xref: /dragonfly/sys/kern/subr_disk.c (revision aeaecd48)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * and Alex Hornung <ahornung@gmail.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * ----------------------------------------------------------------------------
36  * "THE BEER-WARE LICENSE" (Revision 42):
37  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
38  * can do whatever you want with this stuff. If we meet some day, and you think
39  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
40  * ----------------------------------------------------------------------------
41  *
42  * Copyright (c) 1982, 1986, 1988, 1993
43  *	The Regents of the University of California.  All rights reserved.
44  * (c) UNIX System Laboratories, Inc.
45  * All or some portions of this file are derived from material licensed
46  * to the University of California by American Telephone and Telegraph
47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48  * the permission of UNIX System Laboratories, Inc.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
75  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
76  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/sysctl.h>
84 #include <sys/buf.h>
85 #include <sys/conf.h>
86 #include <sys/disklabel.h>
87 #include <sys/disklabel32.h>
88 #include <sys/disklabel64.h>
89 #include <sys/diskslice.h>
90 #include <sys/diskmbr.h>
91 #include <sys/disk.h>
92 #include <sys/kerneldump.h>
93 #include <sys/malloc.h>
94 #include <machine/md_var.h>
95 #include <sys/ctype.h>
96 #include <sys/syslog.h>
97 #include <sys/device.h>
98 #include <sys/msgport.h>
99 #include <sys/devfs.h>
100 #include <sys/thread.h>
101 #include <sys/dsched.h>
102 #include <sys/queue.h>
103 #include <sys/lock.h>
104 #include <sys/udev.h>
105 #include <sys/uuid.h>
106 
107 #include <sys/buf2.h>
108 #include <sys/mplock2.h>
109 #include <sys/msgport2.h>
110 #include <sys/thread2.h>
111 
112 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
113 static int disk_debug_enable = 0;
114 
115 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
116 static void disk_msg_core(void *);
117 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe);
118 static void disk_probe(struct disk *dp, int reprobe);
119 static void _setdiskinfo(struct disk *disk, struct disk_info *info);
120 static void bioqwritereorder(struct bio_queue_head *bioq);
121 static void disk_cleanserial(char *serno);
122 static int disk_debug(int, char *, ...) __printflike(2, 3);
123 static cdev_t _disk_create_named(const char *name, int unit, struct disk *dp,
124     struct dev_ops *raw_ops, int clone);
125 
126 static d_open_t diskopen;
127 static d_close_t diskclose;
128 static d_ioctl_t diskioctl;
129 static d_strategy_t diskstrategy;
130 static d_psize_t diskpsize;
131 static d_dump_t diskdump;
132 
133 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
134 static struct lwkt_token disklist_token;
135 
136 static struct dev_ops disk_ops = {
137 	{ "disk", 0, D_DISK | D_MPSAFE | D_TRACKCLOSE },
138 	.d_open = diskopen,
139 	.d_close = diskclose,
140 	.d_read = physread,
141 	.d_write = physwrite,
142 	.d_ioctl = diskioctl,
143 	.d_strategy = diskstrategy,
144 	.d_dump = diskdump,
145 	.d_psize = diskpsize,
146 };
147 
148 static struct objcache 	*disk_msg_cache;
149 
150 struct objcache_malloc_args disk_msg_malloc_args = {
151 	sizeof(struct disk_msg), M_DISK };
152 
153 static struct lwkt_port disk_dispose_port;
154 static struct lwkt_port disk_msg_port;
155 
156 static int
157 disk_debug(int level, char *fmt, ...)
158 {
159 	__va_list ap;
160 
161 	__va_start(ap, fmt);
162 	if (level <= disk_debug_enable)
163 		kvprintf(fmt, ap);
164 	__va_end(ap);
165 
166 	return 0;
167 }
168 
169 static int
170 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe)
171 {
172 	struct disk_info *info = &dp->d_info;
173 	struct diskslice *sp = &dp->d_slice->dss_slices[slice];
174 	disklabel_ops_t ops;
175 	struct partinfo part;
176 	const char *msg;
177 	char uuid_buf[128];
178 	cdev_t ndev;
179 	int sno;
180 	u_int i;
181 
182 	disk_debug(2, "disk_probe_slice (begin): %s (%s)\n",
183 		   dev->si_name, dp->d_cdev->si_name);
184 
185 	sno = slice ? slice - 1 : 0;
186 
187 	ops = &disklabel32_ops;
188 	msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
189 	if (msg && !strcmp(msg, "no disk label")) {
190 		ops = &disklabel64_ops;
191 		msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
192 	}
193 
194 	if (msg == NULL) {
195 		if (slice != WHOLE_DISK_SLICE)
196 			ops->op_adjust_label_reserved(dp->d_slice, slice, sp);
197 		else
198 			sp->ds_reserved = 0;
199 
200 		sp->ds_ops = ops;
201 		for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) {
202 			ops->op_loadpartinfo(sp->ds_label, i, &part);
203 			if (part.fstype) {
204 				if (reprobe &&
205 				    (ndev = devfs_find_device_by_name("%s%c",
206 						dev->si_name, 'a' + i))
207 				) {
208 					/*
209 					 * Device already exists and
210 					 * is still valid.
