xref: /dragonfly/sys/kern/subr_disk.c (revision 8a0bcd56)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ----------------------------------------------------------------------------
35  * "THE BEER-WARE LICENSE" (Revision 42):
36  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
37  * can do whatever you want with this stuff. If we meet some day, and you think
38  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
39  * ----------------------------------------------------------------------------
40  *
41  * Copyright (c) 1982, 1986, 1988, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
78  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
79  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
80  * $DragonFly: src/sys/kern/subr_disk.c,v 1.40 2008/06/05 18:06:32 swildner Exp $
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/proc.h>
87 #include <sys/sysctl.h>
88 #include <sys/buf.h>
89 #include <sys/conf.h>
90 #include <sys/disklabel.h>
91 #include <sys/disklabel32.h>
92 #include <sys/disklabel64.h>
93 #include <sys/diskslice.h>
94 #include <sys/diskmbr.h>
95 #include <sys/disk.h>
96 #include <sys/kerneldump.h>
97 #include <sys/malloc.h>
98 #include <sys/sysctl.h>
99 #include <machine/md_var.h>
100 #include <sys/ctype.h>
101 #include <sys/syslog.h>
102 #include <sys/device.h>
103 #include <sys/msgport.h>
104 #include <sys/devfs.h>
105 #include <sys/thread.h>
106 #include <sys/dsched.h>
107 #include <sys/queue.h>
108 #include <sys/lock.h>
109 #include <sys/udev.h>
110 
111 #include <sys/buf2.h>
112 #include <sys/mplock2.h>
113 #include <sys/msgport2.h>
114 #include <sys/thread2.h>
115 
116 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
117 static int disk_debug_enable = 0;
118 
119 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
120 static void disk_msg_core(void *);
121 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe);
122 static void disk_probe(struct disk *dp, int reprobe);
123 static void _setdiskinfo(struct disk *disk, struct disk_info *info);
124 static void bioqwritereorder(struct bio_queue_head *bioq);
125 static void disk_cleanserial(char *serno);
126 static int disk_debug(int, char *, ...) __printflike(2, 3);
127 
128 static d_open_t diskopen;
129 static d_close_t diskclose;
130 static d_ioctl_t diskioctl;
131 static d_strategy_t diskstrategy;
132 static d_psize_t diskpsize;
133 static d_clone_t diskclone;
134 static d_dump_t diskdump;
135 
136 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
137 static struct lwkt_token disklist_token;
138 
139 static struct dev_ops disk_ops = {
140 	{ "disk", 0, D_DISK | D_MPSAFE },
141 	.d_open = diskopen,
142 	.d_close = diskclose,
143 	.d_read = physread,
144 	.d_write = physwrite,
145 	.d_ioctl = diskioctl,
146 	.d_strategy = diskstrategy,
147 	.d_dump = diskdump,
148 	.d_psize = diskpsize,
149 	.d_clone = diskclone
150 };
151 
152 static struct objcache 	*disk_msg_cache;
153 
154 struct objcache_malloc_args disk_msg_malloc_args = {
155 	sizeof(struct disk_msg), M_DISK };
156 
157 static struct lwkt_port disk_dispose_port;
158 static struct lwkt_port disk_msg_port;
159 
160 static int
161 disk_debug(int level, char *fmt, ...)
162 {
163 	__va_list ap;
164 
165 	__va_start(ap, fmt);
166 	if (level <= disk_debug_enable)
167 		kvprintf(fmt, ap);
168 	__va_end(ap);
169 
170 	return 0;
171 }
172 
173 static int
174 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe)
175 {
176 	struct disk_info *info = &dp->d_info;
177 	struct diskslice *sp = &dp->d_slice->dss_slices[slice];
178 	disklabel_ops_t ops;
179 	struct partinfo part;
180 	const char *msg;
181 	cdev_t ndev;
182 	int sno;
183 	u_int i;
184 
185 	disk_debug(2,
186 		    "disk_probe_slice (begin): %s (%s)\n",
187 			dev->si_name, dp->d_cdev->si_name);
188 
189 	sno = slice ? slice - 1 : 0;
190 
191 	ops = &disklabel32_ops;
192 	msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
193 	if (msg && !strcmp(msg, "no disk label")) {
194 		ops = &disklabel64_ops;
195 		msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
196 	}
197 	if (msg == NULL) {
198 		if (slice != WHOLE_DISK_SLICE)
199 			ops->op_adjust_label_reserved(dp->d_slice, slice, sp);
200 		else
201 			sp->ds_reserved = 0;
202 
203 		sp->ds_ops = ops;
204 		for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) {
205 			ops->op_loadpartinfo(sp->ds_label, i, &part);
206 			if (part.fstype) {
207 				if (reprobe &&
208 				    (ndev = devfs_find_device_by_name("%s%c",
209 						dev->si_name, 'a' + i))
210 				) {
211 					/*
212 					 * Device already exists and
213 					 * is still valid.
