1 /* 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD: src/sys/kern/subr_rman.c,v 1.10.2.1 2001/06/05 08:06:08 imp Exp $ 30 * $DragonFly: src/sys/kern/subr_rman.c,v 1.15 2008/09/30 12:20:29 hasso Exp $ 31 */ 32 33 /* 34 * The kernel resource manager. This code is responsible for keeping track 35 * of hardware resources which are apportioned out to various drivers. 36 * It does not actually assign those resources, and it is not expected 37 * that end-device drivers will call into this code directly. Rather, 38 * the code which implements the buses that those devices are attached to, 39 * and the code which manages CPU resources, will call this code, and the 40 * end-device drivers will make upcalls to that code to actually perform 41 * the allocation. 42 * 43 * There are two sorts of resources managed by this code. The first is 44 * the more familiar array (RMAN_ARRAY) type; resources in this class 45 * consist of a sequence of individually-allocatable objects which have 46 * been numbered in some well-defined order. Most of the resources 47 * are of this type, as it is the most familiar. The second type is 48 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 49 * resources in which each instance is indistinguishable from every 50 * other instance). The principal anticipated application of gauges 51 * is in the context of power consumption, where a bus may have a specific 52 * power budget which all attached devices share. RMAN_GAUGE is not 53 * implemented yet. 54 * 55 * For array resources, we make one simplifying assumption: two clients 56 * sharing the same resource must use the same range of indices. That 57 * is to say, sharing of overlapping-but-not-identical regions is not 58 * permitted. 59 */ 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/kernel.h> 64 #include <sys/lock.h> 65 #include <sys/malloc.h> 66 #include <sys/bus.h> /* XXX debugging */ 67 #include <sys/rman.h> 68 #include <sys/sysctl.h> 69 70 int rman_debug = 0; 71 TUNABLE_INT("debug.rman_debug", &rman_debug); 72 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, 73 &rman_debug, 0, "rman debug"); 74 75 #define DPRINTF(params) if (rman_debug) kprintf params 76 77 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 78 79 struct rman_head rman_head; 80 static struct lwkt_token rman_tok; /* mutex to protect rman_head */ 81 static int int_rman_activate_resource(struct rman *rm, struct resource *r, 82 struct resource **whohas); 83 static int int_rman_deactivate_resource(struct resource *r); 84 static int int_rman_release_resource(struct rman *rm, struct resource *r); 85 86 #define CIRCLEQ_TERMCOND(var, head) (var == (void *)&(head)) 87 88 int 89 rman_init(struct rman *rm) 90 { 91 static int once; 92 lwkt_tokref ilock; 93 94 if (once == 0) { 95 once = 1; 96 TAILQ_INIT(&rman_head); 97 lwkt_token_init(&rman_tok); 98 } 99 100 if (rm->rm_type == RMAN_UNINIT) 101 panic("rman_init"); 102 if (rm->rm_type == RMAN_GAUGE) 103 panic("implement RMAN_GAUGE"); 104 105 CIRCLEQ_INIT(&rm->rm_list); 106 rm->rm_slock = kmalloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT); 107 if (rm->rm_slock == NULL) 108 return ENOMEM; 109 lwkt_token_init(rm->rm_slock); 110 111 lwkt_gettoken(&ilock, &rman_tok); 112 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 113 lwkt_reltoken(&ilock); 114 return 0; 115 } 116 117 /* 118 * NB: this interface is not robust against programming errors which 119 * add multiple copies of the same region. 