xref: /dragonfly/sys/kern/subr_prf.c (revision 31524921)
1 /*-
2  * Copyright (c) 1986, 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)subr_prf.c	8.3 (Berkeley) 1/21/94
35  * $FreeBSD: src/sys/kern/subr_prf.c,v 1.61.2.5 2002/08/31 18:22:08 dwmalone Exp $
36  */
37 
38 #include "opt_ddb.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/msgbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/priv.h>
47 #include <sys/tty.h>
48 #include <sys/tprintf.h>
49 #include <sys/stdint.h>
50 #include <sys/syslog.h>
51 #include <sys/cons.h>
52 #include <sys/uio.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #include <sys/ctype.h>
56 #include <sys/eventhandler.h>
57 #include <sys/kthread.h>
58 #include <sys/cpu_topology.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Note that stdarg.h and the ANSI style va_start macro is used for both
69  * ANSI and traditional C compilers.  We use the __ machine version to stay
70  * within the kernel header file set.
71  */
72 #include <machine/stdarg.h>
73 
74 #define TOCONS		0x01
75 #define TOTTY		0x02
76 #define TOLOG		0x04
77 #define TOWAKEUP	0x08
78 #define TONOSPIN	0x10	/* avoid serialization */
79 
80 /* Max number conversion buffer length: a u_quad_t in base 2, plus NUL byte. */
81 #define MAXNBUF	(sizeof(intmax_t) * NBBY + 1)
82 
83 struct putchar_arg {
84 	int	flags;
85 	int	pri;
86 	struct	tty *tty;
87 };
88 
89 struct snprintf_arg {
90 	char	*str;
91 	size_t	remain;
92 };
93 
94 extern	int log_open;
95 
96 struct	tty *constty;			/* pointer to console "window" tty */
97 
98 static void  msglogchar(int c, int pri);
99 static void  msgaddchar(int c, void *dummy);
100 static void  kputchar (int ch, void *arg);
101 static char *ksprintn (char *nbuf, uintmax_t num, int base, int *lenp,
102 		       int upper);
103 static void  snprintf_func (int ch, void *arg);
104 
105 static int consintr = 1;		/* Ok to handle console interrupts? */
106 static int msgbufmapped;		/* Set when safe to use msgbuf */
107 static struct spinlock cons_spin = SPINLOCK_INITIALIZER(cons_spin, "cons_spin");
108 static thread_t constty_td = NULL;
109 
110 int msgbuftrigger;
111 
112 static int      log_console_output = 1;
113 TUNABLE_INT("kern.log_console_output", &log_console_output);
114 SYSCTL_INT(_kern, OID_AUTO, log_console_output, CTLFLAG_RW,
115     &log_console_output, 0, "");
116 static int	kprintf_logging = TOLOG | TOCONS;
117 SYSCTL_INT(_kern, OID_AUTO, kprintf_logging, CTLFLAG_RW,
118     &kprintf_logging, 0, "");
119 
120 static int unprivileged_read_msgbuf = 1;
121 SYSCTL_INT(_security, OID_AUTO, unprivileged_read_msgbuf, CTLFLAG_RW,
122     &unprivileged_read_msgbuf, 0,
123     "Unprivileged processes may read the kernel message buffer");
124 
125 /*
126  * Warn that a system table is full.
127  */
128 void
129 tablefull(const char *tab)
130 {
131 
132 	log(LOG_ERR, "%s: table is full\n", tab);
133 }
134 
135 /*
136  * Uprintf prints to the controlling terminal for the current process.
137  */
138 int
139 uprintf(const char *fmt, ...)
140 {
141 	struct proc *p = curproc;
142 	__va_list ap;
143 	struct putchar_arg pca;
144 	int retval = 0;
145 
146 	if (p && (p->p_flags & P_CONTROLT) && p->p_session->s_ttyvp) {
147 		__va_start(ap, fmt);
148 		pca.tty = p->p_session->s_ttyp;
149 		pca.flags = TOTTY;
150 
151 		retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
152 		__va_end(ap);
153 	}
154 	return (retval);
155 }
156 
157 tpr_t
158 tprintf_open(struct proc *p)
159 {
160 	if ((p->p_flags & P_CONTROLT) && p->p_session->s_ttyvp) {
161 		sess_hold(p->p_session);
162 		return ((tpr_t) p->p_session);
163 	}
164 	return (NULL);
165 }
166 
167 void
168 tprintf_close(tpr_t sess)
169 {
170 	if (sess)
171 		sess_rele((struct session *) sess);
172 }
173 
174 /*
175  * tprintf prints on the controlling terminal associated
176  * with the given session.
177  */
178 int
179 tprintf(tpr_t tpr, const char *fmt, ...)
180 {
181 	struct session *sess = (struct session *)tpr;
182 	struct tty *tp = NULL;
183 	int flags = TOLOG;
184 	__va_list ap;
185 	struct putchar_arg pca;
186 	int retval;
187 
188 	if (sess && sess->s_ttyvp && ttycheckoutq(sess->s_ttyp, 0)) {
189 		flags |= TOTTY;
190 		tp = sess->s_ttyp;
191 	}
192 	__va_start(ap, fmt);
193 	pca.tty = tp;
194 	pca.flags = flags;
195 	pca.pri = LOG_INFO;
196 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
197 	__va_end(ap);
198 	msgbuftrigger = 1;
199 	return (retval);
200 }
201 
202 /*
203  * Ttyprintf displays a message on a tty; it should be used only by
204  * the tty driver, or anything that knows the underlying tty will not
205  * be revoke(2)'d away.  Other callers should use tprintf.
