xref: /dragonfly/sys/kern/sys_pipe.c (revision 86fe9e07)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.24 2004/07/24 20:30:00 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36  * the receiving process can copy it directly from the pages in the sending
37  * process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.  PIPE_SIZE is constrained by the
50  * amount of kernel virtual memory.
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/fcntl.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/filio.h>
61 #include <sys/ttycom.h>
62 #include <sys/stat.h>
63 #include <sys/poll.h>
64 #include <sys/select.h>
65 #include <sys/signalvar.h>
66 #include <sys/sysproto.h>
67 #include <sys/pipe.h>
68 #include <sys/vnode.h>
69 #include <sys/uio.h>
70 #include <sys/event.h>
71 #include <sys/globaldata.h>
72 #include <sys/module.h>
73 #include <sys/malloc.h>
74 #include <sys/sysctl.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_extern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_zone.h>
86 
87 #include <sys/file2.h>
88 
89 #include <machine/cpufunc.h>
90 
91 /*
92  * interfaces to the outside world
93  */
94 static int pipe_read (struct file *fp, struct uio *uio,
95 		struct ucred *cred, int flags, struct thread *td);
96 static int pipe_write (struct file *fp, struct uio *uio,
97 		struct ucred *cred, int flags, struct thread *td);
98 static int pipe_close (struct file *fp, struct thread *td);
99 static int pipe_poll (struct file *fp, int events, struct ucred *cred,
100 		struct thread *td);
101 static int pipe_kqfilter (struct file *fp, struct knote *kn);
102 static int pipe_stat (struct file *fp, struct stat *sb, struct thread *td);
103 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct thread *td);
104 
105 static struct fileops pipeops = {
106 	NULL,	/* port */
107 	NULL,	/* clone */
108 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
109 	pipe_stat, pipe_close
110 };
111 
112 static void	filt_pipedetach(struct knote *kn);
113 static int	filt_piperead(struct knote *kn, long hint);
114 static int	filt_pipewrite(struct knote *kn, long hint);
115 
116 static struct filterops pipe_rfiltops =
117 	{ 1, NULL, filt_pipedetach, filt_piperead };
118 static struct filterops pipe_wfiltops =
119 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
120 
121 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
122 
123 /*
124  * Default pipe buffer size(s), this can be kind-of large now because pipe
125  * space is pageable.  The pipe code will try to maintain locality of
126  * reference for performance reasons, so small amounts of outstanding I/O
127  * will not wipe the cache.
128  */
129 #define MINPIPESIZE (PIPE_SIZE/3)
130 #define MAXPIPESIZE (2*PIPE_SIZE/3)
131 
132 /*
133  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
134  * is there so that on large systems, we don't exhaust it.
135  */
136 #define MAXPIPEKVA (8*1024*1024)
137 
138 /*
139  * Limit for direct transfers, we cannot, of course limit
140  * the amount of kva for pipes in general though.
141  */
142 #define LIMITPIPEKVA (16*1024*1024)
143 
144 /*
145  * Limit the number of "big" pipes
146  */
147 #define LIMITBIGPIPES	32
148 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
149 
150 static int pipe_maxbig = LIMITBIGPIPES;
151 static int pipe_maxcache = PIPEQ_MAX_CACHE;
152 static int pipe_nbig;
153 static int pipe_bcache_alloc;
154 static int pipe_bkmem_alloc;
155 static int pipe_dwrite_enable = 1;	/* 0:copy, 1:kmem/sfbuf 2:force */
156 static int pipe_dwrite_sfbuf = 1;	/* 0:kmem_map 1:sfbufs 2:sfbufs_dmap */
157 					/* 3:sfbuf_dmap w/ forced invlpg */
158 
159 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
160 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
161         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
162 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
163         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
164 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
165         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
166 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_enable,
167         CTLFLAG_RW, &pipe_dwrite_enable, 0, "1:enable/2:force direct writes");
168 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_sfbuf,
169         CTLFLAG_RW, &pipe_dwrite_sfbuf, 0,
170 	"(if dwrite_enable) 0:kmem 1:sfbuf 2:sfbuf_dmap 3:sfbuf_dmap_forceinvlpg");
171 #if !defined(NO_PIPE_SYSCTL_STATS)
172 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
173         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
174 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
175         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
176 #endif
177 
178 static void pipeclose (struct pipe *cpipe);
179 static void pipe_free_kmem (struct pipe *cpipe);
180 static int pipe_create (struct pipe **cpipep);
181 static __inline int pipelock (struct pipe *cpipe, int catch);
182 static __inline void pipeunlock (struct pipe *cpipe);
183 static __inline void pipeselwakeup (struct pipe *cpipe);
184 #ifndef PIPE_NODIRECT
185 static int pipe_build_write_buffer (struct pipe *wpipe, struct uio *uio);
186 static int pipe_direct_write (struct pipe *wpipe, struct uio *uio);
187 static void pipe_clone_write_buffer (struct pipe *wpipe);
188 #endif
189 static int pipespace (struct pipe *cpipe, int size);
190 
191 /*
192  * The pipe system call for the DTYPE_PIPE type of pipes
193  *
194  * pipe_ARgs(int dummy)
195  */
196 
197 /* ARGSUSED */
198 int
199 pipe(struct pipe_args *uap)
200 {
201 	struct thread *td = curthread;
202 	struct proc *p = td->td_proc;
203 	struct filedesc *fdp;
204 	struct file *rf, *wf;
205 	struct pipe *rpipe, *wpipe;
206 	int fd1, fd2, error;
207 
208 	KKASSERT(p);
209 	fdp = p->p_fd;
210 
211 	rpipe = wpipe = NULL;
212 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
213 		pipeclose(rpipe);
214 		pipeclose(wpipe);
215 		return (ENFILE);
216 	}
217 
218 	rpipe->pipe_state |= PIPE_DIRECTOK;
219 	wpipe->pipe_state |= PIPE_DIRECTOK;
220 
221 	/*
222 	 * Select the direct-map features to use for this pipe.  Since the
223 	 * sysctl's can change on the fly we record the settings when the
224 	 * pipe is created.