214 					 */
215 					ndev->si_flags |= SI_REPROBE_TEST;
216 				} else {
217 					ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
218 						dkmakeminor(dkunit(dp->d_cdev),
219 							    slice, i),
220 						UID_ROOT, GID_OPERATOR, 0640,
221 						"%s%c", dev->si_name, 'a'+ i);
222 					ndev->si_disk = dp;
223 					udev_dict_set_cstr(ndev, "subsystem", "disk");
224 					/* Inherit parent's disk type */
225 					if (dp->d_disktype) {
226 						udev_dict_set_cstr(ndev, "disk-type",
227 						    __DECONST(char *, dp->d_disktype));
228 					}
229 					if (dp->d_info.d_serialno) {
230 						make_dev_alias(ndev,
231 						    "serno/%s.s%d%c",
232 						    dp->d_info.d_serialno,
233 						    sno, 'a' + i);
234 					}
235 					ndev->si_flags |= SI_REPROBE_TEST;
236 				}
237 			}
238 		}
239 	} else if (info->d_dsflags & DSO_COMPATLABEL) {
240 		msg = NULL;
241 		if (sp->ds_size >= 0x100000000ULL)
242 			ops = &disklabel64_ops;
243 		else
244 			ops = &disklabel32_ops;
245 		sp->ds_label = ops->op_clone_label(info, sp);
246 	} else {
247 		if (sp->ds_type == DOSPTYP_386BSD || /* XXX */
248 		    sp->ds_type == DOSPTYP_NETBSD ||
249 		    sp->ds_type == DOSPTYP_OPENBSD) {
250 			log(LOG_WARNING, "%s: cannot find label (%s)\n",
251 			    dev->si_name, msg);
252 		}
253 	}
254 
255 	if (msg == NULL) {
256 		sp->ds_wlabel = FALSE;
257 	}
258 
259 	return (msg ? EINVAL : 0);
260 }
261 
262 /*
263  * This routine is only called for newly minted drives or to reprobe
264  * a drive with no open slices.  disk_probe_slice() is called directly
265  * when reprobing partition changes within slices.
266  */
267 static void
268 disk_probe(struct disk *dp, int reprobe)
269 {
270 	struct disk_info *info = &dp->d_info;
271 	cdev_t dev = dp->d_cdev;
272 	cdev_t ndev;
273 	int error, i, sno;
274 	struct diskslices *osp;
275 	struct diskslice *sp;
276 
277 	KKASSERT (info->d_media_blksize != 0);
278 
279 	osp = dp->d_slice;
280 	dp->d_slice = dsmakeslicestruct(BASE_SLICE, info);
281 	disk_debug(1, "disk_probe (begin): %s\n", dp->d_cdev->si_name);
282 
283 	error = mbrinit(dev, info, &(dp->d_slice));
284 	if (error) {
285 		dsgone(&osp);
286 		return;
287 	}
288 
289 	for (i = 0; i < dp->d_slice->dss_nslices; i++) {
290 		/*
291 		 * Ignore the whole-disk slice, it has already been created.
292 		 */
293 		if (i == WHOLE_DISK_SLICE)
294 			continue;
295 		sp = &dp->d_slice->dss_slices[i];
296 
297 		/*
298 		 * Handle s0.  s0 is a compatibility slice if there are no
299 		 * other slices and it has not otherwise been set up, else
300 		 * we ignore it.
301 		 */
302 		if (i == COMPATIBILITY_SLICE) {
303 			sno = 0;
304 			if (sp->ds_type == 0 &&
305 			    dp->d_slice->dss_nslices == BASE_SLICE) {
306 				sp->ds_size = info->d_media_blocks;
307 				sp->ds_reserved = 0;
308 			}
309 		} else {
310 			sno = i - 1;
311 			sp->ds_reserved = 0;
312 		}
313 
314 		/*
315 		 * Ignore 0-length slices
316 		 */
317 		if (sp->ds_size == 0)
318 			continue;
319 
320 		if (reprobe &&
321 		    (ndev = devfs_find_device_by_name("%ss%d",
322 						      dev->si_name, sno))) {
323 			/*
324 			 * Device already exists and is still valid
325 			 */
326 			ndev->si_flags |= SI_REPROBE_TEST;
327 		} else {
328 			/*
329 			 * Else create new device
330 			 */
331 			ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
332 					dkmakewholeslice(dkunit(dev), i),
333 					UID_ROOT, GID_OPERATOR, 0640,
334 					"%ss%d", dev->si_name, sno);
335 			udev_dict_set_cstr(ndev, "subsystem", "disk");
336 			/* Inherit parent's disk type */
337 			if (dp->d_disktype) {
338 				udev_dict_set_cstr(ndev, "disk-type",
339 				    __DECONST(char *, dp->d_disktype));
340 			}
341 			if (dp->d_info.d_serialno) {
342 				make_dev_alias(ndev, "serno/%s.s%d",
343 					       dp->d_info.d_serialno, sno);
344 			}
345 			ndev->si_disk = dp;
346 			ndev->si_flags |= SI_REPROBE_TEST;
347 		}
348 		sp->ds_dev = ndev;
349 
350 		/*
351 		 * Probe appropriate slices for a disklabel
352 		 *
353 		 * XXX slice type 1 used by our gpt probe code.
354 		 * XXX slice type 0 used by mbr compat slice.