206  */
207 int
208 ttyprintf(struct tty *tp, const char *fmt, ...)
209 {
210 	__va_list ap;
211 	struct putchar_arg pca;
212 	int retval;
213 
214 	__va_start(ap, fmt);
215 	pca.tty = tp;
216 	pca.flags = TOTTY;
217 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
218 	__va_end(ap);
219 	return (retval);
220 }
221 
222 /*
223  * Log writes to the log buffer, and guarantees not to sleep (so can be
224  * called by interrupt routines).  If there is no process reading the
225  * log yet, it writes to the console also.
226  */
227 int
228 log(int level, const char *fmt, ...)
229 {
230 	__va_list ap;
231 	int retval;
232 	struct putchar_arg pca;
233 
234 	pca.tty = NULL;
235 	pca.pri = level;
236 	if ((kprintf_logging & TOCONS) == 0 || log_open)
237 		pca.flags = TOLOG;
238 	else
239 		pca.flags = TOCONS;
240 
241 	__va_start(ap, fmt);
242 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
243 	__va_end(ap);
244 
245 	msgbuftrigger = 1;
246 	return (retval);
247 }
248 
249 #define CONSCHUNK 128
250 
251 void
252 log_console(struct uio *uio)
253 {
254 	int c, i, error, iovlen, nl;
255 	struct uio muio;
256 	struct iovec *miov = NULL;
257 	char *consbuffer;
258 	int pri;
259 
260 	if (!log_console_output)
261 		return;
262 
263 	pri = LOG_INFO | LOG_CONSOLE;
264 	muio = *uio;
265 	iovlen = uio->uio_iovcnt * sizeof (struct iovec);
266 	miov = kmalloc(iovlen, M_TEMP, M_WAITOK);
267 	consbuffer = kmalloc(CONSCHUNK, M_TEMP, M_WAITOK);
268 	bcopy((caddr_t)muio.uio_iov, (caddr_t)miov, iovlen);
269 	muio.uio_iov = miov;
270 	uio = &muio;
271 
272 	nl = 0;
273 	while (uio->uio_resid > 0) {
274 		c = (int)szmin(uio->uio_resid, CONSCHUNK);
275 		error = uiomove(consbuffer, (size_t)c, uio);
276 		if (error != 0)
277 			break;
278 		for (i = 0; i < c; i++) {
279 			msglogchar(consbuffer[i], pri);
280 			if (consbuffer[i] == '\n')
281 				nl = 1;
282 			else
283 				nl = 0;
284 		}
285 	}
286 	if (!nl)
287 		msglogchar('\n', pri);
288 	msgbuftrigger = 1;
289 	kfree(miov, M_TEMP);
290 	kfree(consbuffer, M_TEMP);
291 	return;
292 }
293 
294 /*
295  * Output to the console.
296  */
297 int
298 kprintf(const char *fmt, ...)
299 {
300 	__va_list ap;
301 	int savintr;
302 	struct putchar_arg pca;
303 	int retval;
304 
305 	savintr = consintr;		/* disable interrupts */
306 	consintr = 0;
307 	__va_start(ap, fmt);
308 	pca.tty = NULL;
309 	pca.flags = kprintf_logging & ~TOTTY;
310 	pca.pri = -1;
311 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
312 	__va_end(ap);
313 	if (!panicstr)
314 		msgbuftrigger = 1;
315 	consintr = savintr;		/* reenable interrupts */
316 	return (retval);
317 }
318 
319 int
320 kvprintf(const char *fmt, __va_list ap)
321 {
322 	int savintr;
323 	struct putchar_arg pca;
324 	int retval;
325 
326 	savintr = consintr;		/* disable interrupts */
327 	consintr = 0;
328 	pca.tty = NULL;
329 	pca.flags = kprintf_logging & ~TOTTY;
330 	pca.pri = -1;
331 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
332 	if (!panicstr)
333 		msgbuftrigger = 1;
334 	consintr = savintr;		/* reenable interrupts */
335 	return (retval);
336 }
337 
338 /*
339  * Limited rate kprintf.  The passed rate structure must be initialized
340  * with the desired reporting frequency.  A frequency of 0 will result in
341  * no output.
342  *
343  * count may be initialized to a negative number to allow an initial
344  * burst.
345  */
346 void
347 krateprintf(struct krate *rate, const char *fmt, ...)
348 {
349 	__va_list ap;
350 
351 	if (rate->ticks != (int)time_uptime) {
352 		rate->ticks = (int)time_uptime;
353 		if (rate->count > 0)
354 			rate->count = 0;
355 	}
356 	if (rate->count < rate->freq) {
357 		++rate->count;
358 		__va_start(ap, fmt);
359 		kvprintf(fmt, ap);
360 		__va_end(ap);
361 	}
362 }
363 
364 /*
365  * Print a character to the dmesg log, the console, and/or the user's
366  * terminal.
367  *
368  * NOTE: TOTTY does not require nonblocking operation, but TOCONS
369  * 	 and TOLOG do.  When we have a constty we still output to
370  *	 the real console but we have a monitoring thread which
371  *	 we wakeup which tracks the log.
