xref: /dragonfly/sys/kern/subr_bus.c (revision 28c26f7e)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  * $DragonFly: src/sys/kern/subr_bus.c,v 1.46 2008/10/03 00:26:21 hasso Exp $
28  */
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/queue.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/kobj.h>
38 #include <sys/bus_private.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/device.h>
44 #include <sys/lock.h>
45 #include <sys/conf.h>
46 #include <sys/selinfo.h>
47 #include <sys/uio.h>
48 #include <sys/filio.h>
49 #include <sys/poll.h>
50 #include <sys/signalvar.h>
51 
52 #include <machine/stdarg.h>	/* for device_printf() */
53 
54 #include <sys/thread2.h>
55 
56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
57 
58 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
59 
60 #ifdef BUS_DEBUG
61 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
62 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
63 #define DRIVERNAME(d)	((d)? d->name : "no driver")
64 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
65 
66 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
67  * prevent syslog from deleting initial spaces
68  */
69 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
70 
71 static void	print_device_short(device_t dev, int indent);
72 static void	print_device(device_t dev, int indent);
73 void		print_device_tree_short(device_t dev, int indent);
74 void		print_device_tree(device_t dev, int indent);
75 static void	print_driver_short(driver_t *driver, int indent);
76 static void	print_driver(driver_t *driver, int indent);
77 static void	print_driver_list(driver_list_t drivers, int indent);
78 static void	print_devclass_short(devclass_t dc, int indent);
79 static void	print_devclass(devclass_t dc, int indent);
80 void		print_devclass_list_short(void);
81 void		print_devclass_list(void);
82 
83 #else
84 /* Make the compiler ignore the function calls */
85 #define PDEBUG(a)			/* nop */
86 #define DEVICENAME(d)			/* nop */
87 #define DRIVERNAME(d)			/* nop */
88 #define DEVCLANAME(d)			/* nop */
89 
90 #define print_device_short(d,i)		/* nop */
91 #define print_device(d,i)		/* nop */
92 #define print_device_tree_short(d,i)	/* nop */
93 #define print_device_tree(d,i)		/* nop */
94 #define print_driver_short(d,i)		/* nop */
95 #define print_driver(d,i)		/* nop */
96 #define print_driver_list(d,i)		/* nop */
97 #define print_devclass_short(d,i)	/* nop */
98 #define print_devclass(d,i)		/* nop */
99 #define print_devclass_list_short()	/* nop */
100 #define print_devclass_list()		/* nop */
101 #endif
102 
103 static void	device_attach_async(device_t dev);
104 static void	device_attach_thread(void *arg);
105 static int	device_doattach(device_t dev);
106 
107 static int do_async_attach = 0;
108 static int numasyncthreads;
109 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
110 
111 /*
112  * /dev/devctl implementation
113  */
114 
115 /*
116  * This design allows only one reader for /dev/devctl.  This is not desirable
117  * in the long run, but will get a lot of hair out of this implementation.
118  * Maybe we should make this device a clonable device.
119  *
120  * Also note: we specifically do not attach a device to the device_t tree
121  * to avoid potential chicken and egg problems.  One could argue that all
122  * of this belongs to the root node.  One could also further argue that the
123  * sysctl interface that we have not might more properly be an ioctl
124  * interface, but at this stage of the game, I'm not inclined to rock that
125  * boat.
126  *
127  * I'm also not sure that the SIGIO support is done correctly or not, as
128  * I copied it from a driver that had SIGIO support that likely hasn't been
129  * tested since 3.4 or 2.2.8!
130  */
131 
132 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
133 static int devctl_disable = 0;
134 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
135 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
136     sysctl_devctl_disable, "I", "devctl disable");
137 
138 #define	CDEV_MAJOR	188
139 
140 static d_open_t		devopen;
141 static d_close_t	devclose;
142 static d_read_t		devread;
143 static d_ioctl_t	devioctl;
144 static d_poll_t		devpoll;
145 
146 static struct dev_ops devctl_ops = {
147 	{ "devctl", CDEV_MAJOR, 0 },
148 	.d_open =	devopen,
149 	.d_close =	devclose,
150 	.d_read =	devread,
151 	.d_ioctl =	devioctl,
152 	.d_poll =	devpoll,
153 };
154 
155 struct dev_event_info
156 {
157 	char *dei_data;
158 	TAILQ_ENTRY(dev_event_info) dei_link;
159 };
160 
161 TAILQ_HEAD(devq, dev_event_info);
162 
163 static struct dev_softc
164 {
165 	int	inuse;
166 	int	nonblock;
167 	struct lock lock;
168 	struct selinfo sel;
169 	struct devq devq;
170 	struct proc *async_proc;
171 } devsoftc;
172 
173 static void
174 devinit(void)
175 {
176 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
177 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
178 	TAILQ_INIT(&devsoftc.devq);
179 }
180 
181 static int
182 devopen(struct dev_open_args *ap)
183 {
184 	if (devsoftc.inuse)
185 		return (EBUSY);
186 	/* move to init */
187 	devsoftc.inuse = 1;
188 	devsoftc.nonblock = 0;
189 	devsoftc.async_proc = NULL;
190 	return (0);
191 }
192 
193 static int
194 devclose(struct dev_close_args *ap)
195 {
196 	devsoftc.inuse = 0;
197 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
198 	wakeup(&devsoftc);
199 	lockmgr(&devsoftc.lock, LK_RELEASE);
200 
201 	return (0);
202 }
203 
204 /*
205  * The read channel for this device is used to report changes to
206  * userland in realtime.  We are required to free the data as well as
207  * the n1 object because we allocate them separately.  Also note that
208  * we return one record at a time.  If you try to read this device a
209  * character at a time, you will lose the rest of the data.  Listening
210  * programs are expected to cope.
211  */
212 static int
213 devread(struct dev_read_args *ap)
214 {
215 	struct uio *uio = ap->a_uio;
216 	struct dev_event_info *n1;
217 	int rv;
218 
219 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
220 	while (TAILQ_EMPTY(&devsoftc.devq)) {
221 		if (devsoftc.nonblock) {
222 			lockmgr(&devsoftc.lock, LK_RELEASE);
223 			return (EAGAIN);
224 		}
225 		tsleep_interlock(&devsoftc, PCATCH);
226 		lockmgr(&devsoftc.lock, LK_RELEASE);
227 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
228 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
229 		if (rv) {
230 			/*
231 			 * Need to translate ERESTART to EINTR here? -- jake
232 			 */
233 			lockmgr(&devsoftc.lock, LK_RELEASE);
234 			return (rv);
235 		}
236 	}
237 	n1 = TAILQ_FIRST(&devsoftc.devq);
238 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
239 	lockmgr(&devsoftc.lock, LK_RELEASE);
240 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
241 	kfree(n1->dei_data, M_BUS);
242 	kfree(n1, M_BUS);
243 	return (rv);
244 }
245 
246 static	int
247 devioctl(struct dev_ioctl_args *ap)
248 {
249 	switch (ap->a_cmd) {
250 
251 	case FIONBIO:
252 		if (*(int*)ap->a_data)
253 			devsoftc.nonblock = 1;
254 		else
255 			devsoftc.nonblock = 0;
256 		return (0);
257 	case FIOASYNC:
258 		if (*(int*)ap->a_data)
259 			devsoftc.async_proc = curproc;
260 		else
261 			devsoftc.async_proc = NULL;
262 		return (0);
263 
264 		/* (un)Support for other fcntl() calls. */
265 	case FIOCLEX:
266 	case FIONCLEX:
267 	case FIONREAD:
268 	case FIOSETOWN:
269 	case FIOGETOWN:
270 	default:
271 		break;
272 	}
273 	return (ENOTTY);
274 }
275 
276 static	int
277 devpoll(struct dev_poll_args *ap)
278 {
279 	int	revents = 0;
280 
281 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
282 	if (ap->a_events & (POLLIN | POLLRDNORM)) {
283 		if (!TAILQ_EMPTY(&devsoftc.devq))
284 			revents = ap->a_events & (POLLIN | POLLRDNORM);
285 		else
286 			selrecord(curthread, &devsoftc.sel);
287 	}
288 	lockmgr(&devsoftc.lock, LK_RELEASE);
289 
290 	ap->a_events = revents;
291 	return (0);
292 }
293 
294 /**
295  * @brief Return whether the userland process is running
296  */
297 boolean_t
298 devctl_process_running(void)
299 {
300 	return (devsoftc.inuse == 1);
301 }
302 
303 /**
304  * @brief Queue data to be read from the devctl device
305  *
306  * Generic interface to queue data to the devctl device.  It is
307  * assumed that @p data is properly formatted.  It is further assumed
308  * that @p data is allocated using the M_BUS malloc type.
309  */
310 void
311 devctl_queue_data(char *data)
312 {
313 	struct dev_event_info *n1 = NULL;
314 	struct proc *p;
315 
316 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
317 	if (n1 == NULL)
318 		return;
319 	n1->dei_data = data;
320 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
321 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
322 	wakeup(&devsoftc);
323 	lockmgr(&devsoftc.lock, LK_RELEASE);
324 	get_mplock();	/* XXX */
325 	selwakeup(&devsoftc.sel);
326 	rel_mplock();	/* XXX */
327 	p = devsoftc.async_proc;
328 	if (p != NULL)
329 		ksignal(p, SIGIO);
330 }
331 
332 /**
333  * @brief Send a 'notification' to userland, using standard ways
334  */
335 void
336 devctl_notify(const char *system, const char *subsystem, const char *type,
337     const char *data)
338 {
339 	int len = 0;
340 	char *msg;
341 
342 	if (system == NULL)
343 		return;		/* BOGUS!  Must specify system. */
344 	if (subsystem == NULL)
345 		return;		/* BOGUS!  Must specify subsystem. */
346 	if (type == NULL)
347 		return;		/* BOGUS!  Must specify type. */
348 	len += strlen(" system=") + strlen(system);
349 	len += strlen(" subsystem=") + strlen(subsystem);
350 	len += strlen(" type=") + strlen(type);
351 	/* add in the data message plus newline. */
352 	if (data != NULL)
353 		len += strlen(data);
354 	len += 3;	/* '!', '\n', and NUL */
355 	msg = kmalloc(len, M_BUS, M_NOWAIT);
356 	if (msg == NULL)
357 		return;		/* Drop it on the floor */
358 	if (data != NULL)
359 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
360 		    system, subsystem, type, data);
361 	else
362 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
363 		    system, subsystem, type);
364 	devctl_queue_data(msg);
365 }
366 
367 /*
368  * Common routine that tries to make sending messages as easy as possible.
369  * We allocate memory for the data, copy strings into that, but do not
370  * free it unless there's an error.  The dequeue part of the driver should
371  * free the data.  We don't send data when the device is disabled.  We do
372  * send data, even when we have no listeners, because we wish to avoid
373  * races relating to startup and restart of listening applications.
374  *
375  * devaddq is designed to string together the type of event, with the
376  * object of that event, plus the plug and play info and location info
377  * for that event.  This is likely most useful for devices, but less
378  * useful for other consumers of this interface.  Those should use
379  * the devctl_queue_data() interface instead.
