 	return (devsoftc.inuse == 1);
304 }
305 
306 /**
307  * @brief Queue data to be read from the devctl device
308  *
309  * Generic interface to queue data to the devctl device.  It is
310  * assumed that @p data is properly formatted.  It is further assumed
311  * that @p data is allocated using the M_BUS malloc type.
312  */
313 void
314 devctl_queue_data(char *data)
315 {
316 	struct dev_event_info *n1 = NULL;
317 	struct proc *p;
318 
319 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
320 	if (n1 == NULL)
321 		return;
322 	n1->dei_data = data;
323 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
324 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
325 	wakeup(&devsoftc);
326 	lockmgr(&devsoftc.lock, LK_RELEASE);
327 	get_mplock();	/* XXX */
328 	selwakeup(&devsoftc.sel);
329 	rel_mplock();	/* XXX */
330 	p = devsoftc.async_proc;
331 	if (p != NULL)
332 		ksignal(p, SIGIO);
333 }
334 
335 /**
336  * @brief Send a 'notification' to userland, using standard ways
337  */
338 void
339 devctl_notify(const char *system, const char *subsystem, const char *type,
340     const char *data)
341 {
342 	int len = 0;
343 	char *msg;
344 
345 	if (system == NULL)
346 		return;		/* BOGUS!  Must specify system. */
347 	if (subsystem == NULL)
348 		return;		/* BOGUS!  Must specify subsystem. */
349 	if (type == NULL)
350 		return;		/* BOGUS!  Must specify type. */
351 	len += strlen(" system=") + strlen(system);
352 	len += strlen(" subsystem=") + strlen(subsystem);
353 	len += strlen(" type=") + strlen(type);
354 	/* add in the data message plus newline. */
355 	if (data != NULL)
356 		len += strlen(data);
357 	len += 3;	/* '!', '\n', and NUL */
358 	msg = kmalloc(len, M_BUS, M_NOWAIT);
359 	if (msg == NULL)
360 		return;		/* Drop it on the floor */
361 	if (data != NULL)
362 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
363 		    system, subsystem, type, data);
364 	else
365 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
366 		    system, subsystem, type);
367 	devctl_queue_data(msg);
368 }
369 
370 /*
371  * Common routine that tries to make sending messages as easy as possible.
372  * We allocate memory for the data, copy strings into that, but do not
373  * free it unless there's an error.  The dequeue part of the driver should
374  * free the data.  We don't send data when the device is disabled.  We do
375  * send data, even when we have no listeners, because we wish to avoid
376  * races relating to startup and restart of listening applications.
377  *
378  * devaddq is designed to string together the type of event, with the
379  * object of that event, plus the plug and play info and location info
380  * for that event.  This is likely most useful for devices, but less
381  * useful for other consumers of this interface.  Those should use
382  * the devctl_queue_data() interface instead.
383  */
384 static void
385 devaddq(const char *type, const char *what, device_t dev)
386 {
387 	char *data = NULL;
388 	char *loc = NULL;
389 	char *pnp = NULL;
390 	const char *parstr;
391 
392 	if (devctl_disable)
393 		return;
394 	data = kmalloc(1024, M_BUS, M_NOWAIT);
395 	if (data == NULL)
396 		goto bad;
397 
398 	/* get the bus specific location of this device */
399 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
400 	if (loc == NULL)
401 		goto bad;
402 	*loc = '\0';
403 	bus_child_location_str(dev, loc, 1024);
404 
405 	/* Get the bus specific pnp info of this device */
406 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
407 	if (pnp == NULL)
408 		goto bad;
409 	*pnp = '\0';
410 	bus_child_pnpinfo_str(dev, pnp, 1024);
411 
412 	/* Get the parent of this device, or / if high enough in the tree. */
413 	if (device_get_parent(dev) == NULL)
414 		parstr = ".";	/* Or '/' ? */
415 	else
416 		parstr = device_get_nameunit(device_get_parent(dev));
417 	/* String it all together. */
418 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
419 	  parstr);
420 	kfree(loc, M_BUS);
421 	kfree(pnp, M_BUS);
422 	devctl_queue_data(data);
423 	return;
424 bad:
425 	kfree(pnp, M_BUS);
426 	kfree(loc, M_BUS);
427 	kfree(data, M_BUS);
428 	return;
429 }
430 
431 /*
432  * A device was added to the tree.  We are called just after it successfully
433  * attaches (that is, probe and attach success for this device).  No call
434  * is made if a device is merely parented into the tree.  See devnomatch
435  * if probe fails.  If attach fails, no notification is sent (but maybe
436  * we should have a different message for this).
437  */
438 static void
439 devadded(device_t dev)
440 {
441 	char *pnp = NULL;
442 	char *tmp = NULL;
443 
444 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
445 	if (pnp == NULL)
446 		goto fail;
447 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
448 	if (tmp == NULL)
449 		goto fail;
450 	*pnp = '\0';
451 	bus_child_pnpinfo_str(dev, pnp, 1024);
452 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
453 	devaddq("+", tmp, dev);
454 fail:
455 	if (pnp != NULL)
456 		kfree(pnp, M_BUS);
457 	if (tmp != NULL)
458 		kfree(tmp, M_BUS);
459 	return;
460 }
461 
462 /*
463  * A device was removed from the tree.  We are called just before this
464  * happens.
465  */
466 static void
467 devremoved(device_t dev)
468 {
469 	char *pnp = NULL;
470 	char *tmp = NULL;
471 
472 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
473 	if (pnp == NULL)
474 		goto fail;
475 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
476 	if (tmp == NULL)
477 		goto fail;
478 	*pnp = '\0';
479 	bus_child_pnpinfo_str(dev, pnp, 1024);
480 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
481 	devaddq("-", tmp, dev);
482 fail:
483 	if (pnp != NULL)
484 		kfree(pnp, M_BUS);
485 	if (tmp != NULL)
486 		kfree(tmp, M_BUS);
487 	return;
488 }
489 
490 /*
491  * Called when there's no match for this device.  This is only called
492  * the first time that no match happens, so we don't keep getitng this
493  * message.  Should that prove to be undesirable, we can change it.
494  * This is called when all drivers that can attach to a given bus
495  * decline to accept this device.  Other errrors may not be detected.
496  */
497 static void
498 devnomatch(device_t dev)
499 {
500 	devaddq("?", "", dev);
501 }
502 
503 static int
504 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
505 {
506 	struct dev_event_info *n1;
507 	int dis, error;
508 
509 	dis = devctl_disable;
510 	error = sysctl_handle_int(oidp, &dis, 0, req);
511 	if (error || !req->newptr)
512 		return (error);
513 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
514 	devctl_disable = dis;
515 	if (dis) {
516 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
517 			n1 = TAILQ_FIRST(&devsoftc.devq);
518 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
519 			kfree(n1->dei_data, M_BUS);
520 			kfree(n1, M_BUS);
521 		}
522 	}
523 	lockmgr(&devsoftc.lock, LK_RELEASE);
524 	return (0);
525 }
526 
527 /* End of /dev/devctl code */
528 
529 TAILQ_HEAD(,device)	bus_data_devices;
530 static int bus_data_generation = 1;
531 
532 kobj_method_t null_methods[] = {
533 	{ 0, 0 }
534 };
535 
536 DEFINE_CLASS(null, null_methods, 0);
537 
538 /*
539  * Devclass implementation
540  */
541 
542 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
543 
544 static devclass_t
545 devclass_find_internal(const char *classname, const char *parentname,
546 		       int create)
547 {
548 	devclass_t dc;
549 
550 	PDEBUG(("looking for %s", classname));
551 	if (classname == NULL)
552 		return(NULL);
553 
554 	TAILQ_FOREACH(dc, &devclasses, link)
555 		if (!strcmp(dc->name, classname))
556 			break;
557 
558 	if (create && !dc) {
559 		PDEBUG(("creating %s", classname));
560 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
561 			    M_BUS, M_INTWAIT | M_ZERO);
562 		if (!dc)
563 			return(NULL);
564 		dc->parent = NULL;
565 		dc->name = (char*) (dc + 1);
566 		strcpy(dc->name, classname);
567 		dc->devices = NULL;
568 		dc->maxunit = 0;
569 		TAILQ_INIT(&dc->drivers);
570 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
571 
572 		bus_data_generation_update();
573 
574 	}
575 	if (parentname && dc && !dc->parent)
576 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
577 
578 	return(dc);
579 }
580 
581 devclass_t
582 devclass_create(const char *classname)
583 {
584 	return(devclass_find_internal(classname, NULL, TRUE));
585 }
586 
587 devclass_t
588 devclass_find(const char *classname)
589 {
590 	return(devclass_find_internal(classname, NULL, FALSE));
591 }
592 
593 device_t
594 devclass_find_unit(const char *classname, int unit)
595 {
596 	devclass_t dc;
597 
598 	if ((dc = devclass_find(classname)) != NULL)
599 	    return(devclass_get_device(dc, unit));
600 	return (NULL);
601 }
602 
603 int
604 devclass_add_driver(devclass_t dc, driver_t *driver)
605 {
606 	driverlink_t dl;
607 	device_t dev;
608 	int i;
609 
610 	PDEBUG(("%s", DRIVERNAME(driver)));
611 
612 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
613 	if (!dl)
614 		return(ENOMEM);
615 
616 	/*
617 	 * Compile the driver's methods. Also increase the reference count
618 	 * so that the class doesn't get freed when the last instance
619 	 * goes. This means we can safely use static methods and avoids a
620 	 * double-free in devclass_delete_driver.
621 	 */
622 	kobj_class_instantiate(driver);
623 
624 	/*
625 	 * Make sure the devclass which the driver is implementing exists.
626 	 */
627 	devclass_find_internal(driver->name, NULL, TRUE);
628 
629 	dl->driver = driver;
630 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
631 
632 	/*
633 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
634 	 * but only if the bus has already been attached (otherwise we
635 	 * might probe too early).
636 	 *
637 	 * This is what will cause a newly loaded module to be associated
638 	 * with hardware.  bus_generic_driver_added() is typically what ends
639 	 * up being called.
640 	 */
641 	for (i = 0; i < dc->maxunit; i++) {
642 		if ((dev = dc->devices[i]) != NULL) {
643 			if (dev->state >= DS_ATTACHED)
644 				BUS_DRIVER_ADDED(dev, driver);
645 		}
646 	}
647 
648 	bus_data_generation_update();
649 	return(0);
650 }
651 
652 int
653 devclass_delete_driver(devclass_t busclass, driver_t *driver)
654 {
655 	devclass_t dc = devclass_find(driver->name);
656 	driverlink_t dl;
657 	device_t dev;
658 	int i;
659 	int error;
660 
661 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
662 
663 	if (!dc)
664 		return(0);
665 
666 	/*
667 	 * Find the link structure in the bus' list of drivers.