211 					 */
212 					ndev->si_flags |= SI_REPROBE_TEST;
213 
214 					/*
215 					 * Destroy old UUID alias
216 					 */
217 					destroy_dev_alias(ndev, "part-by-uuid/*");
218 
219 					/* Create UUID alias */
220 					if (!kuuid_is_nil(&part.storage_uuid)) {
221 						snprintf_uuid(uuid_buf,
222 						    sizeof(uuid_buf),
223 						    &part.storage_uuid);
224 						make_dev_alias(ndev,
225 						    "part-by-uuid/%s",
226 						    uuid_buf);
227 						udev_dict_set_cstr(ndev, "uuid", uuid_buf);
228 					}
229 				} else {
230 					ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
231 						dkmakeminor(dkunit(dp->d_cdev),
232 							    slice, i),
233 						UID_ROOT, GID_OPERATOR, 0640,
234 						"%s%c", dev->si_name, 'a'+ i);
235 					ndev->si_parent = dev;
236 					ndev->si_iosize_max = dev->si_iosize_max;
237 					ndev->si_disk = dp;
238 					udev_dict_set_cstr(ndev, "subsystem", "disk");
239 					/* Inherit parent's disk type */
240 					if (dp->d_disktype) {
241 						udev_dict_set_cstr(ndev, "disk-type",
242 						    __DECONST(char *, dp->d_disktype));
243 					}
244 
245 					/* Create serno alias */
246 					if (dp->d_info.d_serialno) {
247 						make_dev_alias(ndev,
248 						    "serno/%s.s%d%c",
249 						    dp->d_info.d_serialno,
250 						    sno, 'a' + i);
251 					}
252 
253 					/* Create UUID alias */
254 					if (!kuuid_is_nil(&part.storage_uuid)) {
255 						snprintf_uuid(uuid_buf,
256 						    sizeof(uuid_buf),
257 						    &part.storage_uuid);
258 						make_dev_alias(ndev,
259 						    "part-by-uuid/%s",
260 						    uuid_buf);
261 						udev_dict_set_cstr(ndev, "uuid", uuid_buf);
262 					}
263 					ndev->si_flags |= SI_REPROBE_TEST;
264 				}
265 			}
266 		}
267 	} else if (info->d_dsflags & DSO_COMPATLABEL) {
268 		msg = NULL;
269 		if (sp->ds_size >= 0x100000000ULL)
270 			ops = &disklabel64_ops;
271 		else
272 			ops = &disklabel32_ops;
273 		sp->ds_label = ops->op_clone_label(info, sp);
274 	} else {
275 		if (sp->ds_type == DOSPTYP_386BSD || /* XXX */
276 		    sp->ds_type == DOSPTYP_NETBSD ||
277 		    sp->ds_type == DOSPTYP_OPENBSD) {
278 			log(LOG_WARNING, "%s: cannot find label (%s)\n",
279 			    dev->si_name, msg);
280 		}
281 
282 		if (sp->ds_label.opaque != NULL && sp->ds_ops != NULL) {
283 			/* Clear out old label - it's not around anymore */
284 			disk_debug(2,
285 			    "disk_probe_slice: clear out old diskabel on %s\n",
286 			    dev->si_name);
287 
288 			sp->ds_ops->op_freedisklabel(&sp->ds_label);
289 			sp->ds_ops = NULL;
290 		}
291 	}
292 
293 	if (msg == NULL) {
294 		sp->ds_wlabel = FALSE;
295 	}
296 
297 	return (msg ? EINVAL : 0);
298 }
299 
300 /*
301  * This routine is only called for newly minted drives or to reprobe
302  * a drive with no open slices.  disk_probe_slice() is called directly
303  * when reprobing partition changes within slices.
304  */
305 static void
306 disk_probe(struct disk *dp, int reprobe)
307 {
308 	struct disk_info *info = &dp->d_info;
309 	cdev_t dev = dp->d_cdev;
310 	cdev_t ndev;
311 	int error, i, sno;
312 	struct diskslices *osp;
313 	struct diskslice *sp;
314 	char uuid_buf[128];
315 
316 	KKASSERT (info->d_media_blksize != 0);
317 
318 	osp = dp->d_slice;
319 	dp->d_slice = dsmakeslicestruct(BASE_SLICE, info);
320 	disk_debug(1, "disk_probe (begin): %s\n", dp->d_cdev->si_name);
321 
322 	error = mbrinit(dev, info, &(dp->d_slice));
323 	if (error) {
324 		dsgone(&osp);
325 		return;
326 	}
327 
328 	for (i = 0; i < dp->d_slice->dss_nslices; i++) {
329 		/*
330 		 * Ignore the whole-disk slice, it has already been created.
331 		 */
332 		if (i == WHOLE_DISK_SLICE)
333 			continue;
334 
335 #if 1
336 		/*
337 		 * Ignore the compatibility slice s0 if it's a device mapper
338 		 * volume.
339 		 */
340 		if ((i == COMPATIBILITY_SLICE) &&
341 		    (info->d_dsflags & DSO_DEVICEMAPPER))
342 			continue;
343 #endif
344 
345 		sp = &dp->d_slice->dss_slices[i];
346 
347 		/*
348 		 * Handle s0.  s0 is a compatibility slice if there are no
349 		 * other slices and it has not otherwise been set up, else
350 		 * we ignore it.
351 		 */
352 		if (i == COMPATIBILITY_SLICE) {
353 			sno = 0;
354 			if (sp->ds_type == 0 &&
355 			    dp->d_slice->dss_nslices == BASE_SLICE) {
356 				sp->ds_size = info->d_media_blocks;
357 				sp->ds_reserved = 0;
358 			}
359 		} else {
360 			sno = i - 1;
361 			sp->ds_reserved = 0;
362 		}
363 
364 		/*
365 		 * Ignore 0-length slices
366 		 */
367 		if (sp->ds_size == 0)
368 			continue;
369 
370 		if (reprobe &&
371 		    (ndev = devfs_find_device_by_name("%ss%d",
372 						      dev->si_name, sno))) {
373 			/*
374 			 * Device already exists and is still valid
375 			 */
376 			ndev->si_flags |= SI_REPROBE_TEST;
377 
378 			/*
379 			 * Destroy old UUID alias
380 			 */
381 			destroy_dev_alias(ndev, "slice-by-uuid/*");
382 
383 			/* Create UUID alias */
384 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
385 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
386 				    &sp->ds_stor_uuid);
387 				make_dev_alias(ndev, "slice-by-uuid/%s",
388 				    uuid_buf);
389 			}
390 		} else {
391 			/*
392 			 * Else create new device
393 			 */
394 			ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
395 					dkmakewholeslice(dkunit(dev), i),
396 					UID_ROOT, GID_OPERATOR, 0640,
397 					(info->d_dsflags & DSO_DEVICEMAPPER)?
398 					"%s.s%d" : "%ss%d", dev->si_name, sno);
399 			ndev->si_parent = dev;
400 			ndev->si_iosize_max = dev->si_iosize_max;
401 			udev_dict_set_cstr(ndev, "subsystem", "disk");
402 			/* Inherit parent's disk type */
403 			if (dp->d_disktype) {
404 				udev_dict_set_cstr(ndev, "disk-type",
405 				    __DECONST(char *, dp->d_disktype));
406 			}
407 
408 			/* Create serno alias */
409 			if (dp->d_info.d_serialno) {
410 				make_dev_alias(ndev, "serno/%s.s%d",
411 					       dp->d_info.d_serialno, sno);
412 			}
413 
414 			/* Create UUID alias */
415 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
416 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
417 				    &sp->ds_stor_uuid);
418 				make_dev_alias(ndev, "slice-by-uuid/%s",
419 				    uuid_buf);
420 			}
421 
422 			ndev->si_disk = dp;
423 			ndev->si_flags |= SI_REPROBE_TEST;
424 		}
425 		sp->ds_dev = ndev;
426 
427 		/*
428 		 * Probe appropriate slices for a disklabel
429 		 *
430 		 * XXX slice type 1 used by our gpt probe code.