380  */
381 static void
382 devaddq(const char *type, const char *what, device_t dev)
383 {
384 	char *data = NULL;
385 	char *loc = NULL;
386 	char *pnp = NULL;
387 	const char *parstr;
388 
389 	if (devctl_disable)
390 		return;
391 	data = kmalloc(1024, M_BUS, M_NOWAIT);
392 	if (data == NULL)
393 		goto bad;
394 
395 	/* get the bus specific location of this device */
396 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
397 	if (loc == NULL)
398 		goto bad;
399 	*loc = '\0';
400 	bus_child_location_str(dev, loc, 1024);
401 
402 	/* Get the bus specific pnp info of this device */
403 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
404 	if (pnp == NULL)
405 		goto bad;
406 	*pnp = '\0';
407 	bus_child_pnpinfo_str(dev, pnp, 1024);
408 
409 	/* Get the parent of this device, or / if high enough in the tree. */
410 	if (device_get_parent(dev) == NULL)
411 		parstr = ".";	/* Or '/' ? */
412 	else
413 		parstr = device_get_nameunit(device_get_parent(dev));
414 	/* String it all together. */
415 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
416 	  parstr);
417 	kfree(loc, M_BUS);
418 	kfree(pnp, M_BUS);
419 	devctl_queue_data(data);
420 	return;
421 bad:
422 	kfree(pnp, M_BUS);
423 	kfree(loc, M_BUS);
424 	kfree(data, M_BUS);
425 	return;
426 }
427 
428 /*
429  * A device was added to the tree.  We are called just after it successfully
430  * attaches (that is, probe and attach success for this device).  No call
431  * is made if a device is merely parented into the tree.  See devnomatch
432  * if probe fails.  If attach fails, no notification is sent (but maybe
433  * we should have a different message for this).
434  */
435 static void
436 devadded(device_t dev)
437 {
438 	char *pnp = NULL;
439 	char *tmp = NULL;
440 
441 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
442 	if (pnp == NULL)
443 		goto fail;
444 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
445 	if (tmp == NULL)
446 		goto fail;
447 	*pnp = '\0';
448 	bus_child_pnpinfo_str(dev, pnp, 1024);
449 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
450 	devaddq("+", tmp, dev);
451 fail:
452 	if (pnp != NULL)
453 		kfree(pnp, M_BUS);
454 	if (tmp != NULL)
455 		kfree(tmp, M_BUS);
456 	return;
457 }
458 
459 /*
460  * A device was removed from the tree.  We are called just before this
461  * happens.
462  */
463 static void
464 devremoved(device_t dev)
465 {
466 	char *pnp = NULL;
467 	char *tmp = NULL;
468 
469 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
470 	if (pnp == NULL)
471 		goto fail;
472 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
473 	if (tmp == NULL)
474 		goto fail;
475 	*pnp = '\0';
476 	bus_child_pnpinfo_str(dev, pnp, 1024);
477 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
478 	devaddq("-", tmp, dev);
479 fail:
480 	if (pnp != NULL)
481 		kfree(pnp, M_BUS);
482 	if (tmp != NULL)
483 		kfree(tmp, M_BUS);
484 	return;
485 }
486 
487 /*
488  * Called when there's no match for this device.  This is only called
489  * the first time that no match happens, so we don't keep getitng this
490  * message.  Should that prove to be undesirable, we can change it.
491  * This is called when all drivers that can attach to a given bus
492  * decline to accept this device.  Other errrors may not be detected.
493  */
494 static void
495 devnomatch(device_t dev)
496 {
497 	devaddq("?", "", dev);
498 }
499 
500 static int
501 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
502 {
503 	struct dev_event_info *n1;
504 	int dis, error;
505 
506 	dis = devctl_disable;
507 	error = sysctl_handle_int(oidp, &dis, 0, req);
508 	if (error || !req->newptr)
509 		return (error);
510 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
511 	devctl_disable = dis;
512 	if (dis) {
513 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
514 			n1 = TAILQ_FIRST(&devsoftc.devq);
515 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
516 			kfree(n1->dei_data, M_BUS);
517 			kfree(n1, M_BUS);
518 		}
519 	}
520 	lockmgr(&devsoftc.lock, LK_RELEASE);
521 	return (0);
522 }
523 
524 /* End of /dev/devctl code */
525 
526 TAILQ_HEAD(,device)	bus_data_devices;
527 static int bus_data_generation = 1;
528 
529 kobj_method_t null_methods[] = {
530 	{ 0, 0 }
531 };
532 
533 DEFINE_CLASS(null, null_methods, 0);
534 
535 /*
536  * Devclass implementation
537  */
538 
539 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
540 
541 static devclass_t
542 devclass_find_internal(const char *classname, const char *parentname,
543 		       int create)
544 {
545 	devclass_t dc;
546 
547 	PDEBUG(("looking for %s", classname));
548 	if (classname == NULL)
549 		return(NULL);
550 
551 	TAILQ_FOREACH(dc, &devclasses, link)
552 		if (!strcmp(dc->name, classname))
553 			break;
554 
555 	if (create && !dc) {
556 		PDEBUG(("creating %s", classname));
557 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
558 			    M_BUS, M_INTWAIT | M_ZERO);
559 		if (!dc)
560 			return(NULL);
561 		dc->parent = NULL;
562 		dc->name = (char*) (dc + 1);
563 		strcpy(dc->name, classname);
564 		dc->devices = NULL;
565 		dc->maxunit = 0;
566 		TAILQ_INIT(&dc->drivers);
567 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
568 
569 		bus_data_generation_update();
570 
571 	}
572 	if (parentname && dc && !dc->parent)
573 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
574 
575 	return(dc);
576 }
577 
578 devclass_t
579 devclass_create(const char *classname)
580 {
581 	return(devclass_find_internal(classname, NULL, TRUE));
582 }
583 
584 devclass_t
585 devclass_find(const char *classname)
586 {
587 	return(devclass_find_internal(classname, NULL, FALSE));
588 }
589 
590 device_t
591 devclass_find_unit(const char *classname, int unit)
592 {
593 	devclass_t dc;
594 
595 	if ((dc = devclass_find(classname)) != NULL)
596 	    return(devclass_get_device(dc, unit));
597 	return (NULL);
598 }
599 
600 int
601 devclass_add_driver(devclass_t dc, driver_t *driver)
602 {
603 	driverlink_t dl;
604 	device_t dev;
605 	int i;
606 
607 	PDEBUG(("%s", DRIVERNAME(driver)));
608 
609 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
610 	if (!dl)
611 		return(ENOMEM);
612 
613 	/*
614 	 * Compile the driver's methods. Also increase the reference count
615 	 * so that the class doesn't get freed when the last instance
616 	 * goes. This means we can safely use static methods and avoids a
617 	 * double-free in devclass_delete_driver.
618 	 */
619 	kobj_class_instantiate(driver);
620 
621 	/*
622 	 * Make sure the devclass which the driver is implementing exists.
623 	 */
624 	devclass_find_internal(driver->name, NULL, TRUE);
625 
626 	dl->driver = driver;
627 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
628 
629 	/*
630 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
631 	 * but only if the bus has already been attached (otherwise we
632 	 * might probe too early).
633 	 *
634 	 * This is what will cause a newly loaded module to be associated
635 	 * with hardware.  bus_generic_driver_added() is typically what ends
636 	 * up being called.
637 	 */
638 	for (i = 0; i < dc->maxunit; i++) {
639 		if ((dev = dc->devices[i]) != NULL) {
640 			if (dev->state >= DS_ATTACHED)
641 				BUS_DRIVER_ADDED(dev, driver);
642 		}
643 	}
644 
645 	bus_data_generation_update();
646 	return(0);
647 }
648 
649 int
650 devclass_delete_driver(devclass_t busclass, driver_t *driver)
651 {
652 	devclass_t dc = devclass_find(driver->name);
653 	driverlink_t dl;
654 	device_t dev;
655 	int i;
656 	int error;
657 
658 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
659 
660 	if (!dc)
661 		return(0);
662 
663 	/*
664 	 * Find the link structure in the bus' list of drivers.
665 	 */
666 	TAILQ_FOREACH(dl, &busclass->drivers, link)
667 		if (dl->driver == driver)
668 			break;
669 
670 	if (!dl) {
671 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
672 		return(ENOENT);
673 	}
674 
675 	/*
676 	 * Disassociate from any devices.  We iterate through all the
677 	 * devices in the devclass of the driver and detach any which are
678 	 * using the driver and which have a parent in the devclass which
679 	 * we are deleting from.
680 	 *
681 	 * Note that since a driver can be in multiple devclasses, we
682 	 * should not detach devices which are not children of devices in
683 	 * the affected devclass.
684 	 */
685 	for (i = 0; i < dc->maxunit; i++)
686 		if (dc->devices[i]) {
687 			dev = dc->devices[i];
688 			if (dev->driver == driver && dev->parent &&
689 			    dev->parent->devclass == busclass) {
690 				if ((error = device_detach(dev)) != 0)
691 					return(error);
692 				device_set_driver(dev, NULL);
693 		    	}
694 		}
695 
696 	TAILQ_REMOVE(&busclass->drivers, dl, link);
697 	kfree(dl, M_BUS);
698 
699 	kobj_class_uninstantiate(driver);
700 
701 	bus_data_generation_update();
702 	return(0);
703 }
704 
705 static driverlink_t
706 devclass_find_driver_internal(devclass_t dc, const char *classname)
707 {
708 	driverlink_t dl;
709 
710 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
711 
712 	TAILQ_FOREACH(dl, &dc->drivers, link)
713 		if (!strcmp(dl->driver->name, classname))
714 			return(dl);
715 
716 	PDEBUG(("not found"));
717 	return(NULL);
718 }
719 
720 kobj_class_t
721 devclass_find_driver(devclass_t dc, const char *classname)
722 {
723 	driverlink_t dl;
724 
725 	dl = devclass_find_driver_internal(dc, classname);
726 	if (dl)
727 		return(dl->driver);
728 	else
729 		return(NULL);
730 }
731 
732 const char *
733 devclass_get_name(devclass_t dc)
734 {
735 	return(dc->name);
736 }
737 
738 device_t
739 devclass_get_device(devclass_t dc, int unit)
740 {
741 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
742 		return(NULL);
743 	return(dc->devices[unit]);
744 }
745 
746 void *
747 devclass_get_softc(devclass_t dc, int unit)
748 {
749 	device_t dev;
750 
751 	dev = devclass_get_device(dc, unit);
752 	if (!dev)
753 		return(NULL);
754 
755 	return(device_get_softc(dev));
756 }
757 
758 int
759 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
760 {
761 	int i;
762 	int count;
763 	device_t *list;
764 
765 	count = 0;
766 	for (i = 0; i < dc->maxunit; i++)
767 		if (dc->devices[i])
768 			count++;
769 
770 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
771 	if (list == NULL)
772 		return(ENOMEM);
773 
774 	count = 0;
775 	for (i = 0; i < dc->maxunit; i++)
776 		if (dc->devices[i]) {
777 			list[count] = dc->devices[i];
778 			count++;
779 		}
780 
781 	*devlistp = list;
782 	*devcountp = count;
783 
784 	return(0);
785 }
786 
787 /**
788  * @brief Get a list of drivers in the devclass
789  *
790  * An array containing a list of pointers to all the drivers in the
791  * given devclass is allocated and returned in @p *listp.  The number
792  * of drivers in the array is returned in @p *countp. The caller should
793  * free the array using @c free(p, M_TEMP).
