xref: /dragonfly/sys/kern/uipc_mbuf.c (revision 2d8a3be7)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/kern/uipc_mbuf.c,v 1.51.2.24 2003/04/15 06:59:29 silby Exp $
35  * $DragonFly: src/sys/kern/uipc_mbuf.c,v 1.13 2003/10/15 16:48:03 hmp Exp $
36  */
37 
38 #include "opt_param.h"
39 #include "opt_mbuf_stress_test.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/thread.h>
49 #include <sys/globaldata.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_kern.h>
53 #include <vm/vm_extern.h>
54 
55 #ifdef INVARIANTS
56 #include <machine/cpu.h>
57 #endif
58 
59 static void mbinit (void *);
60 SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbinit, NULL)
61 
62 struct mbuf *mbutl;
63 char	*mclrefcnt;
64 struct mbstat mbstat;
65 u_long	mbtypes[MT_NTYPES];
66 struct mbuf *mmbfree;
67 union mcluster *mclfree;
68 int	max_linkhdr;
69 int	max_protohdr;
70 int	max_hdr;
71 int	max_datalen;
72 int	m_defragpackets;
73 int	m_defragbytes;
74 int	m_defraguseless;
75 int	m_defragfailure;
76 #ifdef MBUF_STRESS_TEST
77 int	m_defragrandomfailures;
78 #endif
79 
80 int	nmbclusters;
81 int	nmbufs;
82 u_int	m_mballoc_wid = 0;
83 u_int	m_clalloc_wid = 0;
84 
85 SYSCTL_DECL(_kern_ipc);
86 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RW,
87 	   &max_linkhdr, 0, "");
88 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RW,
89 	   &max_protohdr, 0, "");
90 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RW, &max_hdr, 0, "");
91 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RW,
92 	   &max_datalen, 0, "");
93 SYSCTL_INT(_kern_ipc, OID_AUTO, mbuf_wait, CTLFLAG_RW,
94 	   &mbuf_wait, 0, "");
95 SYSCTL_STRUCT(_kern_ipc, KIPC_MBSTAT, mbstat, CTLFLAG_RW, &mbstat, mbstat, "");
96 SYSCTL_OPAQUE(_kern_ipc, OID_AUTO, mbtypes, CTLFLAG_RD, mbtypes,
97 	   sizeof(mbtypes), "LU", "");
98 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD,
99 	   &nmbclusters, 0, "Maximum number of mbuf clusters available");
100 SYSCTL_INT(_kern_ipc, OID_AUTO, nmbufs, CTLFLAG_RD, &nmbufs, 0,
101 	   "Maximum number of mbufs available");
102 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
103 	   &m_defragpackets, 0, "");
104 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
105 	   &m_defragbytes, 0, "");
106 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
107 	   &m_defraguseless, 0, "");
108 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
109 	   &m_defragfailure, 0, "");
110 #ifdef MBUF_STRESS_TEST
111 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
112 	   &m_defragrandomfailures, 0, "");
113 #endif
114 
115 static void	m_reclaim (void);
116 
117 #ifndef NMBCLUSTERS
118 #define NMBCLUSTERS	(512 + maxusers * 16)
119 #endif
120 #ifndef NMBUFS
121 #define NMBUFS		(nmbclusters * 4)
122 #endif
123 
124 /*
125  * Perform sanity checks of tunables declared above.
126  */
127 static void
128 tunable_mbinit(void *dummy)
129 {
130 
131 	/*
132 	 * This has to be done before VM init.
133 	 */
134 	nmbclusters = NMBCLUSTERS;
135 	TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
136 	nmbufs = NMBUFS;
137 	TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
138 	/* Sanity checks */
139 	if (nmbufs < nmbclusters * 2)
140 		nmbufs = nmbclusters * 2;
141 
142 	return;
143 }
144 SYSINIT(tunable_mbinit, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_mbinit, NULL);
145 
146 /* "number of clusters of pages" */
147 #define NCL_INIT	1
148 
149 #define NMB_INIT	16
150 
151 /* ARGSUSED*/
152 static void
153 mbinit(dummy)
154 	void *dummy;
155 {
156 	int s;
157 
158 	mmbfree = NULL; mclfree = NULL;
159 	mbstat.m_msize = MSIZE;
160 	mbstat.m_mclbytes = MCLBYTES;
161 	mbstat.m_minclsize = MINCLSIZE;
162 	mbstat.m_mlen = MLEN;
163 	mbstat.m_mhlen = MHLEN;
164 
165 	s = splimp();
166 	if (m_mballoc(NMB_INIT, M_DONTWAIT) == 0)
167 		goto bad;
168 #if MCLBYTES <= PAGE_SIZE
169 	if (m_clalloc(NCL_INIT, M_DONTWAIT) == 0)
170 		goto bad;
171 #else
172 	/* It's OK to call contigmalloc in this context. */
173 	if (m_clalloc(16, M_WAIT) == 0)
174 		goto bad;
175 #endif
176 	splx(s);
177 	return;
178 bad:
179 	panic("mbinit");
180 }
181 
182 /*
183  * Allocate at least nmb mbufs and place on mbuf free list.
184  * Must be called at splimp.
185  */
186 /* ARGSUSED */
187 int
188 m_mballoc(nmb, how)
189 	int nmb;
190 	int how;
191 {
192 	caddr_t p;
193 	int i;
194 	int nbytes;
195 
196 	/*
197 	 * If we've hit the mbuf limit, stop allocating from mb_map,
198 	 * (or trying to) in order to avoid dipping into the section of
199 	 * mb_map which we've "reserved" for clusters.
200 	 */
201 	if ((nmb + mbstat.m_mbufs) > nmbufs)
202 		return (0);
203 
204 	/*
205 	 * Once we run out of map space, it will be impossible to get
206 	 * any more (nothing is ever freed back to the map)
207 	 * -- however you are not dead as m_reclaim might
208 	 * still be able to free a substantial amount of space.
209 	 *
210 	 * XXX Furthermore, we can also work with "recycled" mbufs (when
211 	 * we're calling with M_WAIT the sleep procedure will be woken
212 	 * up when an mbuf is freed. See m_mballoc_wait()).
213 	 */
214 	if (mb_map_full)
215 		return (0);
216 
217 	nbytes = round_page(nmb * MSIZE);
218 	p = (caddr_t)kmem_malloc(mb_map, nbytes, M_NOWAIT);
219 	if (p == 0 && how == M_WAIT) {
220 		mbstat.m_wait++;
221 		p = (caddr_t)kmem_malloc(mb_map, nbytes, M_WAITOK);
222 	}
223 
224 	/*
225 	 * Either the map is now full, or `how' is M_NOWAIT and there
226 	 * are no pages left.
