xref: /dragonfly/sys/kern/sys_pipe.c (revision 1847e88f)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.32 2005/09/02 07:16:58 hsu Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36  * the receiving process can copy it directly from the pages in the sending
37  * process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.  PIPE_SIZE is constrained by the
50  * amount of kernel virtual memory.
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/fcntl.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/filio.h>
61 #include <sys/ttycom.h>
62 #include <sys/stat.h>
63 #include <sys/poll.h>
64 #include <sys/select.h>
65 #include <sys/signalvar.h>
66 #include <sys/sysproto.h>
67 #include <sys/pipe.h>
68 #include <sys/vnode.h>
69 #include <sys/uio.h>
70 #include <sys/event.h>
71 #include <sys/globaldata.h>
72 #include <sys/module.h>
73 #include <sys/malloc.h>
74 #include <sys/sysctl.h>
75 #include <sys/socket.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_zone.h>
87 
88 #include <sys/file2.h>
89 
90 #include <machine/cpufunc.h>
91 
92 /*
93  * interfaces to the outside world
94  */
95 static int pipe_read (struct file *fp, struct uio *uio,
96 		struct ucred *cred, int flags, struct thread *td);
97 static int pipe_write (struct file *fp, struct uio *uio,
98 		struct ucred *cred, int flags, struct thread *td);
99 static int pipe_close (struct file *fp, struct thread *td);
100 static int pipe_shutdown (struct file *fp, int how, struct thread *td);
101 static int pipe_poll (struct file *fp, int events, struct ucred *cred,
102 		struct thread *td);
103 static int pipe_kqfilter (struct file *fp, struct knote *kn);
104 static int pipe_stat (struct file *fp, struct stat *sb, struct thread *td);
105 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct thread *td);
106 
107 static struct fileops pipeops = {
108 	NULL,	/* port */
109 	NULL,	/* clone */
110 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
111 	pipe_stat, pipe_close, pipe_shutdown
112 };
113 
114 static void	filt_pipedetach(struct knote *kn);
115 static int	filt_piperead(struct knote *kn, long hint);
116 static int	filt_pipewrite(struct knote *kn, long hint);
117 
118 static struct filterops pipe_rfiltops =
119 	{ 1, NULL, filt_pipedetach, filt_piperead };
120 static struct filterops pipe_wfiltops =
121 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
122 
123 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
124 
125 /*
126  * Default pipe buffer size(s), this can be kind-of large now because pipe
127  * space is pageable.  The pipe code will try to maintain locality of
128  * reference for performance reasons, so small amounts of outstanding I/O
129  * will not wipe the cache.
130  */
131 #define MINPIPESIZE (PIPE_SIZE/3)
132 #define MAXPIPESIZE (2*PIPE_SIZE/3)
133 
134 /*
135  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
136  * is there so that on large systems, we don't exhaust it.
137  */
138 #define MAXPIPEKVA (8*1024*1024)
139 
140 /*
141  * Limit for direct transfers, we cannot, of course limit
142  * the amount of kva for pipes in general though.
143  */
144 #define LIMITPIPEKVA (16*1024*1024)
145 
146 /*
147  * Limit the number of "big" pipes
148  */
149 #define LIMITBIGPIPES	32
150 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
151 
152 static int pipe_maxbig = LIMITBIGPIPES;
153 static int pipe_maxcache = PIPEQ_MAX_CACHE;
154 static int pipe_nbig;
155 static int pipe_bcache_alloc;
156 static int pipe_bkmem_alloc;
157 static int pipe_dwrite_enable = 1;	/* 0:copy, 1:kmem/sfbuf 2:force */
158 static int pipe_dwrite_sfbuf = 1;	/* 0:kmem_map 1:sfbufs 2:sfbufs_dmap */
159 					/* 3:sfbuf_dmap w/ forced invlpg */
160 
161 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
162 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
163         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
164 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
165         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
166 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
167         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
168 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_enable,
169         CTLFLAG_RW, &pipe_dwrite_enable, 0, "1:enable/2:force direct writes");
170 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_sfbuf,
171         CTLFLAG_RW, &pipe_dwrite_sfbuf, 0,
172 	"(if dwrite_enable) 0:kmem 1:sfbuf 2:sfbuf_dmap 3:sfbuf_dmap_forceinvlpg");
173 #if !defined(NO_PIPE_SYSCTL_STATS)
174 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
175         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
176 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
177         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
178 #endif
179 
180 static void pipeclose (struct pipe *cpipe);
181 static void pipe_free_kmem (struct pipe *cpipe);
182 static int pipe_create (struct pipe **cpipep);
183 static __inline int pipelock (struct pipe *cpipe, int catch);
184 static __inline void pipeunlock (struct pipe *cpipe);
185 static __inline void pipeselwakeup (struct pipe *cpipe);
186 #ifndef PIPE_NODIRECT
187 static int pipe_build_write_buffer (struct pipe *wpipe, struct uio *uio);
188 static int pipe_direct_write (struct pipe *wpipe, struct uio *uio);
189 static void pipe_clone_write_buffer (struct pipe *wpipe);
190 #endif
191 static int pipespace (struct pipe *cpipe, int size);
192 
193 /*
194  * The pipe system call for the DTYPE_PIPE type of pipes
195  *
196  * pipe_ARgs(int dummy)
197  */
198 
199 /* ARGSUSED */
200 int
201 pipe(struct pipe_args *uap)
202 {
203 	struct thread *td = curthread;
204 	struct proc *p = td->td_proc;
205 	struct filedesc *fdp;
206 	struct file *rf, *wf;
207 	struct pipe *rpipe, *wpipe;
208 	int fd1, fd2, error;
209 
210 	KKASSERT(p);
211 	fdp = p->p_fd;
212 
213 	rpipe = wpipe = NULL;
214 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
215 		pipeclose(rpipe);
216 		pipeclose(wpipe);
217 		return (ENFILE);
218 	}
219 
220 	rpipe->pipe_state |= PIPE_DIRECTOK;
221 	wpipe->pipe_state |= PIPE_DIRECTOK;
222 
223 	/*
224 	 * Select the direct-map features to use for this pipe.  Since the
225 	 * sysctl's can change on the fly we record the settings when the
226 	 * pipe is created.
