1 /* 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD: src/sys/kern/subr_rman.c,v 1.10.2.1 2001/06/05 08:06:08 imp Exp $ 30 */ 31 32 /* 33 * The kernel resource manager. This code is responsible for keeping track 34 * of hardware resources which are apportioned out to various drivers. 35 * It does not actually assign those resources, and it is not expected 36 * that end-device drivers will call into this code directly. Rather, 37 * the code which implements the buses that those devices are attached to, 38 * and the code which manages CPU resources, will call this code, and the 39 * end-device drivers will make upcalls to that code to actually perform 40 * the allocation. 41 * 42 * There are two sorts of resources managed by this code. The first is 43 * the more familiar array (RMAN_ARRAY) type; resources in this class 44 * consist of a sequence of individually-allocatable objects which have 45 * been numbered in some well-defined order. Most of the resources 46 * are of this type, as it is the most familiar. The second type is 47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 48 * resources in which each instance is indistinguishable from every 49 * other instance). The principal anticipated application of gauges 50 * is in the context of power consumption, where a bus may have a specific 51 * power budget which all attached devices share. RMAN_GAUGE is not 52 * implemented yet. 53 * 54 * For array resources, we make one simplifying assumption: two clients 55 * sharing the same resource must use the same range of indices. That 56 * is to say, sharing of overlapping-but-not-identical regions is not 57 * permitted. 58 */ 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/kernel.h> 63 #include <sys/lock.h> 64 #include <sys/malloc.h> 65 #include <sys/bus.h> /* XXX debugging */ 66 #include <sys/rman.h> 67 #include <sys/sysctl.h> 68 69 int rman_debug = 0; 70 TUNABLE_INT("debug.rman_debug", &rman_debug); 71 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, 72 &rman_debug, 0, "rman debug"); 73 74 #define DPRINTF(params) if (rman_debug) kprintf params 75 76 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 77 78 struct rman_head rman_head; 79 static struct lwkt_token rman_tok; /* mutex to protect rman_head */ 80 static int int_rman_activate_resource(struct rman *rm, struct resource *r, 81 struct resource **whohas); 82 static int int_rman_deactivate_resource(struct resource *r); 83 static int int_rman_release_resource(struct rman *rm, struct resource *r); 84 85 int 86 rman_init(struct rman *rm, int cpuid) 87 { 88 static int once; 89 90 if (once == 0) { 91 once = 1; 92 TAILQ_INIT(&rman_head); 93 lwkt_token_init(&rman_tok, "rman"); 94 } 95 96 if (rm->rm_type == RMAN_UNINIT) 97 panic("rman_init"); 98 if (rm->rm_type == RMAN_GAUGE) 99 panic("implement RMAN_GAUGE"); 100 101 TAILQ_INIT(&rm->rm_list); 102 rm->rm_slock = kmalloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT); 103 if (rm->rm_slock == NULL) 104 return ENOMEM; 105 lwkt_token_init(rm->rm_slock, "rmanslock"); 106 107 rm->rm_cpuid = cpuid; 108 109 lwkt_gettoken(&rman_tok); 110 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 111 lwkt_reltoken(&rman_tok); 112 return 0; 113 } 114 115 /* 116 * NB: this interface is not robust against programming errors which 117 * add multiple copies of the same region. 