227 	 */
228 	if (p == NULL)
229 		return (0);
230 
231 	nmb = nbytes / MSIZE;
232 	for (i = 0; i < nmb; i++) {
233 		((struct mbuf *)p)->m_next = mmbfree;
234 		mmbfree = (struct mbuf *)p;
235 		p += MSIZE;
236 	}
237 	mbstat.m_mbufs += nmb;
238 	mbtypes[MT_FREE] += nmb;
239 	return (1);
240 }
241 
242 /*
243  * Once the mb_map has been exhausted and if the call to the allocation macros
244  * (or, in some cases, functions) is with M_WAIT, then it is necessary to rely
245  * solely on reclaimed mbufs. Here we wait for an mbuf to be freed for a
246  * designated (mbuf_wait) time.
247  */
248 struct mbuf *
249 m_mballoc_wait(int caller, int type)
250 {
251 	struct mbuf *p;
252 	int s;
253 
254 	s = splimp();
255 	m_mballoc_wid++;
256 	if ((tsleep(&m_mballoc_wid, 0, "mballc", mbuf_wait)) == EWOULDBLOCK)
257 		m_mballoc_wid--;
258 	splx(s);
259 
260 	/*
261 	 * Now that we (think) that we've got something, we will redo an
262 	 * MGET, but avoid getting into another instance of m_mballoc_wait()
263 	 * XXX: We retry to fetch _even_ if the sleep timed out. This is left
264 	 *      this way, purposely, in the [unlikely] case that an mbuf was
265 	 *      freed but the sleep was not awakened in time.
266 	 */
267 	p = NULL;
268 	switch (caller) {
269 	case MGET_C:
270 		MGET(p, M_DONTWAIT, type);
271 		break;
272 	case MGETHDR_C:
273 		MGETHDR(p, M_DONTWAIT, type);
274 		break;
275 	default:
276 		panic("m_mballoc_wait: invalid caller (%d)", caller);
277 	}
278 
279 	s = splimp();
280 	if (p != NULL) {		/* We waited and got something... */
281 		mbstat.m_wait++;
282 		/* Wake up another if we have more free. */
283 		if (mmbfree != NULL)
284 			MMBWAKEUP();
285 	}
286 	splx(s);
287 	return (p);
288 }
289 
290 #if MCLBYTES > PAGE_SIZE
291 static int i_want_my_mcl;
292 
293 static void
294 kproc_mclalloc(void)
295 {
296 	int status;
297 
298 	while (1) {
299 		tsleep(&i_want_my_mcl, 0, "mclalloc", 0);
300 
301 		for (; i_want_my_mcl; i_want_my_mcl--) {
302 			if (m_clalloc(1, M_WAIT) == 0)
303 				printf("m_clalloc failed even in process context!\n");
304 		}
305 	}
306 }
307 
308 static struct thread *mclallocthread;
309 static struct kproc_desc mclalloc_kp = {
310 	"mclalloc",
311 	kproc_mclalloc,
312 	&mclallocthread
313 };
314 SYSINIT(mclallocthread, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
315 	   &mclalloc_kp);
316 #endif
317 
318 /*
319  * Allocate some number of mbuf clusters
320  * and place on cluster free list.
321  * Must be called at splimp.
322  */
323 /* ARGSUSED */
324 int
325 m_clalloc(ncl, how)
326 	int ncl;
327 	int how;
328 {
329 	caddr_t p;
330 	int i;
331 	int npg;
332 
333 	/*
334 	 * If we've hit the mcluster number limit, stop allocating from
335 	 * mb_map, (or trying to) in order to avoid dipping into the section
336 	 * of mb_map which we've "reserved" for mbufs.
337 	 */
338 	if ((ncl + mbstat.m_clusters) > nmbclusters)
339 		goto m_clalloc_fail;
340 
341 	/*
342 	 * Once we run out of map space, it will be impossible
343 	 * to get any more (nothing is ever freed back to the
344 	 * map). From this point on, we solely rely on freed
345 	 * mclusters.
346 	 */
347 	if (mb_map_full)
348 		goto m_clalloc_fail;
349 
350 #if MCLBYTES > PAGE_SIZE
351 	if (how != M_WAIT) {
352 		i_want_my_mcl += ncl;
353 		wakeup(&i_want_my_mcl);
354 		mbstat.m_wait++;
355 		p = 0;
356 	} else {
357 		p = contigmalloc_map(MCLBYTES * ncl, M_DEVBUF, M_WAITOK, 0ul,
358 				  ~0ul, PAGE_SIZE, 0, mb_map);
359 	}
360 #else
361 	npg = ncl;
362 	p = (caddr_t)kmem_malloc(mb_map, ctob(npg),
363 				 how != M_WAIT ? M_NOWAIT : M_WAITOK);
364 	ncl = ncl * PAGE_SIZE / MCLBYTES;
365 #endif
366 	/*
367 	 * Either the map is now full, or `how' is M_NOWAIT and there
368 	 * are no pages left.
369 	 */
370 	if (p == NULL) {
371 		static int last_report ; /* when we did that (in ticks) */
372 m_clalloc_fail:
373 		mbstat.m_drops++;
374 		if (ticks < last_report || (ticks - last_report) >= hz) {
375 			last_report = ticks;
376 			printf("All mbuf clusters exhausted, please see tuning(7).\n");
377 		}
378 		return (0);
379 	}
380 
381 	for (i = 0; i < ncl; i++) {
382 		((union mcluster *)p)->mcl_next = mclfree;
383 		mclfree = (union mcluster *)p;
384 		p += MCLBYTES;
385 		mbstat.m_clfree++;
386 	}
387 	mbstat.m_clusters += ncl;
388 	return (1);
389 }
390 
391 /*
392  * Once the mb_map submap has been exhausted and the allocation is called with
393  * M_WAIT, we rely on the mclfree union pointers. If nothing is free, we will
394  * sleep for a designated amount of time (mbuf_wait) or until we're woken up
395  * due to sudden mcluster availability.
396  */
397 caddr_t
398 m_clalloc_wait(void)
399 {
400 	caddr_t p;
401 	int s;
402 
403 	/* If in interrupt context, and INVARIANTS, maintain sanity and die. */
404 	KASSERT(mycpu->gd_intr_nesting_level == 0, ("CLALLOC: CANNOT WAIT IN INTERRUPT"));
405 
406 	/* Sleep until something's available or until we expire. */
407 	m_clalloc_wid++;
408 	if ((tsleep(&m_clalloc_wid, 0, "mclalc", mbuf_wait)) == EWOULDBLOCK)
409 		m_clalloc_wid--;
410 
411 	/*
412 	 * Now that we (think) that we've got something, we will redo and
413 	 * MGET, but avoid getting into another instance of m_clalloc_wait()
414 	 */
415 	p = m_mclalloc(M_DONTWAIT);
416 
417 	s = splimp();
418 	if (p != NULL) {	/* We waited and got something... */
419 		mbstat.m_wait++;
420 		/* Wake up another if we have more free. */
421 		if (mclfree != NULL)
422 			MCLWAKEUP();
423 	}
424 
425 	splx(s);
426 	return (p);
427 }
428 
429 /*
430  * When MGET fails, ask protocols to free space when short of memory,
431  * then re-attempt to allocate an mbuf.