227 	 *
228 	 * Generally speaking the system will default to what we consider
229 	 * to be the best-balanced and most stable option.  Right now this
230 	 * is SFBUF1.  Modes 2 and 3 are considered experiemental at the
231 	 * moment.
232 	 */
233 	wpipe->pipe_feature = PIPE_COPY;
234 	if (pipe_dwrite_enable) {
235 		switch(pipe_dwrite_sfbuf) {
236 		case 0:
237 			wpipe->pipe_feature = PIPE_KMEM;
238 			break;
239 		case 1:
240 			wpipe->pipe_feature = PIPE_SFBUF1;
241 			break;
242 		case 2:
243 		case 3:
244 			wpipe->pipe_feature = PIPE_SFBUF2;
245 			break;
246 		}
247 	}
248 	rpipe->pipe_feature = wpipe->pipe_feature;
249 
250 	error = falloc(p, &rf, &fd1);
251 	if (error) {
252 		pipeclose(rpipe);
253 		pipeclose(wpipe);
254 		return (error);
255 	}
256 	uap->sysmsg_fds[0] = fd1;
257 
258 	/*
259 	 * Warning: once we've gotten past allocation of the fd for the
260 	 * read-side, we can only drop the read side via fdrop() in order
261 	 * to avoid races against processes which manage to dup() the read
262 	 * side while we are blocked trying to allocate the write side.
263 	 */
264 	rf->f_type = DTYPE_PIPE;
265 	rf->f_flag = FREAD | FWRITE;
266 	rf->f_ops = &pipeops;
267 	rf->f_data = rpipe;
268 	error = falloc(p, &wf, &fd2);
269 	if (error) {
270 		if (fdp->fd_files[fd1].fp == rf) {
271 			funsetfd(fdp, fd1);
272 			fdrop(rf, td);
273 		}
274 		fdrop(rf, td);
275 		/* rpipe has been closed by fdrop(). */
276 		pipeclose(wpipe);
277 		return (error);
278 	}
279 	wf->f_type = DTYPE_PIPE;
280 	wf->f_flag = FREAD | FWRITE;
281 	wf->f_ops = &pipeops;
282 	wf->f_data = wpipe;
283 	uap->sysmsg_fds[1] = fd2;
284 
285 	rpipe->pipe_peer = wpipe;
286 	wpipe->pipe_peer = rpipe;
287 	fdrop(rf, td);
288 	fdrop(wf, td);
289 
290 	return (0);
291 }
292 
293 /*
294  * Allocate kva for pipe circular buffer, the space is pageable
295  * This routine will 'realloc' the size of a pipe safely, if it fails
296  * it will retain the old buffer.
297  * If it fails it will return ENOMEM.
298  */
299 static int
300 pipespace(struct pipe *cpipe, int size)
301 {
302 	struct vm_object *object;
303 	caddr_t buffer;
304 	int npages, error;
305 
306 	npages = round_page(size) / PAGE_SIZE;
307 	object = cpipe->pipe_buffer.object;
308 
309 	/*
310 	 * [re]create the object if necessary and reserve space for it
311 	 * in the kernel_map.  The object and memory are pageable.  On
312 	 * success, free the old resources before assigning the new
313 	 * ones.
314 	 */
315 	if (object == NULL || object->size != npages) {
316 		object = vm_object_allocate(OBJT_DEFAULT, npages);
317 		buffer = (caddr_t) vm_map_min(kernel_map);
318 
319 		error = vm_map_find(kernel_map, object, 0,
320 			(vm_offset_t *) &buffer, size, 1,
321 			VM_PROT_ALL, VM_PROT_ALL, 0);
322 
323 		if (error != KERN_SUCCESS) {
324 			vm_object_deallocate(object);
325 			return (ENOMEM);
326 		}
327 		pipe_free_kmem(cpipe);
328 		cpipe->pipe_buffer.object = object;
329 		cpipe->pipe_buffer.buffer = buffer;
330 		cpipe->pipe_buffer.size = size;
331 		++pipe_bkmem_alloc;
332 	} else {
333 		++pipe_bcache_alloc;
334 	}
335 	cpipe->pipe_buffer.in = 0;
336 	cpipe->pipe_buffer.out = 0;
337 	cpipe->pipe_buffer.cnt = 0;
338 	return (0);
339 }
340 
341 /*
342  * Initialize and allocate VM and memory for pipe, pulling the pipe from
343  * our per-cpu cache if possible.  For now make sure it is sized for the
344  * smaller PIPE_SIZE default.
