xref: /dragonfly/sys/kern/subr_disk.c (revision 19fe1c42)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ----------------------------------------------------------------------------
35  * "THE BEER-WARE LICENSE" (Revision 42):
36  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
37  * can do whatever you want with this stuff. If we meet some day, and you think
38  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
39  * ----------------------------------------------------------------------------
40  *
41  * Copyright (c) 1982, 1986, 1988, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
78  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
79  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
80  * $DragonFly: src/sys/kern/subr_disk.c,v 1.40 2008/06/05 18:06:32 swildner Exp $
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/proc.h>
87 #include <sys/sysctl.h>
88 #include <sys/buf.h>
89 #include <sys/conf.h>
90 #include <sys/diskslice.h>
91 #include <sys/disk.h>
92 #include <sys/malloc.h>
93 #include <sys/sysctl.h>
94 #include <machine/md_var.h>
95 #include <sys/ctype.h>
96 #include <sys/syslog.h>
97 #include <sys/device.h>
98 #include <sys/msgport.h>
99 #include <sys/msgport2.h>
100 #include <sys/buf2.h>
101 
102 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
103 
104 static d_open_t diskopen;
105 static d_close_t diskclose;
106 static d_ioctl_t diskioctl;
107 static d_strategy_t diskstrategy;
108 static d_psize_t diskpsize;
109 static d_clone_t diskclone;
110 static d_dump_t diskdump;
111 
112 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
113 
114 static struct dev_ops disk_ops = {
115 	{ "disk", 0, D_DISK },
116 	.d_open = diskopen,
117 	.d_close = diskclose,
118 	.d_read = physread,
119 	.d_write = physwrite,
120 	.d_ioctl = diskioctl,
121 	.d_strategy = diskstrategy,
122 	.d_dump = diskdump,
123 	.d_psize = diskpsize,
124 	.d_clone = diskclone
125 };
126 
127 /*
128  * Create a raw device for the dev_ops template (which is returned).  Also
129  * create a slice and unit managed disk and overload the user visible
130  * device space with it.
131  *
132  * NOTE: The returned raw device is NOT a slice and unit managed device.
133  * It is an actual raw device representing the raw disk as specified by
134  * the passed dev_ops.  The disk layer not only returns such a raw device,
135  * it also uses it internally when passing (modified) commands through.
136  */
137 cdev_t
138 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
139 {
140 	cdev_t rawdev;
141 	struct dev_ops *dev_ops;
142 
143 	/*
144 	 * Create the raw backing device
145 	 */
146 	compile_dev_ops(raw_ops);
147 	rawdev = make_dev(raw_ops, dkmakewholedisk(unit),
148 			    UID_ROOT, GID_OPERATOR, 0640,
149 			    "%s%d", raw_ops->head.name, unit);
150 
151 	bzero(dp, sizeof(*dp));
152 
153 	/*
154 	 * We install a custom cdevsw rather then the passed cdevsw,
155 	 * and save our disk structure in d_data so we can get at it easily
156 	 * without any complex cloning code.
157 	 */
158 	dev_ops = dev_ops_add_override(rawdev, &disk_ops,
159 				       dkunitmask(), dkmakeunit(unit));
160 	dev_ops->head.data = dp;
161 
162 	dp->d_rawdev = rawdev;
163 	dp->d_raw_ops = raw_ops;
164 	dp->d_dev_ops = dev_ops;
165 	dp->d_cdev = make_dev(dev_ops,
166 			    dkmakewholedisk(unit),
167 			    UID_ROOT, GID_OPERATOR, 0640,
168 			    "%s%d", dev_ops->head.name, unit);
169 
170 	LIST_INSERT_HEAD(&disklist, dp, d_list);
171 	return (dp->d_rawdev);
172 }
173 
174 /*
175  * Disk drivers must call this routine when media parameters are available
176  * or have changed.