432  */
433 struct mbuf *
434 m_retry(i, t)
435 	int i, t;
436 {
437 	struct mbuf *m;
438 	int ms;
439 
440 	/*
441 	 * Must only do the reclaim if not in an interrupt context.
442 	 */
443 	if (i == M_WAIT) {
444 		KASSERT(mycpu->gd_intr_nesting_level == 0,
445 		    ("MBALLOC: CANNOT WAIT IN INTERRUPT"));
446 		m_reclaim();
447 	}
448 
449 	ms = splimp();
450 	if (mmbfree == NULL)
451 		(void)m_mballoc(1, i);
452 	m = mmbfree;
453 	if (m != NULL) {
454 		mmbfree = m->m_next;
455 		mbtypes[MT_FREE]--;
456 		m->m_type = t;
457 		mbtypes[t]++;
458 		m->m_next = NULL;
459 		m->m_nextpkt = NULL;
460 		m->m_data = m->m_dat;
461 		m->m_flags = 0;
462 		splx(ms);
463 		mbstat.m_wait++;
464 	} else {
465 		static int last_report ; /* when we did that (in ticks) */
466 
467 		splx(ms);
468 		mbstat.m_drops++;
469 		if (ticks < last_report || (ticks - last_report) >= hz) {
470 			last_report = ticks;
471 			printf("All mbufs exhausted, please see tuning(7).\n");
472 		}
473 	}
474 
475 	return (m);
476 }
477 
478 /*
479  * As above; retry an MGETHDR.
480  */
481 struct mbuf *
482 m_retryhdr(i, t)
483 	int i, t;
484 {
485 	struct mbuf *m;
486 	int ms;
487 
488 	/*
489 	 * Must only do the reclaim if not in an interrupt context.
490 	 */
491 	if (i == M_WAIT) {
492 		KASSERT(mycpu->gd_intr_nesting_level == 0,
493 		    ("MBALLOC: CANNOT WAIT IN INTERRUPT"));
494 		m_reclaim();
495 	}
496 
497 	ms = splimp();
498 	if (mmbfree == NULL)
499 		(void)m_mballoc(1, i);
500 	m = mmbfree;
501 	if (m != NULL) {
502 		mmbfree = m->m_next;
503 		mbtypes[MT_FREE]--;
504 		m->m_type = t;
505 		mbtypes[t]++;
506 		m->m_next = NULL;
507 		m->m_nextpkt = NULL;
508 		m->m_data = m->m_pktdat;
509 		m->m_flags = M_PKTHDR;
510 		m->m_pkthdr.rcvif = NULL;
511 		SLIST_INIT(&m->m_pkthdr.tags);
512 		m->m_pkthdr.csum_flags = 0;
513 		splx(ms);
514 		mbstat.m_wait++;
515 	} else {
516 		static int last_report ; /* when we did that (in ticks) */
517 
518 		splx(ms);
519 		mbstat.m_drops++;
520 		if (ticks < last_report || (ticks - last_report) >= hz) {
521 			last_report = ticks;
522 			printf("All mbufs exhausted, please see tuning(7).\n");
523 		}
524 	}
525 
526 	return (m);
527 }
528 
529 static void
530 m_reclaim()
531 {
532 	struct domain *dp;
533 	struct protosw *pr;
534 	int s = splimp();
535 
536 	for (dp = domains; dp; dp = dp->dom_next)
537 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
538 			if (pr->pr_drain)
539 				(*pr->pr_drain)();
540 	splx(s);
541 	mbstat.m_drain++;
542 }
543 
544 /*
545  * Space allocation routines.
546  * These are also available as macros
547  * for critical paths.
548  */
549 struct mbuf *
550 m_get(how, type)
551 	int how, type;
552 {
553 	struct mbuf *m;
554 	int ms;
555 
556 	ms = splimp();
557 	if (mmbfree == NULL)
558 		(void)m_mballoc(1, how);
559 	m = mmbfree;
560 	if (m != NULL) {
561 		mmbfree = m->m_next;
562 		mbtypes[MT_FREE]--;
563 		m->m_type = type;
564 		mbtypes[type]++;
565 		m->m_next = NULL;
566 		m->m_nextpkt = NULL;
567 		m->m_data = m->m_dat;
568 		m->m_flags = 0;
569 		splx(ms);
570 	} else {
571 		splx(ms);
572 		m = m_retry(how, type);
573 		if (m == NULL && how == M_WAIT)
574 			m = m_mballoc_wait(MGET_C, type);
575 	}
576 	return (m);
577 }
578 
579 struct mbuf *
580 m_gethdr(how, type)
581 	int how, type;
582 {
583 	struct mbuf *m;
584 	int ms;
585 
586 	ms = splimp();
587 	if (mmbfree == NULL)
588 		(void)m_mballoc(1, how);
589 	m = mmbfree;
590 	if (m != NULL) {
591 		mmbfree = m->m_next;
592 		mbtypes[MT_FREE]--;
593 		m->m_type = type;
594 		mbtypes[type]++;
595 		m->m_next = NULL;
596 		m->m_nextpkt = NULL;
597 		m->m_data = m->m_pktdat;
598 		m->m_flags = M_PKTHDR;
599 		m->m_pkthdr.rcvif = NULL;
600 		SLIST_INIT(&m->m_pkthdr.tags);
601 		m->m_pkthdr.csum_flags = 0;
602 		splx(ms);
603 	} else {
604 		splx(ms);
605 		m = m_retryhdr(how, type);
606 		if (m == NULL && how == M_WAIT)
607 			m = m_mballoc_wait(MGETHDR_C, type);
608 	}
609 	return (m);
610 }
611 
612 struct mbuf *
613 m_getclr(how, type)
614 	int how, type;
615 {
616 	struct mbuf *m;
617 
618 	MGET(m, how, type);
619 	if (m == 0)
620 		return (0);
621 	bzero(mtod(m, caddr_t), MLEN);
622 	return (m);
623 }
624 
625 /*
626  * m_getcl() returns an mbuf with an attached cluster.
627  * Because many network drivers use this kind of buffers a lot, it is
628  * convenient to keep a small pool of free buffers of this kind.
629  * Even a small size such as 10 gives about 10% improvement in the
630  * forwarding rate in a bridge or router.
631  * The size of this free list is controlled by the sysctl variable
632  * mcl_pool_max. The list is populated on m_freem(), and used in
633  * m_getcl() if elements are available.