225 	 *
226 	 * Generally speaking the system will default to what we consider
227 	 * to be the best-balanced and most stable option.  Right now this
228 	 * is SFBUF1.  Modes 2 and 3 are considered experiemental at the
229 	 * moment.
230 	 */
231 	wpipe->pipe_feature = PIPE_COPY;
232 	if (pipe_dwrite_enable) {
233 		switch(pipe_dwrite_sfbuf) {
234 		case 0:
235 			wpipe->pipe_feature = PIPE_KMEM;
236 			break;
237 		case 1:
238 			wpipe->pipe_feature = PIPE_SFBUF1;
239 			break;
240 		case 2:
241 		case 3:
242 			wpipe->pipe_feature = PIPE_SFBUF2;
243 			break;
244 		}
245 	}
246 	rpipe->pipe_feature = wpipe->pipe_feature;
247 
248 	error = falloc(p, &rf, &fd1);
249 	if (error) {
250 		pipeclose(rpipe);
251 		pipeclose(wpipe);
252 		return (error);
253 	}
254 	fhold(rf);
255 	uap->sysmsg_fds[0] = fd1;
256 
257 	/*
258 	 * Warning: once we've gotten past allocation of the fd for the
259 	 * read-side, we can only drop the read side via fdrop() in order
260 	 * to avoid races against processes which manage to dup() the read
261 	 * side while we are blocked trying to allocate the write side.
262 	 */
263 	rf->f_flag = FREAD | FWRITE;
264 	rf->f_type = DTYPE_PIPE;
265 	rf->f_data = (caddr_t)rpipe;
266 	rf->f_ops = &pipeops;
267 	error = falloc(p, &wf, &fd2);
268 	if (error) {
269 		if (fdp->fd_ofiles[fd1] == rf) {
270 			fdp->fd_ofiles[fd1] = NULL;
271 			fdrop(rf, td);
272 		}
273 		fdrop(rf, td);
274 		/* rpipe has been closed by fdrop(). */
275 		pipeclose(wpipe);
276 		return (error);
277 	}
278 	wf->f_flag = FREAD | FWRITE;
279 	wf->f_type = DTYPE_PIPE;
280 	wf->f_data = (caddr_t)wpipe;
281 	wf->f_ops = &pipeops;
282 	uap->sysmsg_fds[1] = fd2;
283 
284 	rpipe->pipe_peer = wpipe;
285 	wpipe->pipe_peer = rpipe;
286 	fdrop(rf, td);
287 
288 	return (0);
289 }
290 
291 /*
292  * Allocate kva for pipe circular buffer, the space is pageable
293  * This routine will 'realloc' the size of a pipe safely, if it fails
294  * it will retain the old buffer.
295  * If it fails it will return ENOMEM.
296  */
297 static int
298 pipespace(struct pipe *cpipe, int size)
299 {
300 	struct vm_object *object;
301 	caddr_t buffer;
302 	int npages, error;
303 
304 	npages = round_page(size) / PAGE_SIZE;
305 	object = cpipe->pipe_buffer.object;
306 
307 	/*
308 	 * [re]create the object if necessary and reserve space for it
309 	 * in the kernel_map.  The object and memory are pageable.  On
310 	 * success, free the old resources before assigning the new
311 	 * ones.
312 	 */
313 	if (object == NULL || object->size != npages) {
314 		object = vm_object_allocate(OBJT_DEFAULT, npages);
315 		buffer = (caddr_t) vm_map_min(kernel_map);
316 
317 		error = vm_map_find(kernel_map, object, 0,
318 			(vm_offset_t *) &buffer, size, 1,
319 			VM_PROT_ALL, VM_PROT_ALL, 0);
320 
321 		if (error != KERN_SUCCESS) {
322 			vm_object_deallocate(object);
323 			return (ENOMEM);
324 		}
325 		pipe_free_kmem(cpipe);
326 		cpipe->pipe_buffer.object = object;
327 		cpipe->pipe_buffer.buffer = buffer;
328 		cpipe->pipe_buffer.size = size;
329 		++pipe_bkmem_alloc;
330 	} else {
331 		++pipe_bcache_alloc;
332 	}
333 	cpipe->pipe_buffer.in = 0;
334 	cpipe->pipe_buffer.out = 0;
335 	cpipe->pipe_buffer.cnt = 0;
336 	return (0);
337 }
338 
339 /*
340  * Initialize and allocate VM and memory for pipe, pulling the pipe from
341  * our per-cpu cache if possible.  For now make sure it is sized for the
342  * smaller PIPE_SIZE default.