372  */
373 static void
374 kputchar(int c, void *arg)
375 {
376 	struct putchar_arg *ap = (struct putchar_arg*) arg;
377 	int flags = ap->flags;
378 	struct tty *tp = ap->tty;
379 
380 	if (panicstr)
381 		constty = NULL;
382 	if ((flags & TOCONS) && tp == NULL && constty)
383 		flags |= TOLOG | TOWAKEUP;
384 	if ((flags & TOTTY) && tputchar(c, tp) < 0)
385 		ap->flags &= ~TOTTY;
386 	if ((flags & TOLOG))
387 		msglogchar(c, ap->pri);
388 	if ((flags & TOCONS) && c)
389 		cnputc(c);
390 	if (flags & TOWAKEUP)
391 		wakeup(constty_td);
392 }
393 
394 /*
395  * Scaled down version of sprintf(3).
396  */
397 int
398 ksprintf(char *buf, const char *cfmt, ...)
399 {
400 	int retval;
401 	__va_list ap;
402 
403 	__va_start(ap, cfmt);
404 	retval = kvcprintf(cfmt, NULL, buf, 10, ap);
405 	buf[retval] = '\0';
406 	__va_end(ap);
407 	return (retval);
408 }
409 
410 /*
411  * Scaled down version of vsprintf(3).
412  */
413 int
414 kvsprintf(char *buf, const char *cfmt, __va_list ap)
415 {
416 	int retval;
417 
418 	retval = kvcprintf(cfmt, NULL, buf, 10, ap);
419 	buf[retval] = '\0';
420 	return (retval);
421 }
422 
423 /*
424  * Scaled down version of snprintf(3).
425  */
426 int
427 ksnprintf(char *str, size_t size, const char *format, ...)
428 {
429 	int retval;
430 	__va_list ap;
431 
432 	__va_start(ap, format);
433 	retval = kvsnprintf(str, size, format, ap);
434 	__va_end(ap);
435 	return(retval);
436 }
437 
438 /*
439  * Scaled down version of vsnprintf(3).
440  */
441 int
442 kvsnprintf(char *str, size_t size, const char *format, __va_list ap)
443 {
444 	struct snprintf_arg info;
445 	int retval;
446 
447 	info.str = str;
448 	info.remain = size;
449 	retval = kvcprintf(format, snprintf_func, &info, 10, ap);
450 	if (info.remain >= 1)
451 		*info.str++ = '\0';
452 	return (retval);
453 }
454 
455 int
456 ksnrprintf(char *str, size_t size, int radix, const char *format, ...)
457 {
458 	int retval;
459 	__va_list ap;
460 
461 	__va_start(ap, format);
462 	retval = kvsnrprintf(str, size, radix, format, ap);
463 	__va_end(ap);
464 	return(retval);
465 }
466 
467 int
468 kvsnrprintf(char *str, size_t size, int radix, const char *format, __va_list ap)
469 {
470 	struct snprintf_arg info;
471 	int retval;
472 
473 	info.str = str;
474 	info.remain = size;
475 	retval = kvcprintf(format, snprintf_func, &info, radix, ap);
476 	if (info.remain >= 1)
477 		*info.str++ = '\0';
478 	return (retval);
479 }
480 
481 int
482 kvasnrprintf(char **strp, size_t size, int radix,
483 	     const char *format, __va_list ap)
484 {
485 	struct snprintf_arg info;
486 	int retval;
487 
488 	*strp = kmalloc(size, M_TEMP, M_WAITOK);
489 	info.str = *strp;
490 	info.remain = size;
491 	retval = kvcprintf(format, snprintf_func, &info, radix, ap);
492 	if (info.remain >= 1)
493 		*info.str++ = '\0';
494 	return (retval);
495 }
496 
497 void
498 kvasfree(char **strp)
499 {
500 	if (*strp) {
501 		kfree(*strp, M_TEMP);
502 		*strp = NULL;
503 	}
504 }
505 
506 static void
507 snprintf_func(int ch, void *arg)
508 {
509 	struct snprintf_arg *const info = arg;
510 
511 	if (info->remain >= 2) {
512 		*info->str++ = ch;
513 		info->remain--;
514 	}
515 }
516 
517 /*
518  * Put a NUL-terminated ASCII number (base <= 36) in a buffer in reverse
519  * order; return an optional length and a pointer to the last character
520  * written in the buffer (i.e., the first character of the string).
521  * The buffer pointed to by `nbuf' must have length >= MAXNBUF.
522  */
523 static char *
524 ksprintn(char *nbuf, uintmax_t num, int base, int *lenp, int upper)
525 {
526 	char *p, c;
527 
528 	p = nbuf;
529 	*p = '\0';
530 	do {
531 		c = hex2ascii(num % base);
532 		*++p = upper ? toupper(c) : c;
533 	} while (num /= base);
534 	if (lenp)
535 		*lenp = p - nbuf;
536 	return (p);
537 }
538 
539 /*
540  * Scaled down version of printf(3).
541  *
542  * Two additional formats:
543  *
544  * The format %b is supported to decode error registers.
545  * Its usage is:
546  *
547  *	kprintf("reg=%b\n", regval, "<base><arg>*");
548  *
549  * where <base> is the output base expressed as a control character, e.g.