431 		 * XXX slice type 0 used by mbr compat slice.
432 		 */
433 		if (sp->ds_type == DOSPTYP_386BSD ||
434 		    sp->ds_type == DOSPTYP_NETBSD ||
435 		    sp->ds_type == DOSPTYP_OPENBSD ||
436 		    sp->ds_type == 0 ||
437 		    sp->ds_type == 1) {
438 			if (dp->d_slice->dss_first_bsd_slice == 0)
439 				dp->d_slice->dss_first_bsd_slice = i;
440 			disk_probe_slice(dp, ndev, i, reprobe);
441 		}
442 	}
443 	dsgone(&osp);
444 	disk_debug(1, "disk_probe (end): %s\n", dp->d_cdev->si_name);
445 }
446 
447 
448 static void
449 disk_msg_core(void *arg)
450 {
451 	struct disk	*dp;
452 	struct diskslice *sp;
453 	disk_msg_t msg;
454 	int run;
455 
456 	lwkt_gettoken(&disklist_token);
457 	lwkt_initport_thread(&disk_msg_port, curthread);
458 	wakeup(curthread);	/* synchronous startup */
459 	lwkt_reltoken(&disklist_token);
460 
461 	get_mplock();	/* not mpsafe yet? */
462 	run = 1;
463 
464 	while (run) {
465 		msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0);
466 
467 		switch (msg->hdr.u.ms_result) {
468 		case DISK_DISK_PROBE:
469 			dp = (struct disk *)msg->load;
470 			disk_debug(1,
471 				    "DISK_DISK_PROBE: %s\n",
472 					dp->d_cdev->si_name);
473 			disk_iocom_update(dp);
474 			disk_probe(dp, 0);
475 			break;
476 		case DISK_DISK_DESTROY:
477 			dp = (struct disk *)msg->load;
478 			disk_debug(1,
479 				    "DISK_DISK_DESTROY: %s\n",
480 					dp->d_cdev->si_name);
481 			disk_iocom_uninit(dp);
482 
483 			/*
484 			 * Interlock against struct disk enumerations.
485 			 * Wait for enumerations to complete then remove
486 			 * the dp from the list before tearing it down.
487 			 * This avoids numerous races.
488 			 */
489 			lwkt_gettoken(&disklist_token);
490 			while (dp->d_refs)
491 				tsleep(&dp->d_refs, 0, "diskdel", hz / 10);
492 			LIST_REMOVE(dp, d_list);
493 
494 			dsched_disk_destroy(dp);
495 			devfs_destroy_related(dp->d_cdev);
496 			destroy_dev(dp->d_cdev);
497 			destroy_only_dev(dp->d_rawdev);
498 
499 			lwkt_reltoken(&disklist_token);
500 
501 			if (dp->d_info.d_serialno) {
502 				kfree(dp->d_info.d_serialno, M_TEMP);
503 				dp->d_info.d_serialno = NULL;
504 			}
505 			break;
506 		case DISK_UNPROBE:
507 			dp = (struct disk *)msg->load;
508 			disk_debug(1,
509 				    "DISK_DISK_UNPROBE: %s\n",
510 					dp->d_cdev->si_name);
511 			devfs_destroy_related(dp->d_cdev);
512 			break;
513 		case DISK_SLICE_REPROBE:
514 			dp = (struct disk *)msg->load;
515 			sp = (struct diskslice *)msg->load2;
516 			devfs_clr_related_flag(sp->ds_dev,
517 						SI_REPROBE_TEST);
518 			disk_debug(1,
519 				    "DISK_SLICE_REPROBE: %s\n",
520 				    sp->ds_dev->si_name);
521 			disk_probe_slice(dp, sp->ds_dev,
522 					 dkslice(sp->ds_dev), 1);
523 			devfs_destroy_related_without_flag(
524 					sp->ds_dev, SI_REPROBE_TEST);
525 			break;
526 		case DISK_DISK_REPROBE:
527 			dp = (struct disk *)msg->load;
528 			devfs_clr_related_flag(dp->d_cdev, SI_REPROBE_TEST);
529 			disk_debug(1,
530 				    "DISK_DISK_REPROBE: %s\n",
531 				    dp->d_cdev->si_name);
532 			disk_probe(dp, 1);
533 			devfs_destroy_related_without_flag(
534 					dp->d_cdev, SI_REPROBE_TEST);
535 			break;
536 		case DISK_SYNC:
537 			disk_debug(1, "DISK_SYNC\n");
538 			break;
539 		default:
540 			devfs_debug(DEVFS_DEBUG_WARNING,
541 				    "disk_msg_core: unknown message "
542 				    "received at core\n");
543 			break;
544 		}
545 		lwkt_replymsg(&msg->hdr, 0);
546 	}
547 	lwkt_exit();
548 }
549 
550 
551 /*
552  * Acts as a message drain. Any message that is replied to here gets
553  * destroyed and the memory freed.
554  */
555 static void
556 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
557 {
558 	objcache_put(disk_msg_cache, msg);
559 }
560 
561 
562 void
563 disk_msg_send(uint32_t cmd, void *load, void *load2)
564 {
565 	disk_msg_t disk_msg;
566 	lwkt_port_t port = &disk_msg_port;
567 
568 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
569 
570 	lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0);
571 
572 	disk_msg->hdr.u.ms_result = cmd;
573 	disk_msg->load = load;
574 	disk_msg->load2 = load2;
575 	KKASSERT(port);
576 	lwkt_sendmsg(port, &disk_msg->hdr);
577 }
578 
579 void
580 disk_msg_send_sync(uint32_t cmd, void *load, void *load2)
581 {
582 	struct lwkt_port rep_port;
583 	disk_msg_t disk_msg;
584 	lwkt_port_t port;
585 
586 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
587 	port = &disk_msg_port;
588 
589 	/* XXX could probably use curthread's built-in msgport */
590 	lwkt_initport_thread(&rep_port, curthread);
591 	lwkt_initmsg(&disk_msg->hdr, &rep_port, 0);
592 
593 	disk_msg->hdr.u.ms_result = cmd;
594 	disk_msg->load = load;
595 	disk_msg->load2 = load2;
596 
597 	lwkt_domsg(port, &disk_msg->hdr, 0);
598 	objcache_put(disk_msg_cache, disk_msg);
599 }
600 
601 /*
602  * Create a raw device for the dev_ops template (which is returned).  Also
603  * create a slice and unit managed disk and overload the user visible
604  * device space with it.