177  */
178 void
179 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
180 {
181 	bcopy(info, &disk->d_info, sizeof(disk->d_info));
182 	info = &disk->d_info;
183 
184 	KKASSERT(info->d_media_size == 0 || info->d_media_blksize == 0);
185 	if (info->d_media_size == 0 && info->d_media_blocks) {
186 		info->d_media_size = (u_int64_t)info->d_media_blocks *
187 				     info->d_media_blksize;
188 	} else if (info->d_media_size && info->d_media_blocks == 0 &&
189 		   info->d_media_blksize) {
190 		info->d_media_blocks = info->d_media_size /
191 				       info->d_media_blksize;
192 	}
193 }
194 
195 /*
196  * This routine is called when an adapter detaches.  The higher level
197  * managed disk device is destroyed while the lower level raw device is
198  * released.
199  */
200 void
201 disk_destroy(struct disk *disk)
202 {
203 	if (disk->d_dev_ops) {
204 	    dev_ops_remove(disk->d_dev_ops, dkunitmask(),
205 			    dkmakeunit(dkunit(disk->d_cdev)));
206 	    LIST_REMOVE(disk, d_list);
207 	}
208 	if (disk->d_raw_ops) {
209 	    destroy_all_devs(disk->d_raw_ops, dkunitmask(),
210 			    dkmakeunit(dkunit(disk->d_rawdev)));
211 	}
212 	bzero(disk, sizeof(*disk));
213 }
214 
215 int
216 disk_dumpcheck(cdev_t dev, u_int64_t *count, u_int64_t *blkno, u_int *secsize)
217 {
218 	struct partinfo pinfo;
219 	int error;
220 
221 	bzero(&pinfo, sizeof(pinfo));
222 	error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0, proc0.p_ucred);
223 	if (error)
224 		return (error);
225 	if (pinfo.media_blksize == 0)
226 		return (ENXIO);
227 	*count = (u_int64_t)Maxmem * PAGE_SIZE / pinfo.media_blksize;
228 	if (dumplo64 < pinfo.reserved_blocks ||
229 	    dumplo64 + *count > pinfo.media_blocks) {
230 		return (ENOSPC);
231 	}
232 	*blkno = dumplo64 + pinfo.media_offset / pinfo.media_blksize;
233 	*secsize = pinfo.media_blksize;
234 	return (0);
235 }
236 
237 void
238 disk_invalidate (struct disk *disk)
239 {
240 	if (disk->d_slice)
241 		dsgone(&disk->d_slice);
242 }
243 
244 struct disk *
245 disk_enumerate(struct disk *disk)
246 {
247 	if (!disk)
248 		return (LIST_FIRST(&disklist));
249 	else
250 		return (LIST_NEXT(disk, d_list));
251 }
252 
253 static
254 int
255 sysctl_disks(SYSCTL_HANDLER_ARGS)
256 {
257 	struct disk *disk;
258 	int error, first;
259 
260 	disk = NULL;
261 	first = 1;
262 
263 	while ((disk = disk_enumerate(disk))) {
264 		if (!first) {
265 			error = SYSCTL_OUT(req, " ", 1);
266 			if (error)
267 				return error;
268 		} else {
269 			first = 0;
270 		}
271 		error = SYSCTL_OUT(req, disk->d_rawdev->si_name,
272 				   strlen(disk->d_rawdev->si_name));
273 		if (error)
274 			return error;
275 	}
276 	error = SYSCTL_OUT(req, "", 1);
277 	return error;
278 }
279 
280 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
281     sysctl_disks, "A", "names of available disks");
282 
283 /*
284  * Open a disk device or partition.
285  */
286 static
287 int
288 diskopen(struct dev_open_args *ap)
289 {
290 	cdev_t dev = ap->a_head.a_dev;
291 	struct disk *dp;
292 	int error;
293 
294 	/*
295 	 * dp can't be NULL here XXX.
296 	 */
297 	dp = dev->si_disk;
298 	if (dp == NULL)
299 		return (ENXIO);
300 	error = 0;
301 
302 	/*
303 	 * Deal with open races
304 	 */
305 	while (dp->d_flags & DISKFLAG_LOCK) {
306 		dp->d_flags |= DISKFLAG_WANTED;
307 		error = tsleep(dp, PCATCH, "diskopen", hz);
308 		if (error)
309 			return (error);
310 	}
311 	dp->d_flags |= DISKFLAG_LOCK;
312 
313 	/*
314 	 * Open the underlying raw device.