550  * \10 gives octal; \20 gives hex.  Each arg is a sequence of characters,
551  * the first of which gives the bit number to be inspected (origin 1), and
552  * the next characters (up to a control character, i.e. a character <= 32),
553  * give the name of the register.  Thus:
554  *
555  *	kvcprintf("reg=%b\n", 3, "\10\2BITTWO\1BITONE\n");
556  *
557  * would produce output:
558  *
559  *	reg=3<BITTWO,BITONE>
560  */
561 
562 #define PCHAR(c) {int cc=(c); if(func) (*func)(cc,arg); else *d++=cc; retval++;}
563 
564 int
565 kvcprintf(char const *fmt, void (*func)(int, void*), void *arg,
566 	  int radix, __va_list ap)
567 {
568 	char nbuf[MAXNBUF];
569 	char *d;
570 	const char *p, *percent, *q;
571 	int ch, n;
572 	uintmax_t num;
573 	int base, tmp, width, ladjust, sharpflag, spaceflag, neg, sign, dot;
574 	int cflag, hflag, jflag, lflag, qflag, tflag, zflag;
575 	int dwidth, upper;
576 	char padc;
577 	int retval = 0, stop = 0;
578 	int usespin;
579 
580 	/*
581 	 * Make a supreme effort to avoid reentrant panics or deadlocks.
582 	 *
583 	 * NOTE!  Do nothing that would access mycpu/gd/fs unless the
584 	 *	  function is the normal kputchar(), which allows us to
585 	 *	  use this function for very early debugging with a special
586 	 *	  function.
587 	 */
588 	if (func == kputchar) {
589 		if (mycpu->gd_flags & GDF_KPRINTF)
590 			return(0);
591 		atomic_set_long(&mycpu->gd_flags, GDF_KPRINTF);
592 	}
593 
594 	num = 0;
595 	if (!func)
596 		d = (char *) arg;
597 	else
598 		d = NULL;
599 
600 	if (fmt == NULL)
601 		fmt = "(fmt null)\n";
602 
603 	if (radix < 2 || radix > 36)
604 		radix = 10;
605 
606 	usespin = (func == kputchar &&
607 		   (kprintf_logging & TONOSPIN) == 0 &&
608 		   panic_cpu_gd != mycpu &&
609 		   (((struct putchar_arg *)arg)->flags & TOTTY) == 0);
610 	if (usespin) {
611 		crit_enter_hard();
612 		spin_lock(&cons_spin);
613 	}
614 
615 	for (;;) {
616 		padc = ' ';
617 		width = 0;
618 		while ((ch = (u_char)*fmt++) != '%' || stop) {
619 			if (ch == '\0')
620 				goto done;
621 			PCHAR(ch);
622 		}
623 		percent = fmt - 1;
624 		dot = dwidth = ladjust = neg = sharpflag = sign = upper = 0;
625 		spaceflag = 0;
626 		cflag = hflag = jflag = lflag = qflag = tflag = zflag = 0;
627 
628 reswitch:
629 		switch (ch = (u_char)*fmt++) {
630 		case ' ':
631 			spaceflag = 1;
632 			goto reswitch;
633 		case '.':
634 			dot = 1;
635 			goto reswitch;
636 		case '#':
637 			sharpflag = 1;
638 			goto reswitch;
639 		case '+':
640 			sign = 1;
641 			goto reswitch;
642 		case '-':
643 			ladjust = 1;
644 			goto reswitch;
645 		case '%':
646 			PCHAR(ch);
647 			break;
648 		case '*':
649 			if (!dot) {
650 				width = __va_arg(ap, int);
651 				if (width < 0) {
652 					ladjust = !ladjust;
653 					width = -width;
654 				}
655 			} else {
656 				dwidth = __va_arg(ap, int);
657 			}
658 			goto reswitch;
659 		case '0':
660 			if (!dot) {
661 				padc = '0';
662 				goto reswitch;
663 			}
664 		case '1': case '2': case '3': case '4':
665 		case '5': case '6': case '7': case '8': case '9':
666 				for (n = 0;; ++fmt) {
667 					n = n * 10 + ch - '0';
668 					ch = *fmt;
669 					if (ch < '0' || ch > '9')
670 						break;
671 				}
672 			if (dot)
673 				dwidth = n;
674 			else
675 				width = n;
676 			goto reswitch;
677 		case 'b':
678 			num = (u_int)__va_arg(ap, int);
679 			p = __va_arg(ap, char *);
680 			for (q = ksprintn(nbuf, num, *p++, NULL, 0); *q;)
681 				PCHAR(*q--);
682 
683 			if (num == 0)
684 				break;
685 
686 			for (tmp = 0; *p;) {
687 				n = *p++;
688 				if (num & (1 << (n - 1))) {
689 					PCHAR(tmp ? ',' : '<');
690 					for (; (n = *p) > ' '; ++p)
691 						PCHAR(n);
692 					tmp = 1;
693 				} else
694 					for (; *p > ' '; ++p)
695 						continue;
696 			}
697 			if (tmp)
698 				PCHAR('>');
699 			break;
700 		case 'c':
701 			PCHAR(__va_arg(ap, int));
702 			break;
703 		case 'd':
704 		case 'i':
705 			base = 10;
706 			sign = 1;
707 			goto handle_sign;
708 		case 'h':
709 			if (hflag) {
710 				hflag = 0;
711 				cflag = 1;
712 			} else
713 				hflag = 1;
714 			goto reswitch;
715 		case 'j':