355 		 */
356 		if (sp->ds_type == DOSPTYP_386BSD ||
357 		    sp->ds_type == DOSPTYP_NETBSD ||
358 		    sp->ds_type == DOSPTYP_OPENBSD ||
359 		    sp->ds_type == 0 ||
360 		    sp->ds_type == 1) {
361 			if (dp->d_slice->dss_first_bsd_slice == 0)
362 				dp->d_slice->dss_first_bsd_slice = i;
363 			disk_probe_slice(dp, ndev, i, reprobe);
364 		}
365 	}
366 	dsgone(&osp);
367 	disk_debug(1, "disk_probe (end): %s\n", dp->d_cdev->si_name);
368 }
369 
370 
371 static void
372 disk_msg_core(void *arg)
373 {
374 	struct disk	*dp;
375 	struct diskslice *sp;
376 	disk_msg_t msg;
377 	int run;
378 
379 	lwkt_gettoken(&disklist_token);
380 	lwkt_initport_thread(&disk_msg_port, curthread);
381 	wakeup(curthread);	/* synchronous startup */
382 	lwkt_reltoken(&disklist_token);
383 
384 	get_mplock();	/* not mpsafe yet? */
385 	run = 1;
386 
387 	while (run) {
388 		msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0);
389 
390 		switch (msg->hdr.u.ms_result) {
391 		case DISK_DISK_PROBE:
392 			dp = (struct disk *)msg->load;
393 			disk_debug(1,
394 				    "DISK_DISK_PROBE: %s\n",
395 					dp->d_cdev->si_name);
396 			disk_probe(dp, 0);
397 			break;
398 		case DISK_DISK_DESTROY:
399 			dp = (struct disk *)msg->load;
400 			disk_debug(1,
401 				    "DISK_DISK_DESTROY: %s\n",
402 					dp->d_cdev->si_name);
403 			devfs_destroy_subnames(dp->d_cdev->si_name);
404 			devfs_destroy_dev(dp->d_cdev);
405 			lwkt_gettoken(&disklist_token);
406 			LIST_REMOVE(dp, d_list);
407 			lwkt_reltoken(&disklist_token);
408 			if (dp->d_info.d_serialno) {
409 				kfree(dp->d_info.d_serialno, M_TEMP);
410 				dp->d_info.d_serialno = NULL;
411 			}
412 			break;
413 		case DISK_UNPROBE:
414 			dp = (struct disk *)msg->load;
415 			disk_debug(1,
416 				    "DISK_DISK_UNPROBE: %s\n",
417 					dp->d_cdev->si_name);
418 			devfs_destroy_subnames(dp->d_cdev->si_name);
419 			break;
420 		case DISK_SLICE_REPROBE:
421 			dp = (struct disk *)msg->load;
422 			sp = (struct diskslice *)msg->load2;
423 			devfs_clr_subnames_flag(sp->ds_dev->si_name,
424 						SI_REPROBE_TEST);
425 			disk_debug(1,
426 				    "DISK_SLICE_REPROBE: %s\n",
427 				    sp->ds_dev->si_name);
428 			disk_probe_slice(dp, sp->ds_dev,
429 					 dkslice(sp->ds_dev), 1);
430 			devfs_destroy_subnames_without_flag(
431 					sp->ds_dev->si_name, SI_REPROBE_TEST);
432 			break;
433 		case DISK_DISK_REPROBE:
434 			dp = (struct disk *)msg->load;
435 			devfs_clr_subnames_flag(dp->d_cdev->si_name, SI_REPROBE_TEST);
436 			disk_debug(1,
437 				    "DISK_DISK_REPROBE: %s\n",
438 				    dp->d_cdev->si_name);
439 			disk_probe(dp, 1);
440 			devfs_destroy_subnames_without_flag(
441 					dp->d_cdev->si_name, SI_REPROBE_TEST);
442 			break;
443 		case DISK_SYNC:
444 			disk_debug(1, "DISK_SYNC\n");
445 			break;
446 		default:
447 			devfs_debug(DEVFS_DEBUG_WARNING,
448 				    "disk_msg_core: unknown message "
449 				    "received at core\n");
450 			break;
451 		}
452 		lwkt_replymsg(&msg->hdr, 0);
453 	}
454 	lwkt_exit();
455 }
456 
457 
458 /*
459  * Acts as a message drain. Any message that is replied to here gets
460  * destroyed and the memory freed.
461  */
462 static void
463 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
464 {
465 	objcache_put(disk_msg_cache, msg);
466 }
467 
468 
469 void
470 disk_msg_send(uint32_t cmd, void *load, void *load2)
471 {
472 	disk_msg_t disk_msg;
473 	lwkt_port_t port = &disk_msg_port;
474 
475 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
476 
477 	lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0);
478 
479 	disk_msg->hdr.u.ms_result = cmd;
480 	disk_msg->load = load;
481 	disk_msg->load2 = load2;
482 	KKASSERT(port);
483 	lwkt_sendmsg(port, &disk_msg->hdr);
484 }
485 
486 void
487 disk_msg_send_sync(uint32_t cmd, void *load, void *load2)
488 {
489 	struct lwkt_port rep_port;
490 	disk_msg_t disk_msg;
491 	lwkt_port_t port;
492 
493 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
494 	port = &disk_msg_port;
495 
496 	/* XXX could probably use curthread's built-in msgport */
497 	lwkt_initport_thread(&rep_port, curthread);
498 	lwkt_initmsg(&disk_msg->hdr, &rep_port, 0);
499 
500 	disk_msg->hdr.u.ms_result = cmd;
501 	disk_msg->load = load;
502 	disk_msg->load2 = load2;
503 
504 	lwkt_sendmsg(port, &disk_msg->hdr);
505 	lwkt_waitmsg(&disk_msg->hdr, 0);
506 	objcache_put(disk_msg_cache, disk_msg);
507 }
508 
509 /*
510  * Create a raw device for the dev_ops template (which is returned).  Also
511  * create a slice and unit managed disk and overload the user visible
512  * device space with it.
