xref: /dragonfly/sys/kern/uipc_mbuf.c (revision bcb3e04d)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
5  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Jeffrey M. Hsu.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1982, 1986, 1988, 1991, 1993
38  *	The Regents of the University of California.  All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  * @(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
69  * $FreeBSD: src/sys/kern/uipc_mbuf.c,v 1.51.2.24 2003/04/15 06:59:29 silby Exp $
70  * $DragonFly: src/sys/kern/uipc_mbuf.c,v 1.70 2008/11/20 14:21:01 sephe Exp $
71  */
72 
73 #include "opt_param.h"
74 #include "opt_mbuf_stress_test.h"
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/domain.h>
82 #include <sys/objcache.h>
83 #include <sys/tree.h>
84 #include <sys/protosw.h>
85 #include <sys/uio.h>
86 #include <sys/thread.h>
87 #include <sys/globaldata.h>
88 
89 #include <sys/thread2.h>
90 #include <sys/spinlock2.h>
91 
92 #include <machine/atomic.h>
93 #include <machine/limits.h>
94 
95 #include <vm/vm.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 
99 #ifdef INVARIANTS
100 #include <machine/cpu.h>
101 #endif
102 
103 /*
104  * mbuf cluster meta-data
105  */
106 struct mbcluster {
107 	int32_t	mcl_refs;
108 	void	*mcl_data;
109 };
110 
111 /*
112  * mbuf tracking for debugging purposes
113  */
114 #ifdef MBUF_DEBUG
115 
116 static MALLOC_DEFINE(M_MTRACK, "mtrack", "mtrack");
117 
118 struct mbctrack;
119 RB_HEAD(mbuf_rb_tree, mbtrack);
120 RB_PROTOTYPE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *);
121 
122 struct mbtrack {
123 	RB_ENTRY(mbtrack) rb_node;
124 	int trackid;
125 	struct mbuf *m;
126 };
127 
128 static int
129 mbtrack_cmp(struct mbtrack *mb1, struct mbtrack *mb2)
130 {
131 	if (mb1->m < mb2->m)
132 		return(-1);
133 	if (mb1->m > mb2->m)
134 		return(1);
135 	return(0);
136 }
137 
138 RB_GENERATE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *, m);
139 
140 struct mbuf_rb_tree	mbuf_track_root;
141 static struct spinlock	mbuf_track_spin = SPINLOCK_INITIALIZER(mbuf_track_spin);
142 
143 static void
144 mbuftrack(struct mbuf *m)
145 {
146 	struct mbtrack *mbt;
147 
148 	mbt = kmalloc(sizeof(*mbt), M_MTRACK, M_INTWAIT|M_ZERO);
149 	spin_lock(&mbuf_track_spin);
150 	mbt->m = m;
151 	if (mbuf_rb_tree_RB_INSERT(&mbuf_track_root, mbt)) {
152 		spin_unlock(&mbuf_track_spin);
153 		panic("mbuftrack: mbuf %p already being tracked\n", m);
154 	}
155 	spin_unlock(&mbuf_track_spin);
156 }
157 
158 static void
159 mbufuntrack(struct mbuf *m)
160 {
161 	struct mbtrack *mbt;
162 
163 	spin_lock(&mbuf_track_spin);
164 	mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
165 	if (mbt == NULL) {
166 		spin_unlock(&mbuf_track_spin);
167 		panic("mbufuntrack: mbuf %p was not tracked\n", m);
168 	} else {
169 		mbuf_rb_tree_RB_REMOVE(&mbuf_track_root, mbt);
170 		spin_unlock(&mbuf_track_spin);
171 		kfree(mbt, M_MTRACK);
172 	}
173 }
174 
175 void
176 mbuftrackid(struct mbuf *m, int trackid)
177 {
178 	struct mbtrack *mbt;
179 	struct mbuf *n;
180 
181 	spin_lock(&mbuf_track_spin);
182 	while (m) {
183 		n = m->m_nextpkt;
184 		while (m) {
185 			mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
186 			if (mbt == NULL) {
187 				spin_unlock(&mbuf_track_spin);
188 				panic("mbuftrackid: mbuf %p not tracked", m);
189 			}
190 			mbt->trackid = trackid;