794  *
795  * @param dc            the devclass to examine
796  * @param listp         gives location for array pointer return value
797  * @param countp        gives location for number of array elements
798  *                      return value
799  *
800  * @retval 0            success
801  * @retval ENOMEM       the array allocation failed
802  */
803 int
804 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
805 {
806         driverlink_t dl;
807         driver_t **list;
808         int count;
809 
810         count = 0;
811         TAILQ_FOREACH(dl, &dc->drivers, link)
812                 count++;
813         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
814         if (list == NULL)
815                 return (ENOMEM);
816 
817         count = 0;
818         TAILQ_FOREACH(dl, &dc->drivers, link) {
819                 list[count] = dl->driver;
820                 count++;
821         }
822         *listp = list;
823         *countp = count;
824 
825         return (0);
826 }
827 
828 /**
829  * @brief Get the number of devices in a devclass
830  *
831  * @param dc		the devclass to examine
832  */
833 int
834 devclass_get_count(devclass_t dc)
835 {
836 	int count, i;
837 
838 	count = 0;
839 	for (i = 0; i < dc->maxunit; i++)
840 		if (dc->devices[i])
841 			count++;
842 	return (count);
843 }
844 
845 int
846 devclass_get_maxunit(devclass_t dc)
847 {
848 	return(dc->maxunit);
849 }
850 
851 void
852 devclass_set_parent(devclass_t dc, devclass_t pdc)
853 {
854         dc->parent = pdc;
855 }
856 
857 devclass_t
858 devclass_get_parent(devclass_t dc)
859 {
860 	return(dc->parent);
861 }
862 
863 static int
864 devclass_alloc_unit(devclass_t dc, int *unitp)
865 {
866 	int unit = *unitp;
867 
868 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
869 
870 	/* If we have been given a wired unit number, check for existing device */
871 	if (unit != -1) {
872 		if (unit >= 0 && unit < dc->maxunit &&
873 		    dc->devices[unit] != NULL) {
874 			if (bootverbose)
875 				kprintf("%s-: %s%d exists, using next available unit number\n",
876 				       dc->name, dc->name, unit);
877 			/* find the next available slot */
878 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
879 				;
880 		}
881 	} else {
882 		/* Unwired device, find the next available slot for it */
883 		unit = 0;
884 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
885 			unit++;
886 	}
887 
888 	/*
889 	 * We've selected a unit beyond the length of the table, so let's
890 	 * extend the table to make room for all units up to and including
891 	 * this one.
892 	 */
893 	if (unit >= dc->maxunit) {
894 		device_t *newlist;
895 		int newsize;
896 
897 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
898 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
899 				 M_INTWAIT | M_ZERO);
900 		if (newlist == NULL)
901 			return(ENOMEM);
902 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
903 		if (dc->devices)
904 			kfree(dc->devices, M_BUS);
905 		dc->devices = newlist;
906 		dc->maxunit = newsize;
907 	}
908 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
909 
910 	*unitp = unit;
911 	return(0);
912 }
913 
914 static int
915 devclass_add_device(devclass_t dc, device_t dev)
916 {
917 	int buflen, error;
918 
919 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
920 
921 	buflen = strlen(dc->name) + 5;
922 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
923 	if (!dev->nameunit)
924 		return(ENOMEM);
925 
926 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
927 		kfree(dev->nameunit, M_BUS);
928 		dev->nameunit = NULL;
929 		return(error);
930 	}
931 	dc->devices[dev->unit] = dev;
932 	dev->devclass = dc;
933 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
934 
935 	return(0);
936 }
937 
938 static int
939 devclass_delete_device(devclass_t dc, device_t dev)
940 {
941 	if (!dc || !dev)
942 		return(0);
943 
944 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
945 
946 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
947 		panic("devclass_delete_device: inconsistent device class");
948 	dc->devices[dev->unit] = NULL;
949 	if (dev->flags & DF_WILDCARD)
950 		dev->unit = -1;
951 	dev->devclass = NULL;
952 	kfree(dev->nameunit, M_BUS);
953 	dev->nameunit = NULL;
954 
955 	return(0);
956 }
957 
958 static device_t
959 make_device(device_t parent, const char *name, int unit)
960 {
961 	device_t dev;
962 	devclass_t dc;
963 
964 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
965 
966 	if (name != NULL) {
967 		dc = devclass_find_internal(name, NULL, TRUE);
968 		if (!dc) {
969 			kprintf("make_device: can't find device class %s\n", name);
970 			return(NULL);
971 		}
972 	} else
973 		dc = NULL;
974 
975 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
976 	if (!dev)
977 		return(0);
978 
979 	dev->parent = parent;
980 	TAILQ_INIT(&dev->children);
981 	kobj_init((kobj_t) dev, &null_class);
982 	dev->driver = NULL;
983 	dev->devclass = NULL;
984 	dev->unit = unit;
985 	dev->nameunit = NULL;
986 	dev->desc = NULL;
987 	dev->busy = 0;
988 	dev->devflags = 0;
989 	dev->flags = DF_ENABLED;
990 	dev->order = 0;
991 	if (unit == -1)
992 		dev->flags |= DF_WILDCARD;
993 	if (name) {
994 		dev->flags |= DF_FIXEDCLASS;
995 		if (devclass_add_device(dc, dev) != 0) {
996 			kobj_delete((kobj_t)dev, M_BUS);
997 			return(NULL);
998 		}
999     	}
1000 	dev->ivars = NULL;
1001 	dev->softc = NULL;
1002 
1003 	dev->state = DS_NOTPRESENT;
1004 
1005 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1006 	bus_data_generation_update();
1007 
1008 	return(dev);
1009 }
1010 
1011 static int
1012 device_print_child(device_t dev, device_t child)
1013 {
1014 	int retval = 0;
1015 
1016 	if (device_is_alive(child))
1017 		retval += BUS_PRINT_CHILD(dev, child);
1018 	else
1019 		retval += device_printf(child, " not found\n");
1020 
1021 	return(retval);
1022 }
1023 
1024 device_t
1025 device_add_child(device_t dev, const char *name, int unit)
1026 {
1027 	return device_add_child_ordered(dev, 0, name, unit);
1028 }
1029 
1030 device_t
1031 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1032 {
1033 	device_t child;
1034 	device_t place;
1035 
1036 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1037 		order, unit));
1038 
1039 	child = make_device(dev, name, unit);
1040 	if (child == NULL)
1041 		return child;
1042 	child->order = order;
1043 
1044 	TAILQ_FOREACH(place, &dev->children, link)
1045 		if (place->order > order)
1046 			break;
1047 
1048 	if (place) {
1049 		/*
1050 		 * The device 'place' is the first device whose order is
1051 		 * greater than the new child.
1052 		 */
1053 		TAILQ_INSERT_BEFORE(place, child, link);
1054 	} else {
1055 		/*
1056 		 * The new child's order is greater or equal to the order of
1057 		 * any existing device. Add the child to the tail of the list.
1058 		 */
1059 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1060     	}
1061 
1062 	bus_data_generation_update();
1063 	return(child);
1064 }
1065 
1066 int
1067 device_delete_child(device_t dev, device_t child)
1068 {
1069 	int error;
1070 	device_t grandchild;
1071 
1072 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1073 
1074 	/* remove children first */
1075 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1076         	error = device_delete_child(child, grandchild);
1077 		if (error)
1078 			return(error);
1079 	}
1080 
1081 	if ((error = device_detach(child)) != 0)
1082 		return(error);
1083 	if (child->devclass)
1084 		devclass_delete_device(child->devclass, child);
1085 	TAILQ_REMOVE(&dev->children, child, link);
1086 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1087 	device_set_desc(child, NULL);
1088 	kobj_delete((kobj_t)child, M_BUS);
1089 
1090 	bus_data_generation_update();
1091 	return(0);
1092 }
1093 
1094 /**
1095  * @brief Find a device given a unit number
1096  *
1097  * This is similar to devclass_get_devices() but only searches for
1098  * devices which have @p dev as a parent.
1099  *
1100  * @param dev		the parent device to search
1101  * @param unit		the unit number to search for.  If the unit is -1,
1102  *			return the first child of @p dev which has name
1103  *			@p classname (that is, the one with the lowest unit.)
1104  *
1105  * @returns		the device with the given unit number or @c
1106  *			NULL if there is no such device
1107  */
1108 device_t
1109 device_find_child(device_t dev, const char *classname, int unit)
1110 {
1111 	devclass_t dc;
1112 	device_t child;
1113 
1114 	dc = devclass_find(classname);
1115 	if (!dc)
1116 		return(NULL);
1117 
1118 	if (unit != -1) {
1119 		child = devclass_get_device(dc, unit);
1120 		if (child && child->parent == dev)
1121 			return (child);
1122 	} else {
1123 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1124 			child = devclass_get_device(dc, unit);
1125 			if (child && child->parent == dev)
1126 				return (child);
1127 		}
1128 	}
1129 	return(NULL);
1130 }
1131 
1132 static driverlink_t
1133 first_matching_driver(devclass_t dc, device_t dev)
1134 {
1135 	if (dev->devclass)
1136 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1137 	else
1138 		return(TAILQ_FIRST(&dc->drivers));
1139 }
1140 
1141 static driverlink_t
1142 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1143 {
1144 	if (dev->devclass) {
1145 		driverlink_t dl;
1146 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1147 			if (!strcmp(dev->devclass->name, dl->driver->name))
1148 				return(dl);
1149 		return(NULL);
1150 	} else
1151 		return(TAILQ_NEXT(last, link));
1152 }
1153 
1154 static int
1155 device_probe_child(device_t dev, device_t child)
1156 {
1157 	devclass_t dc;
1158 	driverlink_t best = 0;
1159 	driverlink_t dl;
1160 	int result, pri = 0;
1161 	int hasclass = (child->devclass != 0);
1162 
1163 	dc = dev->devclass;
1164 	if (!dc)
1165 		panic("device_probe_child: parent device has no devclass");
1166 
1167 	if (child->state == DS_ALIVE)
1168 		return(0);
1169 
1170 	for (; dc; dc = dc->parent) {
1171     		for (dl = first_matching_driver(dc, child); dl;
1172 		     dl = next_matching_driver(dc, child, dl)) {
1173 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1174 			device_set_driver(child, dl->driver);
1175 			if (!hasclass)
1176 				device_set_devclass(child, dl->driver->name);
1177 			result = DEVICE_PROBE(child);
1178 			if (!hasclass)
1179 				device_set_devclass(child, 0);
1180 
1181 			/*
1182 			 * If the driver returns SUCCESS, there can be
1183 			 * no higher match for this device.
1184 			 */
1185 			if (result == 0) {
1186 				best = dl;
1187 				pri = 0;
1188 				break;
1189 			}
1190 
1191 			/*
1192 			 * The driver returned an error so it
1193 			 * certainly doesn't match.
1194 			 */
1195 			if (result > 0) {
1196 				device_set_driver(child, 0);
1197 				continue;
1198 			}
1199 
1200 			/*
1201 			 * A priority lower than SUCCESS, remember the
1202 			 * best matching driver. Initialise the value
1203 			 * of pri for the first match.
1204 			 */
1205 			if (best == 0 || result > pri) {
1206 				best = dl;
1207 				pri = result;
1208 				continue;
1209 			}
1210 	        }
1211 		/*
1212 	         * If we have unambiguous match in this devclass,
1213 	         * don't look in the parent.
1214 	         */
1215 	        if (best && pri == 0)
1216 	    	        break;
1217 	}
1218 
1219 	/*
1220 	 * If we found a driver, change state and initialise the devclass.
1221 	 */
1222 	if (best) {
1223 		if (!child->devclass)
1224 			device_set_devclass(child, best->driver->name);
1225 		device_set_driver(child, best->driver);
1226 		if (pri < 0) {
1227 			/*
1228 			 * A bit bogus. Call the probe method again to make
1229 			 * sure that we have the right description.