513  *
514  * NOTE: The returned raw device is NOT a slice and unit managed device.
515  * It is an actual raw device representing the raw disk as specified by
516  * the passed dev_ops.  The disk layer not only returns such a raw device,
517  * it also uses it internally when passing (modified) commands through.
518  */
519 cdev_t
520 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
521 {
522 	return disk_create_named(NULL, unit, dp, raw_ops);
523 }
524 
525 cdev_t
526 disk_create_named(const char *name, int unit, struct disk *dp, struct dev_ops *raw_ops)
527 {
528 	cdev_t rawdev;
529 
530 	if (name == NULL)
531 		name = raw_ops->head.name;
532 
533 	disk_debug(1, "disk_create (begin): %s%d\n", name, unit);
534 
535 	rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
536 			    UID_ROOT, GID_OPERATOR, 0640,
537 			    "%s%d", name, unit);
538 
539 	bzero(dp, sizeof(*dp));
540 
541 	dp->d_rawdev = rawdev;
542 	dp->d_raw_ops = raw_ops;
543 	dp->d_dev_ops = &disk_ops;
544 	dp->d_cdev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
545 			    dkmakewholedisk(unit),
546 			    UID_ROOT, GID_OPERATOR, 0640,
547 			    "%s%d", name, unit);
548 	udev_dict_set_cstr(dp->d_cdev, "subsystem", "disk");
549 	dp->d_cdev->si_disk = dp;
550 
551 	dsched_disk_create_callback(dp, name, unit);
552 
553 	lwkt_gettoken(&disklist_token);
554 	LIST_INSERT_HEAD(&disklist, dp, d_list);
555 	lwkt_reltoken(&disklist_token);
556 
557 	disk_debug(1, "disk_create (end): %s%d\n", name, unit);
558 
559 	return (dp->d_rawdev);
560 }
561 
562 int
563 disk_setdisktype(struct disk *disk, const char *type)
564 {
565 	KKASSERT(disk != NULL);
566 
567 	disk->d_disktype = type;
568 	return udev_dict_set_cstr(disk->d_cdev, "disk-type", __DECONST(char *, type));
569 }
570 
571 static void
572 _setdiskinfo(struct disk *disk, struct disk_info *info)
573 {
574 	char *oldserialno;
575 
576 	oldserialno = disk->d_info.d_serialno;
577 	bcopy(info, &disk->d_info, sizeof(disk->d_info));
578 	info = &disk->d_info;
579 
580 	disk_debug(1,
581 		    "_setdiskinfo: %s\n",
582 			disk->d_cdev->si_name);
583 
584 	/*
585 	 * The serial number is duplicated so the caller can throw
586 	 * their copy away.
587 	 */
588 	if (info->d_serialno && info->d_serialno[0]) {
589 		info->d_serialno = kstrdup(info->d_serialno, M_TEMP);
590 		disk_cleanserial(info->d_serialno);
591 		if (disk->d_cdev) {
592 			make_dev_alias(disk->d_cdev, "serno/%s",
593 					info->d_serialno);
594 		}
595 	} else {
596 		info->d_serialno = NULL;
597 	}
598 	if (oldserialno)
599 		kfree(oldserialno, M_TEMP);
600 
601 	dsched_disk_update_callback(disk, info);
602 
603 	/*
604 	 * The caller may set d_media_size or d_media_blocks and we
605 	 * calculate the other.
606 	 */
607 	KKASSERT(info->d_media_size == 0 || info->d_media_blksize == 0);
608 	if (info->d_media_size == 0 && info->d_media_blocks) {
609 		info->d_media_size = (u_int64_t)info->d_media_blocks *
610 				     info->d_media_blksize;
611 	} else if (info->d_media_size && info->d_media_blocks == 0 &&
612 		   info->d_media_blksize) {
613 		info->d_media_blocks = info->d_media_size /
614 				       info->d_media_blksize;
615 	}
616 
617 	/*
618 	 * The si_* fields for rawdev are not set until after the
619 	 * disk_create() call, so someone using the cooked version
620 	 * of the raw device (i.e. da0s0) will not get the right
621 	 * si_iosize_max unless we fix it up here.
622 	 */
623 	if (disk->d_cdev && disk->d_rawdev &&
624 	    disk->d_cdev->si_iosize_max == 0) {
625 		disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max;
626 		disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys;
627 		disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best;
628 	}
629 
630 	/* Add the serial number to the udev_dictionary */
631 	if (info->d_serialno)
632 		udev_dict_set_cstr(disk->d_cdev, "serno", info->d_serialno);
633 }
634 
635 /*
636  * Disk drivers must call this routine when media parameters are available
637  * or have changed.
638  */
639 void
640 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
641 {
642 	_setdiskinfo(disk, info);
643 	disk_msg_send(DISK_DISK_PROBE, disk, NULL);
644 	disk_debug(1,
645 		    "disk_setdiskinfo: sent probe for %s\n",
646 			disk->d_cdev->si_name);
647 }
648 
649 void
650 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info)
651 {
652 	_setdiskinfo(disk, info);
653 	disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL);
654 	disk_debug(1,
655 		    "disk_setdiskinfo_sync: sent probe for %s\n",
656 			disk->d_cdev->si_name);
657 }
658 
659 /*
660  * This routine is called when an adapter detaches.  The higher level
661  * managed disk device is destroyed while the lower level raw device is
662  * released.