191 			m = m->m_next;
192 		}
193 		m = n;
194 	}
195 	spin_unlock(&mbuf_track_spin);
196 }
197 
198 static int
199 mbuftrack_callback(struct mbtrack *mbt, void *arg)
200 {
201 	struct sysctl_req *req = arg;
202 	char buf[64];
203 	int error;
204 
205 	ksnprintf(buf, sizeof(buf), "mbuf %p track %d\n", mbt->m, mbt->trackid);
206 
207 	spin_unlock(&mbuf_track_spin);
208 	error = SYSCTL_OUT(req, buf, strlen(buf));
209 	spin_lock(&mbuf_track_spin);
210 	if (error)
211 		return(-error);
212 	return(0);
213 }
214 
215 static int
216 mbuftrack_show(SYSCTL_HANDLER_ARGS)
217 {
218 	int error;
219 
220 	spin_lock(&mbuf_track_spin);
221 	error = mbuf_rb_tree_RB_SCAN(&mbuf_track_root, NULL,
222 				     mbuftrack_callback, req);
223 	spin_unlock(&mbuf_track_spin);
224 	return (-error);
225 }
226 SYSCTL_PROC(_kern_ipc, OID_AUTO, showmbufs, CTLFLAG_RD|CTLTYPE_STRING,
227 	    0, 0, mbuftrack_show, "A", "Show all in-use mbufs");
228 
229 #else
230 
231 #define mbuftrack(m)
232 #define mbufuntrack(m)
233 
234 #endif
235 
236 static void mbinit(void *);
237 SYSINIT(mbuf, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, mbinit, NULL)
238 
239 static u_long	mbtypes[SMP_MAXCPU][MT_NTYPES];
240 
241 static struct mbstat mbstat[SMP_MAXCPU];
242 int	max_linkhdr;
243 int	max_protohdr;
244 int	max_hdr;
245 int	max_datalen;
246 int	m_defragpackets;
247 int	m_defragbytes;
248 int	m_defraguseless;
249 int	m_defragfailure;
250 #ifdef MBUF_STRESS_TEST
251 int	m_defragrandomfailures;
252 #endif
253 
254 struct objcache *mbuf_cache, *mbufphdr_cache;
255 struct objcache *mclmeta_cache;
256 struct objcache *mbufcluster_cache, *mbufphdrcluster_cache;
257 
258 int	nmbclusters;
259 int	nmbufs;
260 
261 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RW,
262 	   &max_linkhdr, 0, "");
263 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RW,
264 	   &max_protohdr, 0, "");
265 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RW, &max_hdr, 0, "");
266 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RW,
267 	   &max_datalen, 0, "");
268 SYSCTL_INT(_kern_ipc, OID_AUTO, mbuf_wait, CTLFLAG_RW,
269 	   &mbuf_wait, 0, "");
270 static int do_mbstat(SYSCTL_HANDLER_ARGS);
271 
272 SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, CTLTYPE_STRUCT|CTLFLAG_RD,
273 	0, 0, do_mbstat, "S,mbstat", "");
274 
275 static int do_mbtypes(SYSCTL_HANDLER_ARGS);
276 
277 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbtypes, CTLTYPE_ULONG|CTLFLAG_RD,
278 	0, 0, do_mbtypes, "LU", "");
279 
280 static int
281 do_mbstat(SYSCTL_HANDLER_ARGS)
282 {
283 	struct mbstat mbstat_total;
284 	struct mbstat *mbstat_totalp;
285 	int i;
286 
287 	bzero(&mbstat_total, sizeof(mbstat_total));
288 	mbstat_totalp = &mbstat_total;
289 
290 	for (i = 0; i < ncpus; i++)
291 	{
292 		mbstat_total.m_mbufs += mbstat[i].m_mbufs;
293 		mbstat_total.m_clusters += mbstat[i].m_clusters;
294 		mbstat_total.m_spare += mbstat[i].m_spare;
295 		mbstat_total.m_clfree += mbstat[i].m_clfree;
296 		mbstat_total.m_drops += mbstat[i].m_drops;
297 		mbstat_total.m_wait += mbstat[i].m_wait;
298 		mbstat_total.m_drain += mbstat[i].m_drain;
299 		mbstat_total.m_mcfail += mbstat[i].m_mcfail;
300 		mbstat_total.m_mpfail += mbstat[i].m_mpfail;
301 
302 	}
303 	/*
304 	 * The following fields are not cumulative fields so just
305 	 * get their values once.