1230 			 */
1231 			DEVICE_PROBE(child);
1232 		}
1233 
1234 		bus_data_generation_update();
1235 		child->state = DS_ALIVE;
1236 		return(0);
1237 	}
1238 
1239 	return(ENXIO);
1240 }
1241 
1242 device_t
1243 device_get_parent(device_t dev)
1244 {
1245 	return dev->parent;
1246 }
1247 
1248 int
1249 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1250 {
1251 	int count;
1252 	device_t child;
1253 	device_t *list;
1254 
1255 	count = 0;
1256 	TAILQ_FOREACH(child, &dev->children, link)
1257 		count++;
1258 
1259 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1260 	if (!list)
1261 		return(ENOMEM);
1262 
1263 	count = 0;
1264 	TAILQ_FOREACH(child, &dev->children, link) {
1265 		list[count] = child;
1266 		count++;
1267 	}
1268 
1269 	*devlistp = list;
1270 	*devcountp = count;
1271 
1272 	return(0);
1273 }
1274 
1275 driver_t *
1276 device_get_driver(device_t dev)
1277 {
1278 	return(dev->driver);
1279 }
1280 
1281 devclass_t
1282 device_get_devclass(device_t dev)
1283 {
1284 	return(dev->devclass);
1285 }
1286 
1287 const char *
1288 device_get_name(device_t dev)
1289 {
1290 	if (dev->devclass)
1291 		return devclass_get_name(dev->devclass);
1292 	return(NULL);
1293 }
1294 
1295 const char *
1296 device_get_nameunit(device_t dev)
1297 {
1298 	return(dev->nameunit);
1299 }
1300 
1301 int
1302 device_get_unit(device_t dev)
1303 {
1304 	return(dev->unit);
1305 }
1306 
1307 const char *
1308 device_get_desc(device_t dev)
1309 {
1310 	return(dev->desc);
1311 }
1312 
1313 uint32_t
1314 device_get_flags(device_t dev)
1315 {
1316 	return(dev->devflags);
1317 }
1318 
1319 int
1320 device_print_prettyname(device_t dev)
1321 {
1322 	const char *name = device_get_name(dev);
1323 
1324 	if (name == 0)
1325 		return kprintf("unknown: ");
1326 	else
1327 		return kprintf("%s%d: ", name, device_get_unit(dev));
1328 }
1329 
1330 int
1331 device_printf(device_t dev, const char * fmt, ...)
1332 {
1333 	__va_list ap;
1334 	int retval;
1335 
1336 	retval = device_print_prettyname(dev);
1337 	__va_start(ap, fmt);
1338 	retval += kvprintf(fmt, ap);
1339 	__va_end(ap);
1340 	return retval;
1341 }
1342 
1343 static void
1344 device_set_desc_internal(device_t dev, const char* desc, int copy)
1345 {
1346 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1347 		kfree(dev->desc, M_BUS);
1348 		dev->flags &= ~DF_DESCMALLOCED;
1349 		dev->desc = NULL;
1350 	}
1351 
1352 	if (copy && desc) {
1353 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1354 		if (dev->desc) {
1355 			strcpy(dev->desc, desc);
1356 			dev->flags |= DF_DESCMALLOCED;
1357 		}
1358 	} else {
1359 		/* Avoid a -Wcast-qual warning */
1360 		dev->desc = (char *)(uintptr_t) desc;
1361 	}
1362 
1363 	bus_data_generation_update();
1364 }
1365 
1366 void
1367 device_set_desc(device_t dev, const char* desc)
1368 {
1369 	device_set_desc_internal(dev, desc, FALSE);
1370 }
1371 
1372 void
1373 device_set_desc_copy(device_t dev, const char* desc)
1374 {
1375 	device_set_desc_internal(dev, desc, TRUE);
1376 }
1377 
1378 void
1379 device_set_flags(device_t dev, uint32_t flags)
1380 {
1381 	dev->devflags = flags;
1382 }
1383 
1384 void *
1385 device_get_softc(device_t dev)
1386 {
1387 	return dev->softc;
1388 }
1389 
1390 void
1391 device_set_softc(device_t dev, void *softc)
1392 {
1393 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1394 		kfree(dev->softc, M_BUS);
1395 	dev->softc = softc;
1396 	if (dev->softc)
1397 		dev->flags |= DF_EXTERNALSOFTC;
1398 	else
1399 		dev->flags &= ~DF_EXTERNALSOFTC;
1400 }
1401 
1402 void
1403 device_set_async_attach(device_t dev, int enable)
1404 {
1405 	if (enable)
1406 		dev->flags |= DF_ASYNCPROBE;
1407 	else
1408 		dev->flags &= ~DF_ASYNCPROBE;
1409 }
1410 
1411 void *
1412 device_get_ivars(device_t dev)
1413 {
1414 	return dev->ivars;
1415 }
1416 
1417 void
1418 device_set_ivars(device_t dev, void * ivars)
1419 {
1420 	if (!dev)
1421 		return;
1422 
1423 	dev->ivars = ivars;
1424 }
1425 
1426 device_state_t
1427 device_get_state(device_t dev)
1428 {
1429 	return(dev->state);
1430 }
1431 
1432 void
1433 device_enable(device_t dev)
1434 {
1435 	dev->flags |= DF_ENABLED;
1436 }
1437 
1438 void
1439 device_disable(device_t dev)
1440 {
1441 	dev->flags &= ~DF_ENABLED;
1442 }
1443 
1444 /*
1445  * YYY cannot block
1446  */
1447 void
1448 device_busy(device_t dev)
1449 {
1450 	if (dev->state < DS_ATTACHED)
1451 		panic("device_busy: called for unattached device");
1452 	if (dev->busy == 0 && dev->parent)
1453 		device_busy(dev->parent);
1454 	dev->busy++;
1455 	dev->state = DS_BUSY;
1456 }
1457 
1458 /*
1459  * YYY cannot block
1460  */
1461 void
1462 device_unbusy(device_t dev)
1463 {
1464 	if (dev->state != DS_BUSY)
1465 		panic("device_unbusy: called for non-busy device");
1466 	dev->busy--;
1467 	if (dev->busy == 0) {
1468 		if (dev->parent)
1469 			device_unbusy(dev->parent);
1470 		dev->state = DS_ATTACHED;
1471 	}
1472 }
1473 
1474 void
1475 device_quiet(device_t dev)
1476 {
1477 	dev->flags |= DF_QUIET;
1478 }
1479 
1480 void
1481 device_verbose(device_t dev)
1482 {
1483 	dev->flags &= ~DF_QUIET;
1484 }
1485 
1486 int
1487 device_is_quiet(device_t dev)
1488 {
1489 	return((dev->flags & DF_QUIET) != 0);
1490 }
1491 
1492 int
1493 device_is_enabled(device_t dev)
1494 {
1495 	return((dev->flags & DF_ENABLED) != 0);
1496 }
1497 
1498 int
1499 device_is_alive(device_t dev)
1500 {
1501 	return(dev->state >= DS_ALIVE);
1502 }
1503 
1504 int
1505 device_is_attached(device_t dev)
1506 {
1507 	return(dev->state >= DS_ATTACHED);
1508 }
1509 
1510 int
1511 device_set_devclass(device_t dev, const char *classname)
1512 {
1513 	devclass_t dc;
1514 	int error;
1515 
1516 	if (!classname) {
1517 		if (dev->devclass)
1518 			devclass_delete_device(dev->devclass, dev);
1519 		return(0);
1520 	}
1521 
1522 	if (dev->devclass) {
1523 		kprintf("device_set_devclass: device class already set\n");
1524 		return(EINVAL);
1525 	}
1526 
1527 	dc = devclass_find_internal(classname, NULL, TRUE);
1528 	if (!dc)
1529 		return(ENOMEM);
1530 
1531 	error = devclass_add_device(dc, dev);
1532 
1533 	bus_data_generation_update();
1534 	return(error);
1535 }
1536 
1537 int
1538 device_set_driver(device_t dev, driver_t *driver)
1539 {
1540 	if (dev->state >= DS_ATTACHED)
1541 		return(EBUSY);
1542 
1543 	if (dev->driver == driver)
1544 		return(0);
1545 
1546 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1547 		kfree(dev->softc, M_BUS);
1548 		dev->softc = NULL;
1549 	}
1550 	kobj_delete((kobj_t) dev, 0);
1551 	dev->driver = driver;
1552 	if (driver) {
1553 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1554 		if (!(dev->flags & DF_EXTERNALSOFTC)) {
1555 			dev->softc = kmalloc(driver->size, M_BUS,
1556 					    M_INTWAIT | M_ZERO);
1557 			if (!dev->softc) {
1558 				kobj_delete((kobj_t)dev, 0);
1559 				kobj_init((kobj_t) dev, &null_class);
1560 				dev->driver = NULL;
1561 				return(ENOMEM);
1562 	    		}
1563 		}
1564 	} else {
1565 		kobj_init((kobj_t) dev, &null_class);
1566 	}
1567 
1568 	bus_data_generation_update();
1569 	return(0);
1570 }
1571 
1572 int
1573 device_probe_and_attach(device_t dev)
1574 {
1575 	device_t bus = dev->parent;
1576 	int error = 0;
1577 
1578 	if (dev->state >= DS_ALIVE)
1579 		return(0);
1580 
1581 	if ((dev->flags & DF_ENABLED) == 0) {
1582 		if (bootverbose) {
1583 			device_print_prettyname(dev);
1584 			kprintf("not probed (disabled)\n");
1585 		}
1586 		return(0);
1587 	}
1588 
1589 	error = device_probe_child(bus, dev);
1590 	if (error) {
1591 		if (!(dev->flags & DF_DONENOMATCH)) {
1592 			BUS_PROBE_NOMATCH(bus, dev);
1593 			devnomatch(dev);
1594 			dev->flags |= DF_DONENOMATCH;
1595 		}
1596 		return(error);
1597 	}
1598 
1599 	/*
1600 	 * Output the exact device chain prior to the attach in case the
1601 	 * system locks up during attach, and generate the full info after
1602 	 * the attach so correct irq and other information is displayed.
1603 	 */
1604 	if (bootverbose && !device_is_quiet(dev)) {
1605 		device_t tmp;
1606 
1607 		kprintf("%s", device_get_nameunit(dev));
1608 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1609 			kprintf(".%s", device_get_nameunit(tmp));
1610 		kprintf("\n");
1611 	}
1612 	if (!device_is_quiet(dev))
1613 		device_print_child(bus, dev);
1614 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1615 		kprintf("%s: probing asynchronously\n",
1616 			device_get_nameunit(dev));
1617 		dev->state = DS_INPROGRESS;
1618 		device_attach_async(dev);
1619 		error = 0;
1620 	} else {
1621 		error = device_doattach(dev);
1622 	}
1623 	return(error);
1624 }
1625 
1626 /*
1627  * Device is known to be alive, do the attach asynchronously.
1628  *
1629  * The MP lock is held by all threads.