345  */
346 static int
347 pipe_create(cpipep)
348 	struct pipe **cpipep;
349 {
350 	globaldata_t gd = mycpu;
351 	struct pipe *cpipe;
352 	int error;
353 
354 	if ((cpipe = gd->gd_pipeq) != NULL) {
355 		gd->gd_pipeq = cpipe->pipe_peer;
356 		--gd->gd_pipeqcount;
357 		cpipe->pipe_peer = NULL;
358 	} else {
359 		cpipe = malloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
360 	}
361 	*cpipep = cpipe;
362 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
363 		return (error);
364 	vfs_timestamp(&cpipe->pipe_ctime);
365 	cpipe->pipe_atime = cpipe->pipe_ctime;
366 	cpipe->pipe_mtime = cpipe->pipe_ctime;
367 	return (0);
368 }
369 
370 
371 /*
372  * lock a pipe for I/O, blocking other access
373  */
374 static __inline int
375 pipelock(cpipe, catch)
376 	struct pipe *cpipe;
377 	int catch;
378 {
379 	int error;
380 
381 	while (cpipe->pipe_state & PIPE_LOCK) {
382 		cpipe->pipe_state |= PIPE_LWANT;
383 		error = tsleep(cpipe, (catch ? PCATCH : 0), "pipelk", 0);
384 		if (error != 0)
385 			return (error);
386 	}
387 	cpipe->pipe_state |= PIPE_LOCK;
388 	return (0);
389 }
390 
391 /*
392  * unlock a pipe I/O lock
393  */
394 static __inline void
395 pipeunlock(cpipe)
396 	struct pipe *cpipe;
397 {
398 
399 	cpipe->pipe_state &= ~PIPE_LOCK;
400 	if (cpipe->pipe_state & PIPE_LWANT) {
401 		cpipe->pipe_state &= ~PIPE_LWANT;
402 		wakeup(cpipe);
403 	}
404 }
405 
406 static __inline void
407 pipeselwakeup(cpipe)
408 	struct pipe *cpipe;
409 {
410 
411 	if (cpipe->pipe_state & PIPE_SEL) {
412 		cpipe->pipe_state &= ~PIPE_SEL;
413 		selwakeup(&cpipe->pipe_sel);
414 	}
415 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
416 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
417 	KNOTE(&cpipe->pipe_sel.si_note, 0);
418 }
419 
420 /* ARGSUSED */
421 static int
422 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred,
423 	int flags, struct thread *td)
424 {
425 	struct pipe *rpipe = (struct pipe *) fp->f_data;
426 	int error;
427 	int nread = 0;
428 	u_int size;
429 
430 	++rpipe->pipe_busy;
431 	error = pipelock(rpipe, 1);
432 	if (error)
433 		goto unlocked_error;
434 
435 	while (uio->uio_resid) {
436 		caddr_t va;
437 
438 		if (rpipe->pipe_buffer.cnt > 0) {
439 			/*
440 			 * normal pipe buffer receive
441 			 */
442 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
443 			if (size > rpipe->pipe_buffer.cnt)
444 				size = rpipe->pipe_buffer.cnt;
445 			if (size > (u_int) uio->uio_resid)
446 				size = (u_int) uio->uio_resid;
447 
448 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
449 					size, uio);
450 			if (error)
451 				break;
452 
453 			rpipe->pipe_buffer.out += size;
454 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
455 				rpipe->pipe_buffer.out = 0;
456 
457 			rpipe->pipe_buffer.cnt -= size;
458 
459 			/*
460 			 * If there is no more to read in the pipe, reset
461 			 * its pointers to the beginning.  This improves
462 			 * cache hit stats.
463 			 */
464 			if (rpipe->pipe_buffer.cnt == 0) {
465 				rpipe->pipe_buffer.in = 0;
466 				rpipe->pipe_buffer.out = 0;
467 			}
468 			nread += size;
469 #ifndef PIPE_NODIRECT
470 		} else if (rpipe->pipe_kva &&
471 			   rpipe->pipe_feature == PIPE_KMEM &&
472 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
473 			       == PIPE_DIRECTW
474 		) {
475 			/*
476 			 * Direct copy using source-side kva mapping
477 			 */
478 			size = rpipe->pipe_map.xio_bytes -
479 				rpipe->pipe_buffer.out;
480 			if (size > (u_int)uio->uio_resid)
481 				size = (u_int)uio->uio_resid;
482 			va = (caddr_t)rpipe->pipe_kva +
483 				xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
484 			error = uiomove(va, size, uio);
485 			if (error)
486 				break;
487 			nread += size;
488 			rpipe->pipe_buffer.out += size;
489 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
490 				rpipe->pipe_state |= PIPE_DIRECTIP;
491 				rpipe->pipe_state &= ~PIPE_DIRECTW;
492 				/* reset out index for copy mode */
493 				rpipe->pipe_buffer.out = 0;
494 				wakeup(rpipe);
495 			}
496 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
497 			   rpipe->pipe_kva &&
498 			   rpipe->pipe_feature == PIPE_SFBUF2 &&
499 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
500 			       == PIPE_DIRECTW
501 		) {
502 			/*
503 			 * Direct copy, bypassing a kernel buffer.  We cannot
504 			 * mess with the direct-write buffer until
505 			 * PIPE_DIRECTIP is cleared.  In order to prevent
506 			 * the pipe_write code from racing itself in
507 			 * direct_write, we set DIRECTIP when we clear
508 			 * DIRECTW after we have exhausted the buffer.
509 			 */
510 			if (pipe_dwrite_sfbuf == 3)
511 				rpipe->pipe_kvamask = 0;
512 			pmap_qenter2(rpipe->pipe_kva, rpipe->pipe_map.xio_pages,
513 				    rpipe->pipe_map.xio_npages,
514 				    &rpipe->pipe_kvamask);
515 			size = rpipe->pipe_map.xio_bytes -
516 				rpipe->pipe_buffer.out;
517 			if (size > (u_int)uio->uio_resid)
518 				size = (u_int)uio->uio_resid;
519 			va = (caddr_t)rpipe->pipe_kva + xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
520 			error = uiomove(va, size, uio);
521 			if (error)
522 				break;
523 			nread += size;
524 			rpipe->pipe_buffer.out += size;
525 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
526 				rpipe->pipe_state |= PIPE_DIRECTIP;
527 				rpipe->pipe_state &= ~PIPE_DIRECTW;
528 				/* reset out index for copy mode */
529 				rpipe->pipe_buffer.out = 0;
530 				wakeup(rpipe);
531 			}
532 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
533 			   rpipe->pipe_feature == PIPE_SFBUF1 &&
534 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
535 				== PIPE_DIRECTW
536 		) {
537 			/*
538 			 * Direct copy, bypassing a kernel buffer.  We cannot
539 			 * mess with the direct-write buffer until
540 			 * PIPE_DIRECTIP is cleared.  In order to prevent
541 			 * the pipe_write code from racing itself in
542 			 * direct_write, we set DIRECTIP when we clear
543 			 * DIRECTW after we have exhausted the buffer.
