xref: /dragonfly/sys/kern/subr_rman.c (revision 19fe1c42)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/kern/subr_rman.c,v 1.10.2.1 2001/06/05 08:06:08 imp Exp $
30  * $DragonFly: src/sys/kern/subr_rman.c,v 1.15 2008/09/30 12:20:29 hasso Exp $
31  */
32 
33 /*
34  * The kernel resource manager.  This code is responsible for keeping track
35  * of hardware resources which are apportioned out to various drivers.
36  * It does not actually assign those resources, and it is not expected
37  * that end-device drivers will call into this code directly.  Rather,
38  * the code which implements the buses that those devices are attached to,
39  * and the code which manages CPU resources, will call this code, and the
40  * end-device drivers will make upcalls to that code to actually perform
41  * the allocation.
42  *
43  * There are two sorts of resources managed by this code.  The first is
44  * the more familiar array (RMAN_ARRAY) type; resources in this class
45  * consist of a sequence of individually-allocatable objects which have
46  * been numbered in some well-defined order.  Most of the resources
47  * are of this type, as it is the most familiar.  The second type is
48  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
49  * resources in which each instance is indistinguishable from every
50  * other instance).  The principal anticipated application of gauges
51  * is in the context of power consumption, where a bus may have a specific
52  * power budget which all attached devices share.  RMAN_GAUGE is not
53  * implemented yet.
54  *
55  * For array resources, we make one simplifying assumption: two clients
56  * sharing the same resource must use the same range of indices.  That
57  * is to say, sharing of overlapping-but-not-identical regions is not
58  * permitted.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/kernel.h>
64 #include <sys/lock.h>
65 #include <sys/malloc.h>
66 #include <sys/bus.h>		/* XXX debugging */
67 #include <sys/rman.h>
68 #include <sys/sysctl.h>
69 
70 int	rman_debug = 0;
71 TUNABLE_INT("debug.rman_debug", &rman_debug);
72 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
73     &rman_debug, 0, "rman debug");
74 
75 #define DPRINTF(params) if (rman_debug) kprintf params
76 
77 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
78 
79 struct	rman_head rman_head;
80 static	struct lwkt_token rman_tok; /* mutex to protect rman_head */
81 static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
82 				       struct resource **whohas);
83 static	int int_rman_deactivate_resource(struct resource *r);
84 static	int int_rman_release_resource(struct rman *rm, struct resource *r);
85 
86 #define	CIRCLEQ_TERMCOND(var, head)	(var == (void *)&(head))
87 
88 int
89 rman_init(struct rman *rm)
90 {
91 	static int once;
92 	lwkt_tokref ilock;
93 
94 	if (once == 0) {
95 		once = 1;
96 		TAILQ_INIT(&rman_head);
97 		lwkt_token_init(&rman_tok);
98 	}
99 
100 	if (rm->rm_type == RMAN_UNINIT)
101 		panic("rman_init");
102 	if (rm->rm_type == RMAN_GAUGE)
103 		panic("implement RMAN_GAUGE");
104 
105 	CIRCLEQ_INIT(&rm->rm_list);
106 	rm->rm_slock = kmalloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
107 	if (rm->rm_slock == NULL)
108 		return ENOMEM;
109 	lwkt_token_init(rm->rm_slock);
110 
111 	lwkt_gettoken(&ilock, &rman_tok);
112 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
113 	lwkt_reltoken(&ilock);
114 	return 0;
115 }
116 
117 /*
118  * NB: this interface is not robust against programming errors which
119  * add multiple copies of the same region.