1630  */
1631 static void
1632 device_attach_async(device_t dev)
1633 {
1634 	thread_t td;
1635 
1636 	atomic_add_int(&numasyncthreads, 1);
1637 	lwkt_create(device_attach_thread, dev, &td, NULL,
1638 		    0, 0, (dev->desc ? dev->desc : "devattach"));
1639 }
1640 
1641 static void
1642 device_attach_thread(void *arg)
1643 {
1644 	device_t dev = arg;
1645 
1646 	(void)device_doattach(dev);
1647 	atomic_subtract_int(&numasyncthreads, 1);
1648 	wakeup(&numasyncthreads);
1649 }
1650 
1651 /*
1652  * Device is known to be alive, do the attach (synchronous or asynchronous)
1653  */
1654 static int
1655 device_doattach(device_t dev)
1656 {
1657 	device_t bus = dev->parent;
1658 	int hasclass = (dev->devclass != 0);
1659 	int error;
1660 
1661 	error = DEVICE_ATTACH(dev);
1662 	if (error == 0) {
1663 		dev->state = DS_ATTACHED;
1664 		if (bootverbose && !device_is_quiet(dev))
1665 			device_print_child(bus, dev);
1666 		devadded(dev);
1667 	} else {
1668 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1669 		       dev->driver->name, dev->unit, error);
1670 		/* Unset the class that was set in device_probe_child */
1671 		if (!hasclass)
1672 			device_set_devclass(dev, 0);
1673 		device_set_driver(dev, NULL);
1674 		dev->state = DS_NOTPRESENT;
1675 	}
1676 	return(error);
1677 }
1678 
1679 int
1680 device_detach(device_t dev)
1681 {
1682 	int error;
1683 
1684 	PDEBUG(("%s", DEVICENAME(dev)));
1685 	if (dev->state == DS_BUSY)
1686 		return(EBUSY);
1687 	if (dev->state != DS_ATTACHED)
1688 		return(0);
1689 
1690 	if ((error = DEVICE_DETACH(dev)) != 0)
1691 		return(error);
1692 	devremoved(dev);
1693 	device_printf(dev, "detached\n");
1694 	if (dev->parent)
1695 		BUS_CHILD_DETACHED(dev->parent, dev);
1696 
1697 	if (!(dev->flags & DF_FIXEDCLASS))
1698 		devclass_delete_device(dev->devclass, dev);
1699 
1700 	dev->state = DS_NOTPRESENT;
1701 	device_set_driver(dev, NULL);
1702 
1703 	return(0);
1704 }
1705 
1706 int
1707 device_shutdown(device_t dev)
1708 {
1709 	if (dev->state < DS_ATTACHED)
1710 		return 0;
1711 	PDEBUG(("%s", DEVICENAME(dev)));
1712 	return DEVICE_SHUTDOWN(dev);
1713 }
1714 
1715 int
1716 device_set_unit(device_t dev, int unit)
1717 {
1718 	devclass_t dc;
1719 	int err;
1720 
1721 	dc = device_get_devclass(dev);
1722 	if (unit < dc->maxunit && dc->devices[unit])
1723 		return(EBUSY);
1724 	err = devclass_delete_device(dc, dev);
1725 	if (err)
1726 		return(err);
1727 	dev->unit = unit;
1728 	err = devclass_add_device(dc, dev);
1729 	if (err)
1730 		return(err);
1731 
1732 	bus_data_generation_update();
1733 	return(0);
1734 }
1735 
1736 /*======================================*/
1737 /*
1738  * Access functions for device resources.
1739  */
1740 
1741 /* Supplied by config(8) in ioconf.c */
1742 extern struct config_device config_devtab[];
1743 extern int devtab_count;
1744 
1745 /* Runtime version */
1746 struct config_device *devtab = config_devtab;
1747 
1748 static int
1749 resource_new_name(const char *name, int unit)
1750 {
1751 	struct config_device *new;
1752 
1753 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1754 		     M_INTWAIT | M_ZERO);
1755 	if (new == NULL)
1756 		return(-1);
1757 	if (devtab && devtab_count > 0)
1758 		bcopy(devtab, new, devtab_count * sizeof(*new));
1759 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1760 	if (new[devtab_count].name == NULL) {
1761 		kfree(new, M_TEMP);
1762 		return(-1);
1763 	}
1764 	strcpy(new[devtab_count].name, name);
1765 	new[devtab_count].unit = unit;
1766 	new[devtab_count].resource_count = 0;
1767 	new[devtab_count].resources = NULL;
1768 	if (devtab && devtab != config_devtab)
1769 		kfree(devtab, M_TEMP);
1770 	devtab = new;
1771 	return devtab_count++;
1772 }
1773 
1774 static int
1775 resource_new_resname(int j, const char *resname, resource_type type)
1776 {
1777 	struct config_resource *new;
1778 	int i;
1779 
1780 	i = devtab[j].resource_count;
1781 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1782 	if (new == NULL)
1783 		return(-1);
1784 	if (devtab[j].resources && i > 0)
1785 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1786 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1787 	if (new[i].name == NULL) {
1788 		kfree(new, M_TEMP);
1789 		return(-1);
1790 	}
1791 	strcpy(new[i].name, resname);
1792 	new[i].type = type;
1793 	if (devtab[j].resources)
1794 		kfree(devtab[j].resources, M_TEMP);
1795 	devtab[j].resources = new;
1796 	devtab[j].resource_count = i + 1;
1797 	return(i);
1798 }
1799 
1800 static int
1801 resource_match_string(int i, const char *resname, const char *value)
1802 {
1803 	int j;
1804 	struct config_resource *res;
1805 
1806 	for (j = 0, res = devtab[i].resources;
1807 	     j < devtab[i].resource_count; j++, res++)
1808 		if (!strcmp(res->name, resname)
1809 		    && res->type == RES_STRING
1810 		    && !strcmp(res->u.stringval, value))
1811 			return(j);
1812 	return(-1);
1813 }
1814 
1815 static int
1816 resource_find(const char *name, int unit, const char *resname,
1817 	      struct config_resource **result)
1818 {
1819 	int i, j;
1820 	struct config_resource *res;
1821 
1822 	/*
1823 	 * First check specific instances, then generic.
1824 	 */
1825 	for (i = 0; i < devtab_count; i++) {
1826 		if (devtab[i].unit < 0)
1827 			continue;
1828 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1829 			res = devtab[i].resources;
1830 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1831 				if (!strcmp(res->name, resname)) {
1832 					*result = res;
1833 					return(0);
1834 				}
1835 		}
1836 	}
1837 	for (i = 0; i < devtab_count; i++) {
1838 		if (devtab[i].unit >= 0)
1839 			continue;
1840 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1841 		/* XXX if so, then the generic match does nothing */
1842 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1843 			res = devtab[i].resources;
1844 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1845 				if (!strcmp(res->name, resname)) {
1846 					*result = res;
1847 					return(0);
1848 				}
1849 		}
1850 	}
1851 	return(ENOENT);
1852 }
1853 
1854 int
1855 resource_int_value(const char *name, int unit, const char *resname, int *result)
1856 {
1857 	int error;
1858 	struct config_resource *res;
1859 
1860 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1861 		return(error);
1862 	if (res->type != RES_INT)
1863 		return(EFTYPE);
1864 	*result = res->u.intval;
1865 	return(0);
1866 }
1867 
1868 int
1869 resource_long_value(const char *name, int unit, const char *resname,
1870 		    long *result)
1871 {
1872 	int error;
1873 	struct config_resource *res;
1874 
1875 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1876 		return(error);
1877 	if (res->type != RES_LONG)
1878 		return(EFTYPE);
1879 	*result = res->u.longval;
1880 	return(0);
1881 }
1882 
1883 int
1884 resource_string_value(const char *name, int unit, const char *resname,
1885 		      char **result)
1886 {
1887 	int error;
1888 	struct config_resource *res;
1889 
1890 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1891 		return(error);
1892 	if (res->type != RES_STRING)
1893 		return(EFTYPE);
1894 	*result = res->u.stringval;
1895 	return(0);
1896 }
1897 
1898 int
1899 resource_query_string(int i, const char *resname, const char *value)
1900 {
1901 	if (i < 0)
1902 		i = 0;
1903 	else
1904 		i = i + 1;
1905 	for (; i < devtab_count; i++)
1906 		if (resource_match_string(i, resname, value) >= 0)
1907 			return(i);
1908 	return(-1);
1909 }
1910 
1911 int
1912 resource_locate(int i, const char *resname)
1913 {
1914 	if (i < 0)
1915 		i = 0;
1916 	else
1917 		i = i + 1;
1918 	for (; i < devtab_count; i++)
1919 		if (!strcmp(devtab[i].name, resname))
1920 			return(i);
1921 	return(-1);
1922 }
1923 
1924 int
1925 resource_count(void)
1926 {
1927 	return(devtab_count);
1928 }
1929 
1930 char *
1931 resource_query_name(int i)
1932 {
1933 	return(devtab[i].name);
1934 }
1935 
1936 int
1937 resource_query_unit(int i)
1938 {
1939 	return(devtab[i].unit);
1940 }
1941 
1942 static int
1943 resource_create(const char *name, int unit, const char *resname,
1944 		resource_type type, struct config_resource **result)
1945 {
1946 	int i, j;
1947 	struct config_resource *res = NULL;
1948 
1949 	for (i = 0; i < devtab_count; i++)
1950 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1951 			res = devtab[i].resources;
1952 			break;
1953 		}
1954 	if (res == NULL) {
1955 		i = resource_new_name(name, unit);
1956 		if (i < 0)
1957 			return(ENOMEM);
1958 		res = devtab[i].resources;
1959 	}
1960 	for (j = 0; j < devtab[i].resource_count; j++, res++)
1961 		if (!strcmp(res->name, resname)) {
1962 			*result = res;
1963 			return(0);
1964 		}
1965 	j = resource_new_resname(i, resname, type);
1966 	if (j < 0)
1967 		return(ENOMEM);
1968 	res = &devtab[i].resources[j];
1969 	*result = res;
1970 	return(0);
1971 }
1972 
1973 int
1974 resource_set_int(const char *name, int unit, const char *resname, int value)
1975 {
1976 	int error;
1977 	struct config_resource *res;
1978 
1979 	error = resource_create(name, unit, resname, RES_INT, &res);
1980 	if (error)
1981 		return(error);
1982 	if (res->type != RES_INT)
1983 		return(EFTYPE);
1984 	res->u.intval = value;
1985 	return(0);
1986 }
1987 
1988 int
1989 resource_set_long(const char *name, int unit, const char *resname, long value)
1990 {
1991 	int error;
1992 	struct config_resource *res;
1993 
1994 	error = resource_create(name, unit, resname, RES_LONG, &res);
1995 	if (error)
1996 		return(error);
1997 	if (res->type != RES_LONG)
1998 		return(EFTYPE);
1999 	res->u.longval = value;
2000 	return(0);
2001 }
2002 
2003 int
2004 resource_set_string(const char *name, int unit, const char *resname,
2005 		    const char *value)
2006 {
2007 	int error;
2008 	struct config_resource *res;
2009 
2010 	error = resource_create(name, unit, resname, RES_STRING, &res);
2011 	if (error)
2012 		return(error);
2013 	if (res->type != RES_STRING)
2014 		return(EFTYPE);
2015 	if (res->u.stringval)
2016 		kfree(res->u.stringval, M_TEMP);
2017 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2018 	if (res->u.stringval == NULL)
2019 		return(ENOMEM);
2020 	strcpy(res->u.stringval, value);
2021 	return(0);
2022 }
2023 
2024 static void
2025 resource_cfgload(void *dummy __unused)
2026 {
2027 	struct config_resource *res, *cfgres;
2028 	int i, j;
2029 	int error;
2030 	char *name, *resname;
2031 	int unit;
2032 	resource_type type;
2033 	char *stringval;
2034 	int config_devtab_count;
2035 
2036 	config_devtab_count = devtab_count;
2037 	devtab = NULL;
2038 	devtab_count = 0;
2039 
2040 	for (i = 0; i < config_devtab_count; i++) {
2041 		name = config_devtab[i].name;
2042 		unit = config_devtab[i].unit;
2043 
2044 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2045 			cfgres = config_devtab[i].resources;
2046 			resname = cfgres[j].name;
2047 			type = cfgres[j].type;
2048 			error = resource_create(name, unit, resname, type,
2049 						&res);
2050 			if (error) {
2051 				kprintf("create resource %s%d: error %d\n",
2052 					name, unit, error);
2053 				continue;
2054 			}
2055 			if (res->type != type) {
2056 				kprintf("type mismatch %s%d: %d != %d\n",
2057 					name, unit, res->type, type);
2058 				continue;
2059 			}
2060 			switch (type) {
2061 			case RES_INT:
2062 				res->u.intval = cfgres[j].u.intval;
2063 				break;
2064 			case RES_LONG:
2065 				res->u.longval = cfgres[j].u.longval;
2066 				break;
2067 			case RES_STRING:
2068 				if (res->u.stringval)
2069 					kfree(res->u.stringval, M_TEMP);
2070 				stringval = cfgres[j].u.stringval;
2071 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2072 							  M_TEMP, M_INTWAIT);
2073 				if (res->u.stringval == NULL)
2074 					break;
2075 				strcpy(res->u.stringval, stringval);
2076 				break;
2077 			default:
2078 				panic("unknown resource type %d", type);
2079 			}
2080 		}
2081 	}
2082 }
2083 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
2084 
2085 
2086 /*======================================*/
2087 /*
2088  * Some useful method implementations to make life easier for bus drivers.