315 	 */
316 	if (!dsisopen(dp->d_slice)) {
317 #if 0
318 		if (!pdev->si_iosize_max)
319 			pdev->si_iosize_max = dev->si_iosize_max;
320 #endif
321 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
322 				  ap->a_devtype, ap->a_cred);
323 	}
324 
325 	/*
326 	 * Inherit properties from the underlying device now that it is
327 	 * open.
328 	 */
329 	dev_dclone(dev);
330 
331 	if (error)
332 		goto out;
333 
334 	error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
335 		       &dp->d_slice, &dp->d_info);
336 
337 	if (!dsisopen(dp->d_slice))
338 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype);
339 out:
340 	dp->d_flags &= ~DISKFLAG_LOCK;
341 	if (dp->d_flags & DISKFLAG_WANTED) {
342 		dp->d_flags &= ~DISKFLAG_WANTED;
343 		wakeup(dp);
344 	}
345 
346 	return(error);
347 }
348 
349 /*
350  * Close a disk device or partition
351  */
352 static
353 int
354 diskclose(struct dev_close_args *ap)
355 {
356 	cdev_t dev = ap->a_head.a_dev;
357 	struct disk *dp;
358 	int error;
359 
360 	error = 0;
361 	dp = dev->si_disk;
362 
363 	dsclose(dev, ap->a_devtype, dp->d_slice);
364 	if (!dsisopen(dp->d_slice))
365 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype);
366 	return (error);
367 }
368 
369 /*
370  * First execute the ioctl on the disk device, and if it isn't supported
371  * try running it on the backing device.
372  */
373 static
374 int
375 diskioctl(struct dev_ioctl_args *ap)
376 {
377 	cdev_t dev = ap->a_head.a_dev;
378 	struct disk *dp;
379 	int error;
380 
381 	dp = dev->si_disk;
382 	if (dp == NULL)
383 		return (ENXIO);
384 	error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
385 			&dp->d_slice, &dp->d_info);
386 	if (error == ENOIOCTL) {
387 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
388 				   ap->a_fflag, ap->a_cred);
389 	}
390 	return (error);
391 }
392 
393 /*
394  * Execute strategy routine
395  */
396 static
397 int
398 diskstrategy(struct dev_strategy_args *ap)
399 {
400 	cdev_t dev = ap->a_head.a_dev;
401 	struct bio *bio = ap->a_bio;
402 	struct bio *nbio;
403 	struct disk *dp;
404 
405 	dp = dev->si_disk;
406 
407 	if (dp == NULL) {
408 		bio->bio_buf->b_error = ENXIO;
409 		bio->bio_buf->b_flags |= B_ERROR;
410 		biodone(bio);
411 		return(0);
412 	}
413 	KKASSERT(dev->si_disk == dp);
414 
415 	/*
416 	 * The dscheck() function will also transform the slice relative
417 	 * block number i.e. bio->bio_offset into a block number that can be
418 	 * passed directly to the underlying raw device.  If dscheck()
419 	 * returns NULL it will have handled the bio for us (e.g. EOF
420 	 * or error due to being beyond the device size).
421 	 */
422 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL)
423 		dev_dstrategy(dp->d_rawdev, nbio);
424 	else
425 		biodone(bio);
426 	return(0);
427 }
428 
429 /*
430  * Return the partition size in ?blocks?
431  */
432 static
433 int
434 diskpsize(struct dev_psize_args *ap)
435 {
436 	cdev_t dev = ap->a_head.a_dev;
437 	struct disk *dp;
438 
439 	dp = dev->si_disk;
440 	if (dp == NULL)
441 		return(ENODEV);
442 	ap->a_result = dssize(dev, &dp->d_slice);
443 	return(0);
444 }
445 
446 /*
447  * When new device entries are instantiated, make sure they inherit our
448  * si_disk structure and block and iosize limits from the raw device.
449  *
450  * This routine is always called synchronously in the context of the
451  * client.
452  *
453  * XXX The various io and block size constraints are not always initialized
454  * properly by devices.