716 			jflag = 1;
717 			goto reswitch;
718 		case 'l':
719 			if (lflag) {
720 				lflag = 0;
721 				qflag = 1;
722 			} else
723 				lflag = 1;
724 			goto reswitch;
725 		case 'n':
726 			if (cflag)
727 				*(__va_arg(ap, char *)) = retval;
728 			else if (hflag)
729 				*(__va_arg(ap, short *)) = retval;
730 			else if (jflag)
731 				*(__va_arg(ap, intmax_t *)) = retval;
732 			else if (lflag)
733 				*(__va_arg(ap, long *)) = retval;
734 			else if (qflag)
735 				*(__va_arg(ap, quad_t *)) = retval;
736 			else
737 				*(__va_arg(ap, int *)) = retval;
738 			break;
739 		case 'o':
740 			base = 8;
741 			goto handle_nosign;
742 		case 'p':
743 			base = 16;
744 			sharpflag = (width == 0);
745 			sign = 0;
746 			num = (uintptr_t)__va_arg(ap, void *);
747 			goto number;
748 		case 'q':
749 			qflag = 1;
750 			goto reswitch;
751 		case 'r':
752 			base = radix;
753 			if (sign)
754 				goto handle_sign;
755 			goto handle_nosign;
756 		case 's':
757 			p = __va_arg(ap, char *);
758 			if (p == NULL)
759 				p = "(null)";
760 			if (!dot)
761 				n = strlen (p);
762 			else
763 				for (n = 0; n < dwidth && p[n]; n++)
764 					continue;
765 
766 			width -= n;
767 
768 			if (!ladjust && width > 0)
769 				while (width--)
770 					PCHAR(padc);
771 			while (n--)
772 				PCHAR(*p++);
773 			if (ladjust && width > 0)
774 				while (width--)
775 					PCHAR(padc);
776 			break;
777 		case 't':
778 			tflag = 1;
779 			goto reswitch;
780 		case 'u':
781 			base = 10;
782 			goto handle_nosign;
783 		case 'X':
784 			upper = 1;
785 			/* FALLTHROUGH */
786 		case 'x':
787 			base = 16;
788 			goto handle_nosign;
789 		case 'z':
790 			zflag = 1;
791 			goto reswitch;
792 handle_nosign:
793 			sign = 0;
794 			if (cflag)
795 				num = (u_char)__va_arg(ap, int);
796 			else if (hflag)
797 				num = (u_short)__va_arg(ap, int);
798 			else if (jflag)
799 				num = __va_arg(ap, uintmax_t);
800 			else if (lflag)
801 				num = __va_arg(ap, u_long);
802 			else if (qflag)
803 				num = __va_arg(ap, u_quad_t);
804 			else if (tflag)
805 				num = __va_arg(ap, ptrdiff_t);
806 			else if (zflag)
807 				num = __va_arg(ap, size_t);
808 			else
809 				num = __va_arg(ap, u_int);
810 			goto number;
811 handle_sign:
812 			if (cflag)
813 				num = (char)__va_arg(ap, int);
814 			else if (hflag)
815 				num = (short)__va_arg(ap, int);
816 			else if (jflag)
817 				num = __va_arg(ap, intmax_t);
818 			else if (lflag)
819 				num = __va_arg(ap, long);
820 			else if (qflag)
821 				num = __va_arg(ap, quad_t);
822 			else if (tflag)
823 				num = __va_arg(ap, ptrdiff_t);
824 			else if (zflag)
825 				num = __va_arg(ap, ssize_t);
826 			else
827 				num = __va_arg(ap, int);
828 number:
829 			if (sign && (intmax_t)num < 0) {
830 				neg = 1;
831 				num = -(intmax_t)num;
832 			}
833 			p = ksprintn(nbuf, num, base, &n, upper);
834 			tmp = 0;
835 			if (sharpflag && num != 0) {
836 				if (base == 8)
837 					tmp++;
838 				else if (base == 16)
839 					tmp += 2;
840 			}
841 			if (neg || (sign && spaceflag))
842 				tmp++;
843 
844 			if (!ladjust && padc == '0')
845 				dwidth = width - tmp;
846 			width -= tmp + imax(dwidth, n);
847 			dwidth -= n;
848 			if (!ladjust)
849 				while (width-- > 0)
850 					PCHAR(' ');
851 			if (neg) {
852 				PCHAR('-');
853 			} else if (sign && spaceflag) {
854 				PCHAR(' ');
855 			}
856 			if (sharpflag && num != 0) {
857 				if (base == 8) {
858 					PCHAR('0');
859 				} else if (base == 16) {
860 					PCHAR('0');
861 					PCHAR('x');
862 				}
863 			}
864 			while (dwidth-- > 0)
865 				PCHAR('0');
866 
867 			while (*p)
868 				PCHAR(*p--);
869 
870 			if (ladjust)
871 				while (width-- > 0)
872 					PCHAR(' ');
873 
874 			break;
875 		default:
876 			while (percent < fmt)
877 				PCHAR(*percent++);
878 			/*
879 			 * Since we ignore an formatting argument it is no
880 			 * longer safe to obey the remaining formatting
881 			 * arguments as the arguments will no longer match
882 			 * the format specs.
883 			 */
884 			stop = 1;
885 			break;
886 		}
887 	}
888 done:
889 	/*
890 	 * Cleanup reentrancy issues.