605  *
606  * NOTE: The returned raw device is NOT a slice and unit managed device.
607  * It is an actual raw device representing the raw disk as specified by
608  * the passed dev_ops.  The disk layer not only returns such a raw device,
609  * it also uses it internally when passing (modified) commands through.
610  */
611 cdev_t
612 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
613 {
614 	return _disk_create_named(NULL, unit, dp, raw_ops, 0);
615 }
616 
617 cdev_t
618 disk_create_clone(int unit, struct disk *dp,
619 		  struct dev_ops *raw_ops)
620 {
621 	return _disk_create_named(NULL, unit, dp, raw_ops, 1);
622 }
623 
624 cdev_t
625 disk_create_named(const char *name, int unit, struct disk *dp,
626 		  struct dev_ops *raw_ops)
627 {
628 	return _disk_create_named(name, unit, dp, raw_ops, 0);
629 }
630 
631 cdev_t
632 disk_create_named_clone(const char *name, int unit, struct disk *dp,
633 			struct dev_ops *raw_ops)
634 {
635 	return _disk_create_named(name, unit, dp, raw_ops, 1);
636 }
637 
638 static cdev_t
639 _disk_create_named(const char *name, int unit, struct disk *dp,
640 		   struct dev_ops *raw_ops, int clone)
641 {
642 	cdev_t rawdev;
643 
644 	disk_debug(1, "disk_create (begin): %s%d\n", name, unit);
645 
646 	if (name) {
647 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
648 		    UID_ROOT, GID_OPERATOR, 0640, "%s", name);
649 	} else {
650 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
651 		    UID_ROOT, GID_OPERATOR, 0640,
652 		    "%s%d", raw_ops->head.name, unit);
653 	}
654 
655 	bzero(dp, sizeof(*dp));
656 
657 	dp->d_rawdev = rawdev;
658 	dp->d_raw_ops = raw_ops;
659 	dp->d_dev_ops = &disk_ops;
660 
661 	if (name) {
662 		if (clone) {
663 			dp->d_cdev = make_only_dev_covering(
664 					&disk_ops, dp->d_rawdev->si_ops,
665 					dkmakewholedisk(unit),
666 					UID_ROOT, GID_OPERATOR, 0640,
667 					"%s", name);
668 		} else {
669 			dp->d_cdev = make_dev_covering(
670 					&disk_ops, dp->d_rawdev->si_ops,
671 					dkmakewholedisk(unit),
672 					UID_ROOT, GID_OPERATOR, 0640,
673 					"%s", name);
674 		}
675 	} else {
676 		if (clone) {
677 			dp->d_cdev = make_only_dev_covering(
678 					&disk_ops, dp->d_rawdev->si_ops,
679 					dkmakewholedisk(unit),
680 					UID_ROOT, GID_OPERATOR, 0640,
681 					"%s%d", raw_ops->head.name, unit);
682 		} else {
683 			dp->d_cdev = make_dev_covering(
684 					&disk_ops, dp->d_rawdev->si_ops,
685 					dkmakewholedisk(unit),
686 					UID_ROOT, GID_OPERATOR, 0640,
687 					"%s%d", raw_ops->head.name, unit);
688 		}
689 	}
690 
691 	udev_dict_set_cstr(dp->d_cdev, "subsystem", "disk");
692 	dp->d_cdev->si_disk = dp;
693 
694 	if (name)
695 		dsched_disk_create(dp, name, unit);
696 	else
697 		dsched_disk_create(dp, raw_ops->head.name, unit);
698 
699 	lwkt_gettoken(&disklist_token);
700 	LIST_INSERT_HEAD(&disklist, dp, d_list);
701 	lwkt_reltoken(&disklist_token);
702 
703 	disk_iocom_init(dp);
704 
705 	disk_debug(1, "disk_create (end): %s%d\n",
706 		   (name != NULL)?(name):(raw_ops->head.name), unit);
707 
708 	return (dp->d_rawdev);
709 }
710 
711 int
712 disk_setdisktype(struct disk *disk, const char *type)
713 {
714 	int error;
715 
716 	KKASSERT(disk != NULL);
717 
718 	disk->d_disktype = type;
719 	error = udev_dict_set_cstr(disk->d_cdev, "disk-type",
720 				   __DECONST(char *, type));
721 	return error;
722 }
723 
724 int
725 disk_getopencount(struct disk *disk)
726 {
727 	return disk->d_opencount;
728 }
729 
730 static void
731 _setdiskinfo(struct disk *disk, struct disk_info *info)
732 {
733 	char *oldserialno;
734 
735 	oldserialno = disk->d_info.d_serialno;
736 	bcopy(info, &disk->d_info, sizeof(disk->d_info));
737 	info = &disk->d_info;
738 
739 	disk_debug(1, "_setdiskinfo: %s\n", disk->d_cdev->si_name);
740 
741 	/*
742 	 * The serial number is duplicated so the caller can throw
743 	 * their copy away.
744 	 */
745 	if (info->d_serialno && info->d_serialno[0] &&
746 	    (info->d_serialno[0] != ' ' || strlen(info->d_serialno) > 1)) {
747 		info->d_serialno = kstrdup(info->d_serialno, M_TEMP);
748 		disk_cleanserial(info->d_serialno);
749 		if (disk->d_cdev) {
750 			make_dev_alias(disk->d_cdev, "serno/%s",
751 				       info->d_serialno);
752 		}
753 	} else {
754 		info->d_serialno = NULL;
755 	}
756 	if (oldserialno)
757 		kfree(oldserialno, M_TEMP);
758 
759 	dsched_disk_update(disk, info);
760 
761 	/*
762 	 * The caller may set d_media_size or d_media_blocks and we
763 	 * calculate the other.