118 */ 119 int 120 rman_manage_region(struct rman *rm, u_long start, u_long end) 121 { 122 struct resource *r, *s; 123 124 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", 125 rm->rm_descr, start, end)); 126 r = kmalloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO); 127 if (r == NULL) 128 return ENOMEM; 129 r->r_sharehead = 0; 130 r->r_start = start; 131 r->r_end = end; 132 r->r_flags = 0; 133 r->r_dev = 0; 134 r->r_rm = rm; 135 136 lwkt_gettoken(rm->rm_slock); 137 for (s = TAILQ_FIRST(&rm->rm_list); 138 s && s->r_end < r->r_start; 139 s = TAILQ_NEXT(s, r_link)) 140 ; 141 142 if (s == NULL) 143 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 144 else 145 TAILQ_INSERT_BEFORE(s, r, r_link); 146 147 lwkt_reltoken(rm->rm_slock); 148 return 0; 149 } 150 151 int 152 rman_fini(struct rman *rm) 153 { 154 struct resource *r; 155 156 lwkt_gettoken(rm->rm_slock); 157 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 158 if (r->r_flags & RF_ALLOCATED) { 159 lwkt_reltoken(rm->rm_slock); 160 return EBUSY; 161 } 162 } 163 164 /* 165 * There really should only be one of these if we are in this 166 * state and the code is working properly, but it can't hurt. 167 */ 168 while (!TAILQ_EMPTY(&rm->rm_list)) { 169 r = TAILQ_FIRST(&rm->rm_list); 170 TAILQ_REMOVE(&rm->rm_list, r, r_link); 171 kfree(r, M_RMAN); 172 } 173 lwkt_reltoken(rm->rm_slock); 174 175 /* XXX what's the point of this if we are going to free the struct? */ 176 lwkt_gettoken(&rman_tok); 177 TAILQ_REMOVE(&rman_head, rm, rm_link); 178 lwkt_reltoken(&rman_tok); 179 kfree(rm->rm_slock, M_RMAN); 180 181 return 0; 182 } 183 184 struct resource * 185 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 186 u_int flags, device_t dev) 187 { 188 u_int want_activate; 189 struct resource *r, *s, *rv; 190 u_long rstart, rend; 191 192 rv = NULL; 193 194 DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length " 195 "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, 196 count, flags, 197 dev == NULL ? "<null>" : device_get_nameunit(dev))); 198 want_activate = (flags & RF_ACTIVE); 199 flags &= ~RF_ACTIVE; 200 201 lwkt_gettoken(rm->rm_slock); 202 203 for (r = TAILQ_FIRST(&rm->rm_list); 204 r && r->r_end < start + count - 1; 205 r = TAILQ_NEXT(r, r_link)) 206 ; 207 208 if (r == NULL) { 209 DPRINTF(("could not find a region\n")); 210 goto out; 211 } 212 213 /* 214 * First try to find an acceptable totally-unshared region. 215 */ 216 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 217 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 218 if (s->r_start > end - (count - 1)) { 219 DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", 220 s->r_start, end)); 221 break; 222 } 223 if (s->r_flags & RF_ALLOCATED) { 224 DPRINTF(("region is allocated\n")); 225 continue; 226 } 227 rstart = ulmax(s->r_start, start); 228 rstart = (rstart + ((1ul << RF_ALIGNMENT(flags))) - 1) & 229 ~((1ul << RF_ALIGNMENT(flags)) - 1); 230 rend = ulmin(s->r_end, ulmax(start + count - 1, end)); 231 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 232 rstart, rend, (rend - rstart + 1), count)); 233 234 if ((rend - rstart + 1) >= count) { 235 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 236 rstart, rend, (rend - rstart + 1))); 237 if ((s->r_end - s->r_start + 1) == count) { 238 DPRINTF(("candidate region is entire chunk\n")); 239 rv = s; 240 rv->r_flags |= RF_ALLOCATED | flags; 241 rv->r_dev = dev; 242 goto out; 243 } 244 245 /* 246 * If s->r_start < rstart and 247 * s->r_end > rstart + count - 1, then 248 * we need to split the region into three pieces 249 * (the middle one will get returned to the user). 250 * Otherwise, we are allocating at either the 251 * beginning or the end of s, so we only need to 252 * split it in two. The first case requires 253 * two new allocations; the second requires but one. 254 */ 255 rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO); 256 if (rv == NULL) 257 goto out; 258 rv->r_start = rstart; 259 rv->r_end = rstart + count - 1; 260 rv->r_flags = flags | RF_ALLOCATED; 261 rv->r_dev = dev; 262 rv->r_sharehead = 0; 263 rv->r_rm = rm; 264 265 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 266 DPRINTF(("splitting region in three parts: " 267 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 268 s->r_start, rv->r_start - 1, 269 rv->r_start, rv->r_end, 270 rv->r_end + 1, s->r_end)); 271 /* 272 * We are allocating in the middle. 