343  */
344 static int
345 pipe_create(cpipep)
346 	struct pipe **cpipep;
347 {
348 	globaldata_t gd = mycpu;
349 	struct pipe *cpipe;
350 	int error;
351 
352 	if ((cpipe = gd->gd_pipeq) != NULL) {
353 		gd->gd_pipeq = cpipe->pipe_peer;
354 		--gd->gd_pipeqcount;
355 		cpipe->pipe_peer = NULL;
356 	} else {
357 		cpipe = malloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
358 	}
359 	*cpipep = cpipe;
360 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
361 		return (error);
362 	vfs_timestamp(&cpipe->pipe_ctime);
363 	cpipe->pipe_atime = cpipe->pipe_ctime;
364 	cpipe->pipe_mtime = cpipe->pipe_ctime;
365 	return (0);
366 }
367 
368 
369 /*
370  * lock a pipe for I/O, blocking other access
371  */
372 static __inline int
373 pipelock(cpipe, catch)
374 	struct pipe *cpipe;
375 	int catch;
376 {
377 	int error;
378 
379 	while (cpipe->pipe_state & PIPE_LOCK) {
380 		cpipe->pipe_state |= PIPE_LWANT;
381 		error = tsleep(cpipe, (catch ? PCATCH : 0), "pipelk", 0);
382 		if (error != 0)
383 			return (error);
384 	}
385 	cpipe->pipe_state |= PIPE_LOCK;
386 	return (0);
387 }
388 
389 /*
390  * unlock a pipe I/O lock
391  */
392 static __inline void
393 pipeunlock(cpipe)
394 	struct pipe *cpipe;
395 {
396 
397 	cpipe->pipe_state &= ~PIPE_LOCK;
398 	if (cpipe->pipe_state & PIPE_LWANT) {
399 		cpipe->pipe_state &= ~PIPE_LWANT;
400 		wakeup(cpipe);
401 	}
402 }
403 
404 static __inline void
405 pipeselwakeup(cpipe)
406 	struct pipe *cpipe;
407 {
408 
409 	if (cpipe->pipe_state & PIPE_SEL) {
410 		cpipe->pipe_state &= ~PIPE_SEL;
411 		selwakeup(&cpipe->pipe_sel);
412 	}
413 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
414 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
415 	KNOTE(&cpipe->pipe_sel.si_note, 0);
416 }
417 
418 /* ARGSUSED */
419 static int
420 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred,
421 	int flags, struct thread *td)
422 {
423 	struct pipe *rpipe = (struct pipe *) fp->f_data;
424 	int error;
425 	int nread = 0;
426 	u_int size;
427 
428 	++rpipe->pipe_busy;
429 	error = pipelock(rpipe, 1);
430 	if (error)
431 		goto unlocked_error;
432 
433 	while (uio->uio_resid) {
434 		caddr_t va;
435 
436 		if (rpipe->pipe_buffer.cnt > 0) {
437 			/*
438 			 * normal pipe buffer receive
439 			 */
440 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
441 			if (size > rpipe->pipe_buffer.cnt)
442 				size = rpipe->pipe_buffer.cnt;
443 			if (size > (u_int) uio->uio_resid)
444 				size = (u_int) uio->uio_resid;
445 
446 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
447 					size, uio);
448 			if (error)
449 				break;
450 
451 			rpipe->pipe_buffer.out += size;
452 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
453 				rpipe->pipe_buffer.out = 0;
454 
455 			rpipe->pipe_buffer.cnt -= size;
456 
457 			/*
458 			 * If there is no more to read in the pipe, reset
459 			 * its pointers to the beginning.  This improves
460 			 * cache hit stats.
461 			 */
462 			if (rpipe->pipe_buffer.cnt == 0) {
463 				rpipe->pipe_buffer.in = 0;
464 				rpipe->pipe_buffer.out = 0;
465 			}
466 			nread += size;
467 #ifndef PIPE_NODIRECT
468 		} else if (rpipe->pipe_kva &&
469 			   rpipe->pipe_feature == PIPE_KMEM &&
470 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
471 			       == PIPE_DIRECTW
472 		) {
473 			/*
474 			 * Direct copy using source-side kva mapping
475 			 */
476 			size = rpipe->pipe_map.xio_bytes;
477 			if (size > (u_int)uio->uio_resid)
478 				size = (u_int)uio->uio_resid;
479 			va = (caddr_t)rpipe->pipe_kva + rpipe->pipe_map.xio_offset;
480 			error = uiomove(va, size, uio);
481 			if (error)
482 				break;
483 			nread += size;
484 			rpipe->pipe_map.xio_offset += size;
485 			rpipe->pipe_map.xio_bytes -= size;
486 			if (rpipe->pipe_map.xio_bytes == 0) {
487 				rpipe->pipe_state |= PIPE_DIRECTIP;
488 				rpipe->pipe_state &= ~PIPE_DIRECTW;
489 				wakeup(rpipe);
490 			}
491 		} else if (rpipe->pipe_map.xio_bytes &&
492 			   rpipe->pipe_kva &&
493 			   rpipe->pipe_feature == PIPE_SFBUF2 &&
494 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
495 			       == PIPE_DIRECTW
496 		) {
497 			/*
498 			 * Direct copy, bypassing a kernel buffer.  We cannot
499 			 * mess with the direct-write buffer until
500 			 * PIPE_DIRECTIP is cleared.  In order to prevent
501 			 * the pipe_write code from racing itself in
502 			 * direct_write, we set DIRECTIP when we clear
503 			 * DIRECTW after we have exhausted the buffer.
504 			 */
505 			if (pipe_dwrite_sfbuf == 3)
506 				rpipe->pipe_kvamask = 0;
507 			pmap_qenter2(rpipe->pipe_kva, rpipe->pipe_map.xio_pages,
508 				    rpipe->pipe_map.xio_npages,
509 				    &rpipe->pipe_kvamask);
510 			size = rpipe->pipe_map.xio_bytes;
511 			if (size > (u_int)uio->uio_resid)
512 				size = (u_int)uio->uio_resid;
513 			va = (caddr_t)rpipe->pipe_kva +
514 				rpipe->pipe_map.xio_offset;
515 			error = uiomove(va, size, uio);
516 			if (error)
517 				break;
518 			nread += size;
519 			rpipe->pipe_map.xio_offset += size;
520 			rpipe->pipe_map.xio_bytes -= size;
521 			if (rpipe->pipe_map.xio_bytes == 0) {
522 				rpipe->pipe_state |= PIPE_DIRECTIP;
523 				rpipe->pipe_state &= ~PIPE_DIRECTW;
524 				wakeup(rpipe);
525 			}
526 		} else if (rpipe->pipe_map.xio_bytes &&
527 			   rpipe->pipe_feature == PIPE_SFBUF1 &&
528 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
529 				== PIPE_DIRECTW
530 		) {
531 			/*
532 			 * Direct copy, bypassing a kernel buffer.  We cannot
533 			 * mess with the direct-write buffer until
534 			 * PIPE_DIRECTIP is cleared.  In order to prevent
535 			 * the pipe_write code from racing itself in
536 			 * direct_write, we set DIRECTIP when we clear
537 			 * DIRECTW after we have exhausted the buffer.