764 	 */
765 	KKASSERT(info->d_media_size == 0 || info->d_media_blocks == 0);
766 	if (info->d_media_size == 0 && info->d_media_blocks) {
767 		info->d_media_size = (u_int64_t)info->d_media_blocks *
768 				     info->d_media_blksize;
769 	} else if (info->d_media_size && info->d_media_blocks == 0 &&
770 		   info->d_media_blksize) {
771 		info->d_media_blocks = info->d_media_size /
772 				       info->d_media_blksize;
773 	}
774 
775 	/*
776 	 * The si_* fields for rawdev are not set until after the
777 	 * disk_create() call, so someone using the cooked version
778 	 * of the raw device (i.e. da0s0) will not get the right
779 	 * si_iosize_max unless we fix it up here.
780 	 */
781 	if (disk->d_cdev && disk->d_rawdev &&
782 	    disk->d_cdev->si_iosize_max == 0) {
783 		disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max;
784 		disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys;
785 		disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best;
786 	}
787 
788 	/* Add the serial number to the udev_dictionary */
789 	if (info->d_serialno)
790 		udev_dict_set_cstr(disk->d_cdev, "serno", info->d_serialno);
791 }
792 
793 /*
794  * Disk drivers must call this routine when media parameters are available
795  * or have changed.
796  */
797 void
798 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
799 {
800 	_setdiskinfo(disk, info);
801 	disk_msg_send(DISK_DISK_PROBE, disk, NULL);
802 	disk_debug(1, "disk_setdiskinfo: sent probe for %s\n",
803 		   disk->d_cdev->si_name);
804 }
805 
806 void
807 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info)
808 {
809 	_setdiskinfo(disk, info);
810 	disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL);
811 	disk_debug(1, "disk_setdiskinfo_sync: sent probe for %s\n",
812 		   disk->d_cdev->si_name);
813 }
814 
815 /*
816  * This routine is called when an adapter detaches.  The higher level
817  * managed disk device is destroyed while the lower level raw device is
818  * released.
819  */
820 void
821 disk_destroy(struct disk *disk)
822 {
823 	disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL);
824 	return;
825 }
826 
827 int
828 disk_dumpcheck(cdev_t dev, u_int64_t *size,
829 	       u_int64_t *blkno, u_int32_t *secsize)
830 {
831 	struct partinfo pinfo;
832 	int error;
833 
834 	bzero(&pinfo, sizeof(pinfo));
835 	error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0,
836 			   proc0.p_ucred, NULL, NULL);
837 	if (error)
838 		return (error);
839 
840 	if (pinfo.media_blksize == 0)
841 		return (ENXIO);
842 
843 	if (blkno) /* XXX: make sure this reserved stuff is right */
844 		*blkno = pinfo.reserved_blocks +
845 			pinfo.media_offset / pinfo.media_blksize;
846 	if (secsize)
847 		*secsize = pinfo.media_blksize;
848 	if (size)
849 		*size = (pinfo.media_blocks - pinfo.reserved_blocks);
850 
851 	return (0);
852 }
853 
854 int
855 disk_dumpconf(cdev_t dev, u_int onoff)
856 {
857 	struct dumperinfo di;
858 	u_int64_t	size, blkno;
859 	u_int32_t	secsize;
860 	int error;
861 
862 	if (!onoff)
863 		return set_dumper(NULL);
864 
865 	error = disk_dumpcheck(dev, &size, &blkno, &secsize);
866 
867 	if (error)
868 		return ENXIO;
869 
870 	bzero(&di, sizeof(struct dumperinfo));
871 	di.dumper = diskdump;
872 	di.priv = dev;
873 	di.blocksize = secsize;
874 	di.maxiosize = dev->si_iosize_max;
875 	di.mediaoffset = blkno * DEV_BSIZE;
876 	di.mediasize = size * DEV_BSIZE;
877 
878 	return set_dumper(&di);
879 }
880 
881 void
882 disk_unprobe(struct disk *disk)
883 {
884 	if (disk == NULL)
885 		return;
886 
887 	disk_msg_send_sync(DISK_UNPROBE, disk, NULL);
888 }
889 
890 void
891 disk_invalidate (struct disk *disk)
892 {
893 	dsgone(&disk->d_slice);
894 }
895 
896 /*
897  * Enumerate disks, pass a marker and an initial NULL dp to initialize,
898  * then loop with the previously returned dp.
899  *
900  * The returned dp will be referenced, preventing its destruction.  When
901  * you pass the returned dp back into the loop the ref is dropped.
902  *
903  * WARNING: If terminating your loop early you must call
904  *	    disk_enumerate_stop().
905  */
906 struct disk *
907 disk_enumerate(struct disk *marker, struct disk *dp)
908 {
909 	lwkt_gettoken(&disklist_token);
910 	if (dp) {
911 		--dp->d_refs;
912 		dp = LIST_NEXT(marker, d_list);
913 		LIST_REMOVE(marker, d_list);
914 	} else {
915 		bzero(marker, sizeof(*marker));
916 		marker->d_flags = DISKFLAG_MARKER;
917 		dp = LIST_FIRST(&disklist);
918 	}
919 	while (dp) {
920 		if ((dp->d_flags & DISKFLAG_MARKER) == 0)
921 			break;
922 		dp = LIST_NEXT(dp, d_list);
923 	}
924 	if (dp) {
925 		++dp->d_refs;
926 		LIST_INSERT_AFTER(dp, marker, d_list);
927 	}
928 	lwkt_reltoken(&disklist_token);
929 	return (dp);
930 }
931 
932 /*
933  * Terminate an enumeration early.  Do not call this function if the
934  * enumeration ended normally.  dp can be NULL, indicating that you
935  * wish to retain the ref count on dp.
936  *
937  * This function removes the marker.
938  */
939 void
940 disk_enumerate_stop(struct disk *marker, struct disk *dp)
941 {
942 	lwkt_gettoken(&disklist_token);
943 	LIST_REMOVE(marker, d_list);
944 	if (dp)
945 		--dp->d_refs;
946 	lwkt_reltoken(&disklist_token);
947 }
948 
949 static
950 int
951 sysctl_disks(SYSCTL_HANDLER_ARGS)
952 {
953 	struct disk marker;
954 	struct disk *dp;
955 	int error, first;
956 
957 	first = 1;
958 	error = 0;
959 	dp = NULL;
960 
961 	while ((dp = disk_enumerate(&marker, dp))) {
962 		if (!first) {
963 			error = SYSCTL_OUT(req, " ", 1);
964 			if (error) {
965 				disk_enumerate_stop(&marker, dp);
966 				break;
967 			}
968 		} else {
969 			first = 0;
970 		}
971 		error = SYSCTL_OUT(req, dp->d_rawdev->si_name,
972 				   strlen(dp->d_rawdev->si_name));
973 		if (error) {
974 			disk_enumerate_stop(&marker, dp);
975 			break;
976 		}
977 	}
978 	if (error == 0)
979 		error = SYSCTL_OUT(req, "", 1);
980 	return error;
981 }
982 
983 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
984     sysctl_disks, "A", "names of available disks");
985 
986 /*
987  * Open a disk device or partition.