273 */ 274 r = kmalloc(sizeof *r, M_RMAN, 275 M_NOWAIT | M_ZERO); 276 if (r == NULL) { 277 kfree(rv, M_RMAN); 278 rv = NULL; 279 goto out; 280 } 281 r->r_start = rv->r_end + 1; 282 r->r_end = s->r_end; 283 r->r_flags = s->r_flags; 284 r->r_dev = 0; 285 r->r_sharehead = 0; 286 r->r_rm = rm; 287 s->r_end = rv->r_start - 1; 288 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 289 r_link); 290 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 291 r_link); 292 } else if (s->r_start == rv->r_start) { 293 DPRINTF(("allocating from the beginning\n")); 294 /* 295 * We are allocating at the beginning. 296 */ 297 s->r_start = rv->r_end + 1; 298 TAILQ_INSERT_BEFORE(s, rv, r_link); 299 } else { 300 DPRINTF(("allocating at the end\n")); 301 /* 302 * We are allocating at the end. 303 */ 304 s->r_end = rv->r_start - 1; 305 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 306 r_link); 307 } 308 goto out; 309 } 310 } 311 312 /* 313 * Now find an acceptable shared region, if the client's requirements 314 * allow sharing. By our implementation restriction, a candidate 315 * region must match exactly by both size and sharing type in order 316 * to be considered compatible with the client's request. (The 317 * former restriction could probably be lifted without too much 318 * additional work, but this does not seem warranted.) 319 */ 320 DPRINTF(("no unshared regions found\n")); 321 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0) 322 goto out; 323 324 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 325 if (s->r_start > end) 326 break; 327 if ((s->r_flags & flags) != flags) 328 continue; 329 rstart = ulmax(s->r_start, start); 330 rend = ulmin(s->r_end, ulmax(start + count, end)); 331 if (s->r_start >= start && s->r_end <= end 332 && (s->r_end - s->r_start + 1) == count) { 333 rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO); 334 if (rv == NULL) 335 goto out; 336 rv->r_start = s->r_start; 337 rv->r_end = s->r_end; 338 rv->r_flags = s->r_flags & 339 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE); 340 rv->r_dev = dev; 341 rv->r_rm = rm; 342 if (s->r_sharehead == 0) { 343 s->r_sharehead = kmalloc(sizeof *s->r_sharehead, 344 M_RMAN, 345 M_NOWAIT | M_ZERO); 346 if (s->r_sharehead == 0) { 347 kfree(rv, M_RMAN); 348 rv = NULL; 349 goto out; 350 } 351 LIST_INIT(s->r_sharehead); 352 LIST_INSERT_HEAD(s->r_sharehead, s, 353 r_sharelink); 354 s->r_flags |= RF_FIRSTSHARE; 355 } 356 rv->r_sharehead = s->r_sharehead; 357 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 358 goto out; 359 } 360 } 361 362 /* 363 * We couldn't find anything. 364 */ 365 DPRINTF(("no region found\n")); 366 out: 367 /* 368 * If the user specified RF_ACTIVE in the initial flags, 369 * which is reflected in `want_activate', we attempt to atomically 370 * activate the resource. If this fails, we release the resource 371 * and indicate overall failure. (This behavior probably doesn't 372 * make sense for RF_TIMESHARE-type resources.) 