538 			 */
539 			error = xio_uio_copy(&rpipe->pipe_map, uio, &size);
540 			if (error)
541 				break;
542 			nread += size;
543 			if (rpipe->pipe_map.xio_bytes == 0) {
544 				rpipe->pipe_state |= PIPE_DIRECTIP;
545 				rpipe->pipe_state &= ~PIPE_DIRECTW;
546 				wakeup(rpipe);
547 			}
548 #endif
549 		} else {
550 			/*
551 			 * detect EOF condition
552 			 * read returns 0 on EOF, no need to set error
553 			 */
554 			if (rpipe->pipe_state & PIPE_EOF)
555 				break;
556 
557 			/*
558 			 * If the "write-side" has been blocked, wake it up now.
559 			 */
560 			if (rpipe->pipe_state & PIPE_WANTW) {
561 				rpipe->pipe_state &= ~PIPE_WANTW;
562 				wakeup(rpipe);
563 			}
564 
565 			/*
566 			 * Break if some data was read.
567 			 */
568 			if (nread > 0)
569 				break;
570 
571 			/*
572 			 * Unlock the pipe buffer for our remaining
573 			 * processing.  We will either break out with an
574 			 * error or we will sleep and relock to loop.
575 			 */
576 			pipeunlock(rpipe);
577 
578 			/*
579 			 * Handle non-blocking mode operation or
580 			 * wait for more data.
581 			 */
582 			if (fp->f_flag & FNONBLOCK) {
583 				error = EAGAIN;
584 			} else {
585 				rpipe->pipe_state |= PIPE_WANTR;
586 				if ((error = tsleep(rpipe, PCATCH|PNORESCHED,
587 				    "piperd", 0)) == 0) {
588 					error = pipelock(rpipe, 1);
589 				}
590 			}
591 			if (error)
592 				goto unlocked_error;
593 		}
594 	}
595 	pipeunlock(rpipe);
596 
597 	if (error == 0)
598 		vfs_timestamp(&rpipe->pipe_atime);
599 unlocked_error:
600 	--rpipe->pipe_busy;
601 
602 	/*
603 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
604 	 */
605 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
606 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
607 		wakeup(rpipe);
608 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
609 		/*
610 		 * Handle write blocking hysteresis.
611 		 */
612 		if (rpipe->pipe_state & PIPE_WANTW) {
613 			rpipe->pipe_state &= ~PIPE_WANTW;
614 			wakeup(rpipe);
615 		}
616 	}
617 
618 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
619 		pipeselwakeup(rpipe);
620 	return (error);
621 }
622 
623 #ifndef PIPE_NODIRECT
624 /*
625  * Map the sending processes' buffer into kernel space and wire it.
626  * This is similar to a physical write operation.
627  */
628 static int
629 pipe_build_write_buffer(wpipe, uio)
630 	struct pipe *wpipe;
631 	struct uio *uio;
632 {
633 	int error;
634 	u_int size;
635 
636 	size = (u_int) uio->uio_iov->iov_len;
637 	if (size > wpipe->pipe_buffer.size)
638 		size = wpipe->pipe_buffer.size;
639 
640 	error = xio_init_ubuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
641 				size, XIOF_READ);
642 	if (error)
643 		return(error);
644 
645 	/*
646 	 * Create a kernel map for KMEM and SFBUF2 copy modes.  SFBUF2 will
647 	 * map the pages on the target while KMEM maps the pages now.
648 	 */
649 	switch(wpipe->pipe_feature) {
650 	case PIPE_KMEM:
651 	case PIPE_SFBUF2:
652 		if (wpipe->pipe_kva == NULL) {
653 			wpipe->pipe_kva =
654 			    kmem_alloc_nofault(kernel_map, XIO_INTERNAL_SIZE);
655 			wpipe->pipe_kvamask = 0;
656 		}
657 		if (wpipe->pipe_feature == PIPE_KMEM) {
658 			pmap_qenter(wpipe->pipe_kva, wpipe->pipe_map.xio_pages,
659 				    wpipe->pipe_map.xio_npages);
660 		}
661 		break;
662 	default:
663 		break;
664 	}
665 
666 	/*
667 	 * And update the uio data.  The XIO might have loaded fewer bytes
668 	 * then requested so reload 'size'.
669 	 */
670 	size = wpipe->pipe_map.xio_bytes;
671 	uio->uio_iov->iov_len -= size;
672 	uio->uio_iov->iov_base += size;
673 	if (uio->uio_iov->iov_len == 0)
674 		uio->uio_iov++;
675 	uio->uio_resid -= size;
676 	uio->uio_offset += size;
677 	return (0);
678 }
679 
680 /*
681  * In the case of a signal, the writing process might go away.  This
682  * code copies the data into the circular buffer so that the source
683  * pages can be freed without loss of data.
684  */
685 static void
686 pipe_clone_write_buffer(wpipe)
687 	struct pipe *wpipe;
688 {
689 	int size;
690 
691 	size = wpipe->pipe_map.xio_bytes;
692 
693 	KKASSERT(size <= wpipe->pipe_buffer.size);
694 
695 	wpipe->pipe_buffer.in = size;
696 	wpipe->pipe_buffer.out = 0;
697 	wpipe->pipe_buffer.cnt = size;
698 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
699 
700 	xio_copy_xtok(&wpipe->pipe_map, wpipe->pipe_buffer.buffer, size);
701 	xio_release(&wpipe->pipe_map);
702 	if (wpipe->pipe_kva) {
703 		pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
704 		kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
705 		wpipe->pipe_kva = NULL;
706 	}
707 }
708 
709 /*
710  * This implements the pipe buffer write mechanism.  Note that only
711  * a direct write OR a normal pipe write can be pending at any given time.