634  */
635 static struct mbuf *mcl_pool;
636 static int mcl_pool_now;
637 static int mcl_pool_max = 0;
638 
639 SYSCTL_INT(_kern_ipc, OID_AUTO, mcl_pool_max, CTLFLAG_RW, &mcl_pool_max, 0,
640            "Maximum number of mbufs+cluster in free list");
641 SYSCTL_INT(_kern_ipc, OID_AUTO, mcl_pool_now, CTLFLAG_RD, &mcl_pool_now, 0,
642            "Current number of mbufs+cluster in free list");
643 
644 struct mbuf *
645 m_getcl(int how, short type, int flags)
646 {
647 	int s = splimp();
648 	struct mbuf *mp;
649 
650 	if (flags & M_PKTHDR) {
651 		if (type == MT_DATA && mcl_pool) {
652 			mp = mcl_pool;
653 			mcl_pool = mp->m_nextpkt;
654 			mcl_pool_now--;
655 			splx(s);
656 			mp->m_nextpkt = NULL;
657 			mp->m_data = mp->m_ext.ext_buf;
658 			mp->m_flags = M_PKTHDR|M_EXT;
659 			mp->m_pkthdr.rcvif = NULL;
660 			mp->m_pkthdr.csum_flags = 0;
661 			return mp;
662 		} else
663 			MGETHDR(mp, how, type);
664 	} else
665 		MGET(mp, how, type);
666 	if (mp) {
667 		MCLGET(mp, how);
668 		if ( (mp->m_flags & M_EXT) == 0) {
669 			m_free(mp);
670 			mp = NULL;
671 		}
672 	}
673 	splx(s);
674 	return mp;
675 }
676 
677 /*
678  * struct mbuf *
679  * m_getm(m, len, how, type)
680  *
681  * This will allocate len-worth of mbufs and/or mbuf clusters (whatever fits
682  * best) and return a pointer to the top of the allocated chain. If m is
683  * non-null, then we assume that it is a single mbuf or an mbuf chain to
684  * which we want len bytes worth of mbufs and/or clusters attached, and so
685  * if we succeed in allocating it, we will just return a pointer to m.
686  *
687  * If we happen to fail at any point during the allocation, we will free
688  * up everything we have already allocated and return NULL.
689  *
690  */
691 struct mbuf *
692 m_getm(struct mbuf *m, int len, int how, int type)
693 {
694 	struct mbuf *top, *tail, *mp, *mtail = NULL;
695 
696 	KASSERT(len >= 0, ("len is < 0 in m_getm"));
697 
698 	MGET(mp, how, type);
699 	if (mp == NULL)
700 		return (NULL);
701 	else if (len > MINCLSIZE) {
702 		MCLGET(mp, how);
703 		if ((mp->m_flags & M_EXT) == 0) {
704 			m_free(mp);
705 			return (NULL);
706 		}
707 	}
708 	mp->m_len = 0;
709 	len -= M_TRAILINGSPACE(mp);
710 
711 	if (m != NULL)
712 		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next);
713 	else
714 		m = mp;
715 
716 	top = tail = mp;
717 	while (len > 0) {
718 		MGET(mp, how, type);
719 		if (mp == NULL)
720 			goto failed;
721 
722 		tail->m_next = mp;
723 		tail = mp;
724 		if (len > MINCLSIZE) {
725 			MCLGET(mp, how);
726 			if ((mp->m_flags & M_EXT) == 0)
727 				goto failed;
728 		}
729 
730 		mp->m_len = 0;
731 		len -= M_TRAILINGSPACE(mp);
732 	}
733 
734 	if (mtail != NULL)
735 		mtail->m_next = top;
736 	return (m);
737 
738 failed:
739 	m_freem(top);
740 	return (NULL);
741 }
742 
743 /*
744  * m_mclalloc()	- Allocates an mbuf cluster.
745  */
746 caddr_t
747 m_mclalloc(int how)
748 {
749 	caddr_t mp;
750 	int s;
751 
752 	s = splimp();
753 
754 	if (mclfree == NULL)
755 		m_clalloc(1, how);
756 	mp = (caddr_t)mclfree;
757 	if (mp != NULL) {
758 		mclrefcnt[mtocl(mp)]++;
759 		mbstat.m_clfree--;
760 		mclfree = ((union mcluster *)mp)->mcl_next;
761 		splx(s);
762 		return(mp);
763 	}
764 	splx(s);
765 	if (how == M_WAIT)
766 		return(m_clalloc_wait());
767 	return(NULL);
768 }
769 
770 /*
771  *  m_mclget() - Adds a cluster to a normal mbuf, M_EXT is set on success.
772  */
773 void
774 m_mclget(struct mbuf *m, int how)
775 {
776 	m->m_ext.ext_buf = m_mclalloc(how);
777 	if (m->m_ext.ext_buf != NULL) {
778 		m->m_data = m->m_ext.ext_buf;
779 		m->m_flags |= M_EXT;
780 		m->m_ext.ext_free = NULL;
781 		m->m_ext.ext_ref = NULL;
782 		m->m_ext.ext_size = MCLBYTES;
783 	}
784 }
785 
786 static __inline void
787 _m_mclfree(caddr_t data)
788 {
789 	union mcluster *mp = (union mcluster *)data;
790 
791 	KASSERT(mclrefcnt[mtocl(mp)] > 0, ("freeing free cluster"));
792 	if (--mclrefcnt[mtocl(mp)] == 0) {
793 		mp->mcl_next = mclfree;
794 		mclfree = mp;
795 		mbstat.m_clfree++;
796 		MCLWAKEUP();
797 	}
798 }
799 
800 void
801 m_mclfree(caddr_t mp)
802 {
803 	int s = splimp();
804 	_m_mclfree(mp);
805 	splx(s);
806 }
807 
808 /*
809  * m_free()
810  *
811  * Free a single mbuf and any associated external storage.  The successor,
812  * if any, is returned.
813  *
814  * We do need to check non-first mbuf for m_aux, since some of existing
815  * code does not call M_PREPEND properly.
816  * (example: call to bpf_mtap from drivers)
817  */
818 struct mbuf *
819 m_free(struct mbuf *m)
820 {
821 	int s;
822 	struct mbuf *n;
823 
824 	s = splimp();
825 	KASSERT(m->m_type != MT_FREE, ("freeing free mbuf"));
826 	mbtypes[m->m_type]--;
827 	if ((m->m_flags & M_PKTHDR) != 0)
828 		m_tag_delete_chain(m, NULL);
829 	if (m->m_flags & M_EXT) {
830 		if (m->m_ext.ext_free != NULL) {
831 			m->m_ext.ext_free(m->m_ext.ext_buf, m->m_ext.ext_size);
832 		} else {
833 			_m_mclfree(m->m_ext.ext_buf); /* inlined */
834 		}
835 	}
836 	n = m->m_next;
837 	m->m_type = MT_FREE;
838 	mbtypes[MT_FREE]++;
839 	m->m_next = mmbfree;
840 	mmbfree = m;
841 	MMBWAKEUP();
842 	splx(s);
843 
844 	return (n);
845 }
846 
847 void
848 m_freem(struct mbuf *m)
849 {
850 	int s = splimp();
851 
852 	/*
853 	 * Try to keep a small pool of mbuf+cluster for quick use in
854 	 * device drivers. A good candidate is a M_PKTHDR buffer with
855 	 * only one cluster attached. Other mbufs, or those exceeding
856 	 * the pool size, are just m_free'd in the usual way.
