xref: /dragonfly/sys/kern/sys_pipe.c (revision c03f08f3)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.44 2006/12/28 21:24:01 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36  * the receiving process can copy it directly from the pages in the sending
37  * process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.  PIPE_SIZE is constrained by the
50  * amount of kernel virtual memory.
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/fcntl.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/filio.h>
61 #include <sys/ttycom.h>
62 #include <sys/stat.h>
63 #include <sys/poll.h>
64 #include <sys/select.h>
65 #include <sys/signalvar.h>
66 #include <sys/sysproto.h>
67 #include <sys/pipe.h>
68 #include <sys/vnode.h>
69 #include <sys/uio.h>
70 #include <sys/event.h>
71 #include <sys/globaldata.h>
72 #include <sys/module.h>
73 #include <sys/malloc.h>
74 #include <sys/sysctl.h>
75 #include <sys/socket.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_zone.h>
87 
88 #include <sys/file2.h>
89 
90 #include <machine/cpufunc.h>
91 
92 /*
93  * interfaces to the outside world
94  */
95 static int pipe_read (struct file *fp, struct uio *uio,
96 		struct ucred *cred, int flags);
97 static int pipe_write (struct file *fp, struct uio *uio,
98 		struct ucred *cred, int flags);
99 static int pipe_close (struct file *fp);
100 static int pipe_shutdown (struct file *fp, int how);
101 static int pipe_poll (struct file *fp, int events, struct ucred *cred);
102 static int pipe_kqfilter (struct file *fp, struct knote *kn);
103 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
104 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct ucred *cred);
105 
106 static struct fileops pipeops = {
107 	.fo_read = pipe_read,
108 	.fo_write = pipe_write,
109 	.fo_ioctl = pipe_ioctl,
110 	.fo_poll = pipe_poll,
111 	.fo_kqfilter = pipe_kqfilter,
112 	.fo_stat = pipe_stat,
113 	.fo_close = pipe_close,
114 	.fo_shutdown = pipe_shutdown
115 };
116 
117 static void	filt_pipedetach(struct knote *kn);
118 static int	filt_piperead(struct knote *kn, long hint);
119 static int	filt_pipewrite(struct knote *kn, long hint);
120 
121 static struct filterops pipe_rfiltops =
122 	{ 1, NULL, filt_pipedetach, filt_piperead };
123 static struct filterops pipe_wfiltops =
124 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
125 
126 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
127 
128 /*
129  * Default pipe buffer size(s), this can be kind-of large now because pipe
130  * space is pageable.  The pipe code will try to maintain locality of
131  * reference for performance reasons, so small amounts of outstanding I/O
132  * will not wipe the cache.
133  */
134 #define MINPIPESIZE (PIPE_SIZE/3)
135 #define MAXPIPESIZE (2*PIPE_SIZE/3)
136 
137 /*
138  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
139  * is there so that on large systems, we don't exhaust it.
140  */
141 #define MAXPIPEKVA (8*1024*1024)
142 
143 /*
144  * Limit for direct transfers, we cannot, of course limit
145  * the amount of kva for pipes in general though.
146  */
147 #define LIMITPIPEKVA (16*1024*1024)
148 
149 /*
150  * Limit the number of "big" pipes
151  */
152 #define LIMITBIGPIPES	32
153 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
154 
155 static int pipe_maxbig = LIMITBIGPIPES;
156 static int pipe_maxcache = PIPEQ_MAX_CACHE;
157 static int pipe_nbig;
158 static int pipe_bcache_alloc;
159 static int pipe_bkmem_alloc;
160 static int pipe_dwrite_enable = 1;	/* 0:copy, 1:kmem/sfbuf 2:force */
161 static int pipe_dwrite_sfbuf = 1;	/* 0:kmem_map 1:sfbufs 2:sfbufs_dmap */
162 					/* 3:sfbuf_dmap w/ forced invlpg */
163 
164 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
165 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
166         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
167 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
168         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
169 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
170         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
171 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_enable,
172         CTLFLAG_RW, &pipe_dwrite_enable, 0, "1:enable/2:force direct writes");
173 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_sfbuf,
174         CTLFLAG_RW, &pipe_dwrite_sfbuf, 0,
175 	"(if dwrite_enable) 0:kmem 1:sfbuf 2:sfbuf_dmap 3:sfbuf_dmap_forceinvlpg");
176 #if !defined(NO_PIPE_SYSCTL_STATS)
177 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
178         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
179 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
180         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
181 #endif
182 
183 static void pipeclose (struct pipe *cpipe);
184 static void pipe_free_kmem (struct pipe *cpipe);
185 static int pipe_create (struct pipe **cpipep);
186 static __inline int pipelock (struct pipe *cpipe, int catch);
187 static __inline void pipeunlock (struct pipe *cpipe);
188 static __inline void pipeselwakeup (struct pipe *cpipe);
189 #ifndef PIPE_NODIRECT
190 static int pipe_build_write_buffer (struct pipe *wpipe, struct uio *uio);
191 static int pipe_direct_write (struct pipe *wpipe, struct uio *uio);
192 static void pipe_clone_write_buffer (struct pipe *wpipe);
193 #endif
194 static int pipespace (struct pipe *cpipe, int size);
195 
196 /*
197  * The pipe system call for the DTYPE_PIPE type of pipes
198  *
199  * pipe_ARgs(int dummy)
200  */
201 
202 /* ARGSUSED */
203 int
204 sys_pipe(struct pipe_args *uap)
205 {
206 	struct thread *td = curthread;
207 	struct proc *p = td->td_proc;
208 	struct file *rf, *wf;
209 	struct pipe *rpipe, *wpipe;
210 	int fd1, fd2, error;
211 
212 	KKASSERT(p);
213 
214 	rpipe = wpipe = NULL;
215 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
216 		pipeclose(rpipe);
217 		pipeclose(wpipe);
218 		return (ENFILE);
219 	}
220 
221 	rpipe->pipe_state |= PIPE_DIRECTOK;
222 	wpipe->pipe_state |= PIPE_DIRECTOK;
223 
224 	/*
225 	 * Select the direct-map features to use for this pipe.  Since the
226 	 * sysctl's can change on the fly we record the settings when the
227 	 * pipe is created.