120  */
121 int
122 rman_manage_region(struct rman *rm, u_long start, u_long end)
123 {
124 	struct resource *r, *s;
125 	lwkt_tokref ilock;
126 
127 	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
128 	    rm->rm_descr, start, end));
129 	r = kmalloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
130 	if (r == 0)
131 		return ENOMEM;
132 	r->r_sharehead = 0;
133 	r->r_start = start;
134 	r->r_end = end;
135 	r->r_flags = 0;
136 	r->r_dev = 0;
137 	r->r_rm = rm;
138 
139 	lwkt_gettoken(&ilock, rm->rm_slock);
140 	for (s = CIRCLEQ_FIRST(&rm->rm_list);
141 	     !CIRCLEQ_TERMCOND(s, rm->rm_list) && s->r_end < r->r_start;
142 	     s = CIRCLEQ_NEXT(s, r_link))
143 		;
144 
145 	if (CIRCLEQ_TERMCOND(s, rm->rm_list)) {
146 		CIRCLEQ_INSERT_TAIL(&rm->rm_list, r, r_link);
147 	} else {
148 		CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, r, r_link);
149 	}
150 
151 	lwkt_reltoken(&ilock);
152 	return 0;
153 }
154 
155 int
156 rman_fini(struct rman *rm)
157 {
158 	struct resource *r;
159 	lwkt_tokref ilock;
160 
161 	lwkt_gettoken(&ilock, rm->rm_slock);
162 	CIRCLEQ_FOREACH(r, &rm->rm_list, r_link) {
163 		if (r->r_flags & RF_ALLOCATED) {
164 			lwkt_reltoken(&ilock);
165 			return EBUSY;
166 		}
167 	}
168 
169 	/*
170 	 * There really should only be one of these if we are in this
171 	 * state and the code is working properly, but it can't hurt.
172 	 */
173 	while (!CIRCLEQ_EMPTY(&rm->rm_list)) {
174 		r = CIRCLEQ_FIRST(&rm->rm_list);
175 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
176 		kfree(r, M_RMAN);
177 	}
178 	lwkt_reltoken(&ilock);
179 	/* XXX what's the point of this if we are going to free the struct? */
180 	lwkt_gettoken(&ilock, &rman_tok);
181 	TAILQ_REMOVE(&rman_head, rm, rm_link);
182 	lwkt_reltoken(&ilock);
183 	kfree(rm->rm_slock, M_RMAN);
184 
185 	return 0;
186 }
187 
188 struct resource *
189 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
190 		      u_int flags, struct device *dev)
191 {
192 	u_int	want_activate;
193 	struct	resource *r, *s, *rv;
194 	u_long	rstart, rend;
195 	lwkt_tokref ilock;
196 
197 	rv = 0;
198 
199 	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
200 	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end,
201 	       count, flags,
202 	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
203 	want_activate = (flags & RF_ACTIVE);
204 	flags &= ~RF_ACTIVE;
205 
206 	lwkt_gettoken(&ilock, rm->rm_slock);
207 
208 	for (r = CIRCLEQ_FIRST(&rm->rm_list);
209 	     !CIRCLEQ_TERMCOND(r, rm->rm_list) && r->r_end < start;
210 	     r = CIRCLEQ_NEXT(r, r_link))
211 		;
212 
213 	if (CIRCLEQ_TERMCOND(r, rm->rm_list)) {
214 		DPRINTF(("could not find a region\n"));
215 		goto out;
216 	}
217 
218 	/*
219 	 * First try to find an acceptable totally-unshared region.
220 	 */
221 	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
222 	     s = CIRCLEQ_NEXT(s, r_link)) {
223 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
224 		if (s->r_start > end) {
225 			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n",
226 			    s->r_start, end));
227 			break;
228 		}
229 		if (s->r_flags & RF_ALLOCATED) {
230 			DPRINTF(("region is allocated\n"));
231 			continue;
232 		}
233 		rstart = max(s->r_start, start);
234 		rstart = (rstart + ((1ul << RF_ALIGNMENT(flags))) - 1) &
235 		    ~((1ul << RF_ALIGNMENT(flags)) - 1);
236 		rend = min(s->r_end, max(start + count, end));
237 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
238 		       rstart, rend, (rend - rstart + 1), count));
239 
240 		if ((rend - rstart + 1) >= count) {
241 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
242 			       rstart, rend, (rend - rstart + 1)));
243 			if ((s->r_end - s->r_start + 1) == count) {
244 				DPRINTF(("candidate region is entire chunk\n"));
245 				rv = s;
246 				rv->r_flags |= RF_ALLOCATED | flags;
247 				rv->r_dev = dev;
248 				goto out;
249 			}
250 
251 			/*
252 			 * If s->r_start < rstart and
253 			 *    s->r_end > rstart + count - 1, then
254 			 * we need to split the region into three pieces
255 			 * (the middle one will get returned to the user).