544 			 */
545 			error = xio_uio_copy(&rpipe->pipe_map, rpipe->pipe_buffer.out, uio, &size);
546 			if (error)
547 				break;
548 			nread += size;
549 			rpipe->pipe_buffer.out += size;
550 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
551 				rpipe->pipe_state |= PIPE_DIRECTIP;
552 				rpipe->pipe_state &= ~PIPE_DIRECTW;
553 				/* reset out index for copy mode */
554 				rpipe->pipe_buffer.out = 0;
555 				wakeup(rpipe);
556 			}
557 #endif
558 		} else {
559 			/*
560 			 * detect EOF condition
561 			 * read returns 0 on EOF, no need to set error
562 			 */
563 			if (rpipe->pipe_state & PIPE_EOF)
564 				break;
565 
566 			/*
567 			 * If the "write-side" has been blocked, wake it up now.
568 			 */
569 			if (rpipe->pipe_state & PIPE_WANTW) {
570 				rpipe->pipe_state &= ~PIPE_WANTW;
571 				wakeup(rpipe);
572 			}
573 
574 			/*
575 			 * Break if some data was read.
576 			 */
577 			if (nread > 0)
578 				break;
579 
580 			/*
581 			 * Unlock the pipe buffer for our remaining
582 			 * processing.  We will either break out with an
583 			 * error or we will sleep and relock to loop.
584 			 */
585 			pipeunlock(rpipe);
586 
587 			/*
588 			 * Handle non-blocking mode operation or
589 			 * wait for more data.
590 			 */
591 			if (fp->f_flag & FNONBLOCK) {
592 				error = EAGAIN;
593 			} else {
594 				rpipe->pipe_state |= PIPE_WANTR;
595 				if ((error = tsleep(rpipe, PCATCH|PNORESCHED,
596 				    "piperd", 0)) == 0) {
597 					error = pipelock(rpipe, 1);
598 				}
599 			}
600 			if (error)
601 				goto unlocked_error;
602 		}
603 	}
604 	pipeunlock(rpipe);
605 
606 	if (error == 0)
607 		vfs_timestamp(&rpipe->pipe_atime);
608 unlocked_error:
609 	--rpipe->pipe_busy;
610 
611 	/*
612 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
613 	 */
614 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
615 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
616 		wakeup(rpipe);
617 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
618 		/*
619 		 * Handle write blocking hysteresis.
620 		 */
621 		if (rpipe->pipe_state & PIPE_WANTW) {
622 			rpipe->pipe_state &= ~PIPE_WANTW;
623 			wakeup(rpipe);
624 		}
625 	}
626 
627 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
628 		pipeselwakeup(rpipe);
629 	return (error);
630 }
631 
632 #ifndef PIPE_NODIRECT
633 /*
634  * Map the sending processes' buffer into kernel space and wire it.
635  * This is similar to a physical write operation.
636  */
637 static int
638 pipe_build_write_buffer(wpipe, uio)
639 	struct pipe *wpipe;
640 	struct uio *uio;
641 {
642 	int error;
643 	u_int size;
644 
645 	size = (u_int) uio->uio_iov->iov_len;
646 	if (size > wpipe->pipe_buffer.size)
647 		size = wpipe->pipe_buffer.size;
648 
649 	if (uio->uio_segflg == UIO_SYSSPACE) {
650 		error = xio_init_kbuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
651 					size);
652 	} else {
653 		error = xio_init_ubuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
654 					size, XIOF_READ);
655 	}
656 	wpipe->pipe_buffer.out = 0;
657 	if (error)
658 		return(error);
659 
660 	/*
661 	 * Create a kernel map for KMEM and SFBUF2 copy modes.  SFBUF2 will
662 	 * map the pages on the target while KMEM maps the pages now.
663 	 */
664 	switch(wpipe->pipe_feature) {
665 	case PIPE_KMEM:
666 	case PIPE_SFBUF2:
667 		if (wpipe->pipe_kva == NULL) {
668 			wpipe->pipe_kva =
669 			    kmem_alloc_nofault(kernel_map, XIO_INTERNAL_SIZE);
670 			wpipe->pipe_kvamask = 0;
671 		}
672 		if (wpipe->pipe_feature == PIPE_KMEM) {
673 			pmap_qenter(wpipe->pipe_kva, wpipe->pipe_map.xio_pages,
674 				    wpipe->pipe_map.xio_npages);
675 		}
676 		break;
677 	default:
678 		break;
679 	}
680 
681 	/*
682 	 * And update the uio data.  The XIO might have loaded fewer bytes
683 	 * then requested so reload 'size'.
684 	 */
685 	size = wpipe->pipe_map.xio_bytes;
686 	uio->uio_iov->iov_len -= size;
687 	uio->uio_iov->iov_base += size;
688 	if (uio->uio_iov->iov_len == 0)
689 		uio->uio_iov++;
690 	uio->uio_resid -= size;
691 	uio->uio_offset += size;
692 	return (0);
693 }
694 
695 /*
696  * In the case of a signal, the writing process might go away.  This
697  * code copies the data into the circular buffer so that the source
698  * pages can be freed without loss of data.
699  *
700  * Note that in direct mode pipe_buffer.out is used to track the
701  * XIO offset.  We are converting the direct mode into buffered mode
702  * which changes the meaning of pipe_buffer.out.
703  */
704 static void
705 pipe_clone_write_buffer(wpipe)
706 	struct pipe *wpipe;
707 {
708 	int size;
709 	int offset;
710 
711 	offset = wpipe->pipe_buffer.out;
712 	size = wpipe->pipe_map.xio_bytes - offset;
713 
714 	KKASSERT(size <= wpipe->pipe_buffer.size);
715 
716 	wpipe->pipe_buffer.in = size;
717 	wpipe->pipe_buffer.out = 0;
718 	wpipe->pipe_buffer.cnt = size;
719 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
720 
721 	xio_copy_xtok(&wpipe->pipe_map, offset, wpipe->pipe_buffer.buffer, size);
722 	xio_release(&wpipe->pipe_map);
723 	if (wpipe->pipe_kva) {
724 		pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
725 		kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
726 		wpipe->pipe_kva = NULL;
727 	}
728 }
729 
730 /*
731  * This implements the pipe buffer write mechanism.  Note that only
732  * a direct write OR a normal pipe write can be pending at any given time.
733  * If there are any characters in the pipe buffer, the direct write will
734  * be deferred until the receiving process grabs all of the bytes from
735  * the pipe buffer.  Then the direct mapping write is set-up.