857 	 * The following code makes sure that m_next, m_type,
858 	 * m_pkthdr.aux and m_ext.* are properly initialized.
859 	 * Other fields in the mbuf are initialized in m_getcl()
860 	 * upon allocation.
861 	 */
862         if (mcl_pool_now < mcl_pool_max && m && m->m_next == NULL &&
863             (m->m_flags & (M_PKTHDR|M_EXT)) == (M_PKTHDR|M_EXT) &&
864             m->m_type == MT_DATA && M_EXT_WRITABLE(m) ) {
865 		m_tag_delete_chain(m, NULL);
866                 m->m_nextpkt = mcl_pool;
867                 mcl_pool = m;
868                 mcl_pool_now++;
869         } else {
870 		while (m)
871 			m = m_free(m);
872 	}
873 	splx(s);
874 }
875 
876 /*
877  * Mbuffer utility routines.
878  */
879 
880 /*
881  * Lesser-used path for M_PREPEND:
882  * allocate new mbuf to prepend to chain,
883  * copy junk along.
884  */
885 struct mbuf *
886 m_prepend(m, len, how)
887 	struct mbuf *m;
888 	int len, how;
889 {
890 	struct mbuf *mn;
891 
892 	MGET(mn, how, m->m_type);
893 	if (mn == (struct mbuf *)NULL) {
894 		m_freem(m);
895 		return ((struct mbuf *)NULL);
896 	}
897 	if (m->m_flags & M_PKTHDR)
898 		M_MOVE_PKTHDR(mn, m);
899 	mn->m_next = m;
900 	m = mn;
901 	if (len < MHLEN)
902 		MH_ALIGN(m, len);
903 	m->m_len = len;
904 	return (m);
905 }
906 
907 /*
908  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
909  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
910  * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
911  * Note that the copy is read-only, because clusters are not copied,
912  * only their reference counts are incremented.
913  */
914 #define MCFail (mbstat.m_mcfail)
915 
916 struct mbuf *
917 m_copym(m, off0, len, wait)
918 	const struct mbuf *m;
919 	int off0, wait;
920 	int len;
921 {
922 	struct mbuf *n, **np;
923 	int off = off0;
924 	struct mbuf *top;
925 	int copyhdr = 0;
926 
927 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
928 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
929 	if (off == 0 && m->m_flags & M_PKTHDR)
930 		copyhdr = 1;
931 	while (off > 0) {
932 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
933 		if (off < m->m_len)
934 			break;
935 		off -= m->m_len;
936 		m = m->m_next;
937 	}
938 	np = &top;
939 	top = 0;
940 	while (len > 0) {
941 		if (m == 0) {
942 			KASSERT(len == M_COPYALL,
943 			    ("m_copym, length > size of mbuf chain"));
944 			break;
945 		}
946 		MGET(n, wait, m->m_type);
947 		*np = n;
948 		if (n == 0)
949 			goto nospace;
950 		if (copyhdr) {
951 			if (!m_dup_pkthdr(n, m, wait))
952 				goto nospace;
953 			if (len == M_COPYALL)
954 				n->m_pkthdr.len -= off0;
955 			else
956 				n->m_pkthdr.len = len;
957 			copyhdr = 0;
958 		}
959 		n->m_len = min(len, m->m_len - off);
960 		if (m->m_flags & M_EXT) {
961 			n->m_data = m->m_data + off;
962 			if (m->m_ext.ext_ref == NULL) {
963 				atomic_add_char(
964 				    &mclrefcnt[mtocl(m->m_ext.ext_buf)], 1);
965 			} else {
966 				int s = splimp();
967 
968 				(*m->m_ext.ext_ref)(m->m_ext.ext_buf,
969 				    m->m_ext.ext_size);
970 				splx(s);
971 			}
972 			n->m_ext = m->m_ext;
973 			n->m_flags |= M_EXT;
974 		} else
975 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
976 			    (unsigned)n->m_len);
977 		if (len != M_COPYALL)
978 			len -= n->m_len;
979 		off = 0;
980 		m = m->m_next;
981 		np = &n->m_next;
982 	}
983 	if (top == 0)
984 		MCFail++;
985 	return (top);
986 nospace:
987 	m_freem(top);
988 	MCFail++;
989 	return (0);
990 }
991 
992 /*
993  * Copy an entire packet, including header (which must be present).
994  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
995  * Note that the copy is read-only, because clusters are not copied,
996  * only their reference counts are incremented.
997  * Preserve alignment of the first mbuf so if the creator has left
998  * some room at the beginning (e.g. for inserting protocol headers)
999  * the copies also have the room available.
1000  */
1001 struct mbuf *
1002 m_copypacket(m, how)
1003 	struct mbuf *m;
1004 	int how;
1005 {
1006 	struct mbuf *top, *n, *o;
1007 
1008 	MGET(n, how, m->m_type);
1009 	top = n;
1010 	if (!n)
1011 		goto nospace;
1012 
1013 	if (!m_dup_pkthdr(n, m, how))
1014 		goto nospace;
1015 	n->m_len = m->m_len;
1016 	if (m->m_flags & M_EXT) {
1017 		n->m_data = m->m_data;
1018 		if (m->m_ext.ext_ref == NULL)
1019 			atomic_add_char(&mclrefcnt[mtocl(m->m_ext.ext_buf)], 1);
1020 		else {
1021 			int s = splimp();
1022 
1023 			(*m->m_ext.ext_ref)(m->m_ext.ext_buf,
1024 			    m->m_ext.ext_size);
1025 			splx(s);
1026 		}
1027 		n->m_ext = m->m_ext;
1028 		n->m_flags |= M_EXT;
1029 	} else {
1030 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
1031 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1032 	}
1033 
1034 	m = m->m_next;
1035 	while (m) {
1036 		MGET(o, how, m->m_type);
1037 		if (!o)
1038 			goto nospace;
1039 
1040 		n->m_next = o;
1041 		n = n->m_next;
1042 
1043 		n->m_len = m->m_len;
1044 		if (m->m_flags & M_EXT) {
1045 			n->m_data = m->m_data;
1046 			if (m->m_ext.ext_ref == NULL) {
1047 				atomic_add_char(
1048 				    &mclrefcnt[mtocl(m->m_ext.ext_buf)], 1);
1049 			} else {
1050 				int s = splimp();
1051 
1052 				(*m->m_ext.ext_ref)(m->m_ext.ext_buf,
1053 				    m->m_ext.ext_size);
1054 				splx(s);
1055 			}
1056 			n->m_ext = m->m_ext;
1057 			n->m_flags |= M_EXT;
1058 		} else {
1059 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1060 		}
1061 
1062 		m = m->m_next;
1063 	}
1064 	return top;
1065 nospace:
1066 	m_freem(top);
1067 	MCFail++;
1068 	return 0;
1069 }
1070 
1071 /*
1072  * Copy data from an mbuf chain starting "off" bytes from the beginning,
1073  * continuing for "len" bytes, into the indicated buffer.