120 */ 121 int 122 rman_manage_region(struct rman *rm, u_long start, u_long end) 123 { 124 struct resource *r, *s; 125 lwkt_tokref ilock; 126 127 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", 128 rm->rm_descr, start, end)); 129 r = kmalloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO); 130 if (r == 0) 131 return ENOMEM; 132 r->r_sharehead = 0; 133 r->r_start = start; 134 r->r_end = end; 135 r->r_flags = 0; 136 r->r_dev = 0; 137 r->r_rm = rm; 138 139 lwkt_gettoken(&ilock, rm->rm_slock); 140 for (s = CIRCLEQ_FIRST(&rm->rm_list); 141 !CIRCLEQ_TERMCOND(s, rm->rm_list) && s->r_end < r->r_start; 142 s = CIRCLEQ_NEXT(s, r_link)) 143 ; 144 145 if (CIRCLEQ_TERMCOND(s, rm->rm_list)) { 146 CIRCLEQ_INSERT_TAIL(&rm->rm_list, r, r_link); 147 } else { 148 CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, r, r_link); 149 } 150 151 lwkt_reltoken(&ilock); 152 return 0; 153 } 154 155 int 156 rman_fini(struct rman *rm) 157 { 158 struct resource *r; 159 lwkt_tokref ilock; 160 161 lwkt_gettoken(&ilock, rm->rm_slock); 162 CIRCLEQ_FOREACH(r, &rm->rm_list, r_link) { 163 if (r->r_flags & RF_ALLOCATED) { 164 lwkt_reltoken(&ilock); 165 return EBUSY; 166 } 167 } 168 169 /* 170 * There really should only be one of these if we are in this 171 * state and the code is working properly, but it can't hurt. 172 */ 173 while (!CIRCLEQ_EMPTY(&rm->rm_list)) { 174 r = CIRCLEQ_FIRST(&rm->rm_list); 175 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link); 176 kfree(r, M_RMAN); 177 } 178 lwkt_reltoken(&ilock); 179 /* XXX what's the point of this if we are going to free the struct? */ 180 lwkt_gettoken(&ilock, &rman_tok); 181 TAILQ_REMOVE(&rman_head, rm, rm_link); 182 lwkt_reltoken(&ilock); 183 kfree(rm->rm_slock, M_RMAN); 184 185 return 0; 186 } 187 188 struct resource * 189 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 190 u_int flags, struct device *dev) 191 { 192 u_int want_activate; 193 struct resource *r, *s, *rv; 194 u_long rstart, rend; 195 lwkt_tokref ilock; 196 197 rv = 0; 198 199 DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length " 200 "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, 201 count, flags, 202 dev == NULL ? "<null>" : device_get_nameunit(dev))); 203 want_activate = (flags & RF_ACTIVE); 204 flags &= ~RF_ACTIVE; 205 206 lwkt_gettoken(&ilock, rm->rm_slock); 207 208 for (r = CIRCLEQ_FIRST(&rm->rm_list); 209 !CIRCLEQ_TERMCOND(r, rm->rm_list) && r->r_end < start; 210 r = CIRCLEQ_NEXT(r, r_link)) 211 ; 212 213 if (CIRCLEQ_TERMCOND(r, rm->rm_list)) { 214 DPRINTF(("could not find a region\n")); 215 goto out; 216 } 217 218 /* 219 * First try to find an acceptable totally-unshared region. 220 */ 221 for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list); 222 s = CIRCLEQ_NEXT(s, r_link)) { 223 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 224 if (s->r_start > end) { 225 DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", 226 s->r_start, end)); 227 break; 228 } 229 if (s->r_flags & RF_ALLOCATED) { 230 DPRINTF(("region is allocated\n")); 231 continue; 232 } 233 rstart = max(s->r_start, start); 234 rstart = (rstart + ((1ul << RF_ALIGNMENT(flags))) - 1) & 235 ~((1ul << RF_ALIGNMENT(flags)) - 1); 236 rend = min(s->r_end, max(start + count, end)); 237 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 238 rstart, rend, (rend - rstart + 1), count)); 239 240 if ((rend - rstart + 1) >= count) { 241 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 242 rstart, rend, (rend - rstart + 1))); 243 if ((s->r_end - s->r_start + 1) == count) { 244 DPRINTF(("candidate region is entire chunk\n")); 245 rv = s; 246 rv->r_flags |= RF_ALLOCATED | flags; 247 rv->r_dev = dev; 248 goto out; 249 } 250 251 /* 252 * If s->r_start < rstart and 253 * s->r_end > rstart + count - 1, then 254 * we need to split the region into three pieces 255 * (the middle one will get returned to the user). 