228 	 *
229 	 * Generally speaking the system will default to what we consider
230 	 * to be the best-balanced and most stable option.  Right now this
231 	 * is SFBUF1.  Modes 2 and 3 are considered experiemental at the
232 	 * moment.
233 	 */
234 	wpipe->pipe_feature = PIPE_COPY;
235 	if (pipe_dwrite_enable) {
236 		switch(pipe_dwrite_sfbuf) {
237 		case 0:
238 			wpipe->pipe_feature = PIPE_KMEM;
239 			break;
240 		case 1:
241 			wpipe->pipe_feature = PIPE_SFBUF1;
242 			break;
243 		case 2:
244 		case 3:
245 			wpipe->pipe_feature = PIPE_SFBUF2;
246 			break;
247 		}
248 	}
249 	rpipe->pipe_feature = wpipe->pipe_feature;
250 
251 	error = falloc(p, &rf, &fd1);
252 	if (error) {
253 		pipeclose(rpipe);
254 		pipeclose(wpipe);
255 		return (error);
256 	}
257 	uap->sysmsg_fds[0] = fd1;
258 
259 	/*
260 	 * Warning: once we've gotten past allocation of the fd for the
261 	 * read-side, we can only drop the read side via fdrop() in order
262 	 * to avoid races against processes which manage to dup() the read
263 	 * side while we are blocked trying to allocate the write side.
264 	 */
265 	rf->f_type = DTYPE_PIPE;
266 	rf->f_flag = FREAD | FWRITE;
267 	rf->f_ops = &pipeops;
268 	rf->f_data = rpipe;
269 	error = falloc(p, &wf, &fd2);
270 	if (error) {
271 		fsetfd(p, NULL, fd1);
272 		fdrop(rf);
273 		/* rpipe has been closed by fdrop(). */
274 		pipeclose(wpipe);
275 		return (error);
276 	}
277 	wf->f_type = DTYPE_PIPE;
278 	wf->f_flag = FREAD | FWRITE;
279 	wf->f_ops = &pipeops;
280 	wf->f_data = wpipe;
281 	uap->sysmsg_fds[1] = fd2;
282 
283 	rpipe->pipe_peer = wpipe;
284 	wpipe->pipe_peer = rpipe;
285 
286 	fsetfd(p, rf, fd1);
287 	fsetfd(p, wf, fd2);
288 	fdrop(rf);
289 	fdrop(wf);
290 
291 	return (0);
292 }
293 
294 /*
295  * Allocate kva for pipe circular buffer, the space is pageable
296  * This routine will 'realloc' the size of a pipe safely, if it fails
297  * it will retain the old buffer.
298  * If it fails it will return ENOMEM.
299  */
300 static int
301 pipespace(struct pipe *cpipe, int size)
302 {
303 	struct vm_object *object;
304 	caddr_t buffer;
305 	int npages, error;
306 
307 	npages = round_page(size) / PAGE_SIZE;
308 	object = cpipe->pipe_buffer.object;
309 
310 	/*
311 	 * [re]create the object if necessary and reserve space for it
312 	 * in the kernel_map.  The object and memory are pageable.  On
313 	 * success, free the old resources before assigning the new
314 	 * ones.
315 	 */
316 	if (object == NULL || object->size != npages) {
317 		object = vm_object_allocate(OBJT_DEFAULT, npages);
318 		buffer = (caddr_t)vm_map_min(&kernel_map);
319 
320 		error = vm_map_find(&kernel_map, object, 0,
321 				    (vm_offset_t *)&buffer, size,
322 				    1,
323 				    VM_MAPTYPE_NORMAL,
324 				    VM_PROT_ALL, VM_PROT_ALL,
325 				    0);
326 
327 		if (error != KERN_SUCCESS) {
328 			vm_object_deallocate(object);
329 			return (ENOMEM);
330 		}
331 		pipe_free_kmem(cpipe);
332 		cpipe->pipe_buffer.object = object;
333 		cpipe->pipe_buffer.buffer = buffer;
334 		cpipe->pipe_buffer.size = size;
335 		++pipe_bkmem_alloc;
336 	} else {
337 		++pipe_bcache_alloc;
338 	}
339 	cpipe->pipe_buffer.in = 0;
340 	cpipe->pipe_buffer.out = 0;
341 	cpipe->pipe_buffer.cnt = 0;
342 	return (0);
343 }
344 
345 /*
346  * Initialize and allocate VM and memory for pipe, pulling the pipe from
347  * our per-cpu cache if possible.  For now make sure it is sized for the
348  * smaller PIPE_SIZE default.