668 	 */
669 	TAILQ_FOREACH(dl, &busclass->drivers, link)
670 		if (dl->driver == driver)
671 			break;
672 
673 	if (!dl) {
674 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
675 		return(ENOENT);
676 	}
677 
678 	/*
679 	 * Disassociate from any devices.  We iterate through all the
680 	 * devices in the devclass of the driver and detach any which are
681 	 * using the driver and which have a parent in the devclass which
682 	 * we are deleting from.
683 	 *
684 	 * Note that since a driver can be in multiple devclasses, we
685 	 * should not detach devices which are not children of devices in
686 	 * the affected devclass.
687 	 */
688 	for (i = 0; i < dc->maxunit; i++)
689 		if (dc->devices[i]) {
690 			dev = dc->devices[i];
691 			if (dev->driver == driver && dev->parent &&
692 			    dev->parent->devclass == busclass) {
693 				if ((error = device_detach(dev)) != 0)
694 					return(error);
695 				device_set_driver(dev, NULL);
696 		    	}
697 		}
698 
699 	TAILQ_REMOVE(&busclass->drivers, dl, link);
700 	kfree(dl, M_BUS);
701 
702 	kobj_class_uninstantiate(driver);
703 
704 	bus_data_generation_update();
705 	return(0);
706 }
707 
708 static driverlink_t
709 devclass_find_driver_internal(devclass_t dc, const char *classname)
710 {
711 	driverlink_t dl;
712 
713 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
714 
715 	TAILQ_FOREACH(dl, &dc->drivers, link)
716 		if (!strcmp(dl->driver->name, classname))
717 			return(dl);
718 
719 	PDEBUG(("not found"));
720 	return(NULL);
721 }
722 
723 kobj_class_t
724 devclass_find_driver(devclass_t dc, const char *classname)
725 {
726 	driverlink_t dl;
727 
728 	dl = devclass_find_driver_internal(dc, classname);
729 	if (dl)
730 		return(dl->driver);
731 	else
732 		return(NULL);
733 }
734 
735 const char *
736 devclass_get_name(devclass_t dc)
737 {
738 	return(dc->name);
739 }
740 
741 device_t
742 devclass_get_device(devclass_t dc, int unit)
743 {
744 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
745 		return(NULL);
746 	return(dc->devices[unit]);
747 }
748 
749 void *
750 devclass_get_softc(devclass_t dc, int unit)
751 {
752 	device_t dev;
753 
754 	dev = devclass_get_device(dc, unit);
755 	if (!dev)
756 		return(NULL);
757 
758 	return(device_get_softc(dev));
759 }
760 
761 int
762 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
763 {
764 	int i;
765 	int count;
766 	device_t *list;
767 
768 	count = 0;
769 	for (i = 0; i < dc->maxunit; i++)
770 		if (dc->devices[i])
771 			count++;
772 
773 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
774 	if (list == NULL)
775 		return(ENOMEM);
776 
777 	count = 0;
778 	for (i = 0; i < dc->maxunit; i++)
779 		if (dc->devices[i]) {
780 			list[count] = dc->devices[i];
781 			count++;
782 		}
783 
784 	*devlistp = list;
785 	*devcountp = count;
786 
787 	return(0);
788 }
789 
790 /**
791  * @brief Get a list of drivers in the devclass
792  *
793  * An array containing a list of pointers to all the drivers in the
794  * given devclass is allocated and returned in @p *listp.  The number
795  * of drivers in the array is returned in @p *countp. The caller should
796  * free the array using @c free(p, M_TEMP).
797  *
798  * @param dc            the devclass to examine
799  * @param listp         gives location for array pointer return value
800  * @param countp        gives location for number of array elements
801  *                      return value
802  *
803  * @retval 0            success
804  * @retval ENOMEM       the array allocation failed
805  */
806 int
807 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
808 {
809         driverlink_t dl;
810         driver_t **list;
811         int count;
812 
813         count = 0;
814         TAILQ_FOREACH(dl, &dc->drivers, link)
815                 count++;
816         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
817         if (list == NULL)
818                 return (ENOMEM);
819 
820         count = 0;
821         TAILQ_FOREACH(dl, &dc->drivers, link) {
822                 list[count] = dl->driver;
823                 count++;
824         }
825         *listp = list;
826         *countp = count;
827 
828         return (0);
829 }
830 
831 /**
832  * @brief Get the number of devices in a devclass
833  *
834  * @param dc		the devclass to examine
835  */
836 int
837 devclass_get_count(devclass_t dc)
838 {
839 	int count, i;
840 
841 	count = 0;
842 	for (i = 0; i < dc->maxunit; i++)
843 		if (dc->devices[i])
844 			count++;
845 	return (count);
846 }
847 
848 int
849 devclass_get_maxunit(devclass_t dc)
850 {
851 	return(dc->maxunit);
852 }
853 
854 void
855 devclass_set_parent(devclass_t dc, devclass_t pdc)
856 {
857         dc->parent = pdc;
858 }
859 
860 devclass_t
861 devclass_get_parent(devclass_t dc)
862 {
863 	return(dc->parent);
864 }
865 
866 static int
867 devclass_alloc_unit(devclass_t dc, int *unitp)
868 {
869 	int unit = *unitp;
870 
871 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
872 
873 	/* If we have been given a wired unit number, check for existing device */
874 	if (unit != -1) {
875 		if (unit >= 0 && unit < dc->maxunit &&
876 		    dc->devices[unit] != NULL) {
877 			if (bootverbose)
878 				kprintf("%s-: %s%d exists, using next available unit number\n",
879 				       dc->name, dc->name, unit);
880 			/* find the next available slot */
881 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
882 				;
883 		}
884 	} else {
885 		/* Unwired device, find the next available slot for it */
886 		unit = 0;
887 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
888 			unit++;
889 	}
890 
891 	/*
892 	 * We've selected a unit beyond the length of the table, so let's
893 	 * extend the table to make room for all units up to and including
894 	 * this one.
895 	 */
896 	if (unit >= dc->maxunit) {
897 		device_t *newlist;
898 		int newsize;
899 
900 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
901 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
902 				 M_INTWAIT | M_ZERO);
903 		if (newlist == NULL)
904 			return(ENOMEM);
905 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
906 		if (dc->devices)
907 			kfree(dc->devices, M_BUS);
908 		dc->devices = newlist;
909 		dc->maxunit = newsize;
910 	}
911 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
912 
913 	*unitp = unit;
914 	return(0);
915 }
916 
917 static int
918 devclass_add_device(devclass_t dc, device_t dev)
919 {
920 	int buflen, error;
921 
922 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
923 
924 	buflen = strlen(dc->name) + 5;
925 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
926 	if (!dev->nameunit)
927 		return(ENOMEM);
928 
929 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
930 		kfree(dev->nameunit, M_BUS);
931 		dev->nameunit = NULL;
932 		return(error);
933 	}
934 	dc->devices[dev->unit] = dev;
935 	dev->devclass = dc;
936 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
937 
938 	return(0);
939 }
940 
941 static int
942 devclass_delete_device(devclass_t dc, device_t dev)
943 {
944 	if (!dc || !dev)
945 		return(0);
946 
947 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
948 
949 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
950 		panic("devclass_delete_device: inconsistent device class");
951 	dc->devices[dev->unit] = NULL;
952 	if (dev->flags & DF_WILDCARD)
953 		dev->unit = -1;
954 	dev->devclass = NULL;
955 	kfree(dev->nameunit, M_BUS);
956 	dev->nameunit = NULL;
957 
958 	return(0);
959 }
960 
961 static device_t
962 make_device(device_t parent, const char *name, int unit)
963 {
964 	device_t dev;
965 	devclass_t dc;
966 
967 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
968 
969 	if (name != NULL) {
970 		dc = devclass_find_internal(name, NULL, TRUE);
971 		if (!dc) {
972 			kprintf("make_device: can't find device class %s\n", name);
973 			return(NULL);
974 		}
975 	} else
976 		dc = NULL;
977 
978 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
979 	if (!dev)
980 		return(0);
981 
982 	dev->parent = parent;
983 	TAILQ_INIT(&dev->children);
984 	kobj_init((kobj_t) dev, &null_class);
985 	dev->driver = NULL;
986 	dev->devclass = NULL;
987 	dev->unit = unit;
988 	dev->nameunit = NULL;
989 	dev->desc = NULL;
990 	dev->busy = 0;
991 	dev->devflags = 0;
992 	dev->flags = DF_ENABLED;
993 	dev->order = 0;
994 	if (unit == -1)
995 		dev->flags |= DF_WILDCARD;
996 	if (name) {
997 		dev->flags |= DF_FIXEDCLASS;
998 		if (devclass_add_device(dc, dev) != 0) {
999 			kobj_delete((kobj_t)dev, M_BUS);
1000 			return(NULL);
1001 		}
1002     	}
1003 	dev->ivars = NULL;
1004 	dev->softc = NULL;
1005 
1006 	dev->state = DS_NOTPRESENT;
1007 
1008 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1009 	bus_data_generation_update();
1010 
1011 	return(dev);
1012 }
1013 
1014 static int
1015 device_print_child(device_t dev, device_t child)
1016 {
1017 	int retval = 0;
1018 
1019 	if (device_is_alive(child))
1020 		retval += BUS_PRINT_CHILD(dev, child);
1021 	else
1022 		retval += device_printf(child, " not found\n");
1023 
1024 	return(retval);
1025 }
1026 
1027 device_t
1028 device_add_child(device_t dev, const char *name, int unit)
1029 {
1030 	return device_add_child_ordered(dev, 0, name, unit);
1031 }
1032 
1033 device_t
1034 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1035 {
1036 	device_t child;
1037 	device_t place;
1038 
1039 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1040 		order, unit));
1041 
1042 	child = make_device(dev, name, unit);
1043 	if (child == NULL)
1044 		return child;
1045 	child->order = order;
1046 
1047 	TAILQ_FOREACH(place, &dev->children, link)
1048 		if (place->order > order)
1049 			break;
1050 
1051 	if (place) {
1052 		/*
1053 		 * The device 'place' is the first device whose order is
1054 		 * greater than the new child.
1055 		 */
1056 		TAILQ_INSERT_BEFORE(place, child, link);
1057 	} else {
1058 		/*
1059 		 * The new child's order is greater or equal to the order of
1060 		 * any existing device. Add the child to the tail of the list.