256 			 * Otherwise, we are allocating at either the
257 			 * beginning or the end of s, so we only need to
258 			 * split it in two.  The first case requires
259 			 * two new allocations; the second requires but one.
260 			 */
261 			rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
262 			if (rv == 0)
263 				goto out;
264 			rv->r_start = rstart;
265 			rv->r_end = rstart + count - 1;
266 			rv->r_flags = flags | RF_ALLOCATED;
267 			rv->r_dev = dev;
268 			rv->r_sharehead = 0;
269 			rv->r_rm = rm;
270 
271 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
272 				DPRINTF(("splitting region in three parts: "
273 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
274 				       s->r_start, rv->r_start - 1,
275 				       rv->r_start, rv->r_end,
276 				       rv->r_end + 1, s->r_end));
277 				/*
278 				 * We are allocating in the middle.
279 				 */
280 				r = kmalloc(sizeof *r, M_RMAN,
281 				    M_NOWAIT | M_ZERO);
282 				if (r == 0) {
283 					kfree(rv, M_RMAN);
284 					rv = 0;
285 					goto out;
286 				}
287 				r->r_start = rv->r_end + 1;
288 				r->r_end = s->r_end;
289 				r->r_flags = s->r_flags;
290 				r->r_dev = 0;
291 				r->r_sharehead = 0;
292 				r->r_rm = rm;
293 				s->r_end = rv->r_start - 1;
294 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
295 						     r_link);
296 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, rv, r,
297 						     r_link);
298 			} else if (s->r_start == rv->r_start) {
299 				DPRINTF(("allocating from the beginning\n"));
300 				/*
301 				 * We are allocating at the beginning.
302 				 */
303 				s->r_start = rv->r_end + 1;
304 				CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, rv,
305 						      r_link);
306 			} else {
307 				DPRINTF(("allocating at the end\n"));
308 				/*
309 				 * We are allocating at the end.
310 				 */
311 				s->r_end = rv->r_start - 1;
312 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
313 						     r_link);
314 			}
315 			goto out;
316 		}
317 	}
318 
319 	/*
320 	 * Now find an acceptable shared region, if the client's requirements
321 	 * allow sharing.  By our implementation restriction, a candidate
322 	 * region must match exactly by both size and sharing type in order
323 	 * to be considered compatible with the client's request.  (The
324 	 * former restriction could probably be lifted without too much
325 	 * additional work, but this does not seem warranted.)
326 	 */
327 	DPRINTF(("no unshared regions found\n"));
328 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
329 		goto out;
330 
331 	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
332 	     s = CIRCLEQ_NEXT(s, r_link)) {
333 		if (s->r_start > end)
334 			break;
335 		if ((s->r_flags & flags) != flags)
336 			continue;
337 		rstart = max(s->r_start, start);
338 		rend = min(s->r_end, max(start + count, end));
339 		if (s->r_start >= start && s->r_end <= end
340 		    && (s->r_end - s->r_start + 1) == count) {
341 			rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
342 			if (rv == 0)
343 				goto out;
344 			rv->r_start = s->r_start;
345 			rv->r_end = s->r_end;
346 			rv->r_flags = s->r_flags &
347 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
348 			rv->r_dev = dev;
349 			rv->r_rm = rm;
350 			if (s->r_sharehead == 0) {
351 				s->r_sharehead = kmalloc(sizeof *s->r_sharehead,
352 							M_RMAN,
353 							M_NOWAIT | M_ZERO);
354 				if (s->r_sharehead == 0) {
355 					kfree(rv, M_RMAN);
356 					rv = 0;
357 					goto out;
358 				}
359 				LIST_INIT(s->r_sharehead);
360 				LIST_INSERT_HEAD(s->r_sharehead, s,
361 						 r_sharelink);
362 				s->r_flags |= RF_FIRSTSHARE;
363 			}
364 			rv->r_sharehead = s->r_sharehead;
365 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
366 			goto out;
367 		}
368 	}
369 
370 	/*
371 	 * We couldn't find anything.