455  */
456 static
457 int
458 diskclone(struct dev_clone_args *ap)
459 {
460 	cdev_t dev = ap->a_head.a_dev;
461 	struct disk *dp;
462 
463 	dp = dev->si_ops->head.data;
464 	KKASSERT(dp != NULL);
465 	dev->si_disk = dp;
466 	dev->si_iosize_max = dp->d_rawdev->si_iosize_max;
467 	dev->si_bsize_phys = dp->d_rawdev->si_bsize_phys;
468 	dev->si_bsize_best = dp->d_rawdev->si_bsize_best;
469 	return(0);
470 }
471 
472 int
473 diskdump(struct dev_dump_args *ap)
474 {
475 	cdev_t dev = ap->a_head.a_dev;
476 	struct disk *dp = dev->si_ops->head.data;
477 	int error;
478 
479 	error = disk_dumpcheck(dev, &ap->a_count, &ap->a_blkno, &ap->a_secsize);
480 	if (error == 0) {
481 		ap->a_head.a_dev = dp->d_rawdev;
482 		error = dev_doperate(&ap->a_head);
483 	}
484 
485 	return(error);
486 }
487 
488 
489 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
490     0, sizeof(struct diskslices), "sizeof(struct diskslices)");
491 
492 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
493     0, sizeof(struct disk), "sizeof(struct disk)");
494 
495 
496 /*
497  * Seek sort for disks.
498  *
499  * The bio_queue keep two queues, sorted in ascending block order.  The first
500  * queue holds those requests which are positioned after the current block
501  * (in the first request); the second, which starts at queue->switch_point,
502  * holds requests which came in after their block number was passed.  Thus
503  * we implement a one way scan, retracting after reaching the end of the drive
504  * to the first request on the second queue, at which time it becomes the
505  * first queue.
506  *
507  * A one-way scan is natural because of the way UNIX read-ahead blocks are
508  * allocated.
509  */
510 void
511 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
512 {
513 	struct bio *bq;
514 	struct bio *bn;
515 	struct bio *be;
516 
517 	be = TAILQ_LAST(&bioq->queue, bio_queue);
518 	/*
519 	 * If the queue is empty or we are an
520 	 * ordered transaction, then it's easy.
521 	 */
522 	if ((bq = bioq_first(bioq)) == NULL ||
523 	    (bio->bio_buf->b_flags & B_ORDERED) != 0) {
524 		bioq_insert_tail(bioq, bio);
525 		return;
526 	} else if (bioq->insert_point != NULL) {
527 
528 		/*
529 		 * A certain portion of the list is
530 		 * "locked" to preserve ordering, so
531 		 * we can only insert after the insert
532 		 * point.
533 		 */
534 		bq = bioq->insert_point;
535 	} else {
536 
537 		/*
538 		 * If we lie before the last removed (currently active)
539 		 * request, and are not inserting ourselves into the
540 		 * "locked" portion of the list, then we must add ourselves
541 		 * to the second request list.
542 		 */
543 		if (bio->bio_offset < bioq->last_offset) {
544 			bq = bioq->switch_point;
545 			/*
546 			 * If we are starting a new secondary list,
547 			 * then it's easy.
548 			 */
549 			if (bq == NULL) {
550 				bioq->switch_point = bio;
551 				bioq_insert_tail(bioq, bio);
552 				return;
553 			}
554 			/*
555 			 * If we lie ahead of the current switch point,
556 			 * insert us before the switch point and move
557 			 * the switch point.
558 			 */
559 			if (bio->bio_offset < bq->bio_offset) {
560 				bioq->switch_point = bio;
561 				TAILQ_INSERT_BEFORE(bq, bio, bio_act);
562 				return;
563 			}
564 		} else {
565 			if (bioq->switch_point != NULL)
566 				be = TAILQ_PREV(bioq->switch_point,
567 						bio_queue, bio_act);
568 			/*
569 			 * If we lie between last_offset and bq,
570 			 * insert before bq.
571 			 */
572 			if (bio->bio_offset < bq->bio_offset) {
573 				TAILQ_INSERT_BEFORE(bq, bio, bio_act);
574 				return;
575 			}
576 		}
577 	}
578 
579 	/*
580 	 * Request is at/after our current position in the list.