256 * Otherwise, we are allocating at either the 257 * beginning or the end of s, so we only need to 258 * split it in two. The first case requires 259 * two new allocations; the second requires but one. 260 */ 261 rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO); 262 if (rv == 0) 263 goto out; 264 rv->r_start = rstart; 265 rv->r_end = rstart + count - 1; 266 rv->r_flags = flags | RF_ALLOCATED; 267 rv->r_dev = dev; 268 rv->r_sharehead = 0; 269 rv->r_rm = rm; 270 271 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 272 DPRINTF(("splitting region in three parts: " 273 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 274 s->r_start, rv->r_start - 1, 275 rv->r_start, rv->r_end, 276 rv->r_end + 1, s->r_end)); 277 /* 278 * We are allocating in the middle. 279 */ 280 r = kmalloc(sizeof *r, M_RMAN, 281 M_NOWAIT | M_ZERO); 282 if (r == 0) { 283 kfree(rv, M_RMAN); 284 rv = 0; 285 goto out; 286 } 287 r->r_start = rv->r_end + 1; 288 r->r_end = s->r_end; 289 r->r_flags = s->r_flags; 290 r->r_dev = 0; 291 r->r_sharehead = 0; 292 r->r_rm = rm; 293 s->r_end = rv->r_start - 1; 294 CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv, 295 r_link); 296 CIRCLEQ_INSERT_AFTER(&rm->rm_list, rv, r, 297 r_link); 298 } else if (s->r_start == rv->r_start) { 299 DPRINTF(("allocating from the beginning\n")); 300 /* 301 * We are allocating at the beginning. 302 */ 303 s->r_start = rv->r_end + 1; 304 CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, rv, 305 r_link); 306 } else { 307 DPRINTF(("allocating at the end\n")); 308 /* 309 * We are allocating at the end. 310 */ 311 s->r_end = rv->r_start - 1; 312 CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv, 313 r_link); 314 } 315 goto out; 316 } 317 } 318 319 /* 320 * Now find an acceptable shared region, if the client's requirements 321 * allow sharing. By our implementation restriction, a candidate 322 * region must match exactly by both size and sharing type in order 323 * to be considered compatible with the client's request. (The 324 * former restriction could probably be lifted without too much 325 * additional work, but this does not seem warranted.) 326 */ 327 DPRINTF(("no unshared regions found\n")); 328 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0) 329 goto out; 330 331 for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list); 332 s = CIRCLEQ_NEXT(s, r_link)) { 333 if (s->r_start > end) 334 break; 335 if ((s->r_flags & flags) != flags) 336 continue; 337 rstart = max(s->r_start, start); 338 rend = min(s->r_end, max(start + count, end)); 339 if (s->r_start >= start && s->r_end <= end 340 && (s->r_end - s->r_start + 1) == count) { 341 rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO); 342 if (rv == 0) 343 goto out; 344 rv->r_start = s->r_start; 345 rv->r_end = s->r_end; 346 rv->r_flags = s->r_flags & 347 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE); 348 rv->r_dev = dev; 349 rv->r_rm = rm; 350 if (s->r_sharehead == 0) { 351 s->r_sharehead = kmalloc(sizeof *s->r_sharehead, 352 M_RMAN, 353 M_NOWAIT | M_ZERO); 354 if (s->r_sharehead == 0) { 355 kfree(rv, M_RMAN); 356 rv = 0; 357 goto out; 358 } 359 LIST_INIT(s->r_sharehead); 360 LIST_INSERT_HEAD(s->r_sharehead, s, 361 r_sharelink); 362 s->r_flags |= RF_FIRSTSHARE; 363 } 364 rv->r_sharehead = s->r_sharehead; 365 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 366 goto out; 367 } 368 } 369 370 /* 371 * We couldn't find anything. 372 */ 373 out: 374 /* 375 * If the user specified RF_ACTIVE in the initial flags, 376 * which is reflected in `want_activate', we attempt to atomically 377 * activate the resource. If this fails, we release the resource 378 * and indicate overall failure. (This behavior probably doesn't 379 * make sense for RF_TIMESHARE-type resources.) 