1074  */
1075 void
1076 m_copydata(m, off, len, cp)
1077 	const struct mbuf *m;
1078 	int off;
1079 	int len;
1080 	caddr_t cp;
1081 {
1082 	unsigned count;
1083 
1084 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
1085 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
1086 	while (off > 0) {
1087 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
1088 		if (off < m->m_len)
1089 			break;
1090 		off -= m->m_len;
1091 		m = m->m_next;
1092 	}
1093 	while (len > 0) {
1094 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
1095 		count = min(m->m_len - off, len);
1096 		bcopy(mtod(m, caddr_t) + off, cp, count);
1097 		len -= count;
1098 		cp += count;
1099 		off = 0;
1100 		m = m->m_next;
1101 	}
1102 }
1103 
1104 /*
1105  * Copy a packet header mbuf chain into a completely new chain, including
1106  * copying any mbuf clusters.  Use this instead of m_copypacket() when
1107  * you need a writable copy of an mbuf chain.
1108  */
1109 struct mbuf *
1110 m_dup(m, how)
1111 	struct mbuf *m;
1112 	int how;
1113 {
1114 	struct mbuf **p, *top = NULL;
1115 	int remain, moff, nsize;
1116 
1117 	/* Sanity check */
1118 	if (m == NULL)
1119 		return (0);
1120 	KASSERT((m->m_flags & M_PKTHDR) != 0, ("%s: !PKTHDR", __FUNCTION__));
1121 
1122 	/* While there's more data, get a new mbuf, tack it on, and fill it */
1123 	remain = m->m_pkthdr.len;
1124 	moff = 0;
1125 	p = &top;
1126 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
1127 		struct mbuf *n;
1128 
1129 		/* Get the next new mbuf */
1130 		MGET(n, how, m->m_type);
1131 		if (n == NULL)
1132 			goto nospace;
1133 		if (top == NULL) {		/* first one, must be PKTHDR */
1134 			if (!m_dup_pkthdr(n, m, how))
1135 				goto nospace;
1136 			nsize = MHLEN;
1137 		} else				/* not the first one */
1138 			nsize = MLEN;
1139 		if (remain >= MINCLSIZE) {
1140 			MCLGET(n, how);
1141 			if ((n->m_flags & M_EXT) == 0) {
1142 				(void)m_free(n);
1143 				goto nospace;
1144 			}
1145 			nsize = MCLBYTES;
1146 		}
1147 		n->m_len = 0;
1148 
1149 		/* Link it into the new chain */
1150 		*p = n;
1151 		p = &n->m_next;
1152 
1153 		/* Copy data from original mbuf(s) into new mbuf */
1154 		while (n->m_len < nsize && m != NULL) {
1155 			int chunk = min(nsize - n->m_len, m->m_len - moff);
1156 
1157 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1158 			moff += chunk;
1159 			n->m_len += chunk;
1160 			remain -= chunk;
1161 			if (moff == m->m_len) {
1162 				m = m->m_next;
1163 				moff = 0;
1164 			}
1165 		}
1166 
1167 		/* Check correct total mbuf length */
1168 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
1169 		    	("%s: bogus m_pkthdr.len", __FUNCTION__));
1170 	}
1171 	return (top);
1172 
1173 nospace:
1174 	m_freem(top);
1175 	MCFail++;
1176 	return (0);
1177 }
1178 
1179 /*
1180  * Concatenate mbuf chain n to m.
1181  * Both chains must be of the same type (e.g. MT_DATA).
1182  * Any m_pkthdr is not updated.
1183  */
1184 void
1185 m_cat(m, n)
1186 	struct mbuf *m, *n;
1187 {
1188 	while (m->m_next)
1189 		m = m->m_next;
1190 	while (n) {
1191 		if (m->m_flags & M_EXT ||
1192 		    m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
1193 			/* just join the two chains */
1194 			m->m_next = n;
1195 			return;
1196 		}
1197 		/* splat the data from one into the other */
1198 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1199 		    (u_int)n->m_len);
1200 		m->m_len += n->m_len;
1201 		n = m_free(n);
1202 	}
1203 }
1204 
1205 void
1206 m_adj(mp, req_len)
1207 	struct mbuf *mp;
1208 	int req_len;
1209 {
1210 	int len = req_len;
1211 	struct mbuf *m;
1212 	int count;
1213 
1214 	if ((m = mp) == NULL)
1215 		return;
1216 	if (len >= 0) {
1217 		/*
1218 		 * Trim from head.
1219 		 */
1220 		while (m != NULL && len > 0) {
1221 			if (m->m_len <= len) {
1222 				len -= m->m_len;
1223 				m->m_len = 0;
1224 				m = m->m_next;
1225 			} else {
1226 				m->m_len -= len;
1227 				m->m_data += len;
1228 				len = 0;
1229 			}
1230 		}
1231 		m = mp;
1232 		if (mp->m_flags & M_PKTHDR)
1233 			m->m_pkthdr.len -= (req_len - len);
1234 	} else {
1235 		/*
1236 		 * Trim from tail.  Scan the mbuf chain,
1237 		 * calculating its length and finding the last mbuf.
1238 		 * If the adjustment only affects this mbuf, then just
1239 		 * adjust and return.  Otherwise, rescan and truncate
1240 		 * after the remaining size.
1241 		 */
1242 		len = -len;
1243 		count = 0;
1244 		for (;;) {
1245 			count += m->m_len;
1246 			if (m->m_next == (struct mbuf *)0)
1247 				break;
1248 			m = m->m_next;
1249 		}
1250 		if (m->m_len >= len) {
1251 			m->m_len -= len;
1252 			if (mp->m_flags & M_PKTHDR)
1253 				mp->m_pkthdr.len -= len;
1254 			return;
1255 		}
1256 		count -= len;
1257 		if (count < 0)
1258 			count = 0;
1259 		/*
1260 		 * Correct length for chain is "count".
1261 		 * Find the mbuf with last data, adjust its length,
1262 		 * and toss data from remaining mbufs on chain.