2089  */
2090 
2091 void
2092 resource_list_init(struct resource_list *rl)
2093 {
2094 	SLIST_INIT(rl);
2095 }
2096 
2097 void
2098 resource_list_free(struct resource_list *rl)
2099 {
2100 	struct resource_list_entry *rle;
2101 
2102 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2103 		if (rle->res)
2104 			panic("resource_list_free: resource entry is busy");
2105 		SLIST_REMOVE_HEAD(rl, link);
2106 		kfree(rle, M_BUS);
2107 	}
2108 }
2109 
2110 void
2111 resource_list_add(struct resource_list *rl,
2112 		  int type, int rid,
2113 		  u_long start, u_long end, u_long count)
2114 {
2115 	struct resource_list_entry *rle;
2116 
2117 	rle = resource_list_find(rl, type, rid);
2118 	if (rle == NULL) {
2119 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2120 			     M_INTWAIT);
2121 		if (!rle)
2122 			panic("resource_list_add: can't record entry");
2123 		SLIST_INSERT_HEAD(rl, rle, link);
2124 		rle->type = type;
2125 		rle->rid = rid;
2126 		rle->res = NULL;
2127 	}
2128 
2129 	if (rle->res)
2130 		panic("resource_list_add: resource entry is busy");
2131 
2132 	rle->start = start;
2133 	rle->end = end;
2134 	rle->count = count;
2135 }
2136 
2137 struct resource_list_entry*
2138 resource_list_find(struct resource_list *rl,
2139 		   int type, int rid)
2140 {
2141 	struct resource_list_entry *rle;
2142 
2143 	SLIST_FOREACH(rle, rl, link)
2144 		if (rle->type == type && rle->rid == rid)
2145 			return(rle);
2146 	return(NULL);
2147 }
2148 
2149 void
2150 resource_list_delete(struct resource_list *rl,
2151 		     int type, int rid)
2152 {
2153 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2154 
2155 	if (rle) {
2156 		if (rle->res != NULL)
2157 			panic("resource_list_delete: resource has not been released");
2158 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2159 		kfree(rle, M_BUS);
2160 	}
2161 }
2162 
2163 struct resource *
2164 resource_list_alloc(struct resource_list *rl,
2165 		    device_t bus, device_t child,
2166 		    int type, int *rid,
2167 		    u_long start, u_long end,
2168 		    u_long count, u_int flags)
2169 {
2170 	struct resource_list_entry *rle = 0;
2171 	int passthrough = (device_get_parent(child) != bus);
2172 	int isdefault = (start == 0UL && end == ~0UL);
2173 
2174 	if (passthrough) {
2175 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2176 					  type, rid,
2177 					  start, end, count, flags));
2178 	}
2179 
2180 	rle = resource_list_find(rl, type, *rid);
2181 
2182 	if (!rle)
2183 		return(0);		/* no resource of that type/rid */
2184 
2185 	if (rle->res)
2186 		panic("resource_list_alloc: resource entry is busy");
2187 
2188 	if (isdefault) {
2189 		start = rle->start;
2190 		count = max(count, rle->count);
2191 		end = max(rle->end, start + count - 1);
2192 	}
2193 
2194 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2195 				      type, rid, start, end, count, flags);
2196 
2197 	/*
2198 	 * Record the new range.
2199 	 */
2200 	if (rle->res) {
2201 		rle->start = rman_get_start(rle->res);
2202 		rle->end = rman_get_end(rle->res);
2203 		rle->count = count;
2204 	}
2205 
2206 	return(rle->res);
2207 }
2208 
2209 int
2210 resource_list_release(struct resource_list *rl,
2211 		      device_t bus, device_t child,
2212 		      int type, int rid, struct resource *res)
2213 {
2214 	struct resource_list_entry *rle = 0;
2215 	int passthrough = (device_get_parent(child) != bus);
2216 	int error;
2217 
2218 	if (passthrough) {
2219 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2220 					    type, rid, res));
2221 	}
2222 
2223 	rle = resource_list_find(rl, type, rid);
2224 
2225 	if (!rle)
2226 		panic("resource_list_release: can't find resource");
2227 	if (!rle->res)
2228 		panic("resource_list_release: resource entry is not busy");
2229 
2230 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2231 				     type, rid, res);
2232 	if (error)
2233 		return(error);
2234 
2235 	rle->res = NULL;
2236 	return(0);
2237 }
2238 
2239 int
2240 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2241 			 const char *format)
2242 {
2243 	struct resource_list_entry *rle;
2244 	int printed, retval;
2245 
2246 	printed = 0;
2247 	retval = 0;
2248 	/* Yes, this is kinda cheating */
2249 	SLIST_FOREACH(rle, rl, link) {
2250 		if (rle->type == type) {
2251 			if (printed == 0)
2252 				retval += kprintf(" %s ", name);
2253 			else
2254 				retval += kprintf(",");
2255 			printed++;
2256 			retval += kprintf(format, rle->start);
2257 			if (rle->count > 1) {
2258 				retval += kprintf("-");
2259 				retval += kprintf(format, rle->start +
2260 						 rle->count - 1);
2261 			}
2262 		}
2263 	}
2264 	return(retval);
2265 }
2266 
2267 /*
2268  * Generic driver/device identify functions.  These will install a device
2269  * rendezvous point under the parent using the same name as the driver
2270  * name, which will at a later time be probed and attached.
2271  *
2272  * These functions are used when the parent does not 'scan' its bus for
2273  * matching devices, or for the particular devices using these functions,
2274  * or when the device is a pseudo or synthesized device (such as can be
2275  * found under firewire and ppbus).
2276  */
2277 int
2278 bus_generic_identify(driver_t *driver, device_t parent)
2279 {
2280 	if (parent->state == DS_ATTACHED)
2281 		return (0);
2282 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2283 	return (0);
2284 }
2285 
2286 int
2287 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2288 {
2289 	if (parent->state == DS_ATTACHED)
2290 		return (0);
2291 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2292 	return (0);
2293 }
2294 
2295 /*
2296  * Call DEVICE_IDENTIFY for each driver.
2297  */
2298 int
2299 bus_generic_probe(device_t dev)
2300 {
2301 	devclass_t dc = dev->devclass;
2302 	driverlink_t dl;
2303 
2304 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2305 		DEVICE_IDENTIFY(dl->driver, dev);
2306 	}
2307 
2308 	return(0);
2309 }
2310 
2311 /*
2312  * This is an aweful hack due to the isa bus and autoconf code not
2313  * probing the ISA devices until after everything else has configured.
2314  * The ISA bus did a dummy attach long ago so we have to set it back
2315  * to an earlier state so the probe thinks its the initial probe and
2316  * not a bus rescan.
2317  *
2318  * XXX remove by properly defering the ISA bus scan.
2319  */
2320 int
2321 bus_generic_probe_hack(device_t dev)
2322 {
2323 	if (dev->state == DS_ATTACHED) {
2324 		dev->state = DS_ALIVE;
2325 		bus_generic_probe(dev);
2326 		dev->state = DS_ATTACHED;
2327 	}
2328 	return (0);
2329 }
2330 
2331 int
2332 bus_generic_attach(device_t dev)
2333 {
2334 	device_t child;
2335 
2336 	TAILQ_FOREACH(child, &dev->children, link) {
2337 		device_probe_and_attach(child);
2338 	}
2339 
2340 	return(0);
2341 }
2342 
2343 int
2344 bus_generic_detach(device_t dev)
2345 {
2346 	device_t child;
2347 	int error;
2348 
2349 	if (dev->state != DS_ATTACHED)
2350 		return(EBUSY);
2351 
2352 	TAILQ_FOREACH(child, &dev->children, link)
2353 		if ((error = device_detach(child)) != 0)
2354 			return(error);
2355 
2356 	return 0;
2357 }
2358 
2359 int
2360 bus_generic_shutdown(device_t dev)
2361 {
2362 	device_t child;
2363 
2364 	TAILQ_FOREACH(child, &dev->children, link)
2365 		device_shutdown(child);
2366 
2367 	return(0);
2368 }
2369 
2370 int
2371 bus_generic_suspend(device_t dev)
2372 {
2373 	int error;
2374 	device_t child, child2;
2375 
2376 	TAILQ_FOREACH(child, &dev->children, link) {
2377 		error = DEVICE_SUSPEND(child);
2378 		if (error) {
2379 			for (child2 = TAILQ_FIRST(&dev->children);
2380 			     child2 && child2 != child;
2381 			     child2 = TAILQ_NEXT(child2, link))
2382 				DEVICE_RESUME(child2);
2383 			return(error);
2384 		}
2385 	}
2386 	return(0);
2387 }
2388 
2389 int
2390 bus_generic_resume(device_t dev)
2391 {
2392 	device_t child;
2393 
2394 	TAILQ_FOREACH(child, &dev->children, link)
2395 		DEVICE_RESUME(child);
2396 		/* if resume fails, there's nothing we can usefully do... */
2397 
2398 	return(0);
2399 }
2400 
2401 int
2402 bus_print_child_header(device_t dev, device_t child)
2403 {
2404 	int retval = 0;
2405 
2406 	if (device_get_desc(child))
2407 		retval += device_printf(child, "<%s>", device_get_desc(child));
2408 	else
2409 		retval += kprintf("%s", device_get_nameunit(child));
2410 	if (bootverbose) {
2411 		if (child->state != DS_ATTACHED)
2412 			kprintf(" [tentative]");
2413 		else
2414 			kprintf(" [attached!]");
2415 	}
2416 	return(retval);
2417 }
2418 
2419 int
2420 bus_print_child_footer(device_t dev, device_t child)
2421 {
2422 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2423 }
2424 
2425 device_t
2426 bus_generic_add_child(device_t dev, device_t child, int order,
2427 		      const char *name, int unit)
2428 {
2429 	if (dev->parent)
2430 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2431 	else
2432 		dev = device_add_child_ordered(child, order, name, unit);
2433 	return(dev);
2434 
2435 }
2436 
2437 int
2438 bus_generic_print_child(device_t dev, device_t child)
2439 {
2440 	int retval = 0;
2441 
2442 	retval += bus_print_child_header(dev, child);
2443 	retval += bus_print_child_footer(dev, child);
2444 
2445 	return(retval);
2446 }
2447 
2448 int
2449 bus_generic_read_ivar(device_t dev, device_t child, int index,
2450 		      uintptr_t * result)
2451 {
2452 	int error;
2453 
2454 	if (dev->parent)
2455 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2456 	else
2457 		error = ENOENT;
2458 	return (error);
2459 }
2460 
2461 int
2462 bus_generic_write_ivar(device_t dev, device_t child, int index,
2463 		       uintptr_t value)
2464 {
2465 	int error;
2466 
2467 	if (dev->parent)
2468 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2469 	else
2470 		error = ENOENT;
2471 	return (error);
2472 }
2473 
2474 /*
2475  * Resource list are used for iterations, do not recurse.