891 	 */
892 	if (func == kputchar)
893 		atomic_clear_long(&mycpu->gd_flags, GDF_KPRINTF);
894 	if (usespin) {
895 		spin_unlock(&cons_spin);
896 		crit_exit_hard();
897 	}
898 	return (retval);
899 }
900 
901 #undef PCHAR
902 
903 /*
904  * Called from the panic code to try to get the console working
905  * again in case we paniced inside a kprintf().
906  */
907 void
908 kvcreinitspin(void)
909 {
910 	spin_init(&cons_spin, "kvcre");
911 	atomic_clear_long(&mycpu->gd_flags, GDF_KPRINTF);
912 }
913 
914 /*
915  * Console support thread for constty intercepts.  This is needed because
916  * console tty intercepts can block.  Instead of having kputchar() attempt
917  * to directly write to the console intercept we just force it to log
918  * and wakeup this baby to track and dump the log to constty.
919  */
920 static void
921 constty_daemon(void)
922 {
923 	u_int rindex;
924 	u_int xindex;
925 	u_int n;
926         struct msgbuf *mbp;
927 	struct tty *tp;
928 
929         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
930                               constty_td, SHUTDOWN_PRI_FIRST);
931         constty_td->td_flags |= TDF_SYSTHREAD;
932 
933 	mbp = msgbufp;
934 	rindex = mbp->msg_bufr;		/* persistent loop variable */
935 	xindex = mbp->msg_bufx - 1;	/* anything different than bufx */
936 	cpu_ccfence();
937 
938         for (;;) {
939                 kproc_suspend_loop();
940 
941 		crit_enter();
942 		if (mbp != msgbufp)
943 			mbp = msgbufp;
944 		if (xindex == mbp->msg_bufx ||
945 		    mbp == NULL ||
946 		    msgbufmapped == 0) {
947 			tsleep(constty_td, 0, "waiting", hz*60);
948 			crit_exit();
949 			continue;
950 		}
951 		crit_exit();
952 
953 		/*
954 		 * Get message buf FIFO indices.  rindex is tracking.
955 		 */
956 		xindex = mbp->msg_bufx;
957 		cpu_ccfence();
958 		if ((tp = constty) == NULL) {
959 			rindex = xindex;
960 			continue;
961 		}
962 
963 		/*
964 		 * Check if the calculated bytes has rolled the whole
965 		 * message buffer.
966 		 */
967 		n = xindex - rindex;
968 		if (n > mbp->msg_size - 1024) {
969 			rindex = xindex - mbp->msg_size + 2048;
970 			n = xindex - rindex;
971 		}
972 
973 		/*
974 		 * And dump it.  If constty gets stuck will give up.
975 		 */
976 		while (rindex != xindex) {
977 			u_int ri = rindex % mbp->msg_size;
978 			if (tputchar((uint8_t)mbp->msg_ptr[ri], tp) < 0) {
979 				constty = NULL;
980 				rindex = xindex;
981 				break;
982 			}
983                         if (tp->t_outq.c_cc >= tp->t_ohiwat) {
984 				tsleep(constty_daemon, 0, "blocked", hz / 10);
985 				if (tp->t_outq.c_cc >= tp->t_ohiwat) {
986 					rindex = xindex;
987 					break;
988 				}
989 			}
990 			++rindex;
991 		}
992 	}
993 }
994 
995 static struct kproc_desc constty_kp = {
996         "consttyd",
997 	constty_daemon,
998         &constty_td
999 };
1000 SYSINIT(bufdaemon, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY,
1001         kproc_start, &constty_kp);
1002 
1003 /*
1004  * Put character in log buffer with a particular priority.
1005  *
1006  * MPSAFE
1007  */
1008 static void
1009 msglogchar(int c, int pri)
1010 {
1011 	static int lastpri = -1;
1012 	static int dangling;
1013 	char nbuf[MAXNBUF];
1014 	char *p;
1015 
1016 	if (!msgbufmapped)
1017 		return;
1018 	if (c == '\0' || c == '\r')
1019 		return;
1020 	if (pri != -1 && pri != lastpri) {
1021 		if (dangling) {
1022 			msgaddchar('\n', NULL);
1023 			dangling = 0;
1024 		}
1025 		msgaddchar('<', NULL);
1026 		for (p = ksprintn(nbuf, (uintmax_t)pri, 10, NULL, 0); *p;)
1027 			msgaddchar(*p--, NULL);
1028 		msgaddchar('>', NULL);
1029 		lastpri = pri;
1030 	}
1031 	msgaddchar(c, NULL);
1032 	if (c == '\n') {
1033 		dangling = 0;
1034 		lastpri = -1;
1035 	} else {
1036 		dangling = 1;
1037 	}
1038 }
1039 
1040 /*
1041  * Put char in log buffer.   Make sure nothing blows up beyond repair if
1042  * we have an MP race.
1043  *
1044  * MPSAFE.