380 */ 381 if (rv && want_activate) { 382 struct resource *whohas; 383 if (int_rman_activate_resource(rm, rv, &whohas)) { 384 int_rman_release_resource(rm, rv); 385 rv = 0; 386 } 387 } 388 lwkt_reltoken(&ilock); 389 return (rv); 390 } 391 392 static int 393 int_rman_activate_resource(struct rman *rm, struct resource *r, 394 struct resource **whohas) 395 { 396 struct resource *s; 397 int ok; 398 399 /* 400 * If we are not timesharing, then there is nothing much to do. 401 * If we already have the resource, then there is nothing at all to do. 402 * If we are not on a sharing list with anybody else, then there is 403 * little to do. 404 */ 405 if ((r->r_flags & RF_TIMESHARE) == 0 406 || (r->r_flags & RF_ACTIVE) != 0 407 || r->r_sharehead == 0) { 408 r->r_flags |= RF_ACTIVE; 409 return 0; 410 } 411 412 ok = 1; 413 for (s = LIST_FIRST(r->r_sharehead); s && ok; 414 s = LIST_NEXT(s, r_sharelink)) { 415 if ((s->r_flags & RF_ACTIVE) != 0) { 416 ok = 0; 417 *whohas = s; 418 } 419 } 420 if (ok) { 421 r->r_flags |= RF_ACTIVE; 422 return 0; 423 } 424 return EBUSY; 425 } 426 427 int 428 rman_activate_resource(struct resource *r) 429 { 430 int rv; 431 struct resource *whohas; 432 lwkt_tokref ilock; 433 struct rman *rm; 434 435 rm = r->r_rm; 436 lwkt_gettoken(&ilock, rm->rm_slock); 437 rv = int_rman_activate_resource(rm, r, &whohas); 438 lwkt_reltoken(&ilock); 439 return rv; 440 } 441 442 #if 0 443 444 /* XXX */ 445 int 446 rman_await_resource(struct resource *r, lwkt_tokref_t ilock, int slpflags, int timo) 447 { 448 int rv; 449 struct resource *whohas; 450 struct rman *rm; 451 452 rm = r->r_rm; 453 for (;;) { 454 lwkt_gettoken(ilock, rm->rm_slock); 455 rv = int_rman_activate_resource(rm, r, &whohas); 456 if (rv != EBUSY) 457 return (rv); /* returns with ilock held */ 458 459 if (r->r_sharehead == 0) 460 panic("rman_await_resource"); 461 /* 462 * A critical section will hopefully will prevent a race 463 * between lwkt_reltoken and tsleep where a process 464 * could conceivably get in and release the resource 465 * before we have a chance to sleep on it. YYY 466 */ 467 crit_enter(); 468 whohas->r_flags |= RF_WANTED; 469 rv = tsleep(r->r_sharehead, slpflags, "rmwait", timo); 470 if (rv) { 471 lwkt_reltoken(ilock); 472 crit_exit(); 473 return rv; 474 } 475 crit_exit(); 476 } 477 } 478 479 #endif 480 481 static int 482 int_rman_deactivate_resource(struct resource *r) 483 { 484 struct rman *rm; 485 486 rm = r->r_rm; 487 r->r_flags &= ~RF_ACTIVE; 488 if (r->r_flags & RF_WANTED) { 489 r->r_flags &= ~RF_WANTED; 490 wakeup(r->r_sharehead); 491 } 492 return 0; 493 } 494 495 int 496 rman_deactivate_resource(struct resource *r) 497 { 498 lwkt_tokref ilock; 499 struct rman *rm; 500 501 rm = r->r_rm; 502 lwkt_gettoken(&ilock, rm->rm_slock); 503 int_rman_deactivate_resource(r); 504 lwkt_reltoken(&ilock); 505 return 0; 506 } 507 508 static int 509 int_rman_release_resource(struct rman *rm, struct resource *r) 510 { 511 struct resource *s, *t; 512 513 if (r->r_flags & RF_ACTIVE) 514 int_rman_deactivate_resource(r); 515 516 /* 517 * Check for a sharing list first. If there is one, then we don't 518 * have to think as hard. 519 */ 520 if (r->r_sharehead) { 521 /* 522 * If a sharing list exists, then we know there are at 523 * least two sharers. 524 * 525 * If we are in the main circleq, appoint someone else. 526 */ 527 LIST_REMOVE(r, r_sharelink); 528 s = LIST_FIRST(r->r_sharehead); 529 if (r->r_flags & RF_FIRSTSHARE) { 530 s->r_flags |= RF_FIRSTSHARE; 531 CIRCLEQ_INSERT_BEFORE(&rm->rm_list, r, s, r_link); 532 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link); 533 } 534 535 /* 536 * Make sure that the sharing list goes away completely 537 * if the resource is no longer being shared at all. 538 */ 539 if (LIST_NEXT(s, r_sharelink) == 0) { 540 kfree(s->r_sharehead, M_RMAN); 541 s->r_sharehead = 0; 542 s->r_flags &= ~RF_FIRSTSHARE; 543 } 544 goto out; 545 } 546 547 /* 548 * Look at the adjacent resources in the list and see if our 549 * segment can be merged with any of them. 550 */ 551 s = CIRCLEQ_PREV(r, r_link); 552 t = CIRCLEQ_NEXT(r, r_link); 553 554 if (s != (void *)&rm->rm_list && (s->r_flags & RF_ALLOCATED) == 0 555 && t != (void *)&rm->rm_list && (t->r_flags & RF_ALLOCATED) == 0) { 556 /* 557 * Merge all three segments. 