1263 		 */
1264 		m = mp;
1265 		if (m->m_flags & M_PKTHDR)
1266 			m->m_pkthdr.len = count;
1267 		for (; m; m = m->m_next) {
1268 			if (m->m_len >= count) {
1269 				m->m_len = count;
1270 				break;
1271 			}
1272 			count -= m->m_len;
1273 		}
1274 		while (m->m_next)
1275 			(m = m->m_next) ->m_len = 0;
1276 	}
1277 }
1278 
1279 /*
1280  * Rearange an mbuf chain so that len bytes are contiguous
1281  * and in the data area of an mbuf (so that mtod and dtom
1282  * will work for a structure of size len).  Returns the resulting
1283  * mbuf chain on success, frees it and returns null on failure.
1284  * If there is room, it will add up to max_protohdr-len extra bytes to the
1285  * contiguous region in an attempt to avoid being called next time.
1286  */
1287 #define MPFail (mbstat.m_mpfail)
1288 
1289 struct mbuf *
1290 m_pullup(n, len)
1291 	struct mbuf *n;
1292 	int len;
1293 {
1294 	struct mbuf *m;
1295 	int count;
1296 	int space;
1297 
1298 	/*
1299 	 * If first mbuf has no cluster, and has room for len bytes
1300 	 * without shifting current data, pullup into it,
1301 	 * otherwise allocate a new mbuf to prepend to the chain.
1302 	 */
1303 	if ((n->m_flags & M_EXT) == 0 &&
1304 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1305 		if (n->m_len >= len)
1306 			return (n);
1307 		m = n;
1308 		n = n->m_next;
1309 		len -= m->m_len;
1310 	} else {
1311 		if (len > MHLEN)
1312 			goto bad;
1313 		MGET(m, M_DONTWAIT, n->m_type);
1314 		if (m == 0)
1315 			goto bad;
1316 		m->m_len = 0;
1317 		if (n->m_flags & M_PKTHDR)
1318 			M_MOVE_PKTHDR(m, n);
1319 	}
1320 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1321 	do {
1322 		count = min(min(max(len, max_protohdr), space), n->m_len);
1323 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1324 		  (unsigned)count);
1325 		len -= count;
1326 		m->m_len += count;
1327 		n->m_len -= count;
1328 		space -= count;
1329 		if (n->m_len)
1330 			n->m_data += count;
1331 		else
1332 			n = m_free(n);
1333 	} while (len > 0 && n);
1334 	if (len > 0) {
1335 		(void) m_free(m);
1336 		goto bad;
1337 	}
1338 	m->m_next = n;
1339 	return (m);
1340 bad:
1341 	m_freem(n);
1342 	MPFail++;
1343 	return (0);
1344 }
1345 
1346 /*
1347  * Partition an mbuf chain in two pieces, returning the tail --
1348  * all but the first len0 bytes.  In case of failure, it returns NULL and
1349  * attempts to restore the chain to its original state.
1350  *
1351  * Note that the resulting mbufs might be read-only, because the new
1352  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1353  * the "breaking point" happens to lie within a cluster mbuf. Use the
1354  * M_WRITABLE() macro to check for this case.
1355  */
1356 struct mbuf *
1357 m_split(m0, len0, wait)
1358 	struct mbuf *m0;
1359 	int len0, wait;
1360 {
1361 	struct mbuf *m, *n;
1362 	unsigned len = len0, remain;
1363 
1364 	for (m = m0; m && len > m->m_len; m = m->m_next)
1365 		len -= m->m_len;
1366 	if (m == 0)
1367 		return (0);
1368 	remain = m->m_len - len;
1369 	if (m0->m_flags & M_PKTHDR) {
1370 		MGETHDR(n, wait, m0->m_type);
1371 		if (n == 0)
1372 			return (0);
1373 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1374 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1375 		m0->m_pkthdr.len = len0;
1376 		if (m->m_flags & M_EXT)
1377 			goto extpacket;
1378 		if (remain > MHLEN) {
1379 			/* m can't be the lead packet */
1380 			MH_ALIGN(n, 0);
1381 			n->m_next = m_split(m, len, wait);
1382 			if (n->m_next == 0) {
1383 				(void) m_free(n);
1384 				return (0);
1385 			} else {
1386 				n->m_len = 0;
1387 				return (n);
1388 			}
1389 		} else
1390 			MH_ALIGN(n, remain);
1391 	} else if (remain == 0) {
1392 		n = m->m_next;
1393 		m->m_next = 0;
1394 		return (n);
1395 	} else {
1396 		MGET(n, wait, m->m_type);
1397 		if (n == 0)
1398 			return (0);
1399 		M_ALIGN(n, remain);
1400 	}
1401 extpacket:
1402 	if (m->m_flags & M_EXT) {
1403 		n->m_flags |= M_EXT;
1404 		n->m_ext = m->m_ext;
1405 		if (m->m_ext.ext_ref == NULL)
1406 			atomic_add_char(&mclrefcnt[mtocl(m->m_ext.ext_buf)], 1);
1407 		else {
1408 			int s = splimp();
1409 
1410 			(*m->m_ext.ext_ref)(m->m_ext.ext_buf,
1411 			    m->m_ext.ext_size);
1412 			splx(s);
1413 		}
1414 		n->m_data = m->m_data + len;
1415 	} else {
1416 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1417 	}
1418 	n->m_len = remain;
1419 	m->m_len = len;
1420 	n->m_next = m->m_next;
1421 	m->m_next = 0;
1422 	return (n);
1423 }
1424 /*
1425  * Routine to copy from device local memory into mbufs.
1426  */
1427 struct mbuf *
1428 m_devget(buf, totlen, off0, ifp, copy)
1429 	char *buf;
1430 	int totlen, off0;
1431 	struct ifnet *ifp;
1432 	void (*copy) (char *from, caddr_t to, u_int len);
1433 {
1434 	struct mbuf *m;
1435 	struct mbuf *top = 0, **mp = &top;
1436 	int off = off0, len;
1437 	char *cp;
1438 	char *epkt;
1439 
1440 	cp = buf;
1441 	epkt = cp + totlen;
1442 	if (off) {
1443 		cp += off + 2 * sizeof(u_short);
1444 		totlen -= 2 * sizeof(u_short);
1445 	}
1446 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1447 	if (m == 0)
1448 		return (0);
1449 	m->m_pkthdr.rcvif = ifp;
1450 	m->m_pkthdr.len = totlen;
1451 	m->m_len = MHLEN;
1452 
1453 	while (totlen > 0) {
1454 		if (top) {
1455 			MGET(m, M_DONTWAIT, MT_DATA);
1456 			if (m == 0) {
1457 				m_freem(top);
1458 				return (0);
1459 			}
1460 			m->m_len = MLEN;
1461 		}
1462 		len = min(totlen, epkt - cp);
1463 		if (len >= MINCLSIZE) {
1464 			MCLGET(m, M_DONTWAIT);
1465 			if (m->m_flags & M_EXT)
1466 				m->m_len = len = min(len, MCLBYTES);
1467 			else
1468 				len = m->m_len;
1469 		} else {
1470 			/*
1471 			 * Place initial small packet/header at end of mbuf.