663  */
664 void
665 disk_destroy(struct disk *disk)
666 {
667 	dsched_disk_destroy_callback(disk);
668 	disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL);
669 	return;
670 }
671 
672 int
673 disk_dumpcheck(cdev_t dev, u_int64_t *size, u_int64_t *blkno, u_int32_t *secsize)
674 {
675 	struct partinfo pinfo;
676 	int error;
677 
678 	bzero(&pinfo, sizeof(pinfo));
679 	error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0,
680 			   proc0.p_ucred, NULL);
681 	if (error)
682 		return (error);
683 
684 	if (pinfo.media_blksize == 0)
685 		return (ENXIO);
686 
687 	if (blkno) /* XXX: make sure this reserved stuff is right */
688 		*blkno = pinfo.reserved_blocks +
689 			pinfo.media_offset / pinfo.media_blksize;
690 	if (secsize)
691 		*secsize = pinfo.media_blksize;
692 	if (size)
693 		*size = (pinfo.media_blocks - pinfo.reserved_blocks);
694 
695 	return (0);
696 }
697 
698 int
699 disk_dumpconf(cdev_t dev, u_int onoff)
700 {
701 	struct dumperinfo di;
702 	u_int64_t	size, blkno;
703 	u_int32_t	secsize;
704 	int error;
705 
706 	if (!onoff)
707 		return set_dumper(NULL);
708 
709 	error = disk_dumpcheck(dev, &size, &blkno, &secsize);
710 
711 	if (error)
712 		return ENXIO;
713 
714 	bzero(&di, sizeof(struct dumperinfo));
715 	di.dumper = diskdump;
716 	di.priv = dev;
717 	di.blocksize = secsize;
718 	di.mediaoffset = blkno * DEV_BSIZE;
719 	di.mediasize = size * DEV_BSIZE;
720 
721 	return set_dumper(&di);
722 }
723 
724 void
725 disk_unprobe(struct disk *disk)
726 {
727 	if (disk == NULL)
728 		return;
729 
730 	disk_msg_send_sync(DISK_UNPROBE, disk, NULL);
731 }
732 
733 void
734 disk_invalidate (struct disk *disk)
735 {
736 	dsgone(&disk->d_slice);
737 }
738 
739 struct disk *
740 disk_enumerate(struct disk *disk)
741 {
742 	struct disk *dp;
743 
744 	lwkt_gettoken(&disklist_token);
745 	if (!disk)
746 		dp = (LIST_FIRST(&disklist));
747 	else
748 		dp = (LIST_NEXT(disk, d_list));
749 	lwkt_reltoken(&disklist_token);
750 
751 	return dp;
752 }
753 
754 static
755 int
756 sysctl_disks(SYSCTL_HANDLER_ARGS)
757 {
758 	struct disk *disk;
759 	int error, first;
760 
761 	disk = NULL;
762 	first = 1;
763 
764 	while ((disk = disk_enumerate(disk))) {
765 		if (!first) {
766 			error = SYSCTL_OUT(req, " ", 1);
767 			if (error)
768 				return error;
769 		} else {
770 			first = 0;
771 		}
772 		error = SYSCTL_OUT(req, disk->d_rawdev->si_name,
773 				   strlen(disk->d_rawdev->si_name));
774 		if (error)
775 			return error;
776 	}
777 	error = SYSCTL_OUT(req, "", 1);
778 	return error;
779 }
780 
781 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
782     sysctl_disks, "A", "names of available disks");
783 
784 /*
785  * Open a disk device or partition.
786  */
787 static
788 int
789 diskopen(struct dev_open_args *ap)
790 {
791 	cdev_t dev = ap->a_head.a_dev;
792 	struct disk *dp;
793 	int error;
794 
795 	/*
796 	 * dp can't be NULL here XXX.
797 	 *
798 	 * d_slice will be NULL if setdiskinfo() has not been called yet.
799 	 * setdiskinfo() is typically called whether the disk is present
800 	 * or not (e.g. CD), but the base disk device is created first
801 	 * and there may be a race.
802 	 */
803 	dp = dev->si_disk;
804 	if (dp == NULL || dp->d_slice == NULL)
805 		return (ENXIO);
806 	error = 0;
807 
808 	/*
809 	 * Deal with open races
810 	 */
811 	get_mplock();
812 	while (dp->d_flags & DISKFLAG_LOCK) {
813 		dp->d_flags |= DISKFLAG_WANTED;
814 		error = tsleep(dp, PCATCH, "diskopen", hz);
815 		if (error) {
816 			rel_mplock();
817 			return (error);
818 		}
819 	}
820 	dp->d_flags |= DISKFLAG_LOCK;
821 
822 	/*
823 	 * Open the underlying raw device.
824 	 */
825 	if (!dsisopen(dp->d_slice)) {
826 #if 0
827 		if (!pdev->si_iosize_max)
828 			pdev->si_iosize_max = dev->si_iosize_max;
829 #endif
830 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
831 				  ap->a_devtype, ap->a_cred);
832 	}
833 #if 0
834 	/*
835 	 * Inherit properties from the underlying device now that it is
836 	 * open.