349  */
350 static int
351 pipe_create(struct pipe **cpipep)
352 {
353 	globaldata_t gd = mycpu;
354 	struct pipe *cpipe;
355 	int error;
356 
357 	if ((cpipe = gd->gd_pipeq) != NULL) {
358 		gd->gd_pipeq = cpipe->pipe_peer;
359 		--gd->gd_pipeqcount;
360 		cpipe->pipe_peer = NULL;
361 	} else {
362 		cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
363 	}
364 	*cpipep = cpipe;
365 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
366 		return (error);
367 	vfs_timestamp(&cpipe->pipe_ctime);
368 	cpipe->pipe_atime = cpipe->pipe_ctime;
369 	cpipe->pipe_mtime = cpipe->pipe_ctime;
370 	return (0);
371 }
372 
373 
374 /*
375  * lock a pipe for I/O, blocking other access
376  */
377 static __inline int
378 pipelock(struct pipe *cpipe, int catch)
379 {
380 	int error;
381 
382 	while (cpipe->pipe_state & PIPE_LOCK) {
383 		cpipe->pipe_state |= PIPE_LWANT;
384 		error = tsleep(cpipe, (catch ? PCATCH : 0), "pipelk", 0);
385 		if (error != 0)
386 			return (error);
387 	}
388 	cpipe->pipe_state |= PIPE_LOCK;
389 	return (0);
390 }
391 
392 /*
393  * unlock a pipe I/O lock
394  */
395 static __inline void
396 pipeunlock(struct pipe *cpipe)
397 {
398 
399 	cpipe->pipe_state &= ~PIPE_LOCK;
400 	if (cpipe->pipe_state & PIPE_LWANT) {
401 		cpipe->pipe_state &= ~PIPE_LWANT;
402 		wakeup(cpipe);
403 	}
404 }
405 
406 static __inline void
407 pipeselwakeup(struct pipe *cpipe)
408 {
409 
410 	if (cpipe->pipe_state & PIPE_SEL) {
411 		cpipe->pipe_state &= ~PIPE_SEL;
412 		selwakeup(&cpipe->pipe_sel);
413 	}
414 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
415 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
416 	KNOTE(&cpipe->pipe_sel.si_note, 0);
417 }
418 
419 /*
420  * MPALMOSTSAFE (acquires mplock)
421  */
422 static int
423 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
424 {
425 	struct pipe *rpipe;
426 	int error;
427 	int nread = 0;
428 	int nbio;
429 	u_int size;
430 
431 	get_mplock();
432 	rpipe = (struct pipe *) fp->f_data;
433 	++rpipe->pipe_busy;
434 	error = pipelock(rpipe, 1);
435 	if (error)
436 		goto unlocked_error;
437 
438 	if (fflags & O_FBLOCKING)
439 		nbio = 0;
440 	else if (fflags & O_FNONBLOCKING)
441 		nbio = 1;
442 	else if (fp->f_flag & O_NONBLOCK)
443 		nbio = 1;
444 	else
445 		nbio = 0;
446 
447 	while (uio->uio_resid) {
448 		caddr_t va;
449 
450 		if (rpipe->pipe_buffer.cnt > 0) {
451 			/*
452 			 * normal pipe buffer receive
453 			 */
454 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
455 			if (size > rpipe->pipe_buffer.cnt)
456 				size = rpipe->pipe_buffer.cnt;
457 			if (size > (u_int) uio->uio_resid)
458 				size = (u_int) uio->uio_resid;
459 
460 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
461 					size, uio);
462 			if (error)
463 				break;
464 
465 			rpipe->pipe_buffer.out += size;
466 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
467 				rpipe->pipe_buffer.out = 0;
468 
469 			rpipe->pipe_buffer.cnt -= size;
470 
471 			/*
472 			 * If there is no more to read in the pipe, reset
473 			 * its pointers to the beginning.  This improves
474 			 * cache hit stats.
475 			 */
476 			if (rpipe->pipe_buffer.cnt == 0) {
477 				rpipe->pipe_buffer.in = 0;
478 				rpipe->pipe_buffer.out = 0;
479 			}
480 			nread += size;
481 #ifndef PIPE_NODIRECT
482 		} else if (rpipe->pipe_kva &&
483 			   rpipe->pipe_feature == PIPE_KMEM &&
484 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
485 			       == PIPE_DIRECTW
486 		) {
487 			/*
488 			 * Direct copy using source-side kva mapping
489 			 */
490 			size = rpipe->pipe_map.xio_bytes -
491 				rpipe->pipe_buffer.out;
492 			if (size > (u_int)uio->uio_resid)
493 				size = (u_int)uio->uio_resid;
494 			va = (caddr_t)rpipe->pipe_kva +
495 				xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
496 			error = uiomove(va, size, uio);
497 			if (error)
498 				break;
499 			nread += size;
500 			rpipe->pipe_buffer.out += size;
501 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
502 				rpipe->pipe_state |= PIPE_DIRECTIP;
503 				rpipe->pipe_state &= ~PIPE_DIRECTW;
504 				/* reset out index for copy mode */
505 				rpipe->pipe_buffer.out = 0;
506 				wakeup(rpipe);
507 			}
508 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
509 			   rpipe->pipe_kva &&
510 			   rpipe->pipe_feature == PIPE_SFBUF2 &&
511 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
512 			       == PIPE_DIRECTW
513 		) {
514 			/*
515 			 * Direct copy, bypassing a kernel buffer.  We cannot
516 			 * mess with the direct-write buffer until
517 			 * PIPE_DIRECTIP is cleared.  In order to prevent
518 			 * the pipe_write code from racing itself in
519 			 * direct_write, we set DIRECTIP when we clear
520 			 * DIRECTW after we have exhausted the buffer.
521 			 */
522 			if (pipe_dwrite_sfbuf == 3)
523 				rpipe->pipe_kvamask = 0;
524 			pmap_qenter2(rpipe->pipe_kva, rpipe->pipe_map.xio_pages,
525 				    rpipe->pipe_map.xio_npages,
526 				    &rpipe->pipe_kvamask);
527 			size = rpipe->pipe_map.xio_bytes -
528 				rpipe->pipe_buffer.out;
529 			if (size > (u_int)uio->uio_resid)
530 				size = (u_int)uio->uio_resid;
531 			va = (caddr_t)rpipe->pipe_kva + xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
532 			error = uiomove(va, size, uio);
533 			if (error)
534 				break;
535 			nread += size;
536 			rpipe->pipe_buffer.out += size;
537 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
538 				rpipe->pipe_state |= PIPE_DIRECTIP;
539 				rpipe->pipe_state &= ~PIPE_DIRECTW;
540 				/* reset out index for copy mode */
541 				rpipe->pipe_buffer.out = 0;
542 				wakeup(rpipe);
543 			}
544 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
545 			   rpipe->pipe_feature == PIPE_SFBUF1 &&
546 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
547 				== PIPE_DIRECTW
548 		) {
549 			/*
550 			 * Direct copy, bypassing a kernel buffer.  We cannot
551 			 * mess with the direct-write buffer until
552 			 * PIPE_DIRECTIP is cleared.  In order to prevent
553 			 * the pipe_write code from racing itself in
554 			 * direct_write, we set DIRECTIP when we clear
555 			 * DIRECTW after we have exhausted the buffer.
556 			 */
557 			error = xio_uio_copy(&rpipe->pipe_map, rpipe->pipe_buffer.out, uio, &size);
558 			if (error)
559 				break;
560 			nread += size;
561 			rpipe->pipe_buffer.out += size;
562 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
563 				rpipe->pipe_state |= PIPE_DIRECTIP;
564 				rpipe->pipe_state &= ~PIPE_DIRECTW;
565 				/* reset out index for copy mode */
566 				rpipe->pipe_buffer.out = 0;
567 				wakeup(rpipe);
568 			}
569 #endif
570 		} else {
571 			/*
572 			 * detect EOF condition
573 			 * read returns 0 on EOF, no need to set error
574 			 */
575 			if (rpipe->pipe_state & PIPE_EOF)
576 				break;
577 
578 			/*
579 			 * If the "write-side" has been blocked, wake it up now.