988  */
989 static
990 int
991 diskopen(struct dev_open_args *ap)
992 {
993 	cdev_t dev = ap->a_head.a_dev;
994 	struct disk *dp;
995 	int error;
996 
997 	/*
998 	 * dp can't be NULL here XXX.
999 	 *
1000 	 * d_slice will be NULL if setdiskinfo() has not been called yet.
1001 	 * setdiskinfo() is typically called whether the disk is present
1002 	 * or not (e.g. CD), but the base disk device is created first
1003 	 * and there may be a race.
1004 	 */
1005 	dp = dev->si_disk;
1006 	if (dp == NULL || dp->d_slice == NULL)
1007 		return (ENXIO);
1008 	error = 0;
1009 
1010 	/*
1011 	 * Deal with open races
1012 	 */
1013 	get_mplock();
1014 	while (dp->d_flags & DISKFLAG_LOCK) {
1015 		dp->d_flags |= DISKFLAG_WANTED;
1016 		error = tsleep(dp, PCATCH, "diskopen", hz);
1017 		if (error) {
1018 			rel_mplock();
1019 			return (error);
1020 		}
1021 	}
1022 	dp->d_flags |= DISKFLAG_LOCK;
1023 
1024 	/*
1025 	 * Open the underlying raw device.
1026 	 */
1027 	if (!dsisopen(dp->d_slice)) {
1028 #if 0
1029 		if (!pdev->si_iosize_max)
1030 			pdev->si_iosize_max = dev->si_iosize_max;
1031 #endif
1032 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
1033 				  ap->a_devtype, ap->a_cred, NULL);
1034 	}
1035 
1036 	if (error)
1037 		goto out;
1038 	error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
1039 		       &dp->d_slice, &dp->d_info);
1040 	if (!dsisopen(dp->d_slice)) {
1041 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype, NULL);
1042 	}
1043 out:
1044 	dp->d_flags &= ~DISKFLAG_LOCK;
1045 	if (dp->d_flags & DISKFLAG_WANTED) {
1046 		dp->d_flags &= ~DISKFLAG_WANTED;
1047 		wakeup(dp);
1048 	}
1049 	rel_mplock();
1050 
1051 	KKASSERT(dp->d_opencount >= 0);
1052 	/* If the open was successful, bump open count */
1053 	if (error == 0)
1054 		atomic_add_int(&dp->d_opencount, 1);
1055 
1056 	return(error);
1057 }
1058 
1059 /*
1060  * Close a disk device or partition
1061  */
1062 static
1063 int
1064 diskclose(struct dev_close_args *ap)
1065 {
1066 	cdev_t dev = ap->a_head.a_dev;
1067 	struct disk *dp;
1068 	int error;
1069 	int lcount;
1070 
1071 	error = 0;
1072 	dp = dev->si_disk;
1073 
1074 	/*
1075 	 * The cdev_t represents the disk/slice/part.  The shared
1076 	 * dp structure governs all cdevs associated with the disk.
1077 	 *
1078 	 * As a safety only close the underlying raw device on the last
1079 	 * close the disk device if our tracking of the slices/partitions
1080 	 * also indicates nothing is open.
1081 	 */
1082 	KKASSERT(dp->d_opencount >= 1);
1083 	lcount = atomic_fetchadd_int(&dp->d_opencount, -1);
1084 
1085 	get_mplock();
1086 	dsclose(dev, ap->a_devtype, dp->d_slice);
1087 	if (lcount <= 1 && !dsisopen(dp->d_slice)) {
1088 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype, NULL);
1089 	}
1090 	rel_mplock();
1091 	return (error);
1092 }
1093 
1094 /*
1095  * First execute the ioctl on the disk device, and if it isn't supported
1096  * try running it on the backing device.
1097  */
1098 static
1099 int
1100 diskioctl(struct dev_ioctl_args *ap)
1101 {
1102 	cdev_t dev = ap->a_head.a_dev;
1103 	struct disk *dp;
1104 	int error;
1105 	u_int u;
1106 
1107 	dp = dev->si_disk;
1108 	if (dp == NULL)
1109 		return (ENXIO);
1110 
1111 	devfs_debug(DEVFS_DEBUG_DEBUG,
1112 		    "diskioctl: cmd is: %lx (name: %s)\n",
1113 		    ap->a_cmd, dev->si_name);
1114 	devfs_debug(DEVFS_DEBUG_DEBUG,
1115 		    "diskioctl: &dp->d_slice is: %p, %p\n",
1116 		    &dp->d_slice, dp->d_slice);
1117 
1118 	if (ap->a_cmd == DIOCGKERNELDUMP) {
1119 		u = *(u_int *)ap->a_data;
1120 		return disk_dumpconf(dev, u);
1121 	}
1122 
1123 	if (ap->a_cmd == DIOCRECLUSTER && dev == dp->d_cdev) {
1124 		error = disk_iocom_ioctl(dp, ap->a_cmd, ap->a_data);
1125 		return error;
1126 	}
1127 
1128 	if (&dp->d_slice == NULL || dp->d_slice == NULL ||
1129 	    ((dp->d_info.d_dsflags & DSO_DEVICEMAPPER) &&
1130 	     dkslice(dev) == WHOLE_DISK_SLICE)) {
1131 		error = ENOIOCTL;
1132 	} else {
1133 		get_mplock();
1134 		error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
1135 				&dp->d_slice, &dp->d_info);
1136 		rel_mplock();
1137 	}
1138 
1139 	if (error == ENOIOCTL) {
1140 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
1141 				   ap->a_fflag, ap->a_cred, NULL, NULL);
1142 	}
1143 	return (error);
1144 }
1145 
1146 /*
1147  * Execute strategy routine
1148  */
1149 static
1150 int
1151 diskstrategy(struct dev_strategy_args *ap)
1152 {
1153 	cdev_t dev = ap->a_head.a_dev;
1154 	struct bio *bio = ap->a_bio;
1155 	struct bio *nbio;
1156 	struct disk *dp;
1157 
1158 	dp = dev->si_disk;
1159 
1160 	if (dp == NULL) {
1161 		bio->bio_buf->b_error = ENXIO;
1162 		bio->bio_buf->b_flags |= B_ERROR;
1163 		biodone(bio);
1164 		return(0);
1165 	}
1166 	KKASSERT(dev->si_disk == dp);
1167 
1168 	/*
1169 	 * The dscheck() function will also transform the slice relative
1170 	 * block number i.e. bio->bio_offset into a block number that can be
1171 	 * passed directly to the underlying raw device.  If dscheck()
1172 	 * returns NULL it will have handled the bio for us (e.g. EOF
1173 	 * or error due to being beyond the device size).