837 	 */
838 	dev_dclone(dev);
839 #endif
840 
841 	if (error)
842 		goto out;
843 	error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
844 		       &dp->d_slice, &dp->d_info);
845 	if (!dsisopen(dp->d_slice)) {
846 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype);
847 	}
848 out:
849 	dp->d_flags &= ~DISKFLAG_LOCK;
850 	if (dp->d_flags & DISKFLAG_WANTED) {
851 		dp->d_flags &= ~DISKFLAG_WANTED;
852 		wakeup(dp);
853 	}
854 	rel_mplock();
855 
856 	return(error);
857 }
858 
859 /*
860  * Close a disk device or partition
861  */
862 static
863 int
864 diskclose(struct dev_close_args *ap)
865 {
866 	cdev_t dev = ap->a_head.a_dev;
867 	struct disk *dp;
868 	int error;
869 
870 	error = 0;
871 	dp = dev->si_disk;
872 
873 	get_mplock();
874 	dsclose(dev, ap->a_devtype, dp->d_slice);
875 	if (!dsisopen(dp->d_slice)) {
876 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype);
877 	}
878 	rel_mplock();
879 	return (error);
880 }
881 
882 /*
883  * First execute the ioctl on the disk device, and if it isn't supported
884  * try running it on the backing device.
885  */
886 static
887 int
888 diskioctl(struct dev_ioctl_args *ap)
889 {
890 	cdev_t dev = ap->a_head.a_dev;
891 	struct disk *dp;
892 	int error;
893 	u_int u;
894 
895 	dp = dev->si_disk;
896 	if (dp == NULL)
897 		return (ENXIO);
898 
899 	devfs_debug(DEVFS_DEBUG_DEBUG,
900 		    "diskioctl: cmd is: %lx (name: %s)\n",
901 		    ap->a_cmd, dev->si_name);
902 	devfs_debug(DEVFS_DEBUG_DEBUG,
903 		    "diskioctl: &dp->d_slice is: %p, %p\n",
904 		    &dp->d_slice, dp->d_slice);
905 
906 	if (ap->a_cmd == DIOCGKERNELDUMP) {
907 		u = *(u_int *)ap->a_data;
908 		return disk_dumpconf(dev, u);
909 	}
910 
911 	if (&dp->d_slice == NULL || dp->d_slice == NULL) {
912 		error = ENOIOCTL;
913 	} else {
914 		get_mplock();
915 		error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
916 				&dp->d_slice, &dp->d_info);
917 		rel_mplock();
918 	}
919 
920 	if (error == ENOIOCTL) {
921 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
922 				   ap->a_fflag, ap->a_cred, NULL);
923 	}
924 	return (error);
925 }
926 
927 /*
928  * Execute strategy routine
929  */
930 static
931 int
932 diskstrategy(struct dev_strategy_args *ap)
933 {
934 	cdev_t dev = ap->a_head.a_dev;
935 	struct bio *bio = ap->a_bio;
936 	struct bio *nbio;
937 	struct disk *dp;
938 
939 	dp = dev->si_disk;
940 
941 	if (dp == NULL) {
942 		bio->bio_buf->b_error = ENXIO;
943 		bio->bio_buf->b_flags |= B_ERROR;
944 		biodone(bio);
945 		return(0);
946 	}
947 	KKASSERT(dev->si_disk == dp);
948 
949 	/*
950 	 * The dscheck() function will also transform the slice relative
951 	 * block number i.e. bio->bio_offset into a block number that can be
952 	 * passed directly to the underlying raw device.  If dscheck()
953 	 * returns NULL it will have handled the bio for us (e.g. EOF
954 	 * or error due to being beyond the device size).
955 	 */
956 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) {
957 		dsched_queue(dp, nbio);
958 	} else {
959 		biodone(bio);
960 	}
961 	return(0);
962 }
963 
964 /*
965  * Return the partition size in ?blocks?
966  */
967 static
968 int
969 diskpsize(struct dev_psize_args *ap)
970 {
971 	cdev_t dev = ap->a_head.a_dev;
972 	struct disk *dp;
973 
974 	dp = dev->si_disk;
975 	if (dp == NULL)
976 		return(ENODEV);
977 	ap->a_result = dssize(dev, &dp->d_slice);
978 	return(0);
979 }
980 
981 /*
982  * When new device entries are instantiated, make sure they inherit our
983  * si_disk structure and block and iosize limits from the raw device.
984  *
985  * This routine is always called synchronously in the context of the
986  * client.
987  *
988  * XXX The various io and block size constraints are not always initialized
989  * properly by devices.