580 			 */
581 			if (rpipe->pipe_state & PIPE_WANTW) {
582 				rpipe->pipe_state &= ~PIPE_WANTW;
583 				wakeup(rpipe);
584 			}
585 
586 			/*
587 			 * Break if some data was read.
588 			 */
589 			if (nread > 0)
590 				break;
591 
592 			/*
593 			 * Unlock the pipe buffer for our remaining
594 			 * processing.  We will either break out with an
595 			 * error or we will sleep and relock to loop.
596 			 */
597 			pipeunlock(rpipe);
598 
599 			/*
600 			 * Handle non-blocking mode operation or
601 			 * wait for more data.
602 			 */
603 			if (nbio) {
604 				error = EAGAIN;
605 			} else {
606 				rpipe->pipe_state |= PIPE_WANTR;
607 				if ((error = tsleep(rpipe, PCATCH|PNORESCHED,
608 				    "piperd", 0)) == 0) {
609 					error = pipelock(rpipe, 1);
610 				}
611 			}
612 			if (error)
613 				goto unlocked_error;
614 		}
615 	}
616 	pipeunlock(rpipe);
617 
618 	if (error == 0)
619 		vfs_timestamp(&rpipe->pipe_atime);
620 unlocked_error:
621 	--rpipe->pipe_busy;
622 
623 	/*
624 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
625 	 */
626 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
627 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
628 		wakeup(rpipe);
629 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
630 		/*
631 		 * Handle write blocking hysteresis.
632 		 */
633 		if (rpipe->pipe_state & PIPE_WANTW) {
634 			rpipe->pipe_state &= ~PIPE_WANTW;
635 			wakeup(rpipe);
636 		}
637 	}
638 
639 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
640 		pipeselwakeup(rpipe);
641 	rel_mplock();
642 	return (error);
643 }
644 
645 #ifndef PIPE_NODIRECT
646 /*
647  * Map the sending processes' buffer into kernel space and wire it.
648  * This is similar to a physical write operation.
649  */
650 static int
651 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
652 {
653 	int error;
654 	u_int size;
655 
656 	size = (u_int) uio->uio_iov->iov_len;
657 	if (size > wpipe->pipe_buffer.size)
658 		size = wpipe->pipe_buffer.size;
659 
660 	if (uio->uio_segflg == UIO_SYSSPACE) {
661 		error = xio_init_kbuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
662 					size);
663 	} else {
664 		error = xio_init_ubuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
665 					size, XIOF_READ);
666 	}
667 	wpipe->pipe_buffer.out = 0;
668 	if (error)
669 		return(error);
670 
671 	/*
672 	 * Create a kernel map for KMEM and SFBUF2 copy modes.  SFBUF2 will
673 	 * map the pages on the target while KMEM maps the pages now.
674 	 */
675 	switch(wpipe->pipe_feature) {
676 	case PIPE_KMEM:
677 	case PIPE_SFBUF2:
678 		if (wpipe->pipe_kva == NULL) {
679 			wpipe->pipe_kva =
680 			    kmem_alloc_nofault(&kernel_map, XIO_INTERNAL_SIZE);
681 			wpipe->pipe_kvamask = 0;
682 		}
683 		if (wpipe->pipe_feature == PIPE_KMEM) {
684 			pmap_qenter(wpipe->pipe_kva, wpipe->pipe_map.xio_pages,
685 				    wpipe->pipe_map.xio_npages);
686 		}
687 		break;
688 	default:
689 		break;
690 	}
691 
692 	/*
693 	 * And update the uio data.  The XIO might have loaded fewer bytes
694 	 * then requested so reload 'size'.
695 	 */
696 	size = wpipe->pipe_map.xio_bytes;
697 	uio->uio_iov->iov_len -= size;
698 	uio->uio_iov->iov_base += size;
699 	if (uio->uio_iov->iov_len == 0)
700 		uio->uio_iov++;
701 	uio->uio_resid -= size;
702 	uio->uio_offset += size;
703 	return (0);
704 }
705 
706 /*
707  * In the case of a signal, the writing process might go away.  This
708  * code copies the data into the circular buffer so that the source
709  * pages can be freed without loss of data.
710  *
711  * Note that in direct mode pipe_buffer.out is used to track the
712  * XIO offset.  We are converting the direct mode into buffered mode
713  * which changes the meaning of pipe_buffer.out.
714  */
715 static void
716 pipe_clone_write_buffer(struct pipe *wpipe)
717 {
718 	int size;
719 	int offset;
720 
721 	offset = wpipe->pipe_buffer.out;
722 	size = wpipe->pipe_map.xio_bytes - offset;
723 
724 	KKASSERT(size <= wpipe->pipe_buffer.size);
725 
726 	wpipe->pipe_buffer.in = size;
727 	wpipe->pipe_buffer.out = 0;
728 	wpipe->pipe_buffer.cnt = size;
729 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
730 
731 	xio_copy_xtok(&wpipe->pipe_map, offset, wpipe->pipe_buffer.buffer, size);
732 	xio_release(&wpipe->pipe_map);
733 	if (wpipe->pipe_kva) {
734 		pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
735 		kmem_free(&kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
736 		wpipe->pipe_kva = NULL;
737 	}
738 }
739 
740 /*
741  * This implements the pipe buffer write mechanism.  Note that only
742  * a direct write OR a normal pipe write can be pending at any given time.
743  * If there are any characters in the pipe buffer, the direct write will
744  * be deferred until the receiving process grabs all of the bytes from
745  * the pipe buffer.  Then the direct mapping write is set-up.