736  */
737 static int
738 pipe_direct_write(wpipe, uio)
739 	struct pipe *wpipe;
740 	struct uio *uio;
741 {
742 	int error;
743 
744 retry:
745 	while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
746 		if (wpipe->pipe_state & PIPE_WANTR) {
747 			wpipe->pipe_state &= ~PIPE_WANTR;
748 			wakeup(wpipe);
749 		}
750 		wpipe->pipe_state |= PIPE_WANTW;
751 		error = tsleep(wpipe, PCATCH, "pipdww", 0);
752 		if (error)
753 			goto error2;
754 		if (wpipe->pipe_state & PIPE_EOF) {
755 			error = EPIPE;
756 			goto error2;
757 		}
758 	}
759 	KKASSERT(wpipe->pipe_map.xio_bytes == 0);
760 	if (wpipe->pipe_buffer.cnt > 0) {
761 		if (wpipe->pipe_state & PIPE_WANTR) {
762 			wpipe->pipe_state &= ~PIPE_WANTR;
763 			wakeup(wpipe);
764 		}
765 
766 		wpipe->pipe_state |= PIPE_WANTW;
767 		error = tsleep(wpipe, PCATCH, "pipdwc", 0);
768 		if (error)
769 			goto error2;
770 		if (wpipe->pipe_state & PIPE_EOF) {
771 			error = EPIPE;
772 			goto error2;
773 		}
774 		goto retry;
775 	}
776 
777 	/*
778 	 * Build our direct-write buffer
779 	 */
780 	wpipe->pipe_state |= PIPE_DIRECTW | PIPE_DIRECTIP;
781 	error = pipe_build_write_buffer(wpipe, uio);
782 	if (error)
783 		goto error1;
784 	wpipe->pipe_state &= ~PIPE_DIRECTIP;
785 
786 	/*
787 	 * Wait until the receiver has snarfed the data.  Since we are likely
788 	 * going to sleep we optimize the case and yield synchronously,
789 	 * possibly avoiding the tsleep().
790 	 */
791 	error = 0;
792 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
793 		if (wpipe->pipe_state & PIPE_EOF) {
794 			pipelock(wpipe, 0);
795 			xio_release(&wpipe->pipe_map);
796 			if (wpipe->pipe_kva) {
797 				pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
798 				kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
799 				wpipe->pipe_kva = NULL;
800 			}
801 			pipeunlock(wpipe);
802 			pipeselwakeup(wpipe);
803 			error = EPIPE;
804 			goto error1;
805 		}
806 		if (wpipe->pipe_state & PIPE_WANTR) {
807 			wpipe->pipe_state &= ~PIPE_WANTR;
808 			wakeup(wpipe);
809 		}
810 		pipeselwakeup(wpipe);
811 		error = tsleep(wpipe, PCATCH|PNORESCHED, "pipdwt", 0);
812 	}
813 	pipelock(wpipe,0);
814 	if (wpipe->pipe_state & PIPE_DIRECTW) {
815 		/*
816 		 * this bit of trickery substitutes a kernel buffer for
817 		 * the process that might be going away.
818 		 */
819 		pipe_clone_write_buffer(wpipe);
820 		KKASSERT((wpipe->pipe_state & PIPE_DIRECTIP) == 0);
821 	} else {
822 		/*
823 		 * note: The pipe_kva mapping is not qremove'd here.  For
824 		 * legacy PIPE_KMEM mode this constitutes an improvement
825 		 * over the original FreeBSD-4 algorithm.  For PIPE_SFBUF2
826 		 * mode the kva mapping must not be removed to get the
827 		 * caching benefit.
828 		 *
829 		 * For testing purposes we will give the original algorithm
830 		 * the benefit of the doubt 'what it could have been', and
831 		 * keep the optimization.
832 		 */
833 		KKASSERT(wpipe->pipe_state & PIPE_DIRECTIP);
834 		xio_release(&wpipe->pipe_map);
835 		wpipe->pipe_state &= ~PIPE_DIRECTIP;
836 	}
837 	pipeunlock(wpipe);
838 	return (error);
839 
840 	/*
841 	 * Direct-write error, clear the direct write flags.
842 	 */
843 error1:
844 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
845 	/* fallthrough */
846 
847 	/*
848 	 * General error, wakeup the other side if it happens to be sleeping.
849 	 */
850 error2:
851 	wakeup(wpipe);
852 	return (error);
853 }
854 #endif
855 
856 static int
857 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred,
858 	int flags, struct thread *td)
859 {
860 	int error = 0;
861 	int orig_resid;
862 	struct pipe *wpipe, *rpipe;
863 
864 	rpipe = (struct pipe *) fp->f_data;
865 	wpipe = rpipe->pipe_peer;
866 
867 	/*
868 	 * detect loss of pipe read side, issue SIGPIPE if lost.
869 	 */
870 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
871 		return (EPIPE);
872 	}
873 	++wpipe->pipe_busy;
874 
875 	/*
876 	 * If it is advantageous to resize the pipe buffer, do
877 	 * so.
878 	 */
879 	if ((uio->uio_resid > PIPE_SIZE) &&
880 		(pipe_nbig < pipe_maxbig) &&
881 		(wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) == 0 &&
882 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
883 		(wpipe->pipe_buffer.cnt == 0)) {
884 
885 		if ((error = pipelock(wpipe,1)) == 0) {
886 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
887 				pipe_nbig++;
888 			pipeunlock(wpipe);
889 		}
890 	}
891 
892 	/*
893 	 * If an early error occured unbusy and return, waking up any pending
894 	 * readers.
895 	 */
896 	if (error) {
897 		--wpipe->pipe_busy;
898 		if ((wpipe->pipe_busy == 0) &&
899 		    (wpipe->pipe_state & PIPE_WANT)) {
900 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
901 			wakeup(wpipe);
902 		}
903 		return(error);
904 	}
905 
906 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
907 
908 	orig_resid = uio->uio_resid;
909 
910 	while (uio->uio_resid) {
911 		int space;
912 
913 #ifndef PIPE_NODIRECT
914 		/*
915 		 * If the transfer is large, we can gain performance if
916 		 * we do process-to-process copies directly.