990  */
991 static
992 int
993 diskclone(struct dev_clone_args *ap)
994 {
995 	cdev_t dev = ap->a_head.a_dev;
996 	struct disk *dp;
997 	dp = dev->si_disk;
998 
999 	KKASSERT(dp != NULL);
1000 	dev->si_disk = dp;
1001 	dev->si_iosize_max = dp->d_rawdev->si_iosize_max;
1002 	dev->si_bsize_phys = dp->d_rawdev->si_bsize_phys;
1003 	dev->si_bsize_best = dp->d_rawdev->si_bsize_best;
1004 	return(0);
1005 }
1006 
1007 int
1008 diskdump(struct dev_dump_args *ap)
1009 {
1010 	cdev_t dev = ap->a_head.a_dev;
1011 	struct disk *dp = dev->si_disk;
1012 	u_int64_t size, offset;
1013 	int error;
1014 
1015 	error = disk_dumpcheck(dev, &size, &ap->a_blkno, &ap->a_secsize);
1016 	/* XXX: this should probably go in disk_dumpcheck somehow */
1017 	if (ap->a_length != 0) {
1018 		size *= DEV_BSIZE;
1019 		offset = ap->a_blkno * DEV_BSIZE;
1020 		if ((ap->a_offset < offset) ||
1021 		    (ap->a_offset + ap->a_length - offset > size)) {
1022 			kprintf("Attempt to write outside dump device boundaries.\n");
1023 			error = ENOSPC;
1024 		}
1025 	}
1026 
1027 	if (error == 0) {
1028 		ap->a_head.a_dev = dp->d_rawdev;
1029 		error = dev_doperate(&ap->a_head);
1030 	}
1031 
1032 	return(error);
1033 }
1034 
1035 
1036 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
1037     0, sizeof(struct diskslices), "sizeof(struct diskslices)");
1038 
1039 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
1040     0, sizeof(struct disk), "sizeof(struct disk)");
1041 
1042 /*
1043  * Reorder interval for burst write allowance and minor write
1044  * allowance.
1045  *
1046  * We always want to trickle some writes in to make use of the
1047  * disk's zone cache.  Bursting occurs on a longer interval and only
1048  * runningbufspace is well over the hirunningspace limit.
1049  */
1050 int bioq_reorder_burst_interval = 60;	/* should be multiple of minor */
1051 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval,
1052 	   CTLFLAG_RW, &bioq_reorder_burst_interval, 0, "");
1053 int bioq_reorder_minor_interval = 5;
1054 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval,
1055 	   CTLFLAG_RW, &bioq_reorder_minor_interval, 0, "");
1056 
1057 int bioq_reorder_burst_bytes = 3000000;
1058 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes,
1059 	   CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, "");
1060 int bioq_reorder_minor_bytes = 262144;
1061 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes,
1062 	   CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, "");
1063 
1064 
1065 /*
1066  * Order I/Os.  Generally speaking this code is designed to make better
1067  * use of drive zone caches.  A drive zone cache can typically track linear
1068  * reads or writes for around 16 zones simultaniously.
1069  *
1070  * Read prioritization issues:  It is possible for hundreds of megabytes worth
1071  * of writes to be queued asynchronously.  This creates a huge bottleneck
1072  * for reads which reduce read bandwidth to a trickle.
1073  *
1074  * To solve this problem we generally reorder reads before writes.
1075  *
1076  * However, a large number of random reads can also starve writes and
1077  * make poor use of the drive zone cache so we allow writes to trickle
1078  * in every N reads.
1079  */
1080 void
1081 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
1082 {
1083 	/*
1084 	 * The BIO wants to be ordered.  Adding to the tail also
1085 	 * causes transition to be set to NULL, forcing the ordering
1086 	 * of all prior I/O's.
1087 	 */
1088 	if (bio->bio_buf->b_flags & B_ORDERED) {
1089 		bioq_insert_tail(bioq, bio);
1090 		return;
1091 	}
1092 
1093 	switch(bio->bio_buf->b_cmd) {
1094 	case BUF_CMD_READ:
1095 		if (bioq->transition) {
1096 			/*
1097 			 * Insert before the first write.  Bleedover writes
1098 			 * based on reorder intervals to prevent starvation.
1099 			 */
1100 			TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act);
1101 			++bioq->reorder;
1102 			if (bioq->reorder % bioq_reorder_minor_interval == 0) {
1103 				bioqwritereorder(bioq);
1104 				if (bioq->reorder >=
1105 				    bioq_reorder_burst_interval) {
1106 					bioq->reorder = 0;
1107 				}
1108 			}
1109 		} else {
1110 			/*
1111 			 * No writes queued (or ordering was forced),
1112 			 * insert at tail.
1113 			 */
1114 			TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1115 		}
1116 		break;
1117 	case BUF_CMD_WRITE:
1118 		/*
1119 		 * Writes are always appended.  If no writes were previously
1120 		 * queued or an ordered tail insertion occured the transition
1121 		 * field will be NULL.
1122 		 */
1123 		TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1124 		if (bioq->transition == NULL)
1125 			bioq->transition = bio;
1126 		break;
1127 	default:
1128 		/*
1129 		 * All other request types are forced to be ordered.
1130 		 */
1131 		bioq_insert_tail(bioq, bio);
1132 		break;
1133 	}
1134 }
1135 
1136 /*
1137  * Move the read-write transition point to prevent reads from
1138  * completely starving our writes.  This brings a number of writes into
1139  * the fold every N reads.
1140  *
1141  * We bring a few linear writes into the fold on a minor interval
1142  * and we bring a non-linear burst of writes into the fold on a major
1143  * interval.  Bursting only occurs if runningbufspace is really high
1144  * (typically from syncs, fsyncs, or HAMMER flushes).