746  */
747 static int
748 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
749 {
750 	int error;
751 
752 retry:
753 	while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
754 		if (wpipe->pipe_state & PIPE_WANTR) {
755 			wpipe->pipe_state &= ~PIPE_WANTR;
756 			wakeup(wpipe);
757 		}
758 		wpipe->pipe_state |= PIPE_WANTW;
759 		error = tsleep(wpipe, PCATCH, "pipdww", 0);
760 		if (error)
761 			goto error2;
762 		if (wpipe->pipe_state & PIPE_EOF) {
763 			error = EPIPE;
764 			goto error2;
765 		}
766 	}
767 	KKASSERT(wpipe->pipe_map.xio_bytes == 0);
768 	if (wpipe->pipe_buffer.cnt > 0) {
769 		if (wpipe->pipe_state & PIPE_WANTR) {
770 			wpipe->pipe_state &= ~PIPE_WANTR;
771 			wakeup(wpipe);
772 		}
773 
774 		wpipe->pipe_state |= PIPE_WANTW;
775 		error = tsleep(wpipe, PCATCH, "pipdwc", 0);
776 		if (error)
777 			goto error2;
778 		if (wpipe->pipe_state & PIPE_EOF) {
779 			error = EPIPE;
780 			goto error2;
781 		}
782 		goto retry;
783 	}
784 
785 	/*
786 	 * Build our direct-write buffer
787 	 */
788 	wpipe->pipe_state |= PIPE_DIRECTW | PIPE_DIRECTIP;
789 	error = pipe_build_write_buffer(wpipe, uio);
790 	if (error)
791 		goto error1;
792 	wpipe->pipe_state &= ~PIPE_DIRECTIP;
793 
794 	/*
795 	 * Wait until the receiver has snarfed the data.  Since we are likely
796 	 * going to sleep we optimize the case and yield synchronously,
797 	 * possibly avoiding the tsleep().
798 	 */
799 	error = 0;
800 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
801 		if (wpipe->pipe_state & PIPE_EOF) {
802 			pipelock(wpipe, 0);
803 			xio_release(&wpipe->pipe_map);
804 			if (wpipe->pipe_kva) {
805 				pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
806 				kmem_free(&kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
807 				wpipe->pipe_kva = NULL;
808 			}
809 			pipeunlock(wpipe);
810 			pipeselwakeup(wpipe);
811 			error = EPIPE;
812 			goto error1;
813 		}
814 		if (wpipe->pipe_state & PIPE_WANTR) {
815 			wpipe->pipe_state &= ~PIPE_WANTR;
816 			wakeup(wpipe);
817 		}
818 		pipeselwakeup(wpipe);
819 		error = tsleep(wpipe, PCATCH|PNORESCHED, "pipdwt", 0);
820 	}
821 	pipelock(wpipe,0);
822 	if (wpipe->pipe_state & PIPE_DIRECTW) {
823 		/*
824 		 * this bit of trickery substitutes a kernel buffer for
825 		 * the process that might be going away.
826 		 */
827 		pipe_clone_write_buffer(wpipe);
828 		KKASSERT((wpipe->pipe_state & PIPE_DIRECTIP) == 0);
829 	} else {
830 		/*
831 		 * note: The pipe_kva mapping is not qremove'd here.  For
832 		 * legacy PIPE_KMEM mode this constitutes an improvement
833 		 * over the original FreeBSD-4 algorithm.  For PIPE_SFBUF2
834 		 * mode the kva mapping must not be removed to get the
835 		 * caching benefit.
836 		 *
837 		 * For testing purposes we will give the original algorithm
838 		 * the benefit of the doubt 'what it could have been', and
839 		 * keep the optimization.
840 		 */
841 		KKASSERT(wpipe->pipe_state & PIPE_DIRECTIP);
842 		xio_release(&wpipe->pipe_map);
843 		wpipe->pipe_state &= ~PIPE_DIRECTIP;
844 	}
845 	pipeunlock(wpipe);
846 	return (error);
847 
848 	/*
849 	 * Direct-write error, clear the direct write flags.
850 	 */
851 error1:
852 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
853 	/* fallthrough */
854 
855 	/*
856 	 * General error, wakeup the other side if it happens to be sleeping.
857 	 */
858 error2:
859 	wakeup(wpipe);
860 	return (error);
861 }
862 #endif
863 
864 /*
865  * MPALMOSTSAFE - acquires mplock
866  */
867 static int
868 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
869 {
870 	int error = 0;
871 	int orig_resid;
872 	int nbio;
873 	struct pipe *wpipe, *rpipe;
874 
875 	get_mplock();
876 	rpipe = (struct pipe *) fp->f_data;
877 	wpipe = rpipe->pipe_peer;
878 
879 	/*
880 	 * detect loss of pipe read side, issue SIGPIPE if lost.
881 	 */
882 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
883 		rel_mplock();
884 		return (EPIPE);
885 	}
886 	++wpipe->pipe_busy;
887 
888 	if (fflags & O_FBLOCKING)
889 		nbio = 0;
890 	else if (fflags & O_FNONBLOCKING)
891 		nbio = 1;
892 	else if (fp->f_flag & O_NONBLOCK)
893 		nbio = 1;
894 	else
895 		nbio = 0;
896 
897 	/*
898 	 * If it is advantageous to resize the pipe buffer, do
899 	 * so.
900 	 */
901 	if ((uio->uio_resid > PIPE_SIZE) &&
902 		(pipe_nbig < pipe_maxbig) &&
903 		(wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) == 0 &&
904 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
905 		(wpipe->pipe_buffer.cnt == 0)) {
906 
907 		if ((error = pipelock(wpipe,1)) == 0) {
908 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
909 				pipe_nbig++;
910 			pipeunlock(wpipe);
911 		}
912 	}
913 
914 	/*
915 	 * If an early error occured unbusy and return, waking up any pending
916 	 * readers.
917 	 */
918 	if (error) {
919 		--wpipe->pipe_busy;
920 		if ((wpipe->pipe_busy == 0) &&
921 		    (wpipe->pipe_state & PIPE_WANT)) {
922 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
923 			wakeup(wpipe);
924 		}
925 		rel_mplock();
926 		return(error);
927 	}
928 
929 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
930 
931 	orig_resid = uio->uio_resid;
932 
933 	while (uio->uio_resid) {
934 		int space;
935 
936 #ifndef PIPE_NODIRECT
937 		/*
938 		 * If the transfer is large, we can gain performance if
939 		 * we do process-to-process copies directly.
940 		 * If the write is non-blocking, we don't use the
941 		 * direct write mechanism.
942 		 *
943 		 * The direct write mechanism will detect the reader going
944 		 * away on us.