1061 		 */
1062 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1063     	}
1064 
1065 	bus_data_generation_update();
1066 	return(child);
1067 }
1068 
1069 int
1070 device_delete_child(device_t dev, device_t child)
1071 {
1072 	int error;
1073 	device_t grandchild;
1074 
1075 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1076 
1077 	/* remove children first */
1078 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1079         	error = device_delete_child(child, grandchild);
1080 		if (error)
1081 			return(error);
1082 	}
1083 
1084 	if ((error = device_detach(child)) != 0)
1085 		return(error);
1086 	if (child->devclass)
1087 		devclass_delete_device(child->devclass, child);
1088 	TAILQ_REMOVE(&dev->children, child, link);
1089 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1090 	device_set_desc(child, NULL);
1091 	kobj_delete((kobj_t)child, M_BUS);
1092 
1093 	bus_data_generation_update();
1094 	return(0);
1095 }
1096 
1097 /**
1098  * @brief Find a device given a unit number
1099  *
1100  * This is similar to devclass_get_devices() but only searches for
1101  * devices which have @p dev as a parent.
1102  *
1103  * @param dev		the parent device to search
1104  * @param unit		the unit number to search for.  If the unit is -1,
1105  *			return the first child of @p dev which has name
1106  *			@p classname (that is, the one with the lowest unit.)
1107  *
1108  * @returns		the device with the given unit number or @c
1109  *			NULL if there is no such device
1110  */
1111 device_t
1112 device_find_child(device_t dev, const char *classname, int unit)
1113 {
1114 	devclass_t dc;
1115 	device_t child;
1116 
1117 	dc = devclass_find(classname);
1118 	if (!dc)
1119 		return(NULL);
1120 
1121 	if (unit != -1) {
1122 		child = devclass_get_device(dc, unit);
1123 		if (child && child->parent == dev)
1124 			return (child);
1125 	} else {
1126 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1127 			child = devclass_get_device(dc, unit);
1128 			if (child && child->parent == dev)
1129 				return (child);
1130 		}
1131 	}
1132 	return(NULL);
1133 }
1134 
1135 static driverlink_t
1136 first_matching_driver(devclass_t dc, device_t dev)
1137 {
1138 	if (dev->devclass)
1139 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1140 	else
1141 		return(TAILQ_FIRST(&dc->drivers));
1142 }
1143 
1144 static driverlink_t
1145 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1146 {
1147 	if (dev->devclass) {
1148 		driverlink_t dl;
1149 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1150 			if (!strcmp(dev->devclass->name, dl->driver->name))
1151 				return(dl);
1152 		return(NULL);
1153 	} else
1154 		return(TAILQ_NEXT(last, link));
1155 }
1156 
1157 static int
1158 device_probe_child(device_t dev, device_t child)
1159 {
1160 	devclass_t dc;
1161 	driverlink_t best = 0;
1162 	driverlink_t dl;
1163 	int result, pri = 0;
1164 	int hasclass = (child->devclass != 0);
1165 
1166 	dc = dev->devclass;
1167 	if (!dc)
1168 		panic("device_probe_child: parent device has no devclass");
1169 
1170 	if (child->state == DS_ALIVE)
1171 		return(0);
1172 
1173 	for (; dc; dc = dc->parent) {
1174     		for (dl = first_matching_driver(dc, child); dl;
1175 		     dl = next_matching_driver(dc, child, dl)) {
1176 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1177 			device_set_driver(child, dl->driver);
1178 			if (!hasclass)
1179 				device_set_devclass(child, dl->driver->name);
1180 			result = DEVICE_PROBE(child);
1181 			if (!hasclass)
1182 				device_set_devclass(child, 0);
1183 
1184 			/*
1185 			 * If the driver returns SUCCESS, there can be
1186 			 * no higher match for this device.
1187 			 */
1188 			if (result == 0) {
1189 				best = dl;
1190 				pri = 0;
1191 				break;
1192 			}
1193 
1194 			/*
1195 			 * The driver returned an error so it
1196 			 * certainly doesn't match.
1197 			 */
1198 			if (result > 0) {
1199 				device_set_driver(child, 0);
1200 				continue;
1201 			}
1202 
1203 			/*
1204 			 * A priority lower than SUCCESS, remember the
1205 			 * best matching driver. Initialise the value
1206 			 * of pri for the first match.
1207 			 */
1208 			if (best == 0 || result > pri) {
1209 				best = dl;
1210 				pri = result;
1211 				continue;
1212 			}
1213 	        }
1214 		/*
1215 	         * If we have unambiguous match in this devclass,
1216 	         * don't look in the parent.
1217 	         */
1218 	        if (best && pri == 0)
1219 	    	        break;
1220 	}
1221 
1222 	/*
1223 	 * If we found a driver, change state and initialise the devclass.
1224 	 */
1225 	if (best) {
1226 		if (!child->devclass)
1227 			device_set_devclass(child, best->driver->name);
1228 		device_set_driver(child, best->driver);
1229 		if (pri < 0) {
1230 			/*
1231 			 * A bit bogus. Call the probe method again to make
1232 			 * sure that we have the right description.
1233 			 */
1234 			DEVICE_PROBE(child);
1235 		}
1236 
1237 		bus_data_generation_update();
1238 		child->state = DS_ALIVE;
1239 		return(0);
1240 	}
1241 
1242 	return(ENXIO);
1243 }
1244 
1245 device_t
1246 device_get_parent(device_t dev)
1247 {
1248 	return dev->parent;
1249 }
1250 
1251 int
1252 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1253 {
1254 	int count;
1255 	device_t child;
1256 	device_t *list;
1257 
1258 	count = 0;
1259 	TAILQ_FOREACH(child, &dev->children, link)
1260 		count++;
1261 
1262 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1263 	if (!list)
1264 		return(ENOMEM);
1265 
1266 	count = 0;
1267 	TAILQ_FOREACH(child, &dev->children, link) {
1268 		list[count] = child;
1269 		count++;
1270 	}
1271 
1272 	*devlistp = list;
1273 	*devcountp = count;
1274 
1275 	return(0);
1276 }
1277 
1278 driver_t *
1279 device_get_driver(device_t dev)
1280 {
1281 	return(dev->driver);
1282 }
1283 
1284 devclass_t
1285 device_get_devclass(device_t dev)
1286 {
1287 	return(dev->devclass);
1288 }
1289 
1290 const char *
1291 device_get_name(device_t dev)
1292 {
1293 	if (dev->devclass)
1294 		return devclass_get_name(dev->devclass);
1295 	return(NULL);
1296 }
1297 
1298 const char *
1299 device_get_nameunit(device_t dev)
1300 {
1301 	return(dev->nameunit);
1302 }
1303 
1304 int
1305 device_get_unit(device_t dev)
1306 {
1307 	return(dev->unit);
1308 }
1309 
1310 const char *
1311 device_get_desc(device_t dev)
1312 {
1313 	return(dev->desc);
1314 }
1315 
1316 uint32_t
1317 device_get_flags(device_t dev)
1318 {
1319 	return(dev->devflags);
1320 }
1321 
1322 int
1323 device_print_prettyname(device_t dev)
1324 {
1325 	const char *name = device_get_name(dev);
1326 
1327 	if (name == 0)
1328 		return kprintf("unknown: ");
1329 	else
1330 		return kprintf("%s%d: ", name, device_get_unit(dev));
1331 }
1332 
1333 int
1334 device_printf(device_t dev, const char * fmt, ...)