712  * If there are any characters in the pipe buffer, the direct write will
713  * be deferred until the receiving process grabs all of the bytes from
714  * the pipe buffer.  Then the direct mapping write is set-up.
715  */
716 static int
717 pipe_direct_write(wpipe, uio)
718 	struct pipe *wpipe;
719 	struct uio *uio;
720 {
721 	int error;
722 
723 retry:
724 	while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
725 		if (wpipe->pipe_state & PIPE_WANTR) {
726 			wpipe->pipe_state &= ~PIPE_WANTR;
727 			wakeup(wpipe);
728 		}
729 		wpipe->pipe_state |= PIPE_WANTW;
730 		error = tsleep(wpipe, PCATCH, "pipdww", 0);
731 		if (error)
732 			goto error2;
733 		if (wpipe->pipe_state & PIPE_EOF) {
734 			error = EPIPE;
735 			goto error2;
736 		}
737 	}
738 	KKASSERT(wpipe->pipe_map.xio_bytes == 0);
739 	if (wpipe->pipe_buffer.cnt > 0) {
740 		if (wpipe->pipe_state & PIPE_WANTR) {
741 			wpipe->pipe_state &= ~PIPE_WANTR;
742 			wakeup(wpipe);
743 		}
744 
745 		wpipe->pipe_state |= PIPE_WANTW;
746 		error = tsleep(wpipe, PCATCH, "pipdwc", 0);
747 		if (error)
748 			goto error2;
749 		if (wpipe->pipe_state & PIPE_EOF) {
750 			error = EPIPE;
751 			goto error2;
752 		}
753 		goto retry;
754 	}
755 
756 	/*
757 	 * Build our direct-write buffer
758 	 */
759 	wpipe->pipe_state |= PIPE_DIRECTW | PIPE_DIRECTIP;
760 	error = pipe_build_write_buffer(wpipe, uio);
761 	if (error)
762 		goto error1;
763 	wpipe->pipe_state &= ~PIPE_DIRECTIP;
764 
765 	/*
766 	 * Wait until the receiver has snarfed the data.  Since we are likely
767 	 * going to sleep we optimize the case and yield synchronously,
768 	 * possibly avoiding the tsleep().
769 	 */
770 	error = 0;
771 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
772 		if (wpipe->pipe_state & PIPE_EOF) {
773 			pipelock(wpipe, 0);
774 			xio_release(&wpipe->pipe_map);
775 			if (wpipe->pipe_kva) {
776 				pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
777 				kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
778 				wpipe->pipe_kva = NULL;
779 			}
780 			pipeunlock(wpipe);
781 			pipeselwakeup(wpipe);
782 			error = EPIPE;
783 			goto error1;
784 		}
785 		if (wpipe->pipe_state & PIPE_WANTR) {
786 			wpipe->pipe_state &= ~PIPE_WANTR;
787 			wakeup(wpipe);
788 		}
789 		pipeselwakeup(wpipe);
790 		error = tsleep(wpipe, PCATCH|PNORESCHED, "pipdwt", 0);
791 	}
792 	pipelock(wpipe,0);
793 	if (wpipe->pipe_state & PIPE_DIRECTW) {
794 		/*
795 		 * this bit of trickery substitutes a kernel buffer for
796 		 * the process that might be going away.
797 		 */
798 		pipe_clone_write_buffer(wpipe);
799 		KKASSERT((wpipe->pipe_state & PIPE_DIRECTIP) == 0);
800 	} else {
801 		/*
802 		 * note: The pipe_kva mapping is not qremove'd here.  For
803 		 * legacy PIPE_KMEM mode this constitutes an improvement
804 		 * over the original FreeBSD-4 algorithm.  For PIPE_SFBUF2
805 		 * mode the kva mapping must not be removed to get the
806 		 * caching benefit.
807 		 *
808 		 * For testing purposes we will give the original algorithm
809 		 * the benefit of the doubt 'what it could have been', and
810 		 * keep the optimization.
811 		 */
812 		KKASSERT(wpipe->pipe_state & PIPE_DIRECTIP);
813 		xio_release(&wpipe->pipe_map);
814 		wpipe->pipe_state &= ~PIPE_DIRECTIP;
815 	}
816 	pipeunlock(wpipe);
817 	return (error);
818 
819 	/*
820 	 * Direct-write error, clear the direct write flags.
821 	 */
822 error1:
823 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
824 	/* fallthrough */
825 
826 	/*
827 	 * General error, wakeup the other side if it happens to be sleeping.
828 	 */
829 error2:
830 	wakeup(wpipe);
831 	return (error);
832 }
833 #endif
834 
835 static int
836 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred,
837 	int flags, struct thread *td)
838 {
839 	int error = 0;
840 	int orig_resid;
841 	struct pipe *wpipe, *rpipe;
842 
843 	rpipe = (struct pipe *) fp->f_data;
844 	wpipe = rpipe->pipe_peer;
845 
846 	/*
847 	 * detect loss of pipe read side, issue SIGPIPE if lost.
848 	 */
849 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
850 		return (EPIPE);
851 	}
852 	++wpipe->pipe_busy;
853 
854 	/*
855 	 * If it is advantageous to resize the pipe buffer, do
856 	 * so.
857 	 */
858 	if ((uio->uio_resid > PIPE_SIZE) &&
859 		(pipe_nbig < pipe_maxbig) &&
860 		(wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) == 0 &&
861 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
862 		(wpipe->pipe_buffer.cnt == 0)) {
863 
864 		if ((error = pipelock(wpipe,1)) == 0) {
865 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
866 				pipe_nbig++;
867 			pipeunlock(wpipe);
868 		}
869 	}
870 
871 	/*
872 	 * If an early error occured unbusy and return, waking up any pending
873 	 * readers.