1145  */
1146 static
1147 void
1148 bioqwritereorder(struct bio_queue_head *bioq)
1149 {
1150 	struct bio *bio;
1151 	off_t next_offset;
1152 	size_t left;
1153 	size_t n;
1154 	int check_off;
1155 
1156 	if (bioq->reorder < bioq_reorder_burst_interval ||
1157 	    !buf_runningbufspace_severe()) {
1158 		left = (size_t)bioq_reorder_minor_bytes;
1159 		check_off = 1;
1160 	} else {
1161 		left = (size_t)bioq_reorder_burst_bytes;
1162 		check_off = 0;
1163 	}
1164 
1165 	next_offset = bioq->transition->bio_offset;
1166 	while ((bio = bioq->transition) != NULL &&
1167 	       (check_off == 0 || next_offset == bio->bio_offset)
1168 	) {
1169 		n = bio->bio_buf->b_bcount;
1170 		next_offset = bio->bio_offset + n;
1171 		bioq->transition = TAILQ_NEXT(bio, bio_act);
1172 		if (left < n)
1173 			break;
1174 		left -= n;
1175 	}
1176 }
1177 
1178 /*
1179  * Bounds checking against the media size, used for the raw partition.
1180  * secsize, mediasize and b_blkno must all be the same units.
1181  * Possibly this has to be DEV_BSIZE (512).
1182  */
1183 int
1184 bounds_check_with_mediasize(struct bio *bio, int secsize, uint64_t mediasize)
1185 {
1186 	struct buf *bp = bio->bio_buf;
1187 	int64_t sz;
1188 
1189 	sz = howmany(bp->b_bcount, secsize);
1190 
1191 	if (bio->bio_offset/DEV_BSIZE + sz > mediasize) {
1192 		sz = mediasize - bio->bio_offset/DEV_BSIZE;
1193 		if (sz == 0) {
1194 			/* If exactly at end of disk, return EOF. */
1195 			bp->b_resid = bp->b_bcount;
1196 			return 0;
1197 		}
1198 		if (sz < 0) {
1199 			/* If past end of disk, return EINVAL. */
1200 			bp->b_error = EINVAL;
1201 			return 0;
1202 		}
1203 		/* Otherwise, truncate request. */
1204 		bp->b_bcount = sz * secsize;
1205 	}
1206 
1207 	return 1;
1208 }
1209 
1210 /*
1211  * Disk error is the preface to plaintive error messages
1212  * about failing disk transfers.  It prints messages of the form
1213 
1214 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1215 
1216  * if the offset of the error in the transfer and a disk label
1217  * are both available.  blkdone should be -1 if the position of the error
1218  * is unknown; the disklabel pointer may be null from drivers that have not
1219  * been converted to use them.  The message is printed with kprintf
1220  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1221  * The message should be completed (with at least a newline) with kprintf
1222  * or log(-1, ...), respectively.  There is no trailing space.
1223  */
1224 void
1225 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
1226 {
1227 	struct buf *bp = bio->bio_buf;
1228 	const char *term;
1229 
1230 	switch(bp->b_cmd) {
1231 	case BUF_CMD_READ:
1232 		term = "read";
1233 		break;
1234 	case BUF_CMD_WRITE:
1235 		term = "write";
1236 		break;
1237 	default:
1238 		term = "access";
1239 		break;
1240 	}
1241 	kprintf("%s: %s %sing ", dev->si_name, what, term);
1242 	kprintf("offset %012llx for %d",
1243 		(long long)bio->bio_offset,
1244 		bp->b_bcount);
1245 
1246 	if (donecnt)
1247 		kprintf(" (%d bytes completed)", donecnt);
1248 }
1249 
1250 /*
1251  * Locate a disk device
1252  */
1253 cdev_t
1254 disk_locate(const char *devname)
1255 {
1256 	return devfs_find_device_by_name(devname);
1257 }
1258 
1259 void
1260 disk_config(void *arg)
1261 {
1262 	disk_msg_send_sync(DISK_SYNC, NULL, NULL);
1263 }
1264 
1265 static void
1266 disk_init(void)
1267 {
1268 	struct thread* td_core;
1269 
1270 	disk_msg_cache = objcache_create("disk-msg-cache", 0, 0,
1271 					 NULL, NULL, NULL,
1272 					 objcache_malloc_alloc,
1273 					 objcache_malloc_free,
1274 					 &disk_msg_malloc_args);
1275 
1276 	lwkt_token_init(&disklist_token, 1, "disks");
1277 
1278 	/*
1279 	 * Initialize the reply-only port which acts as a message drain
1280 	 */
1281 	lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply);
1282 
1283 	lwkt_gettoken(&disklist_token);
1284 	lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL,
1285 		    0, 0, "disk_msg_core");
1286 	tsleep(td_core, 0, "diskcore", 0);
1287 	lwkt_reltoken(&disklist_token);
1288 }
1289 
1290 static void
1291 disk_uninit(void)
1292 {
1293 	objcache_destroy(disk_msg_cache);
1294 }
1295 
1296 /*
1297  * Clean out illegal characters in serial numbers.
1298  */
1299 static void
1300 disk_cleanserial(char *serno)
1301 {
1302 	char c;
1303 
1304 	while ((c = *serno) != 0) {
1305 		if (c >= 'a' && c <= 'z')
1306 			;
1307 		else if (c >= 'A' && c <= 'Z')
1308 			;
1309 		else if (c >= '0' && c <= '9')
1310 			;
1311 		else if (c == '-' || c == '@' || c == '+' || c == '.')
1312 			;
1313 		else
1314 			c = '_';
1315 		*serno++= c;
1316 	}
1317 }
1318 
1319 TUNABLE_INT("kern.disk_debug", &disk_debug_enable);
1320 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable,
1321 		0, "Enable subr_disk debugging");
1322 
1323 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL);
1324 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL);
1325