1335 {
1336 	__va_list ap;
1337 	int retval;
1338 
1339 	retval = device_print_prettyname(dev);
1340 	__va_start(ap, fmt);
1341 	retval += kvprintf(fmt, ap);
1342 	__va_end(ap);
1343 	return retval;
1344 }
1345 
1346 static void
1347 device_set_desc_internal(device_t dev, const char* desc, int copy)
1348 {
1349 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1350 		kfree(dev->desc, M_BUS);
1351 		dev->flags &= ~DF_DESCMALLOCED;
1352 		dev->desc = NULL;
1353 	}
1354 
1355 	if (copy && desc) {
1356 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1357 		if (dev->desc) {
1358 			strcpy(dev->desc, desc);
1359 			dev->flags |= DF_DESCMALLOCED;
1360 		}
1361 	} else {
1362 		/* Avoid a -Wcast-qual warning */
1363 		dev->desc = (char *)(uintptr_t) desc;
1364 	}
1365 
1366 	bus_data_generation_update();
1367 }
1368 
1369 void
1370 device_set_desc(device_t dev, const char* desc)
1371 {
1372 	device_set_desc_internal(dev, desc, FALSE);
1373 }
1374 
1375 void
1376 device_set_desc_copy(device_t dev, const char* desc)
1377 {
1378 	device_set_desc_internal(dev, desc, TRUE);
1379 }
1380 
1381 void
1382 device_set_flags(device_t dev, uint32_t flags)
1383 {
1384 	dev->devflags = flags;
1385 }
1386 
1387 void *
1388 device_get_softc(device_t dev)
1389 {
1390 	return dev->softc;
1391 }
1392 
1393 void
1394 device_set_softc(device_t dev, void *softc)
1395 {
1396 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1397 		kfree(dev->softc, M_BUS);
1398 	dev->softc = softc;
1399 	if (dev->softc)
1400 		dev->flags |= DF_EXTERNALSOFTC;
1401 	else
1402 		dev->flags &= ~DF_EXTERNALSOFTC;
1403 }
1404 
1405 void
1406 device_set_async_attach(device_t dev, int enable)
1407 {
1408 	if (enable)
1409 		dev->flags |= DF_ASYNCPROBE;
1410 	else
1411 		dev->flags &= ~DF_ASYNCPROBE;
1412 }
1413 
1414 void *
1415 device_get_ivars(device_t dev)
1416 {
1417 	return dev->ivars;
1418 }
1419 
1420 void
1421 device_set_ivars(device_t dev, void * ivars)
1422 {
1423 	if (!dev)
1424 		return;
1425 
1426 	dev->ivars = ivars;
1427 }
1428 
1429 device_state_t
1430 device_get_state(device_t dev)
1431 {
1432 	return(dev->state);
1433 }
1434 
1435 void
1436 device_enable(device_t dev)
1437 {
1438 	dev->flags |= DF_ENABLED;
1439 }
1440 
1441 void
1442 device_disable(device_t dev)
1443 {
1444 	dev->flags &= ~DF_ENABLED;
1445 }
1446 
1447 /*
1448  * YYY cannot block
1449  */
1450 void
1451 device_busy(device_t dev)
1452 {
1453 	if (dev->state < DS_ATTACHED)
1454 		panic("device_busy: called for unattached device");
1455 	if (dev->busy == 0 && dev->parent)
1456 		device_busy(dev->parent);
1457 	dev->busy++;
1458 	dev->state = DS_BUSY;
1459 }
1460 
1461 /*
1462  * YYY cannot block
1463  */
1464 void
1465 device_unbusy(device_t dev)
1466 {
1467 	if (dev->state != DS_BUSY)
1468 		panic("device_unbusy: called for non-busy device");
1469 	dev->busy--;
1470 	if (dev->busy == 0) {
1471 		if (dev->parent)
1472 			device_unbusy(dev->parent);
1473 		dev->state = DS_ATTACHED;
1474 	}
1475 }
1476 
1477 void
1478 device_quiet(device_t dev)
1479 {
1480 	dev->flags |= DF_QUIET;
1481 }
1482 
1483 void
1484 device_verbose(device_t dev)
1485 {
1486 	dev->flags &= ~DF_QUIET;
1487 }
1488 
1489 int
1490 device_is_quiet(device_t dev)
1491 {
1492 	return((dev->flags & DF_QUIET) != 0);
1493 }
1494 
1495 int
1496 device_is_enabled(device_t dev)
1497 {
1498 	return((dev->flags & DF_ENABLED) != 0);
1499 }
1500 
1501 int
1502 device_is_alive(device_t dev)
1503 {
1504 	return(dev->state >= DS_ALIVE);
1505 }
1506 
1507 int
1508 device_is_attached(device_t dev)
1509 {
1510 	return(dev->state >= DS_ATTACHED);
1511 }
1512 
1513 int
1514 device_set_devclass(device_t dev, const char *classname)
1515 {
1516 	devclass_t dc;
1517 	int error;
1518 
1519 	if (!classname) {
1520 		if (dev->devclass)
1521 			devclass_delete_device(dev->devclass, dev);
1522 		return(0);
1523 	}
1524 
1525 	if (dev->devclass) {
1526 		kprintf("device_set_devclass: device class already set\n");
1527 		return(EINVAL);
1528 	}
1529 
1530 	dc = devclass_find_internal(classname, NULL, TRUE);
1531 	if (!dc)
1532 		return(ENOMEM);
1533 
1534 	error = devclass_add_device(dc, dev);
1535 
1536 	bus_data_generation_update();
1537 	return(error);
1538 }
1539 
1540 int
1541 device_set_driver(device_t dev, driver_t *driver)
1542 {
1543 	if (dev->state >= DS_ATTACHED)
1544 		return(EBUSY);
1545 
1546 	if (dev->driver == driver)
1547 		return(0);
1548 
1549 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1550 		kfree(dev->softc, M_BUS);
1551 		dev->softc = NULL;
1552 	}
1553 	kobj_delete((kobj_t) dev, 0);
1554 	dev->driver = driver;
1555 	if (driver) {
1556 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1557 		if (!(dev->flags & DF_EXTERNALSOFTC)) {
1558 			dev->softc = kmalloc(driver->size, M_BUS,
1559 					    M_INTWAIT | M_ZERO);
1560 			if (!dev->softc) {
1561 				kobj_delete((kobj_t)dev, 0);
1562 				kobj_init((kobj_t) dev, &null_class);
1563 				dev->driver = NULL;
1564 				return(ENOMEM);
1565 	    		}
1566 		}
1567 	} else {
1568 		kobj_init((kobj_t) dev, &null_class);
1569 	}
1570 
1571 	bus_data_generation_update();
1572 	return(0);
1573 }
1574 
1575 int
1576 device_probe_and_attach(device_t dev)
1577 {
1578 	device_t bus = dev->parent;
1579 	int error = 0;
1580 
1581 	if (dev->state >= DS_ALIVE)
1582 		return(0);
1583 
1584 	if ((dev->flags & DF_ENABLED) == 0) {
1585 		if (bootverbose) {
1586 			device_print_prettyname(dev);
1587 			kprintf("not probed (disabled)\n");
1588 		}
1589 		return(0);
1590 	}
1591 
1592 	error = device_probe_child(bus, dev);
1593 	if (error) {
1594 		if (!(dev->flags & DF_DONENOMATCH)) {
1595 			BUS_PROBE_NOMATCH(bus, dev);
1596 			devnomatch(dev);
1597 			dev->flags |= DF_DONENOMATCH;
1598 		}
1599 		return(error);
1600 	}
1601 
1602 	/*
1603 	 * Output the exact device chain prior to the attach in case the
1604 	 * system locks up during attach, and generate the full info after
1605 	 * the attach so correct irq and other information is displayed.
1606 	 */
1607 	if (bootverbose && !device_is_quiet(dev)) {
1608 		device_t tmp;
1609 
1610 		kprintf("%s", device_get_nameunit(dev));
1611 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1612 			kprintf(".%s", device_get_nameunit(tmp));
1613 		kprintf("\n");
1614 	}
1615 	if (!device_is_quiet(dev))
1616 		device_print_child(bus, dev);
1617 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1618 		kprintf("%s: probing asynchronously\n",
1619 			device_get_nameunit(dev));
1620 		dev->state = DS_INPROGRESS;
1621 		device_attach_async(dev);
1622 		error = 0;
1623 	} else {
1624 		error = device_doattach(dev);
1625 	}
1626 	return(error);
1627 }
1628 
1629 /*
1630  * Device is known to be alive, do the attach asynchronously.
1631  *
1632  * The MP lock is held by all threads.
1633  */
1634 static void
1635 device_attach_async(device_t dev)
1636 {
1637 	thread_t td;
1638 
1639 	atomic_add_int(&numasyncthreads, 1);
1640 	lwkt_create(device_attach_thread, dev, &td, NULL,
1641 		    0, 0, (dev->desc ? dev->desc : "devattach"));
1642 }
1643 
1644 static void
1645 device_attach_thread(void *arg)
1646 {
1647 	device_t dev = arg;
1648 
1649 	(void)device_doattach(dev);
1650 	atomic_subtract_int(&numasyncthreads, 1);
1651 	wakeup(&numasyncthreads);
1652 }
1653 
1654 /*
1655  * Device is known to be alive, do the attach (synchronous or asynchronous)
1656  */
1657 static int
1658 device_doattach(device_t dev)
1659 {
1660 	device_t bus = dev->parent;
1661 	int hasclass = (dev->devclass != 0);
1662 	int error;
1663 
1664 	error = DEVICE_ATTACH(dev);
1665 	if (error == 0) {
1666 		dev->state = DS_ATTACHED;
1667 		if (bootverbose && !device_is_quiet(dev))
1668 			device_print_child(bus, dev);
1669 		devadded(dev);
1670 	} else {
1671 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1672 		       dev->driver->name, dev->unit, error);
1673 		/* Unset the class that was set in device_probe_child */
1674 		if (!hasclass)
1675 			device_set_devclass(dev, 0);
1676 		device_set_driver(dev, NULL);
1677 		dev->state = DS_NOTPRESENT;
1678 	}
1679 	return(error);
1680 }
1681 
1682 int
1683 device_detach(device_t dev)
1684 {
1685 	int error;
1686 
1687 	PDEBUG(("%s", DEVICENAME(dev)));
1688 	if (dev->state == DS_BUSY)
1689 		return(EBUSY);
1690 	if (dev->state != DS_ATTACHED)
1691 		return(0);
1692 
1693 	if ((error = DEVICE_DETACH(dev)) != 0)
1694 		return(error);
1695 	devremoved(dev);
1696 	device_printf(dev, "detached\n");
1697 	if (dev->parent)
1698 		BUS_CHILD_DETACHED(dev->parent, dev);
1699 
1700 	if (!(dev->flags & DF_FIXEDCLASS))
1701 		devclass_delete_device(dev->devclass, dev);
1702 
1703 	dev->state = DS_NOTPRESENT;
1704 	device_set_driver(dev, NULL);
1705 
1706 	return(0);
1707 }
1708 
1709 int
1710 device_shutdown(device_t dev)
1711 {
1712 	if (dev->state < DS_ATTACHED)
1713 		return 0;
1714 	PDEBUG(("%s", DEVICENAME(dev)));
1715 	return DEVICE_SHUTDOWN(dev);
1716 }
1717 
1718 int
1719 device_set_unit(device_t dev, int unit)
1720 {
1721 	devclass_t dc;
1722 	int err;
1723 
1724 	dc = device_get_devclass(dev);
1725 	if (unit < dc->maxunit && dc->devices[unit])
1726 		return(EBUSY);
1727 	err = devclass_delete_device(dc, dev);
1728 	if (err)
1729 		return(err);
1730 	dev->unit = unit;
1731 	err = devclass_add_device(dc, dev);
1732 	if (err)
1733 		return(err);
1734 
1735 	bus_data_generation_update();
1736 	return(0);
1737 }
1738 
1739 /*======================================*/
1740 /*
1741  * Access functions for device resources.
1742  */
1743 
1744 /* Supplied by config(8) in ioconf.c */
1745 extern struct config_device config_devtab[];
1746 extern int devtab_count;
1747 
1748 /* Runtime version */
1749 struct config_device *devtab = config_devtab;
1750 
1751 static int
1752 resource_new_name(const char *name, int unit)
1753 {
1754 	struct config_device *new;
1755 
1756 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1757 		     M_INTWAIT | M_ZERO);
1758 	if (new == NULL)
1759 		return(-1);
1760 	if (devtab && devtab_count > 0)
1761 		bcopy(devtab, new, devtab_count * sizeof(*new));
1762 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1763 	if (new[devtab_count].name == NULL) {
1764 		kfree(new, M_TEMP);
1765 		return(-1);
1766 	}
1767 	strcpy(new[devtab_count].name, name);
1768 	new[devtab_count].unit = unit;
1769 	new[devtab_count].resource_count = 0;
1770 	new[devtab_count].resources = NULL;
1771 	if (devtab && devtab != config_devtab)
1772 		kfree(devtab, M_TEMP);
1773 	devtab = new;
1774 	return devtab_count++;
1775 }
1776 
1777 static int
1778 resource_new_resname(int j, const char *resname, resource_type type)
1779 {
1780 	struct config_resource *new;
1781 	int i;
1782 
1783 	i = devtab[j].resource_count;
1784 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1785 	if (new == NULL)
1786 		return(-1);
1787 	if (devtab[j].resources && i > 0)
1788 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1789 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1790 	if (new[i].name == NULL) {
1791 		kfree(new, M_TEMP);
1792 		return(-1);
1793 	}
1794 	strcpy(new[i].name, resname);
1795 	new[i].type = type;
1796 	if (devtab[j].resources)
1797 		kfree(devtab[j].resources, M_TEMP);
1798 	devtab[j].resources = new;
1799 	devtab[j].resource_count = i + 1;
1800 	return(i);
1801 }
1802 
1803 static int
1804 resource_match_string(int i, const char *resname, const char *value)
1805 {
1806 	int j;
1807 	struct config_resource *res;
1808 
1809 	for (j = 0, res = devtab[i].resources;
1810 	     j < devtab[i].resource_count; j++, res++)
1811 		if (!strcmp(res->name, resname)
1812 		    && res->type == RES_STRING
1813 		    && !strcmp(res->u.stringval, value))
1814 			return(j);
1815 	return(-1);
1816 }
1817 
1818 static int
1819 resource_find(const char *name, int unit, const char *resname,
1820 	      struct config_resource **result)
1821 {
1822 	int i, j;
1823 	struct config_resource *res;
1824 
1825 	/*
1826 	 * First check specific instances, then generic.