372 	 */
373 out:
374 	/*
375 	 * If the user specified RF_ACTIVE in the initial flags,
376 	 * which is reflected in `want_activate', we attempt to atomically
377 	 * activate the resource.  If this fails, we release the resource
378 	 * and indicate overall failure.  (This behavior probably doesn't
379 	 * make sense for RF_TIMESHARE-type resources.)
380 	 */
381 	if (rv && want_activate) {
382 		struct resource *whohas;
383 		if (int_rman_activate_resource(rm, rv, &whohas)) {
384 			int_rman_release_resource(rm, rv);
385 			rv = 0;
386 		}
387 	}
388 	lwkt_reltoken(&ilock);
389 	return (rv);
390 }
391 
392 static int
393 int_rman_activate_resource(struct rman *rm, struct resource *r,
394 			   struct resource **whohas)
395 {
396 	struct resource *s;
397 	int ok;
398 
399 	/*
400 	 * If we are not timesharing, then there is nothing much to do.
401 	 * If we already have the resource, then there is nothing at all to do.
402 	 * If we are not on a sharing list with anybody else, then there is
403 	 * little to do.
404 	 */
405 	if ((r->r_flags & RF_TIMESHARE) == 0
406 	    || (r->r_flags & RF_ACTIVE) != 0
407 	    || r->r_sharehead == 0) {
408 		r->r_flags |= RF_ACTIVE;
409 		return 0;
410 	}
411 
412 	ok = 1;
413 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
414 	     s = LIST_NEXT(s, r_sharelink)) {
415 		if ((s->r_flags & RF_ACTIVE) != 0) {
416 			ok = 0;
417 			*whohas = s;
418 		}
419 	}
420 	if (ok) {
421 		r->r_flags |= RF_ACTIVE;
422 		return 0;
423 	}
424 	return EBUSY;
425 }
426 
427 int
428 rman_activate_resource(struct resource *r)
429 {
430 	int rv;
431 	struct resource *whohas;
432 	lwkt_tokref ilock;
433 	struct rman *rm;
434 
435 	rm = r->r_rm;
436 	lwkt_gettoken(&ilock, rm->rm_slock);
437 	rv = int_rman_activate_resource(rm, r, &whohas);
438 	lwkt_reltoken(&ilock);
439 	return rv;
440 }
441 
442 #if 0
443 
444 /* XXX */
445 int
446 rman_await_resource(struct resource *r, lwkt_tokref_t ilock, int slpflags, int timo)
447 {
448 	int	rv;
449 	struct	resource *whohas;
450 	struct	rman *rm;
451 
452 	rm = r->r_rm;
453 	for (;;) {
454 		lwkt_gettoken(ilock, rm->rm_slock);
455 		rv = int_rman_activate_resource(rm, r, &whohas);
456 		if (rv != EBUSY)
457 			return (rv);	/* returns with ilock held */
458 
459 		if (r->r_sharehead == 0)
460 			panic("rman_await_resource");
461 		/*
462 		 * A critical section will hopefully will prevent a race
463 		 * between lwkt_reltoken and tsleep where a process
464 		 * could conceivably get in and release the resource
465 		 * before we have a chance to sleep on it. YYY
466 		 */
467 		crit_enter();
468 		whohas->r_flags |= RF_WANTED;
469 		rv = tsleep(r->r_sharehead, slpflags, "rmwait", timo);
470 		if (rv) {
471 			lwkt_reltoken(ilock);
472 			crit_exit();
473 			return rv;
474 		}
475 		crit_exit();
476 	}
477 }
478 
479 #endif
480 
481 static int
482 int_rman_deactivate_resource(struct resource *r)
483 {
484 	struct	rman *rm;
485 
486 	rm = r->r_rm;