2476  */
2477 struct resource_list *
2478 bus_generic_get_resource_list(device_t dev, device_t child)
2479 {
2480 	return (NULL);
2481 }
2482 
2483 void
2484 bus_generic_driver_added(device_t dev, driver_t *driver)
2485 {
2486 	device_t child;
2487 
2488 	DEVICE_IDENTIFY(driver, dev);
2489 	TAILQ_FOREACH(child, &dev->children, link) {
2490 		if (child->state == DS_NOTPRESENT)
2491 			device_probe_and_attach(child);
2492 	}
2493 }
2494 
2495 int
2496 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2497 		       int flags, driver_intr_t *intr, void *arg,
2498 		       void **cookiep, lwkt_serialize_t serializer)
2499 {
2500 	/* Propagate up the bus hierarchy until someone handles it. */
2501 	if (dev->parent)
2502 		return(BUS_SETUP_INTR(dev->parent, child, irq, flags,
2503 				      intr, arg, cookiep, serializer));
2504 	else
2505 		return(EINVAL);
2506 }
2507 
2508 int
2509 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2510 			  void *cookie)
2511 {
2512 	/* Propagate up the bus hierarchy until someone handles it. */
2513 	if (dev->parent)
2514 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2515 	else
2516 		return(EINVAL);
2517 }
2518 
2519 int
2520 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2521 {
2522 	if (dev->parent)
2523 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2524 	else
2525 		return(0);
2526 }
2527 
2528 void
2529 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2530 {
2531 	if (dev->parent)
2532 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2533 }
2534 
2535 int
2536 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2537     enum intr_polarity pol)
2538 {
2539 	/* Propagate up the bus hierarchy until someone handles it. */
2540 	if (dev->parent)
2541 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2542 	else
2543 		return(EINVAL);
2544 }
2545 
2546 struct resource *
2547 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2548 			   u_long start, u_long end, u_long count, u_int flags)
2549 {
2550 	/* Propagate up the bus hierarchy until someone handles it. */
2551 	if (dev->parent)
2552 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2553 					   start, end, count, flags));
2554 	else
2555 		return(NULL);
2556 }
2557 
2558 int
2559 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2560 			     struct resource *r)
2561 {
2562 	/* Propagate up the bus hierarchy until someone handles it. */
2563 	if (dev->parent)
2564 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2565 	else
2566 		return(EINVAL);
2567 }
2568 
2569 int
2570 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2571 			      struct resource *r)
2572 {
2573 	/* Propagate up the bus hierarchy until someone handles it. */
2574 	if (dev->parent)
2575 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2576 	else
2577 		return(EINVAL);
2578 }
2579 
2580 int
2581 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2582 				int rid, struct resource *r)
2583 {
2584 	/* Propagate up the bus hierarchy until someone handles it. */
2585 	if (dev->parent)
2586 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2587 					       r));
2588 	else
2589 		return(EINVAL);
2590 }
2591 
2592 int
2593 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2594 			 u_long *startp, u_long *countp)
2595 {
2596 	int error;
2597 
2598 	error = ENOENT;
2599 	if (dev->parent) {
2600 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2601 					 startp, countp);
2602 	}
2603 	return (error);
2604 }
2605 
2606 int
2607 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2608 			u_long start, u_long count)
2609 {
2610 	int error;
2611 
2612 	error = EINVAL;
2613 	if (dev->parent) {
2614 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2615 					 start, count);
2616 	}
2617 	return (error);
2618 }
2619 
2620 void
2621 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2622 {
2623 	if (dev->parent)
2624 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2625 }
2626 
2627 int
2628 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2629     u_long *startp, u_long *countp)
2630 {
2631 	struct resource_list *rl = NULL;
2632 	struct resource_list_entry *rle = NULL;
2633 
2634 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2635 	if (!rl)
2636 		return(EINVAL);
2637 
2638 	rle = resource_list_find(rl, type, rid);
2639 	if (!rle)
2640 		return(ENOENT);
2641 
2642 	if (startp)
2643 		*startp = rle->start;
2644 	if (countp)
2645 		*countp = rle->count;
2646 
2647 	return(0);
2648 }
2649 
2650 int
2651 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2652     u_long start, u_long count)
2653 {
2654 	struct resource_list *rl = NULL;
2655 
2656 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2657 	if (!rl)
2658 		return(EINVAL);
2659 
2660 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
2661 
2662 	return(0);
2663 }
2664 
2665 void
2666 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2667 {
2668 	struct resource_list *rl = NULL;
2669 
2670 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2671 	if (!rl)
2672 		return;
2673 
2674 	resource_list_delete(rl, type, rid);
2675 }
2676 
2677 int
2678 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2679     int rid, struct resource *r)
2680 {
2681 	struct resource_list *rl = NULL;
2682 
2683 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2684 	if (!rl)
2685 		return(EINVAL);
2686 
2687 	return(resource_list_release(rl, dev, child, type, rid, r));
2688 }
2689 
2690 struct resource *
2691 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2692     int *rid, u_long start, u_long end, u_long count, u_int flags)
2693 {
2694 	struct resource_list *rl = NULL;
2695 
2696 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2697 	if (!rl)
2698 		return(NULL);
2699 
2700 	return(resource_list_alloc(rl, dev, child, type, rid,
2701 	    start, end, count, flags));
2702 }
2703 
2704 int
2705 bus_generic_child_present(device_t bus, device_t child)
2706 {
2707 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2708 }
2709 
2710 
2711 /*
2712  * Some convenience functions to make it easier for drivers to use the
2713  * resource-management functions.  All these really do is hide the
2714  * indirection through the parent's method table, making for slightly
2715  * less-wordy code.  In the future, it might make sense for this code
2716  * to maintain some sort of a list of resources allocated by each device.
2717  */
2718 int
2719 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2720     struct resource **res)
2721 {
2722 	int i;
2723 
2724 	for (i = 0; rs[i].type != -1; i++)
2725 	        res[i] = NULL;
2726 	for (i = 0; rs[i].type != -1; i++) {
2727 		res[i] = bus_alloc_resource_any(dev,
2728 		    rs[i].type, &rs[i].rid, rs[i].flags);
2729 		if (res[i] == NULL) {
2730 			bus_release_resources(dev, rs, res);
2731 			return (ENXIO);
2732 		}
2733 	}
2734 	return (0);
2735 }
2736 
2737 void
2738 bus_release_resources(device_t dev, const struct resource_spec *rs,
2739     struct resource **res)
2740 {
2741 	int i;
2742 
2743 	for (i = 0; rs[i].type != -1; i++)
2744 		if (res[i] != NULL) {
2745 			bus_release_resource(
2746 			    dev, rs[i].type, rs[i].rid, res[i]);
2747 			res[i] = NULL;
2748 		}
2749 }
2750 
2751 struct resource *
2752 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2753 		   u_long count, u_int flags)
2754 {
2755 	if (dev->parent == 0)
2756 		return(0);
2757 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2758 				  count, flags));
2759 }
2760 
2761 int
2762 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2763 {
2764 	if (dev->parent == 0)
2765 		return(EINVAL);
2766 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2767 }
2768 
2769 int
2770 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2771 {
2772 	if (dev->parent == 0)
2773 		return(EINVAL);
2774 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2775 }
2776 
2777 int
2778 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2779 {
2780 	if (dev->parent == 0)
2781 		return(EINVAL);
2782 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2783 }
2784 
2785 int
2786 bus_setup_intr(device_t dev, struct resource *r, int flags,
2787 	       driver_intr_t handler, void *arg,
2788 	       void **cookiep, lwkt_serialize_t serializer)
2789 {
2790 	if (dev->parent == 0)
2791 		return(EINVAL);
2792 	return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2793 			      cookiep, serializer));
2794 }
2795 
2796 int
2797 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2798 {
2799 	if (dev->parent == 0)
2800 		return(EINVAL);
2801 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2802 }
2803 
2804 void
2805 bus_enable_intr(device_t dev, void *cookie)
2806 {
2807 	if (dev->parent)
2808 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2809 }
2810 
2811 int
2812 bus_disable_intr(device_t dev, void *cookie)
2813 {
2814 	if (dev->parent)
2815 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2816 	else
2817 		return(0);
2818 }
2819 
2820 int
2821 bus_set_resource(device_t dev, int type, int rid,
2822 		 u_long start, u_long count)
2823 {
2824 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2825 				start, count));
2826 }
2827 
2828 int
2829 bus_get_resource(device_t dev, int type, int rid,
2830 		 u_long *startp, u_long *countp)
2831 {
2832 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2833 				startp, countp));
2834 }
2835 
2836 u_long
2837 bus_get_resource_start(device_t dev, int type, int rid)
2838 {
2839 	u_long start, count;
2840 	int error;
2841 
2842 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2843 				 &start, &count);
2844 	if (error)
2845 		return(0);
2846 	return(start);
2847 }
2848 
2849 u_long
2850 bus_get_resource_count(device_t dev, int type, int rid)
2851 {
2852 	u_long start, count;
2853 	int error;
2854 
2855 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2856 				 &start, &count);
2857 	if (error)
2858 		return(0);
2859 	return(count);
2860 }
2861 
2862 void
2863 bus_delete_resource(device_t dev, int type, int rid)
2864 {
2865 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
2866 }
2867 
2868 int
2869 bus_child_present(device_t child)
2870 {
2871 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2872 }
2873 
2874 int
2875 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
2876 {
2877 	device_t parent;
2878 
2879 	parent = device_get_parent(child);
2880 	if (parent == NULL) {
2881 		*buf = '\0';
2882 		return (0);
2883 	}
2884 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
2885 }
2886 
2887 int
2888 bus_child_location_str(device_t child, char *buf, size_t buflen)
2889 {
2890 	device_t parent;
2891 
2892 	parent = device_get_parent(child);
2893 	if (parent == NULL) {
2894 		*buf = '\0';
2895 		return (0);
2896 	}
2897 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
2898 }
2899 
2900 static int
2901 root_print_child(device_t dev, device_t child)
2902 {
2903 	return(0);
2904 }
2905 
2906 static int
2907 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
2908 		void **cookiep, lwkt_serialize_t serializer)
2909 {
2910 	/*
2911 	 * If an interrupt mapping gets to here something bad has happened.
2912 	 */
2913 	panic("root_setup_intr");
2914 }
2915 
2916 /*
2917  * If we get here, assume that the device is permanant and really is
2918  * present in the system.  Removable bus drivers are expected to intercept
2919  * this call long before it gets here.  We return -1 so that drivers that
2920  * really care can check vs -1 or some ERRNO returned higher in the food
2921  * chain.