1174 	 */
1175 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) {
1176 		dev_dstrategy(dp->d_rawdev, nbio);
1177 	} else {
1178 		biodone(bio);
1179 	}
1180 	return(0);
1181 }
1182 
1183 /*
1184  * Return the partition size in ?blocks?
1185  */
1186 static
1187 int
1188 diskpsize(struct dev_psize_args *ap)
1189 {
1190 	cdev_t dev = ap->a_head.a_dev;
1191 	struct disk *dp;
1192 
1193 	dp = dev->si_disk;
1194 	if (dp == NULL)
1195 		return(ENODEV);
1196 
1197 	ap->a_result = dssize(dev, &dp->d_slice);
1198 
1199 	if ((ap->a_result == -1) &&
1200 	   (dp->d_info.d_dsflags & DSO_RAWPSIZE)) {
1201 		ap->a_head.a_dev = dp->d_rawdev;
1202 		return dev_doperate(&ap->a_head);
1203 	}
1204 	return(0);
1205 }
1206 
1207 static int
1208 diskdump(struct dev_dump_args *ap)
1209 {
1210 	cdev_t dev = ap->a_head.a_dev;
1211 	struct disk *dp = dev->si_disk;
1212 	u_int64_t size, offset;
1213 	int error;
1214 
1215 	error = disk_dumpcheck(dev, &size, &ap->a_blkno, &ap->a_secsize);
1216 	/* XXX: this should probably go in disk_dumpcheck somehow */
1217 	if (ap->a_length != 0) {
1218 		size *= DEV_BSIZE;
1219 		offset = ap->a_blkno * DEV_BSIZE;
1220 		if ((ap->a_offset < offset) ||
1221 		    (ap->a_offset + ap->a_length - offset > size)) {
1222 			kprintf("Attempt to write outside dump "
1223 				"device boundaries.\n");
1224 			error = ENOSPC;
1225 		}
1226 	}
1227 
1228 	if (error == 0) {
1229 		ap->a_head.a_dev = dp->d_rawdev;
1230 		error = dev_doperate(&ap->a_head);
1231 	}
1232 
1233 	return(error);
1234 }
1235 
1236 
1237 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
1238 	   0, sizeof(struct diskslices), "sizeof(struct diskslices)");
1239 
1240 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
1241 	   0, sizeof(struct disk), "sizeof(struct disk)");
1242 
1243 /*
1244  * Reorder interval for burst write allowance and minor write
1245  * allowance.
1246  *
1247  * We always want to trickle some writes in to make use of the
1248  * disk's zone cache.  Bursting occurs on a longer interval and only
1249  * runningbufspace is well over the hirunningspace limit.
1250  */
1251 int bioq_reorder_burst_interval = 60;	/* should be multiple of minor */
1252 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval,
1253 	   CTLFLAG_RW, &bioq_reorder_burst_interval, 0, "");
1254 int bioq_reorder_minor_interval = 5;
1255 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval,
1256 	   CTLFLAG_RW, &bioq_reorder_minor_interval, 0, "");
1257 
1258 int bioq_reorder_burst_bytes = 3000000;
1259 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes,
1260 	   CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, "");
1261 int bioq_reorder_minor_bytes = 262144;
1262 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes,
1263 	   CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, "");
1264 
1265 
1266 /*
1267  * Order I/Os.  Generally speaking this code is designed to make better
1268  * use of drive zone caches.  A drive zone cache can typically track linear
1269  * reads or writes for around 16 zones simultaniously.
1270  *
1271  * Read prioritization issues:  It is possible for hundreds of megabytes worth
1272  * of writes to be queued asynchronously.  This creates a huge bottleneck
1273  * for reads which reduce read bandwidth to a trickle.
1274  *
1275  * To solve this problem we generally reorder reads before writes.
1276  *
1277  * However, a large number of random reads can also starve writes and
1278  * make poor use of the drive zone cache so we allow writes to trickle
1279  * in every N reads.
1280  */
1281 void
1282 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
1283 {
1284 	/*
1285 	 * The BIO wants to be ordered.  Adding to the tail also
1286 	 * causes transition to be set to NULL, forcing the ordering
1287 	 * of all prior I/O's.
1288 	 */
1289 	if (bio->bio_buf->b_flags & B_ORDERED) {
1290 		bioq_insert_tail(bioq, bio);
1291 		return;
1292 	}
1293 
1294 	switch(bio->bio_buf->b_cmd) {
1295 	case BUF_CMD_READ:
1296 		if (bioq->transition) {
1297 			/*
1298 			 * Insert before the first write.  Bleedover writes
1299 			 * based on reorder intervals to prevent starvation.
1300 			 */
1301 			TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act);
1302 			++bioq->reorder;
1303 			if (bioq->reorder % bioq_reorder_minor_interval == 0) {
1304 				bioqwritereorder(bioq);
1305 				if (bioq->reorder >=
1306 				    bioq_reorder_burst_interval) {
1307 					bioq->reorder = 0;
1308 				}
1309 			}
1310 		} else {
1311 			/*
1312 			 * No writes queued (or ordering was forced),
1313 			 * insert at tail.
1314 			 */
1315 			TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1316 		}
1317 		break;
1318 	case BUF_CMD_WRITE:
1319 		/*
1320 		 * Writes are always appended.  If no writes were previously
1321 		 * queued or an ordered tail insertion occured the transition
1322 		 * field will be NULL.
1323 		 */
1324 		TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1325 		if (bioq->transition == NULL)
1326 			bioq->transition = bio;
1327 		break;
1328 	default:
1329 		/*
1330 		 * All other request types are forced to be ordered.