917 		 * If the write is non-blocking, we don't use the
918 		 * direct write mechanism.
919 		 *
920 		 * The direct write mechanism will detect the reader going
921 		 * away on us.
922 		 */
923 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT ||
924 		    pipe_dwrite_enable > 1) &&
925 		    (fp->f_flag & FNONBLOCK) == 0 &&
926 		    pipe_dwrite_enable) {
927 			error = pipe_direct_write( wpipe, uio);
928 			if (error)
929 				break;
930 			continue;
931 		}
932 #endif
933 
934 		/*
935 		 * Pipe buffered writes cannot be coincidental with
936 		 * direct writes.  We wait until the currently executing
937 		 * direct write is completed before we start filling the
938 		 * pipe buffer.  We break out if a signal occurs or the
939 		 * reader goes away.
940 		 */
941 	retrywrite:
942 		while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
943 			if (wpipe->pipe_state & PIPE_WANTR) {
944 				wpipe->pipe_state &= ~PIPE_WANTR;
945 				wakeup(wpipe);
946 			}
947 			error = tsleep(wpipe, PCATCH, "pipbww", 0);
948 			if (wpipe->pipe_state & PIPE_EOF)
949 				break;
950 			if (error)
951 				break;
952 		}
953 		if (wpipe->pipe_state & PIPE_EOF) {
954 			error = EPIPE;
955 			break;
956 		}
957 
958 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
959 
960 		/* Writes of size <= PIPE_BUF must be atomic. */
961 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
962 			space = 0;
963 
964 		/*
965 		 * Write to fill, read size handles write hysteresis.  Also
966 		 * additional restrictions can cause select-based non-blocking
967 		 * writes to spin.
968 		 */
969 		if (space > 0) {
970 			if ((error = pipelock(wpipe,1)) == 0) {
971 				int size;	/* Transfer size */
972 				int segsize;	/* first segment to transfer */
973 
974 				/*
975 				 * It is possible for a direct write to
976 				 * slip in on us... handle it here...
977 				 */
978 				if (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
979 					pipeunlock(wpipe);
980 					goto retrywrite;
981 				}
982 				/*
983 				 * If a process blocked in uiomove, our
984 				 * value for space might be bad.
985 				 *
986 				 * XXX will we be ok if the reader has gone
987 				 * away here?
988 				 */
989 				if (space > wpipe->pipe_buffer.size -
990 				    wpipe->pipe_buffer.cnt) {
991 					pipeunlock(wpipe);
992 					goto retrywrite;
993 				}
994 
995 				/*
996 				 * Transfer size is minimum of uio transfer
997 				 * and free space in pipe buffer.
998 				 */
999 				if (space > uio->uio_resid)
1000 					size = uio->uio_resid;
1001 				else
1002 					size = space;
1003 				/*
1004 				 * First segment to transfer is minimum of
1005 				 * transfer size and contiguous space in
1006 				 * pipe buffer.  If first segment to transfer
1007 				 * is less than the transfer size, we've got
1008 				 * a wraparound in the buffer.
1009 				 */
1010 				segsize = wpipe->pipe_buffer.size -
1011 					wpipe->pipe_buffer.in;
1012 				if (segsize > size)
1013 					segsize = size;
1014 
1015 				/* Transfer first segment */
1016 
1017 				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1018 						segsize, uio);
1019 
1020 				if (error == 0 && segsize < size) {
1021 					/*
1022 					 * Transfer remaining part now, to
1023 					 * support atomic writes.  Wraparound
1024 					 * happened.
1025 					 */
1026 					if (wpipe->pipe_buffer.in + segsize !=
1027 					    wpipe->pipe_buffer.size)
1028 						panic("Expected pipe buffer wraparound disappeared");
1029 
1030 					error = uiomove(&wpipe->pipe_buffer.buffer[0],
1031 							size - segsize, uio);
1032 				}
1033 				if (error == 0) {
1034 					wpipe->pipe_buffer.in += size;
1035 					if (wpipe->pipe_buffer.in >=
1036 					    wpipe->pipe_buffer.size) {
1037 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1038 							panic("Expected wraparound bad");
1039 						wpipe->pipe_buffer.in = size - segsize;
1040 					}
1041 
1042 					wpipe->pipe_buffer.cnt += size;
1043 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1044 						panic("Pipe buffer overflow");
1045 
1046 				}
1047 				pipeunlock(wpipe);
1048 			}
1049 			if (error)
1050 				break;
1051 
1052 		} else {
1053 			/*
1054 			 * If the "read-side" has been blocked, wake it up now
1055 			 * and yield to let it drain synchronously rather
1056 			 * then block.
1057 			 */
1058 			if (wpipe->pipe_state & PIPE_WANTR) {
1059 				wpipe->pipe_state &= ~PIPE_WANTR;
1060 				wakeup(wpipe);
1061 			}
1062 
1063 			/*
1064 			 * don't block on non-blocking I/O
1065 			 */
1066 			if (fp->f_flag & FNONBLOCK) {
1067 				error = EAGAIN;
1068 				break;
1069 			}
1070 
1071 			/*
1072 			 * We have no more space and have something to offer,
1073 			 * wake up select/poll.
1074 			 */
1075 			pipeselwakeup(wpipe);
1076 
1077 			wpipe->pipe_state |= PIPE_WANTW;
1078 			error = tsleep(wpipe, PCATCH|PNORESCHED, "pipewr", 0);
1079 			if (error != 0)
1080 				break;
1081 			/*
1082 			 * If read side wants to go away, we just issue a signal
1083 			 * to ourselves.
1084 			 */
1085 			if (wpipe->pipe_state & PIPE_EOF) {
1086 				error = EPIPE;
1087 				break;
1088 			}
1089 		}
1090 	}
1091 
1092 	--wpipe->pipe_busy;
1093 
1094 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1095 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1096 		wakeup(wpipe);
1097 	} else if (wpipe->pipe_buffer.cnt > 0) {
1098 		/*
1099 		 * If we have put any characters in the buffer, we wake up
1100 		 * the reader.