487 	r->r_flags &= ~RF_ACTIVE;
488 	if (r->r_flags & RF_WANTED) {
489 		r->r_flags &= ~RF_WANTED;
490 		wakeup(r->r_sharehead);
491 	}
492 	return 0;
493 }
494 
495 int
496 rman_deactivate_resource(struct resource *r)
497 {
498 	lwkt_tokref ilock;
499 	struct rman *rm;
500 
501 	rm = r->r_rm;
502 	lwkt_gettoken(&ilock, rm->rm_slock);
503 	int_rman_deactivate_resource(r);
504 	lwkt_reltoken(&ilock);
505 	return 0;
506 }
507 
508 static int
509 int_rman_release_resource(struct rman *rm, struct resource *r)
510 {
511 	struct	resource *s, *t;
512 
513 	if (r->r_flags & RF_ACTIVE)
514 		int_rman_deactivate_resource(r);
515 
516 	/*
517 	 * Check for a sharing list first.  If there is one, then we don't
518 	 * have to think as hard.
519 	 */
520 	if (r->r_sharehead) {
521 		/*
522 		 * If a sharing list exists, then we know there are at
523 		 * least two sharers.
524 		 *
525 		 * If we are in the main circleq, appoint someone else.
526 		 */
527 		LIST_REMOVE(r, r_sharelink);
528 		s = LIST_FIRST(r->r_sharehead);
529 		if (r->r_flags & RF_FIRSTSHARE) {
530 			s->r_flags |= RF_FIRSTSHARE;
531 			CIRCLEQ_INSERT_BEFORE(&rm->rm_list, r, s, r_link);
532 			CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
533 		}
534 
535 		/*
536 		 * Make sure that the sharing list goes away completely
537 		 * if the resource is no longer being shared at all.
538 		 */
539 		if (LIST_NEXT(s, r_sharelink) == 0) {
540 			kfree(s->r_sharehead, M_RMAN);
541 			s->r_sharehead = 0;
542 			s->r_flags &= ~RF_FIRSTSHARE;
543 		}
544 		goto out;
545 	}
546 
547 	/*
548 	 * Look at the adjacent resources in the list and see if our
549 	 * segment can be merged with any of them.
550 	 */
551 	s = CIRCLEQ_PREV(r, r_link);
552 	t = CIRCLEQ_NEXT(r, r_link);
553 
554 	if (s != (void *)&rm->rm_list && (s->r_flags & RF_ALLOCATED) == 0
555 	    && t != (void *)&rm->rm_list && (t->r_flags & RF_ALLOCATED) == 0) {
556 		/*
557 		 * Merge all three segments.
558 		 */
559 		s->r_end = t->r_end;
560 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
561 		CIRCLEQ_REMOVE(&rm->rm_list, t, r_link);
562 		kfree(t, M_RMAN);
563 	} else if (s != (void *)&rm->rm_list
564 		   && (s->r_flags & RF_ALLOCATED) == 0) {
565 		/*
566 		 * Merge previous segment with ours.
567 		 */
568 		s->r_end = r->r_end;
569 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
570 	} else if (t != (void *)&rm->rm_list
571 		   && (t->r_flags & RF_ALLOCATED) == 0) {
572 		/*
573 		 * Merge next segment with ours.
574 		 */
575 		t->r_start = r->r_start;
576 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
577 	} else {
578 		/*
579 		 * At this point, we know there is nothing we
580 		 * can potentially merge with, because on each
581 		 * side, there is either nothing there or what is
582 		 * there is still allocated.  In that case, we don't
583 		 * want to remove r from the list; we simply want to
584 		 * change it to an unallocated region and return
585 		 * without freeing anything.