1045  */
1046 static void
1047 msgaddchar(int c, void *dummy)
1048 {
1049 	struct msgbuf *mbp;
1050 	u_int lindex;
1051 	u_int rindex;
1052 	u_int xindex;
1053 	u_int n;
1054 
1055 	if (!msgbufmapped)
1056 		return;
1057 	mbp = msgbufp;
1058 	lindex = mbp->msg_bufl;
1059 	rindex = mbp->msg_bufr;
1060 	xindex = mbp->msg_bufx++;	/* Allow SMP race */
1061 	cpu_ccfence();
1062 
1063 	mbp->msg_ptr[xindex % mbp->msg_size] = c;
1064 	n = xindex - lindex;
1065 	if (n > mbp->msg_size - 1024) {
1066 		lindex = xindex - mbp->msg_size + 2048;
1067 		cpu_ccfence();
1068 		mbp->msg_bufl = lindex;
1069 	}
1070 	n = xindex - rindex;
1071 	if (n > mbp->msg_size - 1024) {
1072 		rindex = xindex - mbp->msg_size + 2048;
1073 		cpu_ccfence();
1074 		mbp->msg_bufr = rindex;
1075 	}
1076 }
1077 
1078 static void
1079 msgbufcopy(struct msgbuf *oldp)
1080 {
1081 	u_int rindex;
1082 	u_int xindex;
1083 	u_int n;
1084 
1085 	rindex = oldp->msg_bufr;
1086 	xindex = oldp->msg_bufx;
1087 	cpu_ccfence();
1088 
1089 	n = xindex - rindex;
1090 	if (n > oldp->msg_size - 1024)
1091 		rindex = xindex - oldp->msg_size + 2048;
1092 	while (rindex != xindex) {
1093 		msglogchar(oldp->msg_ptr[rindex % oldp->msg_size], -1);
1094 		++rindex;
1095 	}
1096 }
1097 
1098 void
1099 msgbufinit(void *ptr, size_t size)
1100 {
1101 	char *cp;
1102 	static struct msgbuf *oldp = NULL;
1103 
1104 	size -= sizeof(*msgbufp);
1105 	cp = (char *)ptr;
1106 	msgbufp = (struct msgbuf *) (cp + size);
1107 	if (msgbufp->msg_magic != MSG_MAGIC || msgbufp->msg_size != size) {
1108 		bzero(cp, size);
1109 		bzero(msgbufp, sizeof(*msgbufp));
1110 		msgbufp->msg_magic = MSG_MAGIC;
1111 		msgbufp->msg_size = (char *)msgbufp - cp;
1112 	}
1113 	msgbufp->msg_ptr = cp;
1114 	if (msgbufmapped && oldp != msgbufp)
1115 		msgbufcopy(oldp);
1116 	cpu_mfence();
1117 	msgbufmapped = 1;
1118 	oldp = msgbufp;
1119 }
1120 
1121 /* Sysctls for accessing/clearing the msgbuf */
1122 
1123 static int
1124 sysctl_kern_msgbuf(SYSCTL_HANDLER_ARGS)
1125 {
1126         struct msgbuf *mbp;
1127 	struct ucred *cred;
1128 	int error;
1129 	u_int rindex_modulo;
1130 	u_int xindex_modulo;
1131 	u_int rindex;
1132 	u_int xindex;
1133 	u_int n;
1134 
1135 	/*
1136 	 * Only wheel or root can access the message log.
1137 	 */
1138 	if (unprivileged_read_msgbuf == 0) {
1139 		KKASSERT(req->td->td_proc);
1140 		cred = req->td->td_proc->p_ucred;
1141 
1142 		if ((cred->cr_prison || groupmember(0, cred) == 0) &&
1143 		    priv_check(req->td, PRIV_ROOT) != 0
1144 		) {
1145 			return (EPERM);
1146 		}
1147 	}
1148 
1149 	/*
1150 	 * Unwind the buffer, so that it's linear (possibly starting with
1151 	 * some initial nulls).
1152 	 *
1153 	 * We don't push the entire buffer like we did before because
1154 	 * bufr (and bufl) now advance in chunks when the fifo is full,
1155 	 * rather than one character.
1156 	 */
1157 	mbp = msgbufp;
1158 	rindex = mbp->msg_bufr;
1159 	xindex = mbp->msg_bufx;
1160 	n = xindex - rindex;
1161 	if (n > mbp->msg_size - 1024) {
1162 		rindex = xindex - mbp->msg_size + 2048;
1163 		n = xindex - rindex;
1164 	}
1165 	rindex_modulo = rindex % mbp->msg_size;
1166 	xindex_modulo = xindex % mbp->msg_size;
1167 
1168 	if (rindex_modulo < xindex_modulo) {
1169 		/*
1170 		 * Can handle in one linear section.
1171 		 */
1172 		error = sysctl_handle_opaque(oidp,
1173 					     mbp->msg_ptr + rindex_modulo,
1174 					     xindex_modulo - rindex_modulo,
1175 					     req);
1176 	} else if (rindex_modulo == xindex_modulo) {
1177 		/*
1178 		 * Empty buffer, just return a single newline
1179 		 */
1180 		error = sysctl_handle_opaque(oidp, "\n", 1, req);
1181 	} else if (n <= mbp->msg_size - rindex_modulo) {
1182 		/*
1183 		 * Can handle in one linear section.
1184 		 */
1185 		error = sysctl_handle_opaque(oidp,
1186 					     mbp->msg_ptr + rindex_modulo,
1187 					     n - rindex_modulo,
1188 					     req);
1189 	} else {
1190 		/*
1191 		 * Glue together two linear sections into one contiguous
1192 		 * output.