945 		 */
946 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT ||
947 		    pipe_dwrite_enable > 1) &&
948 		    nbio == 0 &&
949 		    pipe_dwrite_enable) {
950 			error = pipe_direct_write( wpipe, uio);
951 			if (error)
952 				break;
953 			continue;
954 		}
955 #endif
956 
957 		/*
958 		 * Pipe buffered writes cannot be coincidental with
959 		 * direct writes.  We wait until the currently executing
960 		 * direct write is completed before we start filling the
961 		 * pipe buffer.  We break out if a signal occurs or the
962 		 * reader goes away.
963 		 */
964 	retrywrite:
965 		while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
966 			if (wpipe->pipe_state & PIPE_WANTR) {
967 				wpipe->pipe_state &= ~PIPE_WANTR;
968 				wakeup(wpipe);
969 			}
970 			error = tsleep(wpipe, PCATCH, "pipbww", 0);
971 			if (wpipe->pipe_state & PIPE_EOF)
972 				break;
973 			if (error)
974 				break;
975 		}
976 		if (wpipe->pipe_state & PIPE_EOF) {
977 			error = EPIPE;
978 			break;
979 		}
980 
981 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
982 
983 		/* Writes of size <= PIPE_BUF must be atomic. */
984 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
985 			space = 0;
986 
987 		/*
988 		 * Write to fill, read size handles write hysteresis.  Also
989 		 * additional restrictions can cause select-based non-blocking
990 		 * writes to spin.
991 		 */
992 		if (space > 0) {
993 			if ((error = pipelock(wpipe,1)) == 0) {
994 				int size;	/* Transfer size */
995 				int segsize;	/* first segment to transfer */
996 
997 				/*
998 				 * It is possible for a direct write to
999 				 * slip in on us... handle it here...
1000 				 */
1001 				if (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
1002 					pipeunlock(wpipe);
1003 					goto retrywrite;
1004 				}
1005 				/*
1006 				 * If a process blocked in uiomove, our
1007 				 * value for space might be bad.
1008 				 *
1009 				 * XXX will we be ok if the reader has gone
1010 				 * away here?
1011 				 */
1012 				if (space > wpipe->pipe_buffer.size -
1013 				    wpipe->pipe_buffer.cnt) {
1014 					pipeunlock(wpipe);
1015 					goto retrywrite;
1016 				}
1017 
1018 				/*
1019 				 * Transfer size is minimum of uio transfer
1020 				 * and free space in pipe buffer.
1021 				 */
1022 				if (space > uio->uio_resid)
1023 					size = uio->uio_resid;
1024 				else
1025 					size = space;
1026 				/*
1027 				 * First segment to transfer is minimum of
1028 				 * transfer size and contiguous space in
1029 				 * pipe buffer.  If first segment to transfer
1030 				 * is less than the transfer size, we've got
1031 				 * a wraparound in the buffer.
1032 				 */
1033 				segsize = wpipe->pipe_buffer.size -
1034 					wpipe->pipe_buffer.in;
1035 				if (segsize > size)
1036 					segsize = size;
1037 
1038 				/* Transfer first segment */
1039 
1040 				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1041 						segsize, uio);
1042 
1043 				if (error == 0 && segsize < size) {
1044 					/*
1045 					 * Transfer remaining part now, to
1046 					 * support atomic writes.  Wraparound
1047 					 * happened.
1048 					 */
1049 					if (wpipe->pipe_buffer.in + segsize !=
1050 					    wpipe->pipe_buffer.size)
1051 						panic("Expected pipe buffer wraparound disappeared");
1052 
1053 					error = uiomove(&wpipe->pipe_buffer.buffer[0],
1054 							size - segsize, uio);
1055 				}
1056 				if (error == 0) {
1057 					wpipe->pipe_buffer.in += size;
1058 					if (wpipe->pipe_buffer.in >=
1059 					    wpipe->pipe_buffer.size) {
1060 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1061 							panic("Expected wraparound bad");
1062 						wpipe->pipe_buffer.in = size - segsize;
1063 					}
1064 
1065 					wpipe->pipe_buffer.cnt += size;
1066 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1067 						panic("Pipe buffer overflow");
1068 
1069 				}
1070 				pipeunlock(wpipe);
1071 			}
1072 			if (error)
1073 				break;
1074 
1075 		} else {
1076 			/*
1077 			 * If the "read-side" has been blocked, wake it up now
1078 			 * and yield to let it drain synchronously rather
1079 			 * then block.
1080 			 */
1081 			if (wpipe->pipe_state & PIPE_WANTR) {
1082 				wpipe->pipe_state &= ~PIPE_WANTR;
1083 				wakeup(wpipe);
1084 			}
1085 
1086 			/*
1087 			 * don't block on non-blocking I/O
1088 			 */
1089 			if (nbio) {
1090 				error = EAGAIN;
1091 				break;
1092 			}
1093 
1094 			/*
1095 			 * We have no more space and have something to offer,
1096 			 * wake up select/poll.
1097 			 */
1098 			pipeselwakeup(wpipe);
1099 
1100 			wpipe->pipe_state |= PIPE_WANTW;
1101 			error = tsleep(wpipe, PCATCH|PNORESCHED, "pipewr", 0);
1102 			if (error != 0)
1103 				break;
1104 			/*
1105 			 * If read side wants to go away, we just issue a signal
1106 			 * to ourselves.
1107 			 */
1108 			if (wpipe->pipe_state & PIPE_EOF) {
1109 				error = EPIPE;
1110 				break;
1111 			}
1112 		}
1113 	}
1114 
1115 	--wpipe->pipe_busy;
1116 
1117 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1118 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1119 		wakeup(wpipe);
1120 	} else if (wpipe->pipe_buffer.cnt > 0) {
1121 		/*
1122 		 * If we have put any characters in the buffer, we wake up
1123 		 * the reader.
1124 		 */
1125 		if (wpipe->pipe_state & PIPE_WANTR) {
1126 			wpipe->pipe_state &= ~PIPE_WANTR;
1127 			wakeup(wpipe);
1128 		}
1129 	}
1130 
1131 	/*
1132 	 * Don't return EPIPE if I/O was successful
1133 	 */
1134 	if ((wpipe->pipe_buffer.cnt == 0) &&
1135 	    (uio->uio_resid == 0) &&
1136 	    (error == EPIPE)) {
1137 		error = 0;
1138 	}
1139 
1140 	if (error == 0)
1141 		vfs_timestamp(&wpipe->pipe_mtime);
1142 
1143 	/*
1144 	 * We have something to offer,
1145 	 * wake up select/poll.