874 	 */
875 	if (error) {
876 		--wpipe->pipe_busy;
877 		if ((wpipe->pipe_busy == 0) &&
878 		    (wpipe->pipe_state & PIPE_WANT)) {
879 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
880 			wakeup(wpipe);
881 		}
882 		return(error);
883 	}
884 
885 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
886 
887 	orig_resid = uio->uio_resid;
888 
889 	while (uio->uio_resid) {
890 		int space;
891 
892 #ifndef PIPE_NODIRECT
893 		/*
894 		 * If the transfer is large, we can gain performance if
895 		 * we do process-to-process copies directly.
896 		 * If the write is non-blocking, we don't use the
897 		 * direct write mechanism.
898 		 *
899 		 * The direct write mechanism will detect the reader going
900 		 * away on us.
901 		 */
902 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT ||
903 		    pipe_dwrite_enable > 1) &&
904 		    (fp->f_flag & FNONBLOCK) == 0 &&
905 		    pipe_dwrite_enable) {
906 			error = pipe_direct_write( wpipe, uio);
907 			if (error)
908 				break;
909 			continue;
910 		}
911 #endif
912 
913 		/*
914 		 * Pipe buffered writes cannot be coincidental with
915 		 * direct writes.  We wait until the currently executing
916 		 * direct write is completed before we start filling the
917 		 * pipe buffer.  We break out if a signal occurs or the
918 		 * reader goes away.
919 		 */
920 	retrywrite:
921 		while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
922 			if (wpipe->pipe_state & PIPE_WANTR) {
923 				wpipe->pipe_state &= ~PIPE_WANTR;
924 				wakeup(wpipe);
925 			}
926 			error = tsleep(wpipe, PCATCH, "pipbww", 0);
927 			if (wpipe->pipe_state & PIPE_EOF)
928 				break;
929 			if (error)
930 				break;
931 		}
932 		if (wpipe->pipe_state & PIPE_EOF) {
933 			error = EPIPE;
934 			break;
935 		}
936 
937 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
938 
939 		/* Writes of size <= PIPE_BUF must be atomic. */
940 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
941 			space = 0;
942 
943 		/*
944 		 * Write to fill, read size handles write hysteresis.  Also
945 		 * additional restrictions can cause select-based non-blocking
946 		 * writes to spin.
947 		 */
948 		if (space > 0) {
949 			if ((error = pipelock(wpipe,1)) == 0) {
950 				int size;	/* Transfer size */
951 				int segsize;	/* first segment to transfer */
952 
953 				/*
954 				 * It is possible for a direct write to
955 				 * slip in on us... handle it here...
956 				 */
957 				if (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
958 					pipeunlock(wpipe);
959 					goto retrywrite;
960 				}
961 				/*
962 				 * If a process blocked in uiomove, our
963 				 * value for space might be bad.
964 				 *
965 				 * XXX will we be ok if the reader has gone
966 				 * away here?
967 				 */
968 				if (space > wpipe->pipe_buffer.size -
969 				    wpipe->pipe_buffer.cnt) {
970 					pipeunlock(wpipe);
971 					goto retrywrite;
972 				}
973 
974 				/*
975 				 * Transfer size is minimum of uio transfer
976 				 * and free space in pipe buffer.
977 				 */
978 				if (space > uio->uio_resid)
979 					size = uio->uio_resid;
980 				else
981 					size = space;
982 				/*
983 				 * First segment to transfer is minimum of
984 				 * transfer size and contiguous space in
985 				 * pipe buffer.  If first segment to transfer
986 				 * is less than the transfer size, we've got
987 				 * a wraparound in the buffer.
988 				 */
989 				segsize = wpipe->pipe_buffer.size -
990 					wpipe->pipe_buffer.in;
991 				if (segsize > size)
992 					segsize = size;
993 
994 				/* Transfer first segment */
995 
996 				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
997 						segsize, uio);
998 
999 				if (error == 0 && segsize < size) {
1000 					/*
1001 					 * Transfer remaining part now, to
1002 					 * support atomic writes.  Wraparound
1003 					 * happened.
1004 					 */
1005 					if (wpipe->pipe_buffer.in + segsize !=
1006 					    wpipe->pipe_buffer.size)
1007 						panic("Expected pipe buffer wraparound disappeared");
1008 
1009 					error = uiomove(&wpipe->pipe_buffer.buffer[0],
1010 							size - segsize, uio);
1011 				}
1012 				if (error == 0) {
1013 					wpipe->pipe_buffer.in += size;
1014 					if (wpipe->pipe_buffer.in >=
1015 					    wpipe->pipe_buffer.size) {
1016 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1017 							panic("Expected wraparound bad");
1018 						wpipe->pipe_buffer.in = size - segsize;
1019 					}
1020 
1021 					wpipe->pipe_buffer.cnt += size;
1022 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1023 						panic("Pipe buffer overflow");
1024 
1025 				}
1026 				pipeunlock(wpipe);
1027 			}
1028 			if (error)
1029 				break;
1030 
1031 		} else {
1032 			/*
1033 			 * If the "read-side" has been blocked, wake it up now
1034 			 * and yield to let it drain synchronously rather
1035 			 * then block.
1036 			 */
1037 			if (wpipe->pipe_state & PIPE_WANTR) {
1038 				wpipe->pipe_state &= ~PIPE_WANTR;
1039 				wakeup(wpipe);
1040 			}
1041 
1042 			/*
1043 			 * don't block on non-blocking I/O
1044 			 */
1045 			if (fp->f_flag & FNONBLOCK) {
1046 				error = EAGAIN;
1047 				break;
1048 			}
1049 
1050 			/*
1051 			 * We have no more space and have something to offer,
1052 			 * wake up select/poll.