373 */ 374 if (rv && want_activate) { 375 struct resource *whohas; 376 DPRINTF(("activating region\n")); 377 if (int_rman_activate_resource(rm, rv, &whohas)) { 378 int_rman_release_resource(rm, rv); 379 rv = NULL; 380 } 381 } 382 lwkt_reltoken(rm->rm_slock); 383 return (rv); 384 } 385 386 static int 387 int_rman_activate_resource(struct rman *rm, struct resource *r, 388 struct resource **whohas) 389 { 390 struct resource *s; 391 int ok; 392 393 /* 394 * If we are not timesharing, then there is nothing much to do. 395 * If we already have the resource, then there is nothing at all to do. 396 * If we are not on a sharing list with anybody else, then there is 397 * little to do. 398 */ 399 if ((r->r_flags & RF_TIMESHARE) == 0 400 || (r->r_flags & RF_ACTIVE) != 0 401 || r->r_sharehead == 0) { 402 r->r_flags |= RF_ACTIVE; 403 return 0; 404 } 405 406 ok = 1; 407 for (s = LIST_FIRST(r->r_sharehead); s && ok; 408 s = LIST_NEXT(s, r_sharelink)) { 409 if ((s->r_flags & RF_ACTIVE) != 0) { 410 ok = 0; 411 *whohas = s; 412 } 413 } 414 if (ok) { 415 r->r_flags |= RF_ACTIVE; 416 return 0; 417 } 418 return EBUSY; 419 } 420 421 int 422 rman_activate_resource(struct resource *r) 423 { 424 int rv; 425 struct resource *whohas; 426 struct rman *rm; 427 428 rm = r->r_rm; 429 lwkt_gettoken(rm->rm_slock); 430 rv = int_rman_activate_resource(rm, r, &whohas); 431 lwkt_reltoken(rm->rm_slock); 432 return rv; 433 } 434 435 #if 0 436 437 /* XXX */ 438 int 439 rman_await_resource(struct resource *r, int slpflags, int timo) 440 { 441 int rv; 442 struct resource *whohas; 443 struct rman *rm; 444 445 rm = r->r_rm; 446 for (;;) { 447 lwkt_gettoken(rm->rm_slock); 448 rv = int_rman_activate_resource(rm, r, &whohas); 449 if (rv != EBUSY) 450 return (rv); /* returns with ilock held */ 451 452 if (r->r_sharehead == 0) 453 panic("rman_await_resource"); 454 /* 455 * A critical section will hopefully will prevent a race 456 * between lwkt_reltoken and tsleep where a process 457 * could conceivably get in and release the resource 458 * before we have a chance to sleep on it. YYY 459 */ 460 crit_enter(); 461 whohas->r_flags |= RF_WANTED; 462 rv = tsleep(r->r_sharehead, slpflags, "rmwait", timo); 463 if (rv) { 464 lwkt_reltoken(rm->rm_slock); 465 crit_exit(); 466 return rv; 467 } 468 crit_exit(); 469 } 470 } 471 472 #endif 473 474 static int 475 int_rman_deactivate_resource(struct resource *r) 476 { 477 r->r_flags &= ~RF_ACTIVE; 478 if (r->r_flags & RF_WANTED) { 479 r->r_flags &= ~RF_WANTED; 480 wakeup(r->r_sharehead); 481 } 482 return 0; 483 } 484 485 int 486 rman_deactivate_resource(struct resource *r) 487 { 488 struct rman *rm; 489 490 rm = r->r_rm; 491 lwkt_gettoken(rm->rm_slock); 492 int_rman_deactivate_resource(r); 493 lwkt_reltoken(rm->rm_slock); 494 return 0; 495 } 496 497 static int 498 int_rman_release_resource(struct rman *rm, struct resource *r) 499 { 500 struct resource *s, *t; 501 502 if (r->r_flags & RF_ACTIVE) 503 int_rman_deactivate_resource(r); 504 505 /* 506 * Check for a sharing list first. If there is one, then we don't 507 * have to think as hard. 508 */ 509 if (r->r_sharehead) { 510 /* 511 * If a sharing list exists, then we know there are at 512 * least two sharers. 513 * 514 * If we are in the main circleq, appoint someone else. 515 */ 516 LIST_REMOVE(r, r_sharelink); 517 s = LIST_FIRST(r->r_sharehead); 518 if (r->r_flags & RF_FIRSTSHARE) { 519 s->r_flags |= RF_FIRSTSHARE; 520 TAILQ_INSERT_BEFORE(r, s, r_link); 521 TAILQ_REMOVE(&rm->rm_list, r, r_link); 522 } 523 524 /* 525 * Make sure that the sharing list goes away completely 526 * if the resource is no longer being shared at all. 527 */ 528 if (LIST_NEXT(s, r_sharelink) == 0) { 529 kfree(s->r_sharehead, M_RMAN); 530 s->r_sharehead = 0; 531 s->r_flags &= ~RF_FIRSTSHARE; 532 } 533 goto out; 534 } 535 536 /* 537 * Look at the adjacent resources in the list and see if our 538 * segment can be merged with any of them. 539 */ 540 s = TAILQ_PREV(r, resource_head, r_link); 541 t = TAILQ_NEXT(r, r_link); 542 543 if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0 544 && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) { 545 /* 546 * Merge all three segments. 