1827 	 */
1828 	for (i = 0; i < devtab_count; i++) {
1829 		if (devtab[i].unit < 0)
1830 			continue;
1831 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1832 			res = devtab[i].resources;
1833 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1834 				if (!strcmp(res->name, resname)) {
1835 					*result = res;
1836 					return(0);
1837 				}
1838 		}
1839 	}
1840 	for (i = 0; i < devtab_count; i++) {
1841 		if (devtab[i].unit >= 0)
1842 			continue;
1843 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1844 		/* XXX if so, then the generic match does nothing */
1845 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1846 			res = devtab[i].resources;
1847 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1848 				if (!strcmp(res->name, resname)) {
1849 					*result = res;
1850 					return(0);
1851 				}
1852 		}
1853 	}
1854 	return(ENOENT);
1855 }
1856 
1857 int
1858 resource_int_value(const char *name, int unit, const char *resname, int *result)
1859 {
1860 	int error;
1861 	struct config_resource *res;
1862 
1863 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1864 		return(error);
1865 	if (res->type != RES_INT)
1866 		return(EFTYPE);
1867 	*result = res->u.intval;
1868 	return(0);
1869 }
1870 
1871 int
1872 resource_long_value(const char *name, int unit, const char *resname,
1873 		    long *result)
1874 {
1875 	int error;
1876 	struct config_resource *res;
1877 
1878 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1879 		return(error);
1880 	if (res->type != RES_LONG)
1881 		return(EFTYPE);
1882 	*result = res->u.longval;
1883 	return(0);
1884 }
1885 
1886 int
1887 resource_string_value(const char *name, int unit, const char *resname,
1888 		      char **result)
1889 {
1890 	int error;
1891 	struct config_resource *res;
1892 
1893 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1894 		return(error);
1895 	if (res->type != RES_STRING)
1896 		return(EFTYPE);
1897 	*result = res->u.stringval;
1898 	return(0);
1899 }
1900 
1901 int
1902 resource_query_string(int i, const char *resname, const char *value)
1903 {
1904 	if (i < 0)
1905 		i = 0;
1906 	else
1907 		i = i + 1;
1908 	for (; i < devtab_count; i++)
1909 		if (resource_match_string(i, resname, value) >= 0)
1910 			return(i);
1911 	return(-1);
1912 }
1913 
1914 int
1915 resource_locate(int i, const char *resname)
1916 {
1917 	if (i < 0)
1918 		i = 0;
1919 	else
1920 		i = i + 1;
1921 	for (; i < devtab_count; i++)
1922 		if (!strcmp(devtab[i].name, resname))
1923 			return(i);
1924 	return(-1);
1925 }
1926 
1927 int
1928 resource_count(void)
1929 {
1930 	return(devtab_count);
1931 }
1932 
1933 char *
1934 resource_query_name(int i)
1935 {
1936 	return(devtab[i].name);
1937 }
1938 
1939 int
1940 resource_query_unit(int i)
1941 {
1942 	return(devtab[i].unit);
1943 }
1944 
1945 static int
1946 resource_create(const char *name, int unit, const char *resname,
1947 		resource_type type, struct config_resource **result)
1948 {
1949 	int i, j;
1950 	struct config_resource *res = NULL;
1951 
1952 	for (i = 0; i < devtab_count; i++)
1953 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1954 			res = devtab[i].resources;
1955 			break;
1956 		}
1957 	if (res == NULL) {
1958 		i = resource_new_name(name, unit);
1959 		if (i < 0)
1960 			return(ENOMEM);
1961 		res = devtab[i].resources;
1962 	}
1963 	for (j = 0; j < devtab[i].resource_count; j++, res++)
1964 		if (!strcmp(res->name, resname)) {
1965 			*result = res;
1966 			return(0);
1967 		}
1968 	j = resource_new_resname(i, resname, type);
1969 	if (j < 0)
1970 		return(ENOMEM);
1971 	res = &devtab[i].resources[j];
1972 	*result = res;
1973 	return(0);
1974 }
1975 
1976 int
1977 resource_set_int(const char *name, int unit, const char *resname, int value)
1978 {
1979 	int error;
1980 	struct config_resource *res;
1981 
1982 	error = resource_create(name, unit, resname, RES_INT, &res);
1983 	if (error)
1984 		return(error);
1985 	if (res->type != RES_INT)
1986 		return(EFTYPE);
1987 	res->u.intval = value;
1988 	return(0);
1989 }
1990 
1991 int
1992 resource_set_long(const char *name, int unit, const char *resname, long value)
1993 {
1994 	int error;
1995 	struct config_resource *res;
1996 
1997 	error = resource_create(name, unit, resname, RES_LONG, &res);
1998 	if (error)
1999 		return(error);
2000 	if (res->type != RES_LONG)
2001 		return(EFTYPE);
2002 	res->u.longval = value;
2003 	return(0);
2004 }
2005 
2006 int
2007 resource_set_string(const char *name, int unit, const char *resname,
2008 		    const char *value)
2009 {
2010 	int error;
2011 	struct config_resource *res;
2012 
2013 	error = resource_create(name, unit, resname, RES_STRING, &res);
2014 	if (error)
2015 		return(error);
2016 	if (res->type != RES_STRING)
2017 		return(EFTYPE);
2018 	if (res->u.stringval)
2019 		kfree(res->u.stringval, M_TEMP);
2020 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2021 	if (res->u.stringval == NULL)
2022 		return(ENOMEM);
2023 	strcpy(res->u.stringval, value);
2024 	return(0);
2025 }
2026 
2027 static void
2028 resource_cfgload(void *dummy __unused)
2029 {
2030 	struct config_resource *res, *cfgres;
2031 	int i, j;
2032 	int error;
2033 	char *name, *resname;
2034 	int unit;
2035 	resource_type type;
2036 	char *stringval;
2037 	int config_devtab_count;
2038 
2039 	config_devtab_count = devtab_count;
2040 	devtab = NULL;
2041 	devtab_count = 0;
2042 
2043 	for (i = 0; i < config_devtab_count; i++) {
2044 		name = config_devtab[i].name;
2045 		unit = config_devtab[i].unit;
2046 
2047 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2048 			cfgres = config_devtab[i].resources;
2049 			resname = cfgres[j].name;
2050 			type = cfgres[j].type;
2051 			error = resource_create(name, unit, resname, type,
2052 						&res);
2053 			if (error) {
2054 				kprintf("create resource %s%d: error %d\n",
2055 					name, unit, error);
2056 				continue;
2057 			}
2058 			if (res->type != type) {
2059 				kprintf("type mismatch %s%d: %d != %d\n",
2060 					name, unit, res->type, type);
2061 				continue;
2062 			}
2063 			switch (type) {
2064 			case RES_INT:
2065 				res->u.intval = cfgres[j].u.intval;
2066 				break;
2067 			case RES_LONG:
2068 				res->u.longval = cfgres[j].u.longval;
2069 				break;
2070 			case RES_STRING:
2071 				if (res->u.stringval)
2072 					kfree(res->u.stringval, M_TEMP);
2073 				stringval = cfgres[j].u.stringval;
2074 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2075 							  M_TEMP, M_INTWAIT);
2076 				if (res->u.stringval == NULL)
2077 					break;
2078 				strcpy(res->u.stringval, stringval);
2079 				break;
2080 			default:
2081 				panic("unknown resource type %d", type);
2082 			}
2083 		}
2084 	}
2085 }
2086 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
2087 
2088 
2089 /*======================================*/
2090 /*
2091  * Some useful method implementations to make life easier for bus drivers.
2092  */
2093 
2094 void
2095 resource_list_init(struct resource_list *rl)
2096 {
2097 	SLIST_INIT(rl);
2098 }
2099 
2100 void
2101 resource_list_free(struct resource_list *rl)
2102 {
2103 	struct resource_list_entry *rle;
2104 
2105 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2106 		if (rle->res)
2107 			panic("resource_list_free: resource entry is busy");
2108 		SLIST_REMOVE_HEAD(rl, link);
2109 		kfree(rle, M_BUS);
2110 	}
2111 }
2112 
2113 void
2114 resource_list_add(struct resource_list *rl,
2115 		  int type, int rid,
2116 		  u_long start, u_long end, u_long count)
2117 {
2118 	struct resource_list_entry *rle;
2119 
2120 	rle = resource_list_find(rl, type, rid);
2121 	if (rle == NULL) {
2122 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2123 			     M_INTWAIT);
2124 		if (!rle)
2125 			panic("resource_list_add: can't record entry");
2126 		SLIST_INSERT_HEAD(rl, rle, link);
2127 		rle->type = type;
2128 		rle->rid = rid;
2129 		rle->res = NULL;
2130 	}
2131 
2132 	if (rle->res)
2133 		panic("resource_list_add: resource entry is busy");
2134 
2135 	rle->start = start;
2136 	rle->end = end;
2137 	rle->count = count;
2138 }
2139 
2140 struct resource_list_entry*
2141 resource_list_find(struct resource_list *rl,
2142 		   int type, int rid)
2143 {
2144 	struct resource_list_entry *rle;
2145 
2146 	SLIST_FOREACH(rle, rl, link)
2147 		if (rle->type == type && rle->rid == rid)
2148 			return(rle);
2149 	return(NULL);
2150 }
2151 
2152 void
2153 resource_list_delete(struct resource_list *rl,
2154 		     int type, int rid)
2155 {
2156 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2157 
2158 	if (rle) {
2159 		if (rle->res != NULL)
2160 			panic("resource_list_delete: resource has not been released");
2161 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2162 		kfree(rle, M_BUS);
2163 	}
2164 }
2165 
2166 struct resource *
2167 resource_list_alloc(struct resource_list *rl,
2168 		    device_t bus, device_t child,
2169 		    int type, int *rid,
2170 		    u_long start, u_long end,
2171 		    u_long count, u_int flags)
2172 {
2173 	struct resource_list_entry *rle = 0;
2174 	int passthrough = (device_get_parent(child) != bus);
2175 	int isdefault = (start == 0UL && end == ~0UL);
2176 
2177 	if (passthrough) {
2178 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2179 					  type, rid,
2180 					  start, end, count, flags));
2181 	}
2182 
2183 	rle = resource_list_find(rl, type, *rid);
2184 
2185 	if (!rle)
2186 		return(0);		/* no resource of that type/rid */
2187 
2188 	if (rle->res)
2189 		panic("resource_list_alloc: resource entry is busy");
2190 
2191 	if (isdefault) {
2192 		start = rle->start;
2193 		count = max(count, rle->count);
2194 		end = max(rle->end, start + count - 1);
2195 	}
2196 
2197 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2198 				      type, rid, start, end, count, flags);
2199 
2200 	/*
2201 	 * Record the new range.