1101 		 */
1102 		if (wpipe->pipe_state & PIPE_WANTR) {
1103 			wpipe->pipe_state &= ~PIPE_WANTR;
1104 			wakeup(wpipe);
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * Don't return EPIPE if I/O was successful
1110 	 */
1111 	if ((wpipe->pipe_buffer.cnt == 0) &&
1112 	    (uio->uio_resid == 0) &&
1113 	    (error == EPIPE)) {
1114 		error = 0;
1115 	}
1116 
1117 	if (error == 0)
1118 		vfs_timestamp(&wpipe->pipe_mtime);
1119 
1120 	/*
1121 	 * We have something to offer,
1122 	 * wake up select/poll.
1123 	 */
1124 	if (wpipe->pipe_buffer.cnt)
1125 		pipeselwakeup(wpipe);
1126 
1127 	return (error);
1128 }
1129 
1130 /*
1131  * we implement a very minimal set of ioctls for compatibility with sockets.
1132  */
1133 int
1134 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct thread *td)
1135 {
1136 	struct pipe *mpipe = (struct pipe *)fp->f_data;
1137 
1138 	switch (cmd) {
1139 
1140 	case FIONBIO:
1141 		return (0);
1142 
1143 	case FIOASYNC:
1144 		if (*(int *)data) {
1145 			mpipe->pipe_state |= PIPE_ASYNC;
1146 		} else {
1147 			mpipe->pipe_state &= ~PIPE_ASYNC;
1148 		}
1149 		return (0);
1150 
1151 	case FIONREAD:
1152 		if (mpipe->pipe_state & PIPE_DIRECTW) {
1153 			*(int *)data = mpipe->pipe_map.xio_bytes -
1154 					mpipe->pipe_buffer.out;
1155 		} else {
1156 			*(int *)data = mpipe->pipe_buffer.cnt;
1157 		}
1158 		return (0);
1159 
1160 	case FIOSETOWN:
1161 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1162 
1163 	case FIOGETOWN:
1164 		*(int *)data = fgetown(mpipe->pipe_sigio);
1165 		return (0);
1166 
1167 	/* This is deprecated, FIOSETOWN should be used instead. */
1168 	case TIOCSPGRP:
1169 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1170 
1171 	/* This is deprecated, FIOGETOWN should be used instead. */
1172 	case TIOCGPGRP:
1173 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1174 		return (0);
1175 
1176 	}
1177 	return (ENOTTY);
1178 }
1179 
1180 int
1181 pipe_poll(struct file *fp, int events, struct ucred *cred, struct thread *td)
1182 {
1183 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1184 	struct pipe *wpipe;
1185 	int revents = 0;
1186 
1187 	wpipe = rpipe->pipe_peer;
1188 	if (events & (POLLIN | POLLRDNORM))
1189 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1190 		    (rpipe->pipe_buffer.cnt > 0) ||
1191 		    (rpipe->pipe_state & PIPE_EOF))
1192 			revents |= events & (POLLIN | POLLRDNORM);
1193 
1194 	if (events & (POLLOUT | POLLWRNORM))
1195 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1196 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1197 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1198 			revents |= events & (POLLOUT | POLLWRNORM);
1199 
1200 	if ((rpipe->pipe_state & PIPE_EOF) ||
1201 	    (wpipe == NULL) ||
1202 	    (wpipe->pipe_state & PIPE_EOF))
1203 		revents |= POLLHUP;
1204 
1205 	if (revents == 0) {
1206 		if (events & (POLLIN | POLLRDNORM)) {
1207 			selrecord(td, &rpipe->pipe_sel);
1208 			rpipe->pipe_state |= PIPE_SEL;
1209 		}
1210 
1211 		if (events & (POLLOUT | POLLWRNORM)) {
1212 			selrecord(td, &wpipe->pipe_sel);
1213 			wpipe->pipe_state |= PIPE_SEL;
1214 		}
1215 	}
1216 
1217 	return (revents);
1218 }
1219 
1220 static int
1221 pipe_stat(struct file *fp, struct stat *ub, struct thread *td)
1222 {
1223 	struct pipe *pipe = (struct pipe *)fp->f_data;
1224 
1225 	bzero((caddr_t)ub, sizeof(*ub));
1226 	ub->st_mode = S_IFIFO;
1227 	ub->st_blksize = pipe->pipe_buffer.size;
1228 	ub->st_size = pipe->pipe_buffer.cnt;
1229 	if (ub->st_size == 0 && (pipe->pipe_state & PIPE_DIRECTW)) {
1230 		ub->st_size = pipe->pipe_map.xio_bytes -
1231 				pipe->pipe_buffer.out;
1232 	}
1233 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1234 	ub->st_atimespec = pipe->pipe_atime;
1235 	ub->st_mtimespec = pipe->pipe_mtime;
1236 	ub->st_ctimespec = pipe->pipe_ctime;
1237 	/*
1238 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1239 	 * st_flags, st_gen.
1240 	 * XXX (st_dev, st_ino) should be unique.
1241 	 */
1242 	return (0);
1243 }
1244 
1245 /* ARGSUSED */
1246 static int
1247 pipe_close(struct file *fp, struct thread *td)
1248 {
1249 	struct pipe *cpipe = (struct pipe *)fp->f_data;
1250 
1251 	fp->f_ops = &badfileops;
1252 	fp->f_data = NULL;
1253 	funsetown(cpipe->pipe_sigio);
1254 	pipeclose(cpipe);
1255 	return (0);
1256 }
1257 
1258 /*
1259  * Shutdown one or both directions of a full-duplex pipe.