1053 			 */
1054 			pipeselwakeup(wpipe);
1055 
1056 			wpipe->pipe_state |= PIPE_WANTW;
1057 			error = tsleep(wpipe, PCATCH|PNORESCHED, "pipewr", 0);
1058 			if (error != 0)
1059 				break;
1060 			/*
1061 			 * If read side wants to go away, we just issue a signal
1062 			 * to ourselves.
1063 			 */
1064 			if (wpipe->pipe_state & PIPE_EOF) {
1065 				error = EPIPE;
1066 				break;
1067 			}
1068 		}
1069 	}
1070 
1071 	--wpipe->pipe_busy;
1072 
1073 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1074 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1075 		wakeup(wpipe);
1076 	} else if (wpipe->pipe_buffer.cnt > 0) {
1077 		/*
1078 		 * If we have put any characters in the buffer, we wake up
1079 		 * the reader.
1080 		 */
1081 		if (wpipe->pipe_state & PIPE_WANTR) {
1082 			wpipe->pipe_state &= ~PIPE_WANTR;
1083 			wakeup(wpipe);
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * Don't return EPIPE if I/O was successful
1089 	 */
1090 	if ((wpipe->pipe_buffer.cnt == 0) &&
1091 	    (uio->uio_resid == 0) &&
1092 	    (error == EPIPE)) {
1093 		error = 0;
1094 	}
1095 
1096 	if (error == 0)
1097 		vfs_timestamp(&wpipe->pipe_mtime);
1098 
1099 	/*
1100 	 * We have something to offer,
1101 	 * wake up select/poll.
1102 	 */
1103 	if (wpipe->pipe_buffer.cnt)
1104 		pipeselwakeup(wpipe);
1105 
1106 	return (error);
1107 }
1108 
1109 /*
1110  * we implement a very minimal set of ioctls for compatibility with sockets.
1111  */
1112 int
1113 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct thread *td)
1114 {
1115 	struct pipe *mpipe = (struct pipe *)fp->f_data;
1116 
1117 	switch (cmd) {
1118 
1119 	case FIONBIO:
1120 		return (0);
1121 
1122 	case FIOASYNC:
1123 		if (*(int *)data) {
1124 			mpipe->pipe_state |= PIPE_ASYNC;
1125 		} else {
1126 			mpipe->pipe_state &= ~PIPE_ASYNC;
1127 		}
1128 		return (0);
1129 
1130 	case FIONREAD:
1131 		if (mpipe->pipe_state & PIPE_DIRECTW) {
1132 			*(int *)data = mpipe->pipe_map.xio_bytes;
1133 		} else {
1134 			*(int *)data = mpipe->pipe_buffer.cnt;
1135 		}
1136 		return (0);
1137 
1138 	case FIOSETOWN:
1139 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1140 
1141 	case FIOGETOWN:
1142 		*(int *)data = fgetown(mpipe->pipe_sigio);
1143 		return (0);
1144 
1145 	/* This is deprecated, FIOSETOWN should be used instead. */
1146 	case TIOCSPGRP:
1147 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1148 
1149 	/* This is deprecated, FIOGETOWN should be used instead. */
1150 	case TIOCGPGRP:
1151 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1152 		return (0);
1153 
1154 	}
1155 	return (ENOTTY);
1156 }
1157 
1158 int
1159 pipe_poll(struct file *fp, int events, struct ucred *cred, struct thread *td)
1160 {
1161 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1162 	struct pipe *wpipe;
1163 	int revents = 0;
1164 
1165 	wpipe = rpipe->pipe_peer;
1166 	if (events & (POLLIN | POLLRDNORM))
1167 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1168 		    (rpipe->pipe_buffer.cnt > 0) ||
1169 		    (rpipe->pipe_state & PIPE_EOF))
1170 			revents |= events & (POLLIN | POLLRDNORM);
1171 
1172 	if (events & (POLLOUT | POLLWRNORM))
1173 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1174 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1175 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1176 			revents |= events & (POLLOUT | POLLWRNORM);
1177 
1178 	if ((rpipe->pipe_state & PIPE_EOF) ||
1179 	    (wpipe == NULL) ||
1180 	    (wpipe->pipe_state & PIPE_EOF))
1181 		revents |= POLLHUP;
1182 
1183 	if (revents == 0) {
1184 		if (events & (POLLIN | POLLRDNORM)) {
1185 			selrecord(td, &rpipe->pipe_sel);
1186 			rpipe->pipe_state |= PIPE_SEL;
1187 		}
1188 
1189 		if (events & (POLLOUT | POLLWRNORM)) {
1190 			selrecord(td, &wpipe->pipe_sel);
1191 			wpipe->pipe_state |= PIPE_SEL;
1192 		}
1193 	}
1194 
1195 	return (revents);
1196 }
1197 
1198 static int
1199 pipe_stat(struct file *fp, struct stat *ub, struct thread *td)
1200 {
1201 	struct pipe *pipe = (struct pipe *)fp->f_data;
1202 
1203 	bzero((caddr_t)ub, sizeof(*ub));
1204 	ub->st_mode = S_IFIFO;
1205 	ub->st_blksize = pipe->pipe_buffer.size;
1206 	ub->st_size = pipe->pipe_buffer.cnt;
1207 	if (ub->st_size == 0 && (pipe->pipe_state & PIPE_DIRECTW))
1208 		ub->st_size = pipe->pipe_map.xio_bytes;
1209 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1210 	ub->st_atimespec = pipe->pipe_atime;
1211 	ub->st_mtimespec = pipe->pipe_mtime;
1212 	ub->st_ctimespec = pipe->pipe_ctime;
1213 	/*
1214 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1215 	 * st_flags, st_gen.