2202 	 */
2203 	if (rle->res) {
2204 		rle->start = rman_get_start(rle->res);
2205 		rle->end = rman_get_end(rle->res);
2206 		rle->count = count;
2207 	}
2208 
2209 	return(rle->res);
2210 }
2211 
2212 int
2213 resource_list_release(struct resource_list *rl,
2214 		      device_t bus, device_t child,
2215 		      int type, int rid, struct resource *res)
2216 {
2217 	struct resource_list_entry *rle = 0;
2218 	int passthrough = (device_get_parent(child) != bus);
2219 	int error;
2220 
2221 	if (passthrough) {
2222 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2223 					    type, rid, res));
2224 	}
2225 
2226 	rle = resource_list_find(rl, type, rid);
2227 
2228 	if (!rle)
2229 		panic("resource_list_release: can't find resource");
2230 	if (!rle->res)
2231 		panic("resource_list_release: resource entry is not busy");
2232 
2233 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2234 				     type, rid, res);
2235 	if (error)
2236 		return(error);
2237 
2238 	rle->res = NULL;
2239 	return(0);
2240 }
2241 
2242 int
2243 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2244 			 const char *format)
2245 {
2246 	struct resource_list_entry *rle;
2247 	int printed, retval;
2248 
2249 	printed = 0;
2250 	retval = 0;
2251 	/* Yes, this is kinda cheating */
2252 	SLIST_FOREACH(rle, rl, link) {
2253 		if (rle->type == type) {
2254 			if (printed == 0)
2255 				retval += kprintf(" %s ", name);
2256 			else
2257 				retval += kprintf(",");
2258 			printed++;
2259 			retval += kprintf(format, rle->start);
2260 			if (rle->count > 1) {
2261 				retval += kprintf("-");
2262 				retval += kprintf(format, rle->start +
2263 						 rle->count - 1);
2264 			}
2265 		}
2266 	}
2267 	return(retval);
2268 }
2269 
2270 /*
2271  * Generic driver/device identify functions.  These will install a device
2272  * rendezvous point under the parent using the same name as the driver
2273  * name, which will at a later time be probed and attached.
2274  *
2275  * These functions are used when the parent does not 'scan' its bus for
2276  * matching devices, or for the particular devices using these functions,
2277  * or when the device is a pseudo or synthesized device (such as can be
2278  * found under firewire and ppbus).
2279  */
2280 int
2281 bus_generic_identify(driver_t *driver, device_t parent)
2282 {
2283 	if (parent->state == DS_ATTACHED)
2284 		return (0);
2285 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2286 	return (0);
2287 }
2288 
2289 int
2290 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2291 {
2292 	if (parent->state == DS_ATTACHED)
2293 		return (0);
2294 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2295 	return (0);
2296 }
2297 
2298 /*
2299  * Call DEVICE_IDENTIFY for each driver.
2300  */
2301 int
2302 bus_generic_probe(device_t dev)
2303 {
2304 	devclass_t dc = dev->devclass;
2305 	driverlink_t dl;
2306 
2307 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2308 		DEVICE_IDENTIFY(dl->driver, dev);
2309 	}
2310 
2311 	return(0);
2312 }
2313 
2314 /*
2315  * This is an aweful hack due to the isa bus and autoconf code not
2316  * probing the ISA devices until after everything else has configured.
2317  * The ISA bus did a dummy attach long ago so we have to set it back
2318  * to an earlier state so the probe thinks its the initial probe and
2319  * not a bus rescan.
2320  *
2321  * XXX remove by properly defering the ISA bus scan.
2322  */
2323 int
2324 bus_generic_probe_hack(device_t dev)
2325 {
2326 	if (dev->state == DS_ATTACHED) {
2327 		dev->state = DS_ALIVE;
2328 		bus_generic_probe(dev);
2329 		dev->state = DS_ATTACHED;
2330 	}
2331 	return (0);
2332 }
2333 
2334 int
2335 bus_generic_attach(device_t dev)
2336 {
2337 	device_t child;
2338 
2339 	TAILQ_FOREACH(child, &dev->children, link) {
2340 		device_probe_and_attach(child);
2341 	}
2342 
2343 	return(0);
2344 }
2345 
2346 int
2347 bus_generic_detach(device_t dev)
2348 {
2349 	device_t child;
2350 	int error;
2351 
2352 	if (dev->state != DS_ATTACHED)
2353 		return(EBUSY);
2354 
2355 	TAILQ_FOREACH(child, &dev->children, link)
2356 		if ((error = device_detach(child)) != 0)
2357 			return(error);
2358 
2359 	return 0;
2360 }
2361 
2362 int
2363 bus_generic_shutdown(device_t dev)
2364 {
2365 	device_t child;
2366 
2367 	TAILQ_FOREACH(child, &dev->children, link)
2368 		device_shutdown(child);
2369 
2370 	return(0);
2371 }
2372 
2373 int
2374 bus_generic_suspend(device_t dev)
2375 {
2376 	int error;
2377 	device_t child, child2;
2378 
2379 	TAILQ_FOREACH(child, &dev->children, link) {
2380 		error = DEVICE_SUSPEND(child);
2381 		if (error) {
2382 			for (child2 = TAILQ_FIRST(&dev->children);
2383 			     child2 && child2 != child;
2384 			     child2 = TAILQ_NEXT(child2, link))
2385 				DEVICE_RESUME(child2);
2386 			return(error);
2387 		}
2388 	}
2389 	return(0);
2390 }
2391 
2392 int
2393 bus_generic_resume(device_t dev)
2394 {
2395 	device_t child;
2396 
2397 	TAILQ_FOREACH(child, &dev->children, link)
2398 		DEVICE_RESUME(child);
2399 		/* if resume fails, there's nothing we can usefully do... */
2400 
2401 	return(0);
2402 }
2403 
2404 int
2405 bus_print_child_header(device_t dev, device_t child)
2406 {
2407 	int retval = 0;
2408 
2409 	if (device_get_desc(child))
2410 		retval += device_printf(child, "<%s>", device_get_desc(child));
2411 	else
2412 		retval += kprintf("%s", device_get_nameunit(child));
2413 	if (bootverbose) {
2414 		if (child->state != DS_ATTACHED)
2415 			kprintf(" [tentative]");
2416 		else
2417 			kprintf(" [attached!]");
2418 	}
2419 	return(retval);
2420 }
2421 
2422 int
2423 bus_print_child_footer(device_t dev, device_t child)
2424 {
2425 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2426 }
2427 
2428 device_t
2429 bus_generic_add_child(device_t dev, device_t child, int order,
2430 		      const char *name, int unit)
2431 {
2432 	if (dev->parent)
2433 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2434 	else
2435 		dev = device_add_child_ordered(child, order, name, unit);
2436 	return(dev);
2437 
2438 }
2439 
2440 int
2441 bus_generic_print_child(device_t dev, device_t child)
2442 {
2443 	int retval = 0;
2444 
2445 	retval += bus_print_child_header(dev, child);
2446 	retval += bus_print_child_footer(dev, child);
2447 
2448 	return(retval);
2449 }
2450 
2451 int
2452 bus_generic_read_ivar(device_t dev, device_t child, int index,
2453 		      uintptr_t * result)
2454 {
2455 	int error;
2456 
2457 	if (dev->parent)
2458 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2459 	else
2460 		error = ENOENT;
2461 	return (error);
2462 }
2463 
2464 int
2465 bus_generic_write_ivar(device_t dev, device_t child, int index,
2466 		       uintptr_t value)
2467 {
2468 	int error;
2469 
2470 	if (dev->parent)
2471 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2472 	else
2473 		error = ENOENT;
2474 	return (error);
2475 }
2476 
2477 /*
2478  * Resource list are used for iterations, do not recurse.