581 	 * Optimize for sequential I/O by seeing if we go at the tail.
582 	 */
583 	if (bio->bio_offset > be->bio_offset) {
584 		TAILQ_INSERT_AFTER(&bioq->queue, be, bio, bio_act);
585 		return;
586 	}
587 
588 	/* Otherwise, insertion sort */
589 	while ((bn = TAILQ_NEXT(bq, bio_act)) != NULL) {
590 
591 		/*
592 		 * We want to go after the current request if it is the end
593 		 * of the first request list, or if the next request is a
594 		 * larger cylinder than our request.
595 		 */
596 		if (bn == bioq->switch_point
597 		 || bio->bio_offset < bn->bio_offset)
598 			break;
599 		bq = bn;
600 	}
601 	TAILQ_INSERT_AFTER(&bioq->queue, bq, bio, bio_act);
602 }
603 
604 /*
605  * Disk error is the preface to plaintive error messages
606  * about failing disk transfers.  It prints messages of the form
607 
608 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
609 
610  * if the offset of the error in the transfer and a disk label
611  * are both available.  blkdone should be -1 if the position of the error
612  * is unknown; the disklabel pointer may be null from drivers that have not
613  * been converted to use them.  The message is printed with kprintf
614  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
615  * The message should be completed (with at least a newline) with kprintf
616  * or log(-1, ...), respectively.  There is no trailing space.
617  */
618 void
619 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
620 {
621 	struct buf *bp = bio->bio_buf;
622 	int unit = dkunit(dev);
623 	int slice = dkslice(dev);
624 	int part = dkpart(dev);
625 	char partname[2];
626 	char *sname;
627 	const char *term;
628 
629 	switch(bp->b_cmd) {
630 	case BUF_CMD_READ:
631 		term = "read";
632 		break;
633 	case BUF_CMD_WRITE:
634 		term = "write";
635 		break;
636 	default:
637 		term = "access";
638 		break;
639 	}
640 	sname = dsname(dev, unit, slice, part, partname);
641 	kprintf("%s%s: %s %sing ", sname, partname, what, term);
642 	kprintf("offset %012llx for %d", bio->bio_offset, bp->b_bcount);
643 	if (donecnt)
644 		kprintf(" (%d bytes completed)", donecnt);
645 }
646 
647 /*
648  * Locate a disk device
649  */
650 cdev_t
651 disk_locate(const char *devname)
652 {
653 	struct disk *dp;
654 	cdev_t dev;
655 	char *ptr;
656 	int i;
657 	int prefix;
658 	int slice;
659 	int part;
660 
661 	/*
662 	 * Device and unit
663 	 */
664 	for (i = 0; devname[i]; ++i) {
665 		if (devname[i] >= '0' && devname[i] <= '9')
666 			break;
667 	}
668 	while (devname[i] >= '0' && devname[i] <= '9')
669 		++i;
670 	prefix = i;
671 
672 	/*
673 	 * Slice and partition.  s1 starts at slice #2.  s0 is slice #0.
674 	 * slice #1 is the WHOLE_DISK_SLICE.
675 	 */
676 	if (devname[i] == 's') {
677 		slice = strtol(devname + i + 1, &ptr, 10);
678 		i = (const char *)ptr - devname;
679 		if (slice > 0)
680 			++slice;
681 	} else {
682 		slice = WHOLE_DISK_SLICE;
683 	}
684 	if (devname[i] >= 'a' && devname[i] <= 'z') {
685 		part = devname[i] - 'a';
686 	} else {
687 		part = WHOLE_SLICE_PART;
688 	}
689 
690 	/*
691 	 * Find the device
692 	 */
693 	LIST_FOREACH(dp, &disklist, d_list) {
694 		dev = dp->d_cdev;
695 		if (strlen(dev->si_name) == prefix &&
696 		    strncmp(devname, dev->si_name, prefix) == 0
697 		) {
698 			return(dkmodpart(dkmodslice(dev, slice), part));
699 		}
700 	}
701 	return(NULL);
702 }
703 
704