306 	 */
307 	mbstat_total.m_msize = mbstat[0].m_msize;
308 	mbstat_total.m_mclbytes = mbstat[0].m_mclbytes;
309 	mbstat_total.m_minclsize = mbstat[0].m_minclsize;
310 	mbstat_total.m_mlen = mbstat[0].m_mlen;
311 	mbstat_total.m_mhlen = mbstat[0].m_mhlen;
312 
313 	return(sysctl_handle_opaque(oidp, mbstat_totalp, sizeof(mbstat_total), req));
314 }
315 
316 static int
317 do_mbtypes(SYSCTL_HANDLER_ARGS)
318 {
319 	u_long totals[MT_NTYPES];
320 	int i, j;
321 
322 	for (i = 0; i < MT_NTYPES; i++)
323 		totals[i] = 0;
324 
325 	for (i = 0; i < ncpus; i++)
326 	{
327 		for (j = 0; j < MT_NTYPES; j++)
328 			totals[j] += mbtypes[i][j];
329 	}
330 
331 	return(sysctl_handle_opaque(oidp, totals, sizeof(totals), req));
332 }
333 
334 /*
335  * These are read-only because we do not currently have any code
336  * to adjust the objcache limits after the fact.  The variables
337  * may only be set as boot-time tunables.
338  */
339 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD,
340 	   &nmbclusters, 0, "Maximum number of mbuf clusters available");
341 SYSCTL_INT(_kern_ipc, OID_AUTO, nmbufs, CTLFLAG_RD, &nmbufs, 0,
342 	   "Maximum number of mbufs available");
343 
344 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
345 	   &m_defragpackets, 0, "");
346 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
347 	   &m_defragbytes, 0, "");
348 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
349 	   &m_defraguseless, 0, "");
350 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
351 	   &m_defragfailure, 0, "");
352 #ifdef MBUF_STRESS_TEST
353 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
354 	   &m_defragrandomfailures, 0, "");
355 #endif
356 
357 static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
358 static MALLOC_DEFINE(M_MBUFCL, "mbufcl", "mbufcl");
359 static MALLOC_DEFINE(M_MCLMETA, "mclmeta", "mclmeta");
360 
361 static void m_reclaim (void);
362 static void m_mclref(void *arg);
363 static void m_mclfree(void *arg);
364 
365 #ifndef NMBCLUSTERS
366 #define NMBCLUSTERS	(512 + maxusers * 16)
367 #endif
368 #ifndef NMBUFS
369 #define NMBUFS		(nmbclusters * 2)
370 #endif
371 
372 /*
373  * Perform sanity checks of tunables declared above.
374  */
375 static void
376 tunable_mbinit(void *dummy)
377 {
378 	/*
379 	 * This has to be done before VM init.
380 	 */
381 	nmbclusters = NMBCLUSTERS;
382 	TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
383 	nmbufs = NMBUFS;
384 	TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
385 	/* Sanity checks */
386 	if (nmbufs < nmbclusters * 2)
387 		nmbufs = nmbclusters * 2;
388 }
389 SYSINIT(tunable_mbinit, SI_BOOT1_TUNABLES, SI_ORDER_ANY,
390 	tunable_mbinit, NULL);
391 
392 /* "number of clusters of pages" */
393 #define NCL_INIT	1
394 
395 #define NMB_INIT	16
396 
397 /*
398  * The mbuf object cache only guarantees that m_next and m_nextpkt are
399  * NULL and that m_data points to the beginning of the data area.  In
400  * particular, m_len and m_pkthdr.len are uninitialized.  It is the
401  * responsibility of the caller to initialize those fields before use.