2479  */
2480 struct resource_list *
2481 bus_generic_get_resource_list(device_t dev, device_t child)
2482 {
2483 	return (NULL);
2484 }
2485 
2486 void
2487 bus_generic_driver_added(device_t dev, driver_t *driver)
2488 {
2489 	device_t child;
2490 
2491 	DEVICE_IDENTIFY(driver, dev);
2492 	TAILQ_FOREACH(child, &dev->children, link) {
2493 		if (child->state == DS_NOTPRESENT)
2494 			device_probe_and_attach(child);
2495 	}
2496 }
2497 
2498 int
2499 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2500 		       int flags, driver_intr_t *intr, void *arg,
2501 		       void **cookiep, lwkt_serialize_t serializer)
2502 {
2503 	/* Propagate up the bus hierarchy until someone handles it. */
2504 	if (dev->parent)
2505 		return(BUS_SETUP_INTR(dev->parent, child, irq, flags,
2506 				      intr, arg, cookiep, serializer));
2507 	else
2508 		return(EINVAL);
2509 }
2510 
2511 int
2512 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2513 			  void *cookie)
2514 {
2515 	/* Propagate up the bus hierarchy until someone handles it. */
2516 	if (dev->parent)
2517 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2518 	else
2519 		return(EINVAL);
2520 }
2521 
2522 int
2523 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2524 {
2525 	if (dev->parent)
2526 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2527 	else
2528 		return(0);
2529 }
2530 
2531 void
2532 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2533 {
2534 	if (dev->parent)
2535 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2536 }
2537 
2538 int
2539 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
2540     enum intr_polarity pol)
2541 {
2542 	/* Propagate up the bus hierarchy until someone handles it. */
2543 	if (dev->parent)
2544 		return(BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
2545 	else
2546 		return(EINVAL);
2547 }
2548 
2549 struct resource *
2550 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2551 			   u_long start, u_long end, u_long count, u_int flags)
2552 {
2553 	/* Propagate up the bus hierarchy until someone handles it. */
2554 	if (dev->parent)
2555 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2556 					   start, end, count, flags));
2557 	else
2558 		return(NULL);
2559 }
2560 
2561 int
2562 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2563 			     struct resource *r)
2564 {
2565 	/* Propagate up the bus hierarchy until someone handles it. */
2566 	if (dev->parent)
2567 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2568 	else
2569 		return(EINVAL);
2570 }
2571 
2572 int
2573 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2574 			      struct resource *r)
2575 {
2576 	/* Propagate up the bus hierarchy until someone handles it. */
2577 	if (dev->parent)
2578 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2579 	else
2580 		return(EINVAL);
2581 }
2582 
2583 int
2584 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2585 				int rid, struct resource *r)
2586 {
2587 	/* Propagate up the bus hierarchy until someone handles it. */
2588 	if (dev->parent)
2589 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2590 					       r));
2591 	else
2592 		return(EINVAL);
2593 }
2594 
2595 int
2596 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2597 			 u_long *startp, u_long *countp)
2598 {
2599 	int error;
2600 
2601 	error = ENOENT;
2602 	if (dev->parent) {
2603 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2604 					 startp, countp);
2605 	}
2606 	return (error);
2607 }
2608 
2609 int
2610 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2611 			u_long start, u_long count)
2612 {
2613 	int error;
2614 
2615 	error = EINVAL;
2616 	if (dev->parent) {
2617 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2618 					 start, count);
2619 	}
2620 	return (error);
2621 }
2622 
2623 void
2624 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2625 {
2626 	if (dev->parent)
2627 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2628 }
2629 
2630 int
2631 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2632     u_long *startp, u_long *countp)
2633 {
2634 	struct resource_list *rl = NULL;
2635 	struct resource_list_entry *rle = NULL;
2636 
2637 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2638 	if (!rl)
2639 		return(EINVAL);
2640 
2641 	rle = resource_list_find(rl, type, rid);
2642 	if (!rle)
2643 		return(ENOENT);
2644 
2645 	if (startp)
2646 		*startp = rle->start;
2647 	if (countp)
2648 		*countp = rle->count;
2649 
2650 	return(0);
2651 }
2652 
2653 int
2654 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2655     u_long start, u_long count)
2656 {
2657 	struct resource_list *rl = NULL;
2658 
2659 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2660 	if (!rl)
2661 		return(EINVAL);
2662 
2663 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
2664 
2665 	return(0);
2666 }
2667 
2668 void
2669 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2670 {
2671 	struct resource_list *rl = NULL;
2672 
2673 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2674 	if (!rl)
2675 		return;
2676 
2677 	resource_list_delete(rl, type, rid);
2678 }
2679 
2680 int
2681 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2682     int rid, struct resource *r)
2683 {
2684 	struct resource_list *rl = NULL;
2685 
2686 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2687 	if (!rl)
2688 		return(EINVAL);
2689 
2690 	return(resource_list_release(rl, dev, child, type, rid, r));
2691 }
2692 
2693 struct resource *
2694 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2695     int *rid, u_long start, u_long end, u_long count, u_int flags)
2696 {
2697 	struct resource_list *rl = NULL;
2698 
2699 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2700 	if (!rl)
2701 		return(NULL);
2702 
2703 	return(resource_list_alloc(rl, dev, child, type, rid,
2704 	    start, end, count, flags));
2705 }
2706 
2707 int
2708 bus_generic_child_present(device_t bus, device_t child)
2709 {
2710 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2711 }
2712 
2713 
2714 /*
2715  * Some convenience functions to make it easier for drivers to use the
2716  * resource-management functions.  All these really do is hide the
2717  * indirection through the parent's method table, making for slightly
2718  * less-wordy code.  In the future, it might make sense for this code
2719  * to maintain some sort of a list of resources allocated by each device.
2720  */
2721 int
2722 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2723     struct resource **res)
2724 {
2725 	int i;
2726 
2727 	for (i = 0; rs[i].type != -1; i++)
2728 	        res[i] = NULL;
2729 	for (i = 0; rs[i].type != -1; i++) {
2730 		res[i] = bus_alloc_resource_any(dev,
2731 		    rs[i].type, &rs[i].rid, rs[i].flags);
2732 		if (res[i] == NULL) {
2733 			bus_release_resources(dev, rs, res);
2734 			return (ENXIO);
2735 		}
2736 	}
2737 	return (0);
2738 }
2739 
2740 void
2741 bus_release_resources(device_t dev, const struct resource_spec *rs,
2742     struct resource **res)
2743 {
2744 	int i;
2745 
2746 	for (i = 0; rs[i].type != -1; i++)
2747 		if (res[i] != NULL) {
2748 			bus_release_resource(
2749 			    dev, rs[i].type, rs[i].rid, res[i]);
2750 			res[i] = NULL;
2751 		}
2752 }
2753 
2754 struct resource *
2755 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2756 		   u_long count, u_int flags)
2757 {
2758 	if (dev->parent == 0)
2759 		return(0);
2760 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2761 				  count, flags));
2762 }
2763 
2764 int
2765 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2766 {
2767 	if (dev->parent == 0)
2768 		return(EINVAL);
2769 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2770 }
2771 
2772 int
2773 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2774 {
2775 	if (dev->parent == 0)
2776 		return(EINVAL);
2777 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2778 }
2779 
2780 int
2781 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2782 {
2783 	if (dev->parent == 0)
2784 		return(EINVAL);
2785 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2786 }
2787 
2788 int
2789 bus_setup_intr(device_t dev, struct resource *r, int flags,
2790 	       driver_intr_t handler, void *arg,
2791 	       void **cookiep, lwkt_serialize_t serializer)
2792 {
2793 	if (dev->parent == 0)
2794 		return(EINVAL);
2795 	return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2796 			      cookiep, serializer));
2797 }
2798 
2799 int
2800 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2801 {
2802 	if (dev->parent == 0)
2803 		return(EINVAL);
2804 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2805 }
2806 
2807 void
2808 bus_enable_intr(device_t dev, void *cookie)
2809 {
2810 	if (dev->parent)
2811 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2812 }
2813 
2814 int
2815 bus_disable_intr(device_t dev, void *cookie)
2816 {
2817 	if (dev->parent)
2818 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2819 	else
2820 		return(0);
2821 }
2822 
2823 int
2824 bus_set_resource(device_t dev, int type, int rid,
2825 		 u_long start, u_long count)
2826 {
2827 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2828 				start, count));
2829 }
2830 
2831 int
2832 bus_get_resource(device_t dev, int type, int rid,
2833 		 u_long *startp, u_long *countp)
2834 {
2835 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2836 				startp, countp));
2837 }
2838 
2839 u_long
2840 bus_get_resource_start(device_t dev, int type, int rid)
2841 {
2842 	u_long start, count;
2843 	int error;
2844 
2845 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2846 				 &start, &count);
2847 	if (error)
2848 		return(0);
2849 	return(start);
2850 }
2851 
2852 u_long
2853 bus_get_resource_count(device_t dev, int type, int rid)
2854 {
2855 	u_long start, count;
2856 	int error;
2857 
2858 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2859 				 &start, &count);
2860 	if (error)
2861 		return(0);
2862 	return(count);
2863 }
2864 
2865 void
2866 bus_delete_resource(device_t dev, int type, int rid)
2867 {
2868 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
2869 }
2870 
2871 int
2872 bus_child_present(device_t child)
2873 {
2874 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2875 }
2876 
2877 int
2878 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
2879 {
2880 	device_t parent;
2881 
2882 	parent = device_get_parent(child);
2883 	if (parent == NULL) {
2884 		*buf = '\0';
2885 		return (0);
2886 	}
2887 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
2888 }
2889 
2890 int
2891 bus_child_location_str(device_t child, char *buf, size_t buflen)
2892 {
2893 	device_t parent;
2894 
2895 	parent = device_get_parent(child);
2896 	if (parent == NULL) {
2897 		*buf = '\0';
2898 		return (0);
2899 	}
2900 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
2901 }
2902 
2903 static int
2904 root_print_child(device_t dev, device_t child)
2905 {
2906 	return(0);
2907 }
2908 
2909 static int
2910 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
2911 		void **cookiep, lwkt_serialize_t serializer)
2912 {
2913 	/*
2914 	 * If an interrupt mapping gets to here something bad has happened.
2915 	 */
2916 	panic("root_setup_intr");
2917 }
2918 
2919 /*
2920  * If we get here, assume that the device is permanant and really is
2921  * present in the system.  Removable bus drivers are expected to intercept
2922  * this call long before it gets here.  We return -1 so that drivers that
2923  * really care can check vs -1 or some ERRNO returned higher in the food
2924  * chain.
2925  */
2926 static int
2927 root_child_present(device_t dev, device_t child)
2928 {
2929 	return(-1);
2930 }
2931 
2932 /*
2933  * XXX NOTE! other defaults may be set in bus_if.m
2934  */
2935 static kobj_method_t root_methods[] = {
2936 	/* Device interface */
2937 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
2938 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
2939 	KOBJMETHOD(device_resume,	bus_generic_resume),
2940 
2941 	/* Bus interface */
2942 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
2943 	KOBJMETHOD(bus_print_child,	root_print_child),
2944 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
2945 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
2946 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
2947 	KOBJMETHOD(bus_child_present,   root_child_present),
2948 
2949 	{ 0, 0 }
2950 };
2951 
2952 static driver_t root_driver = {
2953 	"root",
2954 	root_methods,
2955 	1,			/* no softc */
2956 };
2957 
2958 device_t	root_bus;
2959 devclass_t	root_devclass;
2960 
2961 static int
2962 root_bus_module_handler(module_t mod, int what, void* arg)
2963 {
2964 	switch (what) {
2965 	case MOD_LOAD:
2966 		TAILQ_INIT(&bus_data_devices);
2967 		root_bus = make_device(NULL, "root", 0);
2968 		root_bus->desc = "System root bus";
2969 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
2970 		root_bus->driver = &root_driver;
2971 		root_bus->state = DS_ALIVE;
2972 		root_devclass = devclass_find_internal("root", NULL, FALSE);
2973 		devinit();
2974 		return(0);
2975 
2976 	case MOD_SHUTDOWN:
2977 		device_shutdown(root_bus);
2978 		return(0);
2979 	default:
2980 		return(0);
2981 	}
2982 }
2983 
2984 static moduledata_t root_bus_mod = {
2985 	"rootbus",
2986 	root_bus_module_handler,
2987 	0
2988 };
2989 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
2990 
2991 void
2992 root_bus_configure(void)
2993 {
2994 	int warncount;
2995 	device_t dev;
2996 
2997 	PDEBUG(("."));
2998 
2999 	/*
3000 	 * handle device_identify based device attachments to the root_bus
3001 	 * (typically nexus).