586 		 */
587 		r->r_flags &= ~RF_ALLOCATED;
588 		return 0;
589 	}
590 
591 out:
592 	kfree(r, M_RMAN);
593 	return 0;
594 }
595 
596 int
597 rman_release_resource(struct resource *r)
598 {
599 	struct	rman *rm = r->r_rm;
600 	lwkt_tokref ilock;
601 	int	rv;
602 
603 	lwkt_gettoken(&ilock, rm->rm_slock);
604 	rv = int_rman_release_resource(rm, r);
605 	lwkt_reltoken(&ilock);
606 	return (rv);
607 }
608 
609 uint32_t
610 rman_make_alignment_flags(uint32_t size)
611 {
612 	int	i;
613 
614 	/*
615 	 * Find the hightest bit set, and add one if more than one bit
616 	 * set.  We're effectively computing the ceil(log2(size)) here.
617 	 */
618 	for (i = 32; i > 0; i--)
619 		if ((1 << i) & size)
620 			break;
621 	if (~(1 << i) & size)
622 		i++;
623 
624 	return(RF_ALIGNMENT_LOG2(i));
625 }
626 
627 /*
628  * Sysctl interface for scanning the resource lists.
629  *
630  * We take two input parameters; the index into the list of resource
631  * managers, and the resource offset into the list.
632  */
633 static int
634 sysctl_rman(SYSCTL_HANDLER_ARGS)
635 {
636 	int			*name = (int *)arg1;
637 	u_int			namelen = arg2;
638 	int			rman_idx, res_idx;
639 	struct rman		*rm;
640 	struct resource		*res;
641 	struct u_rman		urm;
642 	struct u_resource	ures;
643 	int			error;
644 
645 	if (namelen != 3)
646 		return (EINVAL);
647 
648 	if (bus_data_generation_check(name[0]))
649 		return (EINVAL);
650 	rman_idx = name[1];
651 	res_idx = name[2];
652 
653 	/*
654 	 * Find the indexed resource manager
655 	 */
656 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
657 		if (rman_idx-- == 0)
658 			break;
659 	}
660 	if (rm == NULL)
661 		return (ENOENT);
662 
663 	/*
664 	 * If the resource index is -1, we want details on the
665 	 * resource manager.
666 	 */
667 	if (res_idx == -1) {
668 		urm.rm_handle = (uintptr_t)rm;
669 		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
670 		urm.rm_start = rm->rm_start;
671 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
672 		urm.rm_type = rm->rm_type;
673 
674 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
675 		return (error);
676 	}
677 
678 	/*
679 	 * Find the indexed resource and return it.
680 	 */
681 	CIRCLEQ_FOREACH(res, &rm->rm_list, r_link) {
682 		if (res_idx-- == 0) {
683 			ures.r_handle = (uintptr_t)res;
684 			ures.r_parent = (uintptr_t)res->r_rm;
685 			ures.r_device = (uintptr_t)res->r_dev;
686 			if (res->r_dev != NULL) {
687 				if (device_get_name(res->r_dev) != NULL) {
688 					ksnprintf(ures.r_devname, RM_TEXTLEN,
689 					    "%s%d",
690 					    device_get_name(res->r_dev),
691 					    device_get_unit(res->r_dev));
692 				} else {
693 					strlcpy(ures.r_devname, "nomatch",
694 					    RM_TEXTLEN);
695 				}
696 			} else {
697 				ures.r_devname[0] = '\0';
698 			}
699 			ures.r_start = res->r_start;
700 			ures.r_size = res->r_end - res->r_start + 1;
701 			ures.r_flags = res->r_flags;
702 
703 			error = SYSCTL_OUT(req, &ures, sizeof(ures));
704 			return (error);
705 		}
706 	}
707 	return (ENOENT);
708 }
709 
710 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
711     "kernel resource manager");
712