402  */
403 
404 static boolean_t __inline
405 mbuf_ctor(void *obj, void *private, int ocflags)
406 {
407 	struct mbuf *m = obj;
408 
409 	m->m_next = NULL;
410 	m->m_nextpkt = NULL;
411 	m->m_data = m->m_dat;
412 	m->m_flags = 0;
413 
414 	return (TRUE);
415 }
416 
417 /*
418  * Initialize the mbuf and the packet header fields.
419  */
420 static boolean_t
421 mbufphdr_ctor(void *obj, void *private, int ocflags)
422 {
423 	struct mbuf *m = obj;
424 
425 	m->m_next = NULL;
426 	m->m_nextpkt = NULL;
427 	m->m_data = m->m_pktdat;
428 	m->m_flags = M_PKTHDR | M_PHCACHE;
429 
430 	m->m_pkthdr.rcvif = NULL;	/* eliminate XXX JH */
431 	SLIST_INIT(&m->m_pkthdr.tags);
432 	m->m_pkthdr.csum_flags = 0;	/* eliminate XXX JH */
433 	m->m_pkthdr.fw_flags = 0;	/* eliminate XXX JH */
434 
435 	return (TRUE);
436 }
437 
438 /*
439  * A mbcluster object consists of 2K (MCLBYTES) cluster and a refcount.
440  */
441 static boolean_t
442 mclmeta_ctor(void *obj, void *private, int ocflags)
443 {
444 	struct mbcluster *cl = obj;
445 	void *buf;
446 
447 	if (ocflags & M_NOWAIT)
448 		buf = kmalloc(MCLBYTES, M_MBUFCL, M_NOWAIT | M_ZERO);
449 	else
450 		buf = kmalloc(MCLBYTES, M_MBUFCL, M_INTWAIT | M_ZERO);
451 	if (buf == NULL)
452 		return (FALSE);
453 	cl->mcl_refs = 0;
454 	cl->mcl_data = buf;
455 	return (TRUE);
456 }
457 
458 static void
459 mclmeta_dtor(void *obj, void *private)
460 {
461 	struct mbcluster *mcl = obj;
462 
463 	KKASSERT(mcl->mcl_refs == 0);
464 	kfree(mcl->mcl_data, M_MBUFCL);
465 }
466 
467 static void
468 linkcluster(struct mbuf *m, struct mbcluster *cl)
469 {
470 	/*
471 	 * Add the cluster to the mbuf.  The caller will detect that the
472 	 * mbuf now has an attached cluster.
473 	 */
474 	m->m_ext.ext_arg = cl;
475 	m->m_ext.ext_buf = cl->mcl_data;
476 	m->m_ext.ext_ref = m_mclref;
477 	m->m_ext.ext_free = m_mclfree;
478 	m->m_ext.ext_size = MCLBYTES;
479 	atomic_add_int(&cl->mcl_refs, 1);
480 
481 	m->m_data = m->m_ext.ext_buf;
482 	m->m_flags |= M_EXT | M_EXT_CLUSTER;
483 }
484 
485 static boolean_t
486 mbufphdrcluster_ctor(void *obj, void *private, int ocflags)
487 {
488 	struct mbuf *m = obj;
489 	struct mbcluster *cl;
490 
491 	mbufphdr_ctor(obj, private, ocflags);
492 	cl = objcache_get(mclmeta_cache, ocflags);
493 	if (cl == NULL) {
494 		++mbstat[mycpu->gd_cpuid].m_drops;
495 		return (FALSE);
496 	}
497 	m->m_flags |= M_CLCACHE;
498 	linkcluster(m, cl);
499 	return (TRUE);
500 }
501 
502 static boolean_t
503 mbufcluster_ctor(void *obj, void *private, int ocflags)
504 {
505 	struct mbuf *m = obj;
506 	struct mbcluster *cl;
507 
508 	mbuf_ctor(obj, private, ocflags);
509 	cl = objcache_get(mclmeta_cache, ocflags);
510 	if (cl == NULL) {
511 		++mbstat[mycpu->gd_cpuid].m_drops;
512 		return (FALSE);
513 	}
514 	m->m_flags |= M_CLCACHE;
515 	linkcluster(m, cl);
516 	return (TRUE);
517 }
518 
519 /*
520  * Used for both the cluster and cluster PHDR caches.