3002 	 */
3003 	bus_generic_probe(root_bus);
3004 
3005 	/*
3006 	 * Probe and attach the devices under root_bus.
3007 	 */
3008 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3009 		device_probe_and_attach(dev);
3010 	}
3011 
3012 	/*
3013 	 * Wait for all asynchronous attaches to complete.  If we don't
3014 	 * our legacy ISA bus scan could steal device unit numbers or
3015 	 * even I/O ports.
3016 	 */
3017 	warncount = 10;
3018 	if (numasyncthreads)
3019 		kprintf("Waiting for async drivers to attach\n");
3020 	while (numasyncthreads > 0) {
3021 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3022 			--warncount;
3023 		if (warncount == 0) {
3024 			kprintf("Warning: Still waiting for %d "
3025 				"drivers to attach\n", numasyncthreads);
3026 		} else if (warncount == -30) {
3027 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3028 			break;
3029 		}
3030 	}
3031 	root_bus->state = DS_ATTACHED;
3032 }
3033 
3034 int
3035 driver_module_handler(module_t mod, int what, void *arg)
3036 {
3037 	int error;
3038 	struct driver_module_data *dmd;
3039 	devclass_t bus_devclass;
3040 	kobj_class_t driver;
3041         const char *parentname;
3042 
3043 	dmd = (struct driver_module_data *)arg;
3044 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3045 	error = 0;
3046 
3047 	switch (what) {
3048 	case MOD_LOAD:
3049 		if (dmd->dmd_chainevh)
3050 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3051 
3052 		driver = dmd->dmd_driver;
3053 		PDEBUG(("Loading module: driver %s on bus %s",
3054 		        DRIVERNAME(driver), dmd->dmd_busname));
3055 
3056 		/*
3057 		 * If the driver has any base classes, make the
3058 		 * devclass inherit from the devclass of the driver's
3059 		 * first base class. This will allow the system to
3060 		 * search for drivers in both devclasses for children
3061 		 * of a device using this driver.
3062 		 */
3063 		if (driver->baseclasses)
3064 			parentname = driver->baseclasses[0]->name;
3065 		else
3066 			parentname = NULL;
3067 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3068 							    parentname, TRUE);
3069 
3070 		error = devclass_add_driver(bus_devclass, driver);
3071 		if (error)
3072 			break;
3073 		break;
3074 
3075 	case MOD_UNLOAD:
3076 		PDEBUG(("Unloading module: driver %s from bus %s",
3077 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3078 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3079 
3080 		if (!error && dmd->dmd_chainevh)
3081 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3082 		break;
3083 	}
3084 
3085 	return (error);
3086 }
3087 
3088 #ifdef BUS_DEBUG
3089 
3090 /*
3091  * The _short versions avoid iteration by not calling anything that prints
3092  * more than oneliners. I love oneliners.
3093  */
3094 
3095 static void
3096 print_device_short(device_t dev, int indent)
3097 {
3098 	if (!dev)
3099 		return;
3100 
3101 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3102 		      dev->unit, dev->desc,
3103 		      (dev->parent? "":"no "),
3104 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3105 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3106 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3107 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3108 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3109 		      (dev->ivars? "":"no "),
3110 		      (dev->softc? "":"no "),
3111 		      dev->busy));
3112 }
3113 
3114 static void
3115 print_device(device_t dev, int indent)
3116 {
3117 	if (!dev)
3118 		return;
3119 
3120 	print_device_short(dev, indent);
3121 
3122 	indentprintf(("Parent:\n"));
3123 	print_device_short(dev->parent, indent+1);
3124 	indentprintf(("Driver:\n"));
3125 	print_driver_short(dev->driver, indent+1);
3126 	indentprintf(("Devclass:\n"));
3127 	print_devclass_short(dev->devclass, indent+1);
3128 }
3129 
3130 /*
3131  * Print the device and all its children (indented).
3132  */
3133 void
3134 print_device_tree_short(device_t dev, int indent)
3135 {
3136 	device_t child;
3137 
3138 	if (!dev)
3139 		return;
3140 
3141 	print_device_short(dev, indent);
3142 
3143 	TAILQ_FOREACH(child, &dev->children, link)
3144 		print_device_tree_short(child, indent+1);
3145 }
3146 
3147 /*
3148  * Print the device and all its children (indented).
3149  */
3150 void
3151 print_device_tree(device_t dev, int indent)
3152 {
3153 	device_t child;
3154 
3155 	if (!dev)
3156 		return;
3157 
3158 	print_device(dev, indent);
3159 
3160 	TAILQ_FOREACH(child, &dev->children, link)
3161 		print_device_tree(child, indent+1);
3162 }
3163 
3164 static void
3165 print_driver_short(driver_t *driver, int indent)
3166 {
3167 	if (!driver)
3168 		return;
3169 
3170 	indentprintf(("driver %s: softc size = %d\n",
3171 		      driver->name, driver->size));
3172 }
3173 
3174 static void
3175 print_driver(driver_t *driver, int indent)
3176 {
3177 	if (!driver)
3178 		return;
3179 
3180 	print_driver_short(driver, indent);
3181 }
3182 
3183 
3184 static void
3185 print_driver_list(driver_list_t drivers, int indent)
3186 {
3187 	driverlink_t driver;
3188 
3189 	TAILQ_FOREACH(driver, &drivers, link)
3190 		print_driver(driver->driver, indent);
3191 }
3192 
3193 static void
3194 print_devclass_short(devclass_t dc, int indent)
3195 {
3196 	if (!dc)
3197 		return;
3198 
3199 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3200 }
3201 
3202 static void
3203 print_devclass(devclass_t dc, int indent)
3204 {
3205 	int i;
3206 
3207 	if (!dc)
3208 		return;
3209 
3210 	print_devclass_short(dc, indent);
3211 	indentprintf(("Drivers:\n"));
3212 	print_driver_list(dc->drivers, indent+1);
3213 
3214 	indentprintf(("Devices:\n"));
3215 	for (i = 0; i < dc->maxunit; i++)
3216 		if (dc->devices[i])
3217 			print_device(dc->devices[i], indent+1);
3218 }
3219 
3220 void
3221 print_devclass_list_short(void)
3222 {
3223 	devclass_t dc;
3224 
3225 	kprintf("Short listing of devclasses, drivers & devices:\n");
3226 	TAILQ_FOREACH(dc, &devclasses, link) {
3227 		print_devclass_short(dc, 0);
3228 	}
3229 }
3230 
3231 void
3232 print_devclass_list(void)
3233 {
3234 	devclass_t dc;
3235 
3236 	kprintf("Full listing of devclasses, drivers & devices:\n");
3237 	TAILQ_FOREACH(dc, &devclasses, link) {
3238 		print_devclass(dc, 0);
3239 	}
3240 }
3241 
3242 #endif
3243 
3244 /*
3245  * Check to see if a device is disabled via a disabled hint.
3246  */
3247 int
3248 resource_disabled(const char *name, int unit)
3249 {
3250 	int error, value;
3251 
3252 	error = resource_int_value(name, unit, "disabled", &value);
3253 	if (error)
3254 	       return(0);
3255 	return(value);
3256 }
3257 
3258 /*
3259  * User-space access to the device tree.
3260  *
3261  * We implement a small set of nodes:
3262  *
3263  * hw.bus			Single integer read method to obtain the
3264  *				current generation count.
3265  * hw.bus.devices		Reads the entire device tree in flat space.
3266  * hw.bus.rman			Resource manager interface
3267  *
3268  * We might like to add the ability to scan devclasses and/or drivers to
3269  * determine what else is currently loaded/available.
3270  */
3271 
3272 static int
3273 sysctl_bus(SYSCTL_HANDLER_ARGS)
3274 {
3275 	struct u_businfo	ubus;
3276 
3277 	ubus.ub_version = BUS_USER_VERSION;
3278 	ubus.ub_generation = bus_data_generation;
3279 
3280 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3281 }
3282 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3283     "bus-related data");
3284 
3285 static int
3286 sysctl_devices(SYSCTL_HANDLER_ARGS)
3287 {
3288 	int			*name = (int *)arg1;
3289 	u_int			namelen = arg2;
3290 	int			index;
3291 	struct device		*dev;
3292 	struct u_device		udev;	/* XXX this is a bit big */
3293 	int			error;
3294 
3295 	if (namelen != 2)
3296 		return (EINVAL);
3297 
3298 	if (bus_data_generation_check(name[0]))
3299 		return (EINVAL);
3300 
3301 	index = name[1];
3302 
3303 	/*
3304 	 * Scan the list of devices, looking for the requested index.
3305 	 */
3306 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3307 		if (index-- == 0)
3308 			break;
3309 	}
3310 	if (dev == NULL)
3311 		return (ENOENT);
3312 
3313 	/*
3314 	 * Populate the return array.
3315 	 */
3316 	bzero(&udev, sizeof(udev));
3317 	udev.dv_handle = (uintptr_t)dev;
3318 	udev.dv_parent = (uintptr_t)dev->parent;
3319 	if (dev->nameunit != NULL)
3320 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3321 	if (dev->desc != NULL)
3322 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3323 	if (dev->driver != NULL && dev->driver->name != NULL)
3324 		strlcpy(udev.dv_drivername, dev->driver->name,
3325 		    sizeof(udev.dv_drivername));
3326 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3327 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3328 	udev.dv_devflags = dev->devflags;
3329 	udev.dv_flags = dev->flags;
3330 	udev.dv_state = dev->state;
3331 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3332 	return (error);
3333 }
3334 
3335 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3336     "system device tree");
3337 
3338 int
3339 bus_data_generation_check(int generation)
3340 {
3341 	if (generation != bus_data_generation)
3342 		return (1);
3343 
3344 	/* XXX generate optimised lists here? */
3345 	return (0);
3346 }
3347 
3348 void
3349 bus_data_generation_update(void)
3350 {
3351 	bus_data_generation++;
3352 }
3353