547 */ 548 s->r_end = t->r_end; 549 TAILQ_REMOVE(&rm->rm_list, r, r_link); 550 TAILQ_REMOVE(&rm->rm_list, t, r_link); 551 kfree(t, M_RMAN); 552 } else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) { 553 /* 554 * Merge previous segment with ours. 555 */ 556 s->r_end = r->r_end; 557 TAILQ_REMOVE(&rm->rm_list, r, r_link); 558 } else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) { 559 /* 560 * Merge next segment with ours. 561 */ 562 t->r_start = r->r_start; 563 TAILQ_REMOVE(&rm->rm_list, r, r_link); 564 } else { 565 /* 566 * At this point, we know there is nothing we 567 * can potentially merge with, because on each 568 * side, there is either nothing there or what is 569 * there is still allocated. In that case, we don't 570 * want to remove r from the list; we simply want to 571 * change it to an unallocated region and return 572 * without freeing anything. 573 */ 574 r->r_flags &= ~RF_ALLOCATED; 575 return 0; 576 } 577 578 out: 579 kfree(r, M_RMAN); 580 return 0; 581 } 582 583 int 584 rman_release_resource(struct resource *r) 585 { 586 struct rman *rm = r->r_rm; 587 int rv; 588 589 lwkt_gettoken(rm->rm_slock); 590 rv = int_rman_release_resource(rm, r); 591 lwkt_reltoken(rm->rm_slock); 592 return (rv); 593 } 594 595 uint32_t 596 rman_make_alignment_flags(uint32_t size) 597 { 598 int i; 599 600 /* 601 * Find the hightest bit set, and add one if more than one bit 602 * set. We're effectively computing the ceil(log2(size)) here. 603 */ 604 for (i = 32; i > 0; i--) 605 if ((1 << i) & size) 606 break; 607 if (~(1 << i) & size) 608 i++; 609 610 return(RF_ALIGNMENT_LOG2(i)); 611 } 612 613 /* 614 * Sysctl interface for scanning the resource lists. 615 * 616 * We take two input parameters; the index into the list of resource 617 * managers, and the resource offset into the list. 618 */ 619 static int 620 sysctl_rman(SYSCTL_HANDLER_ARGS) 621 { 622 int *name = (int *)arg1; 623 u_int namelen = arg2; 624 int rman_idx, res_idx; 625 struct rman *rm; 626 struct resource *res; 627 struct u_rman urm; 628 struct u_resource ures; 629 int error; 630 631 if (namelen != 3) 632 return (EINVAL); 633 634 if (bus_data_generation_check(name[0])) 635 return (EINVAL); 636 rman_idx = name[1]; 637 res_idx = name[2]; 638 639 /* 640 * Find the indexed resource manager 641 */ 642 TAILQ_FOREACH(rm, &rman_head, rm_link) { 643 if (rman_idx-- == 0) 644 break; 645 } 646 if (rm == NULL) 647 return (ENOENT); 648 649 /* 650 * If the resource index is -1, we want details on the 651 * resource manager. 652 */ 653 if (res_idx == -1) { 654 urm.rm_handle = (uintptr_t)rm; 655 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 656 urm.rm_start = rm->rm_start; 657 urm.rm_size = rm->rm_end - rm->rm_start + 1; 658 urm.rm_type = rm->rm_type; 659 660 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 661 return (error); 662 } 663 664 /* 665 * Find the indexed resource and return it. 666 */ 667 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 668 if (res_idx-- == 0) { 669 ures.r_handle = (uintptr_t)res; 670 ures.r_parent = (uintptr_t)res->r_rm; 671 ures.r_device = (uintptr_t)res->r_dev; 672 if (res->r_dev != NULL) { 673 if (device_get_name(res->r_dev) != NULL) { 674 ksnprintf(ures.r_devname, RM_TEXTLEN, 675 "%s%d", 676 device_get_name(res->r_dev), 677 device_get_unit(res->r_dev)); 678 } else { 679 strlcpy(ures.r_devname, "nomatch", 680 RM_TEXTLEN); 681 } 682 } else { 683 ures.r_devname[0] = '\0'; 684 } 685 ures.r_start = res->r_start; 686 ures.r_size = res->r_end - res->r_start + 1; 687 ures.r_flags = res->r_flags; 688 689 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 690 return (error); 691 } 692 } 693 return (ENOENT); 694 } 695 696 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 697 "kernel resource manager"); 698