1260  */
1261 /* ARGSUSED */
1262 static int
1263 pipe_shutdown(struct file *fp, int how, struct thread *td)
1264 {
1265 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1266 	struct pipe *wpipe;
1267 	int error = EPIPE;
1268 
1269 	switch(how) {
1270 	case SHUT_RDWR:
1271 	case SHUT_RD:
1272 		if (rpipe) {
1273 			rpipe->pipe_state |= PIPE_EOF;
1274 			pipeselwakeup(rpipe);
1275 			if (rpipe->pipe_busy)
1276 				wakeup(rpipe);
1277 			error = 0;
1278 		}
1279 		if (how == SHUT_RD)
1280 			break;
1281 		/* fall through */
1282 	case SHUT_WR:
1283 		if (rpipe && (wpipe = rpipe->pipe_peer) != NULL) {
1284 			wpipe->pipe_state |= PIPE_EOF;
1285 			pipeselwakeup(wpipe);
1286 			if (wpipe->pipe_busy)
1287 				wakeup(wpipe);
1288 			error = 0;
1289 		}
1290 	}
1291 	return (error);
1292 }
1293 
1294 static void
1295 pipe_free_kmem(struct pipe *cpipe)
1296 {
1297 	if (cpipe->pipe_buffer.buffer != NULL) {
1298 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1299 			--pipe_nbig;
1300 		kmem_free(kernel_map,
1301 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1302 			cpipe->pipe_buffer.size);
1303 		cpipe->pipe_buffer.buffer = NULL;
1304 		cpipe->pipe_buffer.object = NULL;
1305 	}
1306 #ifndef PIPE_NODIRECT
1307 	KKASSERT(cpipe->pipe_map.xio_bytes == 0 &&
1308 		cpipe->pipe_map.xio_offset == 0 &&
1309 		cpipe->pipe_map.xio_npages == 0);
1310 #endif
1311 }
1312 
1313 /*
1314  * shutdown the pipe
1315  */
1316 static void
1317 pipeclose(struct pipe *cpipe)
1318 {
1319 	globaldata_t gd;
1320 	struct pipe *ppipe;
1321 
1322 	if (cpipe == NULL)
1323 		return;
1324 
1325 	pipeselwakeup(cpipe);
1326 
1327 	/*
1328 	 * If the other side is blocked, wake it up saying that
1329 	 * we want to close it down.
1330 	 */
1331 	while (cpipe->pipe_busy) {
1332 		wakeup(cpipe);
1333 		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1334 		tsleep(cpipe, 0, "pipecl", 0);
1335 	}
1336 
1337 	/*
1338 	 * Disconnect from peer
1339 	 */
1340 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1341 		pipeselwakeup(ppipe);
1342 
1343 		ppipe->pipe_state |= PIPE_EOF;
1344 		wakeup(ppipe);
1345 		KNOTE(&ppipe->pipe_sel.si_note, 0);
1346 		ppipe->pipe_peer = NULL;
1347 	}
1348 
1349 	if (cpipe->pipe_kva) {
1350 		pmap_qremove(cpipe->pipe_kva, XIO_INTERNAL_PAGES);
1351 		kmem_free(kernel_map, cpipe->pipe_kva, XIO_INTERNAL_SIZE);
1352 		cpipe->pipe_kva = NULL;
1353 	}
1354 
1355 	/*
1356 	 * free or cache resources
1357 	 */
1358 	gd = mycpu;
1359 	if (gd->gd_pipeqcount >= pipe_maxcache ||
1360 	    cpipe->pipe_buffer.size != PIPE_SIZE
1361 	) {
1362 		pipe_free_kmem(cpipe);
1363 		free(cpipe, M_PIPE);
1364 	} else {
1365 		KKASSERT(cpipe->pipe_map.xio_npages == 0 &&
1366 			cpipe->pipe_map.xio_bytes == 0 &&
1367 			cpipe->pipe_map.xio_offset == 0);
1368 		cpipe->pipe_state = 0;
1369 		cpipe->pipe_busy = 0;
1370 		cpipe->pipe_peer = gd->gd_pipeq;
1371 		gd->gd_pipeq = cpipe;
1372 		++gd->gd_pipeqcount;
1373 	}
1374 }
1375 
1376 /*ARGSUSED*/
1377 static int
1378 pipe_kqfilter(struct file *fp, struct knote *kn)
1379 {
1380 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1381 
1382 	switch (kn->kn_filter) {
1383 	case EVFILT_READ:
1384 		kn->kn_fop = &pipe_rfiltops;
1385 		break;
1386 	case EVFILT_WRITE:
1387 		kn->kn_fop = &pipe_wfiltops;
1388 		cpipe = cpipe->pipe_peer;
1389 		if (cpipe == NULL)
1390 			/* other end of pipe has been closed */
1391 			return (EPIPE);
1392 		break;
1393 	default:
1394 		return (1);
1395 	}
1396 	kn->kn_hook = (caddr_t)cpipe;
1397 
1398 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1399 	return (0);
1400 }
1401 
1402 static void
1403 filt_pipedetach(struct knote *kn)
1404 {
1405 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1406 
1407 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1408 }
1409 
1410 /*ARGSUSED*/
1411 static int
1412 filt_piperead(struct knote *kn, long hint)
1413 {
1414 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1415 	struct pipe *wpipe = rpipe->pipe_peer;
1416 
1417 	kn->kn_data = rpipe->pipe_buffer.cnt;
1418 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) {
1419 		kn->kn_data = rpipe->pipe_map.xio_bytes -
1420 				rpipe->pipe_buffer.out;
1421 	}
1422 
1423 	if ((rpipe->pipe_state & PIPE_EOF) ||
1424 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1425 		kn->kn_flags |= EV_EOF;
1426 		return (1);
1427 	}
1428 	return (kn->kn_data > 0);
1429 }
1430 
1431 /*ARGSUSED*/
1432 static int
1433 filt_pipewrite(struct knote *kn, long hint)
1434 {
1435 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1436 	struct pipe *wpipe = rpipe->pipe_peer;
1437 
1438 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1439 		kn->kn_data = 0;
1440 		kn->kn_flags |= EV_EOF;
1441 		return (1);
1442 	}
1443 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1444 	if (wpipe->pipe_state & PIPE_DIRECTW)
1445 		kn->kn_data = 0;
1446 
1447 	return (kn->kn_data >= PIPE_BUF);
1448 }
1449