1193 		 */
1194 		error = sysctl_handle_opaque(oidp,
1195 					     mbp->msg_ptr + rindex_modulo,
1196 					     mbp->msg_size - rindex_modulo,
1197 					     req);
1198 		n -= mbp->msg_size - rindex_modulo;
1199 		if (error == 0)
1200 			error = sysctl_handle_opaque(oidp, mbp->msg_ptr,
1201 						     n, req);
1202 	}
1203 	if (error)
1204 		return (error);
1205 	return (error);
1206 }
1207 
1208 SYSCTL_PROC(_kern, OID_AUTO, msgbuf, CTLTYPE_STRING | CTLFLAG_RD,
1209     0, 0, sysctl_kern_msgbuf, "A", "Contents of kernel message buffer");
1210 
1211 static int msgbuf_clear;
1212 
1213 static int
1214 sysctl_kern_msgbuf_clear(SYSCTL_HANDLER_ARGS)
1215 {
1216 	int error;
1217 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1218 	if (!error && req->newptr) {
1219 		/* Clear the buffer and reset write pointer */
1220 		msgbufp->msg_bufr = msgbufp->msg_bufx;
1221 		msgbufp->msg_bufl = msgbufp->msg_bufx;
1222 		bzero(msgbufp->msg_ptr, msgbufp->msg_size);
1223 		msgbuf_clear = 0;
1224 	}
1225 	return (error);
1226 }
1227 
1228 SYSCTL_PROC(_kern, OID_AUTO, msgbuf_clear,
1229     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE, &msgbuf_clear, 0,
1230     sysctl_kern_msgbuf_clear, "I", "Clear kernel message buffer");
1231 
1232 #ifdef DDB
1233 
1234 DB_SHOW_COMMAND(msgbuf, db_show_msgbuf)
1235 {
1236 	u_int rindex;
1237 	u_int i;
1238 	u_int j;
1239 
1240 	if (!msgbufmapped) {
1241 		db_printf("msgbuf not mapped yet\n");
1242 		return;
1243 	}
1244 	db_printf("msgbufp = %p\n", msgbufp);
1245 	db_printf("magic = %x, size = %d, r= %d, w = %d, ptr = %p\n",
1246 		  msgbufp->msg_magic, msgbufp->msg_size,
1247 		  msgbufp->msg_bufr % msgbufp->msg_size,
1248 		  msgbufp->msg_bufx % msgbufp->msg_size,
1249 		  msgbufp->msg_ptr);
1250 
1251 	rindex = msgbufp->msg_bufr;
1252 	for (i = 0; i < msgbufp->msg_size; i++) {
1253 		j = (i + rindex) % msgbufp->msg_size;
1254 		db_printf("%c", msgbufp->msg_ptr[j]);
1255 	}
1256 	db_printf("\n");
1257 }
1258 
1259 #endif /* DDB */
1260 
1261 
1262 void
1263 hexdump(const void *ptr, int length, const char *hdr, int flags)
1264 {
1265 	int i, j, k;
1266 	int cols;
1267 	const unsigned char *cp;
1268 	char delim;
1269 
1270 	if ((flags & HD_DELIM_MASK) != 0)
1271 		delim = (flags & HD_DELIM_MASK) >> 8;
1272 	else
1273 		delim = ' ';
1274 
1275 	if ((flags & HD_COLUMN_MASK) != 0)
1276 		cols = flags & HD_COLUMN_MASK;
1277 	else
1278 		cols = 16;
1279 
1280 	cp = ptr;
1281 	for (i = 0; i < length; i+= cols) {
1282 		if (hdr != NULL)
1283 			kprintf("%s", hdr);
1284 
1285 		if ((flags & HD_OMIT_COUNT) == 0)
1286 			kprintf("%04x  ", i);
1287 
1288 		if ((flags & HD_OMIT_HEX) == 0) {
1289 			for (j = 0; j < cols; j++) {
1290 				k = i + j;
1291 				if (k < length)
1292 					kprintf("%c%02x", delim, cp[k]);
1293 				else
1294 					kprintf("   ");
1295 			}
1296 		}
1297 
1298 		if ((flags & HD_OMIT_CHARS) == 0) {
1299 			kprintf("  |");
1300 			for (j = 0; j < cols; j++) {
1301 				k = i + j;
1302 				if (k >= length)
1303 					kprintf(" ");
1304 				else if (cp[k] >= ' ' && cp[k] <= '~')
1305 					kprintf("%c", cp[k]);
1306 				else
1307 					kprintf(".");
1308 			}
1309 			kprintf("|");
1310 		}
1311 		kprintf("\n");
1312 	}
1313 }
1314 
1315 void
1316 kprint_cpuset(cpumask_t *mask)
1317 {
1318 	int i;
1319 	int b = -1;
1320 	int e = -1;
1321 	int more = 0;
1322 
1323 	kprintf("cpus(");
1324 	CPUSET_FOREACH(i, *mask) {
1325 		if (b < 0) {
1326 			b = i;
1327 			e = b + 1;
1328 			continue;
1329 		}
1330 		if (e == i) {
1331 			++e;
1332 			continue;
1333 		}
1334 		if (more)
1335 			kprintf(", ");
1336 		if (b == e - 1) {
1337 			kprintf("%d", b);
1338 		} else {
1339 			kprintf("%d-%d", b, e - 1);
1340 		}
1341 		more = 1;
1342 		b = i;
1343 		e = b + 1;
1344 	}
1345 	if (more)
1346 		kprintf(", ");
1347 	if (b >= 0) {
1348 		if (b == e - 1) {
1349 			kprintf("%d", b);
1350 		} else {
1351 			kprintf("%d-%d", b, e - 1);
1352 		}
1353 	}
1354 	kprintf(") ");
1355 }
1356