1331 		 */
1332 		bioq_insert_tail(bioq, bio);
1333 		break;
1334 	}
1335 }
1336 
1337 /*
1338  * Move the read-write transition point to prevent reads from
1339  * completely starving our writes.  This brings a number of writes into
1340  * the fold every N reads.
1341  *
1342  * We bring a few linear writes into the fold on a minor interval
1343  * and we bring a non-linear burst of writes into the fold on a major
1344  * interval.  Bursting only occurs if runningbufspace is really high
1345  * (typically from syncs, fsyncs, or HAMMER flushes).
1346  */
1347 static
1348 void
1349 bioqwritereorder(struct bio_queue_head *bioq)
1350 {
1351 	struct bio *bio;
1352 	off_t next_offset;
1353 	size_t left;
1354 	size_t n;
1355 	int check_off;
1356 
1357 	if (bioq->reorder < bioq_reorder_burst_interval ||
1358 	    !buf_runningbufspace_severe()) {
1359 		left = (size_t)bioq_reorder_minor_bytes;
1360 		check_off = 1;
1361 	} else {
1362 		left = (size_t)bioq_reorder_burst_bytes;
1363 		check_off = 0;
1364 	}
1365 
1366 	next_offset = bioq->transition->bio_offset;
1367 	while ((bio = bioq->transition) != NULL &&
1368 	       (check_off == 0 || next_offset == bio->bio_offset)
1369 	) {
1370 		n = bio->bio_buf->b_bcount;
1371 		next_offset = bio->bio_offset + n;
1372 		bioq->transition = TAILQ_NEXT(bio, bio_act);
1373 		if (left < n)
1374 			break;
1375 		left -= n;
1376 	}
1377 }
1378 
1379 /*
1380  * Bounds checking against the media size, used for the raw partition.
1381  * secsize, mediasize and b_blkno must all be the same units.
1382  * Possibly this has to be DEV_BSIZE (512).
1383  */
1384 int
1385 bounds_check_with_mediasize(struct bio *bio, int secsize, uint64_t mediasize)
1386 {
1387 	struct buf *bp = bio->bio_buf;
1388 	int64_t sz;
1389 
1390 	sz = howmany(bp->b_bcount, secsize);
1391 
1392 	if (bio->bio_offset/DEV_BSIZE + sz > mediasize) {
1393 		sz = mediasize - bio->bio_offset/DEV_BSIZE;
1394 		if (sz == 0) {
1395 			/* If exactly at end of disk, return EOF. */
1396 			bp->b_resid = bp->b_bcount;
1397 			return 0;
1398 		}
1399 		if (sz < 0) {
1400 			/* If past end of disk, return EINVAL. */
1401 			bp->b_error = EINVAL;
1402 			return 0;
1403 		}
1404 		/* Otherwise, truncate request. */
1405 		bp->b_bcount = sz * secsize;
1406 	}
1407 
1408 	return 1;
1409 }
1410 
1411 /*
1412  * Disk error is the preface to plaintive error messages
1413  * about failing disk transfers.  It prints messages of the form
1414 
1415 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1416 
1417  * if the offset of the error in the transfer and a disk label
1418  * are both available.  blkdone should be -1 if the position of the error
1419  * is unknown; the disklabel pointer may be null from drivers that have not
1420  * been converted to use them.  The message is printed with kprintf
1421  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1422  * The message should be completed (with at least a newline) with kprintf
1423  * or log(-1, ...), respectively.  There is no trailing space.
1424  */
1425 void
1426 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
1427 {
1428 	struct buf *bp = bio->bio_buf;
1429 	const char *term;
1430 
1431 	switch(bp->b_cmd) {
1432 	case BUF_CMD_READ:
1433 		term = "read";
1434 		break;
1435 	case BUF_CMD_WRITE:
1436 		term = "write";
1437 		break;
1438 	default:
1439 		term = "access";
1440 		break;
1441 	}
1442 	kprintf("%s: %s %sing ", dev->si_name, what, term);
1443 	kprintf("offset %012llx for %d",
1444 		(long long)bio->bio_offset,
1445 		bp->b_bcount);
1446 
1447 	if (donecnt)
1448 		kprintf(" (%d bytes completed)", donecnt);
1449 }
1450 
1451 /*
1452  * Locate a disk device
1453  */
1454 cdev_t
1455 disk_locate(const char *devname)
1456 {
1457 	return devfs_find_device_by_name("%s", devname);
1458 }
1459 
1460 void
1461 disk_config(void *arg)
1462 {
1463 	disk_msg_send_sync(DISK_SYNC, NULL, NULL);
1464 }
1465 
1466 static void
1467 disk_init(void)
1468 {
1469 	struct thread* td_core;
1470 
1471 	disk_msg_cache = objcache_create("disk-msg-cache", 0, 0,
1472 					 NULL, NULL, NULL,
1473 					 objcache_malloc_alloc,
1474 					 objcache_malloc_free,
1475 					 &disk_msg_malloc_args);
1476 
1477 	lwkt_token_init(&disklist_token, "disks");
1478 
1479 	/*
1480 	 * Initialize the reply-only port which acts as a message drain
1481 	 */
1482 	lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply);
1483 
1484 	lwkt_gettoken(&disklist_token);
1485 	lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL,
1486 		    0, -1, "disk_msg_core");
1487 	tsleep(td_core, 0, "diskcore", 0);
1488 	lwkt_reltoken(&disklist_token);
1489 }
1490 
1491 static void
1492 disk_uninit(void)
1493 {
1494 	objcache_destroy(disk_msg_cache);
1495 }
1496 
1497 /*
1498  * Clean out illegal characters in serial numbers.
1499  */
1500 static void
1501 disk_cleanserial(char *serno)
1502 {
1503 	char c;
1504 
1505 	while ((c = *serno) != 0) {
1506 		if (c >= 'a' && c <= 'z')
1507 			;
1508 		else if (c >= 'A' && c <= 'Z')
1509 			;
1510 		else if (c >= '0' && c <= '9')
1511 			;
1512 		else if (c == '-' || c == '@' || c == '+' || c == '.')
1513 			;
1514 		else
1515 			c = '_';
1516 		*serno++= c;
1517 	}
1518 }
1519 
1520 TUNABLE_INT("kern.disk_debug", &disk_debug_enable);
1521 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable,
1522 	   0, "Enable subr_disk debugging");
1523 
1524 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL);
1525 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL);
1526