2922  */
2923 static int
2924 root_child_present(device_t dev, device_t child)
2925 {
2926 	return(-1);
2927 }
2928 
2929 /*
2930  * XXX NOTE! other defaults may be set in bus_if.m
2931  */
2932 static kobj_method_t root_methods[] = {
2933 	/* Device interface */
2934 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
2935 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
2936 	KOBJMETHOD(device_resume,	bus_generic_resume),
2937 
2938 	/* Bus interface */
2939 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
2940 	KOBJMETHOD(bus_print_child,	root_print_child),
2941 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
2942 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
2943 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
2944 	KOBJMETHOD(bus_child_present,   root_child_present),
2945 
2946 	{ 0, 0 }
2947 };
2948 
2949 static driver_t root_driver = {
2950 	"root",
2951 	root_methods,
2952 	1,			/* no softc */
2953 };
2954 
2955 device_t	root_bus;
2956 devclass_t	root_devclass;
2957 
2958 static int
2959 root_bus_module_handler(module_t mod, int what, void* arg)
2960 {
2961 	switch (what) {
2962 	case MOD_LOAD:
2963 		TAILQ_INIT(&bus_data_devices);
2964 		root_bus = make_device(NULL, "root", 0);
2965 		root_bus->desc = "System root bus";
2966 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
2967 		root_bus->driver = &root_driver;
2968 		root_bus->state = DS_ALIVE;
2969 		root_devclass = devclass_find_internal("root", NULL, FALSE);
2970 		devinit();
2971 		return(0);
2972 
2973 	case MOD_SHUTDOWN:
2974 		device_shutdown(root_bus);
2975 		return(0);
2976 	default:
2977 		return(0);
2978 	}
2979 }
2980 
2981 static moduledata_t root_bus_mod = {
2982 	"rootbus",
2983 	root_bus_module_handler,
2984 	0
2985 };
2986 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
2987 
2988 void
2989 root_bus_configure(void)
2990 {
2991 	int warncount;
2992 	device_t dev;
2993 
2994 	PDEBUG(("."));
2995 
2996 	/*
2997 	 * handle device_identify based device attachments to the root_bus
2998 	 * (typically nexus).
2999 	 */
3000 	bus_generic_probe(root_bus);
3001 
3002 	/*
3003 	 * Probe and attach the devices under root_bus.
3004 	 */
3005 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3006 		device_probe_and_attach(dev);
3007 	}
3008 
3009 	/*
3010 	 * Wait for all asynchronous attaches to complete.  If we don't
3011 	 * our legacy ISA bus scan could steal device unit numbers or
3012 	 * even I/O ports.
3013 	 */
3014 	warncount = 10;
3015 	if (numasyncthreads)
3016 		kprintf("Waiting for async drivers to attach\n");
3017 	while (numasyncthreads > 0) {
3018 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3019 			--warncount;
3020 		if (warncount == 0) {
3021 			kprintf("Warning: Still waiting for %d "
3022 				"drivers to attach\n", numasyncthreads);
3023 		} else if (warncount == -30) {
3024 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3025 			break;
3026 		}
3027 	}
3028 	root_bus->state = DS_ATTACHED;
3029 }
3030 
3031 int
3032 driver_module_handler(module_t mod, int what, void *arg)
3033 {
3034 	int error;
3035 	struct driver_module_data *dmd;
3036 	devclass_t bus_devclass;
3037 	kobj_class_t driver;
3038         const char *parentname;
3039 
3040 	dmd = (struct driver_module_data *)arg;
3041 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3042 	error = 0;
3043 
3044 	switch (what) {
3045 	case MOD_LOAD:
3046 		if (dmd->dmd_chainevh)
3047 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3048 
3049 		driver = dmd->dmd_driver;
3050 		PDEBUG(("Loading module: driver %s on bus %s",
3051 		        DRIVERNAME(driver), dmd->dmd_busname));
3052 
3053 		/*
3054 		 * If the driver has any base classes, make the
3055 		 * devclass inherit from the devclass of the driver's
3056 		 * first base class. This will allow the system to
3057 		 * search for drivers in both devclasses for children
3058 		 * of a device using this driver.
3059 		 */
3060 		if (driver->baseclasses)
3061 			parentname = driver->baseclasses[0]->name;
3062 		else
3063 			parentname = NULL;
3064 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3065 							    parentname, TRUE);
3066 
3067 		error = devclass_add_driver(bus_devclass, driver);
3068 		if (error)
3069 			break;
3070 		break;
3071 
3072 	case MOD_UNLOAD:
3073 		PDEBUG(("Unloading module: driver %s from bus %s",
3074 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3075 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3076 
3077 		if (!error && dmd->dmd_chainevh)
3078 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3079 		break;
3080 	}
3081 
3082 	return (error);
3083 }
3084 
3085 #ifdef BUS_DEBUG
3086 
3087 /*
3088  * The _short versions avoid iteration by not calling anything that prints
3089  * more than oneliners. I love oneliners.
3090  */
3091 
3092 static void
3093 print_device_short(device_t dev, int indent)
3094 {
3095 	if (!dev)
3096 		return;
3097 
3098 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3099 		      dev->unit, dev->desc,
3100 		      (dev->parent? "":"no "),
3101 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3102 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3103 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3104 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3105 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3106 		      (dev->ivars? "":"no "),
3107 		      (dev->softc? "":"no "),
3108 		      dev->busy));
3109 }
3110 
3111 static void
3112 print_device(device_t dev, int indent)
3113 {
3114 	if (!dev)
3115 		return;
3116 
3117 	print_device_short(dev, indent);
3118 
3119 	indentprintf(("Parent:\n"));
3120 	print_device_short(dev->parent, indent+1);
3121 	indentprintf(("Driver:\n"));
3122 	print_driver_short(dev->driver, indent+1);
3123 	indentprintf(("Devclass:\n"));
3124 	print_devclass_short(dev->devclass, indent+1);
3125 }
3126 
3127 /*
3128  * Print the device and all its children (indented).
3129  */
3130 void
3131 print_device_tree_short(device_t dev, int indent)
3132 {
3133 	device_t child;
3134 
3135 	if (!dev)
3136 		return;
3137 
3138 	print_device_short(dev, indent);
3139 
3140 	TAILQ_FOREACH(child, &dev->children, link)
3141 		print_device_tree_short(child, indent+1);
3142 }
3143 
3144 /*
3145  * Print the device and all its children (indented).
3146  */
3147 void
3148 print_device_tree(device_t dev, int indent)
3149 {
3150 	device_t child;
3151 
3152 	if (!dev)
3153 		return;
3154 
3155 	print_device(dev, indent);
3156 
3157 	TAILQ_FOREACH(child, &dev->children, link)
3158 		print_device_tree(child, indent+1);
3159 }
3160 
3161 static void
3162 print_driver_short(driver_t *driver, int indent)
3163 {
3164 	if (!driver)
3165 		return;
3166 
3167 	indentprintf(("driver %s: softc size = %d\n",
3168 		      driver->name, driver->size));
3169 }
3170 
3171 static void
3172 print_driver(driver_t *driver, int indent)
3173 {
3174 	if (!driver)
3175 		return;
3176 
3177 	print_driver_short(driver, indent);
3178 }
3179 
3180 
3181 static void
3182 print_driver_list(driver_list_t drivers, int indent)
3183 {
3184 	driverlink_t driver;
3185 
3186 	TAILQ_FOREACH(driver, &drivers, link)
3187 		print_driver(driver->driver, indent);
3188 }
3189 
3190 static void
3191 print_devclass_short(devclass_t dc, int indent)
3192 {
3193 	if (!dc)
3194 		return;
3195 
3196 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3197 }
3198 
3199 static void
3200 print_devclass(devclass_t dc, int indent)
3201 {
3202 	int i;
3203 
3204 	if (!dc)
3205 		return;
3206 
3207 	print_devclass_short(dc, indent);
3208 	indentprintf(("Drivers:\n"));
3209 	print_driver_list(dc->drivers, indent+1);
3210 
3211 	indentprintf(("Devices:\n"));
3212 	for (i = 0; i < dc->maxunit; i++)
3213 		if (dc->devices[i])
3214 			print_device(dc->devices[i], indent+1);
3215 }
3216 
3217 void
3218 print_devclass_list_short(void)
3219 {
3220 	devclass_t dc;
3221 
3222 	kprintf("Short listing of devclasses, drivers & devices:\n");
3223 	TAILQ_FOREACH(dc, &devclasses, link) {
3224 		print_devclass_short(dc, 0);
3225 	}
3226 }
3227 
3228 void
3229 print_devclass_list(void)
3230 {
3231 	devclass_t dc;
3232 
3233 	kprintf("Full listing of devclasses, drivers & devices:\n");
3234 	TAILQ_FOREACH(dc, &devclasses, link) {
3235 		print_devclass(dc, 0);
3236 	}
3237 }
3238 
3239 #endif
3240 
3241 /*
3242  * Check to see if a device is disabled via a disabled hint.
3243  */
3244 int
3245 resource_disabled(const char *name, int unit)
3246 {
3247 	int error, value;
3248 
3249 	error = resource_int_value(name, unit, "disabled", &value);
3250 	if (error)
3251 	       return(0);
3252 	return(value);
3253 }
3254 
3255 /*
3256  * User-space access to the device tree.
3257  *
3258  * We implement a small set of nodes:
3259  *
3260  * hw.bus			Single integer read method to obtain the
3261  *				current generation count.
3262  * hw.bus.devices		Reads the entire device tree in flat space.
3263  * hw.bus.rman			Resource manager interface
3264  *
3265  * We might like to add the ability to scan devclasses and/or drivers to
3266  * determine what else is currently loaded/available.
3267  */
3268 
3269 static int
3270 sysctl_bus(SYSCTL_HANDLER_ARGS)
3271 {
3272 	struct u_businfo	ubus;
3273 
3274 	ubus.ub_version = BUS_USER_VERSION;
3275 	ubus.ub_generation = bus_data_generation;
3276 
3277 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3278 }
3279 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3280     "bus-related data");
3281 
3282 static int
3283 sysctl_devices(SYSCTL_HANDLER_ARGS)
3284 {
3285 	int			*name = (int *)arg1;
3286 	u_int			namelen = arg2;
3287 	int			index;
3288 	struct device		*dev;
3289 	struct u_device		udev;	/* XXX this is a bit big */
3290 	int			error;
3291 
3292 	if (namelen != 2)
3293 		return (EINVAL);
3294 
3295 	if (bus_data_generation_check(name[0]))
3296 		return (EINVAL);
3297 
3298 	index = name[1];
3299 
3300 	/*
3301 	 * Scan the list of devices, looking for the requested index.
3302 	 */
3303 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3304 		if (index-- == 0)
3305 			break;
3306 	}
3307 	if (dev == NULL)
3308 		return (ENOENT);
3309 
3310 	/*
3311 	 * Populate the return array.
3312 	 */
3313 	bzero(&udev, sizeof(udev));
3314 	udev.dv_handle = (uintptr_t)dev;
3315 	udev.dv_parent = (uintptr_t)dev->parent;
3316 	if (dev->nameunit != NULL)
3317 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3318 	if (dev->desc != NULL)
3319 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3320 	if (dev->driver != NULL && dev->driver->name != NULL)
3321 		strlcpy(udev.dv_drivername, dev->driver->name,
3322 		    sizeof(udev.dv_drivername));
3323 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3324 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3325 	udev.dv_devflags = dev->devflags;
3326 	udev.dv_flags = dev->flags;
3327 	udev.dv_state = dev->state;
3328 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3329 	return (error);
3330 }
3331 
3332 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3333     "system device tree");
3334 
3335 int
3336 bus_data_generation_check(int generation)
3337 {
3338 	if (generation != bus_data_generation)
3339 		return (1);
3340 
3341 	/* XXX generate optimised lists here? */
3342 	return (0);
3343 }
3344 
3345 void
3346 bus_data_generation_update(void)
3347 {
3348 	bus_data_generation++;
3349 }
3350