1472 			 */
1473 			if (len < m->m_len) {
1474 				if (top == 0 && len + max_linkhdr <= m->m_len)
1475 					m->m_data += max_linkhdr;
1476 				m->m_len = len;
1477 			} else
1478 				len = m->m_len;
1479 		}
1480 		if (copy)
1481 			copy(cp, mtod(m, caddr_t), (unsigned)len);
1482 		else
1483 			bcopy(cp, mtod(m, caddr_t), (unsigned)len);
1484 		cp += len;
1485 		*mp = m;
1486 		mp = &m->m_next;
1487 		totlen -= len;
1488 		if (cp == epkt)
1489 			cp = buf;
1490 	}
1491 	return (top);
1492 }
1493 
1494 /*
1495  * Copy data from a buffer back into the indicated mbuf chain,
1496  * starting "off" bytes from the beginning, extending the mbuf
1497  * chain if necessary.
1498  */
1499 void
1500 m_copyback(m0, off, len, cp)
1501 	struct	mbuf *m0;
1502 	int off;
1503 	int len;
1504 	caddr_t cp;
1505 {
1506 	int mlen;
1507 	struct mbuf *m = m0, *n;
1508 	int totlen = 0;
1509 
1510 	if (m0 == 0)
1511 		return;
1512 	while (off > (mlen = m->m_len)) {
1513 		off -= mlen;
1514 		totlen += mlen;
1515 		if (m->m_next == 0) {
1516 			n = m_getclr(M_DONTWAIT, m->m_type);
1517 			if (n == 0)
1518 				goto out;
1519 			n->m_len = min(MLEN, len + off);
1520 			m->m_next = n;
1521 		}
1522 		m = m->m_next;
1523 	}
1524 	while (len > 0) {
1525 		mlen = min (m->m_len - off, len);
1526 		bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
1527 		cp += mlen;
1528 		len -= mlen;
1529 		mlen += off;
1530 		off = 0;
1531 		totlen += mlen;
1532 		if (len == 0)
1533 			break;
1534 		if (m->m_next == 0) {
1535 			n = m_get(M_DONTWAIT, m->m_type);
1536 			if (n == 0)
1537 				break;
1538 			n->m_len = min(MLEN, len);
1539 			m->m_next = n;
1540 		}
1541 		m = m->m_next;
1542 	}
1543 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1544 		m->m_pkthdr.len = totlen;
1545 }
1546 
1547 void
1548 m_print(const struct mbuf *m)
1549 {
1550 	int len;
1551 	const struct mbuf *m2;
1552 
1553 	len = m->m_pkthdr.len;
1554 	m2 = m;
1555 	while (len) {
1556 		printf("%p %*D\n", m2, m2->m_len, (u_char *)m2->m_data, "-");
1557 		len -= m2->m_len;
1558 		m2 = m2->m_next;
1559 	}
1560 	return;
1561 }
1562 
1563 /*
1564  * "Move" mbuf pkthdr from "from" to "to".
1565  * "from" must have M_PKTHDR set, and "to" must be empty.
1566  */
1567 void
1568 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
1569 {
1570 	KASSERT((to->m_flags & M_EXT) == 0, ("m_move_pkthdr: to has cluster"));
1571 
1572 	to->m_flags = from->m_flags & M_COPYFLAGS;
1573 	to->m_data = to->m_pktdat;
1574 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
1575 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
1576 	from->m_flags &= ~M_PKTHDR;
1577 }
1578 
1579 /*
1580  * Duplicate "from"'s mbuf pkthdr in "to".
1581  * "from" must have M_PKTHDR set, and "to" must be empty.
1582  * In particular, this does a deep copy of the packet tags.
1583  */
1584 int
1585 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
1586 {
1587 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
1588 	if ((to->m_flags & M_EXT) == 0)
1589 		to->m_data = to->m_pktdat;
1590 	to->m_pkthdr = from->m_pkthdr;
1591 	SLIST_INIT(&to->m_pkthdr.tags);
1592 	return (m_tag_copy_chain(to, from, how));
1593 }
1594 
1595 /*
1596  * Defragment a mbuf chain, returning the shortest possible
1597  * chain of mbufs and clusters.  If allocation fails and
1598  * this cannot be completed, NULL will be returned, but
1599  * the passed in chain will be unchanged.  Upon success,
1600  * the original chain will be freed, and the new chain
1601  * will be returned.
1602  *
1603  * If a non-packet header is passed in, the original
1604  * mbuf (chain?) will be returned unharmed.
1605  */
1606 struct mbuf *
1607 m_defrag(struct mbuf *m0, int how)
1608 {
1609 	struct mbuf	*m_new = NULL, *m_final = NULL;
1610 	int		progress = 0, length;
1611 
1612 	if (!(m0->m_flags & M_PKTHDR))
1613 		return (m0);
1614 
1615 #ifdef MBUF_STRESS_TEST
1616 	if (m_defragrandomfailures) {
1617 		int temp = arc4random() & 0xff;
1618 		if (temp == 0xba)
1619 			goto nospace;
1620 	}
1621 #endif
1622 
1623 	if (m0->m_pkthdr.len > MHLEN)
1624 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1625 	else
1626 		m_final = m_gethdr(how, MT_DATA);
1627 
1628 	if (m_final == NULL)
1629 		goto nospace;
1630 
1631 	if (m_dup_pkthdr(m_final, m0, how) == NULL)
1632 		goto nospace;
1633 
1634 	m_new = m_final;
1635 
1636 	while (progress < m0->m_pkthdr.len) {
1637 		length = m0->m_pkthdr.len - progress;
1638 		if (length > MCLBYTES)
1639 			length = MCLBYTES;
1640 
1641 		if (m_new == NULL) {
1642 			if (length > MLEN)
1643 				m_new = m_getcl(how, MT_DATA, 0);
1644 			else
1645 				m_new = m_get(how, MT_DATA);
1646 			if (m_new == NULL)
1647 				goto nospace;
1648 		}
1649 
1650 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1651 		progress += length;
1652 		m_new->m_len = length;
1653 		if (m_new != m_final)
1654 			m_cat(m_final, m_new);
1655 		m_new = NULL;
1656 	}
1657 	if (m0->m_next == NULL)
1658 		m_defraguseless++;
1659 	m_freem(m0);
1660 	m0 = m_final;
1661 	m_defragpackets++;
1662 	m_defragbytes += m0->m_pkthdr.len;
1663 	return (m0);
1664 nospace:
1665 	m_defragfailure++;
1666 	if (m_new)
1667 		m_free(m_new);
1668 	if (m_final)
1669 		m_freem(m_final);
1670 	return (NULL);
1671 }
1672