1216 	 * XXX (st_dev, st_ino) should be unique.
1217 	 */
1218 	return (0);
1219 }
1220 
1221 /* ARGSUSED */
1222 static int
1223 pipe_close(struct file *fp, struct thread *td)
1224 {
1225 	struct pipe *cpipe = (struct pipe *)fp->f_data;
1226 
1227 	fp->f_ops = &badfileops;
1228 	fp->f_data = NULL;
1229 	funsetown(cpipe->pipe_sigio);
1230 	pipeclose(cpipe);
1231 	return (0);
1232 }
1233 
1234 static void
1235 pipe_free_kmem(struct pipe *cpipe)
1236 {
1237 	if (cpipe->pipe_buffer.buffer != NULL) {
1238 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1239 			--pipe_nbig;
1240 		kmem_free(kernel_map,
1241 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1242 			cpipe->pipe_buffer.size);
1243 		cpipe->pipe_buffer.buffer = NULL;
1244 		cpipe->pipe_buffer.object = NULL;
1245 	}
1246 #ifndef PIPE_NODIRECT
1247 	KKASSERT(cpipe->pipe_map.xio_bytes == 0 &&
1248 		cpipe->pipe_map.xio_offset == 0 &&
1249 		cpipe->pipe_map.xio_npages == 0);
1250 #endif
1251 }
1252 
1253 /*
1254  * shutdown the pipe
1255  */
1256 static void
1257 pipeclose(struct pipe *cpipe)
1258 {
1259 	globaldata_t gd;
1260 	struct pipe *ppipe;
1261 
1262 	if (cpipe == NULL)
1263 		return;
1264 
1265 	pipeselwakeup(cpipe);
1266 
1267 	/*
1268 	 * If the other side is blocked, wake it up saying that
1269 	 * we want to close it down.
1270 	 */
1271 	while (cpipe->pipe_busy) {
1272 		wakeup(cpipe);
1273 		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1274 		tsleep(cpipe, 0, "pipecl", 0);
1275 	}
1276 
1277 	/*
1278 	 * Disconnect from peer
1279 	 */
1280 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1281 		pipeselwakeup(ppipe);
1282 
1283 		ppipe->pipe_state |= PIPE_EOF;
1284 		wakeup(ppipe);
1285 		KNOTE(&ppipe->pipe_sel.si_note, 0);
1286 		ppipe->pipe_peer = NULL;
1287 	}
1288 
1289 	if (cpipe->pipe_kva) {
1290 		pmap_qremove(cpipe->pipe_kva, XIO_INTERNAL_PAGES);
1291 		kmem_free(kernel_map, cpipe->pipe_kva, XIO_INTERNAL_SIZE);
1292 		cpipe->pipe_kva = NULL;
1293 	}
1294 
1295 	/*
1296 	 * free or cache resources
1297 	 */
1298 	gd = mycpu;
1299 	if (gd->gd_pipeqcount >= pipe_maxcache ||
1300 	    cpipe->pipe_buffer.size != PIPE_SIZE
1301 	) {
1302 		pipe_free_kmem(cpipe);
1303 		free(cpipe, M_PIPE);
1304 	} else {
1305 		KKASSERT(cpipe->pipe_map.xio_npages == 0 &&
1306 			cpipe->pipe_map.xio_bytes == 0 &&
1307 			cpipe->pipe_map.xio_offset == 0);
1308 		cpipe->pipe_state = 0;
1309 		cpipe->pipe_busy = 0;
1310 		cpipe->pipe_peer = gd->gd_pipeq;
1311 		gd->gd_pipeq = cpipe;
1312 		++gd->gd_pipeqcount;
1313 	}
1314 }
1315 
1316 /*ARGSUSED*/
1317 static int
1318 pipe_kqfilter(struct file *fp, struct knote *kn)
1319 {
1320 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1321 
1322 	switch (kn->kn_filter) {
1323 	case EVFILT_READ:
1324 		kn->kn_fop = &pipe_rfiltops;
1325 		break;
1326 	case EVFILT_WRITE:
1327 		kn->kn_fop = &pipe_wfiltops;
1328 		cpipe = cpipe->pipe_peer;
1329 		if (cpipe == NULL)
1330 			/* other end of pipe has been closed */
1331 			return (EPIPE);
1332 		break;
1333 	default:
1334 		return (1);
1335 	}
1336 	kn->kn_hook = (caddr_t)cpipe;
1337 
1338 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1339 	return (0);
1340 }
1341 
1342 static void
1343 filt_pipedetach(struct knote *kn)
1344 {
1345 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1346 
1347 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1348 }
1349 
1350 /*ARGSUSED*/
1351 static int
1352 filt_piperead(struct knote *kn, long hint)
1353 {
1354 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1355 	struct pipe *wpipe = rpipe->pipe_peer;
1356 
1357 	kn->kn_data = rpipe->pipe_buffer.cnt;
1358 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1359 		kn->kn_data = rpipe->pipe_map.xio_bytes;
1360 
1361 	if ((rpipe->pipe_state & PIPE_EOF) ||
1362 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1363 		kn->kn_flags |= EV_EOF;
1364 		return (1);
1365 	}
1366 	return (kn->kn_data > 0);
1367 }
1368 
1369 /*ARGSUSED*/
1370 static int
1371 filt_pipewrite(struct knote *kn, long hint)
1372 {
1373 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1374 	struct pipe *wpipe = rpipe->pipe_peer;
1375 
1376 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1377 		kn->kn_data = 0;
1378 		kn->kn_flags |= EV_EOF;
1379 		return (1);
1380 	}
1381 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1382 	if (wpipe->pipe_state & PIPE_DIRECTW)
1383 		kn->kn_data = 0;
1384 
1385 	return (kn->kn_data >= PIPE_BUF);
1386 }
1387