1146 	 */
1147 	if (wpipe->pipe_buffer.cnt)
1148 		pipeselwakeup(wpipe);
1149 	rel_mplock();
1150 	return (error);
1151 }
1152 
1153 /*
1154  * MPALMOSTSAFE - acquires mplock
1155  *
1156  * we implement a very minimal set of ioctls for compatibility with sockets.
1157  */
1158 int
1159 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct ucred *cred)
1160 {
1161 	struct pipe *mpipe;
1162 	int error;
1163 
1164 	get_mplock();
1165 	mpipe = (struct pipe *)fp->f_data;
1166 
1167 	switch (cmd) {
1168 	case FIOASYNC:
1169 		if (*(int *)data) {
1170 			mpipe->pipe_state |= PIPE_ASYNC;
1171 		} else {
1172 			mpipe->pipe_state &= ~PIPE_ASYNC;
1173 		}
1174 		error = 0;
1175 		break;
1176 	case FIONREAD:
1177 		if (mpipe->pipe_state & PIPE_DIRECTW) {
1178 			*(int *)data = mpipe->pipe_map.xio_bytes -
1179 					mpipe->pipe_buffer.out;
1180 		} else {
1181 			*(int *)data = mpipe->pipe_buffer.cnt;
1182 		}
1183 		error = 0;
1184 		break;
1185 	case FIOSETOWN:
1186 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1187 		break;
1188 	case FIOGETOWN:
1189 		*(int *)data = fgetown(mpipe->pipe_sigio);
1190 		error = 0;
1191 		break;
1192 	case TIOCSPGRP:
1193 		/* This is deprecated, FIOSETOWN should be used instead. */
1194 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1195 		break;
1196 
1197 	case TIOCGPGRP:
1198 		/* This is deprecated, FIOGETOWN should be used instead. */
1199 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1200 		error = 0;
1201 		break;
1202 	default:
1203 		error = ENOTTY;
1204 		break;
1205 	}
1206 	rel_mplock();
1207 	return (error);
1208 }
1209 
1210 /*
1211  * MPALMOSTSAFE - acquires mplock
1212  */
1213 int
1214 pipe_poll(struct file *fp, int events, struct ucred *cred)
1215 {
1216 	struct pipe *rpipe;
1217 	struct pipe *wpipe;
1218 	int revents = 0;
1219 
1220 	get_mplock();
1221 	rpipe = (struct pipe *)fp->f_data;
1222 	wpipe = rpipe->pipe_peer;
1223 	if (events & (POLLIN | POLLRDNORM))
1224 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1225 		    (rpipe->pipe_buffer.cnt > 0) ||
1226 		    (rpipe->pipe_state & PIPE_EOF))
1227 			revents |= events & (POLLIN | POLLRDNORM);
1228 
1229 	if (events & (POLLOUT | POLLWRNORM))
1230 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1231 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1232 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1233 			revents |= events & (POLLOUT | POLLWRNORM);
1234 
1235 	if ((rpipe->pipe_state & PIPE_EOF) ||
1236 	    (wpipe == NULL) ||
1237 	    (wpipe->pipe_state & PIPE_EOF))
1238 		revents |= POLLHUP;
1239 
1240 	if (revents == 0) {
1241 		if (events & (POLLIN | POLLRDNORM)) {
1242 			selrecord(curthread, &rpipe->pipe_sel);
1243 			rpipe->pipe_state |= PIPE_SEL;
1244 		}
1245 
1246 		if (events & (POLLOUT | POLLWRNORM)) {
1247 			selrecord(curthread, &wpipe->pipe_sel);
1248 			wpipe->pipe_state |= PIPE_SEL;
1249 		}
1250 	}
1251 	rel_mplock();
1252 	return (revents);
1253 }
1254 
1255 /*
1256  * MPALMOSTSAFE - acquires mplock
1257  */
1258 static int
1259 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1260 {
1261 	struct pipe *pipe;
1262 
1263 	get_mplock();
1264 	pipe = (struct pipe *)fp->f_data;
1265 
1266 	bzero((caddr_t)ub, sizeof(*ub));
1267 	ub->st_mode = S_IFIFO;
1268 	ub->st_blksize = pipe->pipe_buffer.size;
1269 	ub->st_size = pipe->pipe_buffer.cnt;
1270 	if (ub->st_size == 0 && (pipe->pipe_state & PIPE_DIRECTW)) {
1271 		ub->st_size = pipe->pipe_map.xio_bytes -
1272 				pipe->pipe_buffer.out;
1273 	}
1274 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1275 	ub->st_atimespec = pipe->pipe_atime;
1276 	ub->st_mtimespec = pipe->pipe_mtime;
1277 	ub->st_ctimespec = pipe->pipe_ctime;
1278 	/*
1279 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1280 	 * st_flags, st_gen.
1281 	 * XXX (st_dev, st_ino) should be unique.
1282 	 */
1283 	rel_mplock();
1284 	return (0);
1285 }
1286 
1287 /*
1288  * MPALMOSTSAFE - acquires mplock
1289  */
1290 static int
1291 pipe_close(struct file *fp)
1292 {
1293 	struct pipe *cpipe = (struct pipe *)fp->f_data;
1294 
1295 	get_mplock();
1296 	fp->f_ops = &badfileops;
1297 	fp->f_data = NULL;
1298 	funsetown(cpipe->pipe_sigio);
1299 	pipeclose(cpipe);
1300 	rel_mplock();
1301 	return (0);
1302 }
1303 
1304 /*
1305  * Shutdown one or both directions of a full-duplex pipe.