558 */ 559 s->r_end = t->r_end; 560 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link); 561 CIRCLEQ_REMOVE(&rm->rm_list, t, r_link); 562 kfree(t, M_RMAN); 563 } else if (s != (void *)&rm->rm_list 564 && (s->r_flags & RF_ALLOCATED) == 0) { 565 /* 566 * Merge previous segment with ours. 567 */ 568 s->r_end = r->r_end; 569 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link); 570 } else if (t != (void *)&rm->rm_list 571 && (t->r_flags & RF_ALLOCATED) == 0) { 572 /* 573 * Merge next segment with ours. 574 */ 575 t->r_start = r->r_start; 576 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link); 577 } else { 578 /* 579 * At this point, we know there is nothing we 580 * can potentially merge with, because on each 581 * side, there is either nothing there or what is 582 * there is still allocated. In that case, we don't 583 * want to remove r from the list; we simply want to 584 * change it to an unallocated region and return 585 * without freeing anything. 586 */ 587 r->r_flags &= ~RF_ALLOCATED; 588 return 0; 589 } 590 591 out: 592 kfree(r, M_RMAN); 593 return 0; 594 } 595 596 int 597 rman_release_resource(struct resource *r) 598 { 599 struct rman *rm = r->r_rm; 600 lwkt_tokref ilock; 601 int rv; 602 603 lwkt_gettoken(&ilock, rm->rm_slock); 604 rv = int_rman_release_resource(rm, r); 605 lwkt_reltoken(&ilock); 606 return (rv); 607 } 608 609 uint32_t 610 rman_make_alignment_flags(uint32_t size) 611 { 612 int i; 613 614 /* 615 * Find the hightest bit set, and add one if more than one bit 616 * set. We're effectively computing the ceil(log2(size)) here. 617 */ 618 for (i = 32; i > 0; i--) 619 if ((1 << i) & size) 620 break; 621 if (~(1 << i) & size) 622 i++; 623 624 return(RF_ALIGNMENT_LOG2(i)); 625 } 626 627 /* 628 * Sysctl interface for scanning the resource lists. 629 * 630 * We take two input parameters; the index into the list of resource 631 * managers, and the resource offset into the list. 632 */ 633 static int 634 sysctl_rman(SYSCTL_HANDLER_ARGS) 635 { 636 int *name = (int *)arg1; 637 u_int namelen = arg2; 638 int rman_idx, res_idx; 639 struct rman *rm; 640 struct resource *res; 641 struct u_rman urm; 642 struct u_resource ures; 643 int error; 644 645 if (namelen != 3) 646 return (EINVAL); 647 648 if (bus_data_generation_check(name[0])) 649 return (EINVAL); 650 rman_idx = name[1]; 651 res_idx = name[2]; 652 653 /* 654 * Find the indexed resource manager 655 */ 656 TAILQ_FOREACH(rm, &rman_head, rm_link) { 657 if (rman_idx-- == 0) 658 break; 659 } 660 if (rm == NULL) 661 return (ENOENT); 662 663 /* 664 * If the resource index is -1, we want details on the 665 * resource manager. 666 */ 667 if (res_idx == -1) { 668 urm.rm_handle = (uintptr_t)rm; 669 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 670 urm.rm_start = rm->rm_start; 671 urm.rm_size = rm->rm_end - rm->rm_start + 1; 672 urm.rm_type = rm->rm_type; 673 674 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 675 return (error); 676 } 677 678 /* 679 * Find the indexed resource and return it. 680 */ 681 CIRCLEQ_FOREACH(res, &rm->rm_list, r_link) { 682 if (res_idx-- == 0) { 683 ures.r_handle = (uintptr_t)res; 684 ures.r_parent = (uintptr_t)res->r_rm; 685 ures.r_device = (uintptr_t)res->r_dev; 686 if (res->r_dev != NULL) { 687 if (device_get_name(res->r_dev) != NULL) { 688 ksnprintf(ures.r_devname, RM_TEXTLEN, 689 "%s%d", 690 device_get_name(res->r_dev), 691 device_get_unit(res->r_dev)); 692 } else { 693 strlcpy(ures.r_devname, "nomatch", 694 RM_TEXTLEN); 695 } 696 } else { 697 ures.r_devname[0] = '\0'; 698 } 699 ures.r_start = res->r_start; 700 ures.r_size = res->r_end - res->r_start + 1; 701 ures.r_flags = res->r_flags; 702 703 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 704 return (error); 705 } 706 } 707 return (ENOENT); 708 } 709 710 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 711 "kernel resource manager"); 712