1306  *
1307  * MPALMOSTSAFE - acquires mplock
1308  */
1309 static int
1310 pipe_shutdown(struct file *fp, int how)
1311 {
1312 	struct pipe *rpipe;
1313 	struct pipe *wpipe;
1314 	int error = EPIPE;
1315 
1316 	get_mplock();
1317 	rpipe = (struct pipe *)fp->f_data;
1318 
1319 	switch(how) {
1320 	case SHUT_RDWR:
1321 	case SHUT_RD:
1322 		if (rpipe) {
1323 			rpipe->pipe_state |= PIPE_EOF;
1324 			pipeselwakeup(rpipe);
1325 			if (rpipe->pipe_busy)
1326 				wakeup(rpipe);
1327 			error = 0;
1328 		}
1329 		if (how == SHUT_RD)
1330 			break;
1331 		/* fall through */
1332 	case SHUT_WR:
1333 		if (rpipe && (wpipe = rpipe->pipe_peer) != NULL) {
1334 			wpipe->pipe_state |= PIPE_EOF;
1335 			pipeselwakeup(wpipe);
1336 			if (wpipe->pipe_busy)
1337 				wakeup(wpipe);
1338 			error = 0;
1339 		}
1340 	}
1341 	rel_mplock();
1342 	return (error);
1343 }
1344 
1345 static void
1346 pipe_free_kmem(struct pipe *cpipe)
1347 {
1348 	if (cpipe->pipe_buffer.buffer != NULL) {
1349 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1350 			--pipe_nbig;
1351 		kmem_free(&kernel_map,
1352 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1353 			cpipe->pipe_buffer.size);
1354 		cpipe->pipe_buffer.buffer = NULL;
1355 		cpipe->pipe_buffer.object = NULL;
1356 	}
1357 #ifndef PIPE_NODIRECT
1358 	KKASSERT(cpipe->pipe_map.xio_bytes == 0 &&
1359 		cpipe->pipe_map.xio_offset == 0 &&
1360 		cpipe->pipe_map.xio_npages == 0);
1361 #endif
1362 }
1363 
1364 /*
1365  * shutdown the pipe
1366  */
1367 static void
1368 pipeclose(struct pipe *cpipe)
1369 {
1370 	globaldata_t gd;
1371 	struct pipe *ppipe;
1372 
1373 	if (cpipe == NULL)
1374 		return;
1375 
1376 	pipeselwakeup(cpipe);
1377 
1378 	/*
1379 	 * If the other side is blocked, wake it up saying that
1380 	 * we want to close it down.
1381 	 */
1382 	while (cpipe->pipe_busy) {
1383 		wakeup(cpipe);
1384 		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1385 		tsleep(cpipe, 0, "pipecl", 0);
1386 	}
1387 
1388 	/*
1389 	 * Disconnect from peer
1390 	 */
1391 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1392 		pipeselwakeup(ppipe);
1393 
1394 		ppipe->pipe_state |= PIPE_EOF;
1395 		wakeup(ppipe);
1396 		KNOTE(&ppipe->pipe_sel.si_note, 0);
1397 		ppipe->pipe_peer = NULL;
1398 	}
1399 
1400 	if (cpipe->pipe_kva) {
1401 		pmap_qremove(cpipe->pipe_kva, XIO_INTERNAL_PAGES);
1402 		kmem_free(&kernel_map, cpipe->pipe_kva, XIO_INTERNAL_SIZE);
1403 		cpipe->pipe_kva = NULL;
1404 	}
1405 
1406 	/*
1407 	 * free or cache resources
1408 	 */
1409 	gd = mycpu;
1410 	if (gd->gd_pipeqcount >= pipe_maxcache ||
1411 	    cpipe->pipe_buffer.size != PIPE_SIZE
1412 	) {
1413 		pipe_free_kmem(cpipe);
1414 		kfree(cpipe, M_PIPE);
1415 	} else {
1416 		KKASSERT(cpipe->pipe_map.xio_npages == 0 &&
1417 			cpipe->pipe_map.xio_bytes == 0 &&
1418 			cpipe->pipe_map.xio_offset == 0);
1419 		cpipe->pipe_state = 0;
1420 		cpipe->pipe_busy = 0;
1421 		cpipe->pipe_peer = gd->gd_pipeq;
1422 		gd->gd_pipeq = cpipe;
1423 		++gd->gd_pipeqcount;
1424 	}
1425 }
1426 
1427 /*
1428  * MPALMOSTSAFE - acquires mplock
1429  */
1430 static int
1431 pipe_kqfilter(struct file *fp, struct knote *kn)
1432 {
1433 	struct pipe *cpipe;
1434 
1435 	get_mplock();
1436 	cpipe = (struct pipe *)kn->kn_fp->f_data;
1437 
1438 	switch (kn->kn_filter) {
1439 	case EVFILT_READ:
1440 		kn->kn_fop = &pipe_rfiltops;
1441 		break;
1442 	case EVFILT_WRITE:
1443 		kn->kn_fop = &pipe_wfiltops;
1444 		cpipe = cpipe->pipe_peer;
1445 		if (cpipe == NULL) {
1446 			/* other end of pipe has been closed */
1447 			rel_mplock();
1448 			return (EPIPE);
1449 		}
1450 		break;
1451 	default:
1452 		return (1);
1453 	}
1454 	kn->kn_hook = (caddr_t)cpipe;
1455 
1456 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1457 	rel_mplock();
1458 	return (0);
1459 }
1460 
1461 static void
1462 filt_pipedetach(struct knote *kn)
1463 {
1464 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1465 
1466 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1467 }
1468 
1469 /*ARGSUSED*/
1470 static int
1471 filt_piperead(struct knote *kn, long hint)
1472 {
1473 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1474 	struct pipe *wpipe = rpipe->pipe_peer;
1475 
1476 	kn->kn_data = rpipe->pipe_buffer.cnt;
1477 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) {
1478 		kn->kn_data = rpipe->pipe_map.xio_bytes -
1479 				rpipe->pipe_buffer.out;
1480 	}
1481 
1482 	if ((rpipe->pipe_state & PIPE_EOF) ||
1483 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1484 		kn->kn_flags |= EV_EOF;
1485 		return (1);
1486 	}
1487 	return (kn->kn_data > 0);
1488 }
1489 
1490 /*ARGSUSED*/
1491 static int
1492 filt_pipewrite(struct knote *kn, long hint)
1493 {
1494 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1495 	struct pipe *wpipe = rpipe->pipe_peer;
1496 
1497 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1498 		kn->kn_data = 0;
1499 		kn->kn_flags |= EV_EOF;
1500 		return (1);
1501 	}
1502 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1503 	if (wpipe->pipe_state & PIPE_DIRECTW)
1504 		kn->kn_data = 0;
1505 
1506 	return (kn->kn_data >= PIPE_BUF);
1507 }
1508