521  *
522  * The mbuf may have lost its cluster due to sharing, deal
523  * with the situation by checking M_EXT.
524  */
525 static void
526 mbufcluster_dtor(void *obj, void *private)
527 {
528 	struct mbuf *m = obj;
529 	struct mbcluster *mcl;
530 
531 	if (m->m_flags & M_EXT) {
532 		KKASSERT((m->m_flags & M_EXT_CLUSTER) != 0);
533 		mcl = m->m_ext.ext_arg;
534 		KKASSERT(mcl->mcl_refs == 1);
535 		mcl->mcl_refs = 0;
536 		objcache_put(mclmeta_cache, mcl);
537 	}
538 }
539 
540 struct objcache_malloc_args mbuf_malloc_args = { MSIZE, M_MBUF };
541 struct objcache_malloc_args mclmeta_malloc_args =
542 	{ sizeof(struct mbcluster), M_MCLMETA };
543 
544 /* ARGSUSED*/
545 static void
546 mbinit(void *dummy)
547 {
548 	int mb_limit, cl_limit;
549 	int limit;
550 	int i;
551 
552 	/*
553 	 * Initialize statistics
554 	 */
555 	for (i = 0; i < ncpus; i++) {
556 		atomic_set_long_nonlocked(&mbstat[i].m_msize, MSIZE);
557 		atomic_set_long_nonlocked(&mbstat[i].m_mclbytes, MCLBYTES);
558 		atomic_set_long_nonlocked(&mbstat[i].m_minclsize, MINCLSIZE);
559 		atomic_set_long_nonlocked(&mbstat[i].m_mlen, MLEN);
560 		atomic_set_long_nonlocked(&mbstat[i].m_mhlen, MHLEN);
561 	}
562 
563 	/*
564 	 * Create objtect caches and save cluster limits, which will
565 	 * be used to adjust backing kmalloc pools' limit later.
566 	 */
567 
568 	mb_limit = cl_limit = 0;
569 
570 	limit = nmbufs;
571 	mbuf_cache = objcache_create("mbuf", &limit, 0,
572 	    mbuf_ctor, NULL, NULL,
573 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
574 	mb_limit += limit;
575 
576 	limit = nmbufs;
577 	mbufphdr_cache = objcache_create("mbuf pkt hdr", &limit, 64,
578 	    mbufphdr_ctor, NULL, NULL,
579 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
580 	mb_limit += limit;
581 
582 	cl_limit = nmbclusters;
583 	mclmeta_cache = objcache_create("cluster mbuf", &cl_limit, 0,
584 	    mclmeta_ctor, mclmeta_dtor, NULL,
585 	    objcache_malloc_alloc, objcache_malloc_free, &mclmeta_malloc_args);
586 
587 	limit = nmbclusters;
588 	mbufcluster_cache = objcache_create("mbuf + cluster", &limit, 0,
589 	    mbufcluster_ctor, mbufcluster_dtor, NULL,
590 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
591 	mb_limit += limit;
592 
593 	limit = nmbclusters;
594 	mbufphdrcluster_cache = objcache_create("mbuf pkt hdr + cluster",
595 	    &limit, 64, mbufphdrcluster_ctor, mbufcluster_dtor, NULL,
596 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
597 	mb_limit += limit;
598 
599 	/*
600 	 * Adjust backing kmalloc pools' limit
601 	 *
602 	 * NOTE: We raise the limit by another 1/8 to take the effect
603 	 * of loosememuse into account.
604 	 */
605 	cl_limit += cl_limit / 8;
606 	kmalloc_raise_limit(mclmeta_malloc_args.mtype,
607 			    mclmeta_malloc_args.objsize * cl_limit);
608 	kmalloc_raise_limit(M_MBUFCL, MCLBYTES * cl_limit);
609 
610 	mb_limit += mb_limit / 8;
611 	kmalloc_raise_limit(mbuf_malloc_args.mtype,
612 			    mbuf_malloc_args.objsize * mb_limit);
613 }
614 
615 /*
616  * Return the number of references to this mbuf's data.  0 is returned
617  * if the mbuf is not M_EXT, a reference count is returned if it is
618  * M_EXT | M_EXT_CLUSTER, and 99 is returned if it is a special M_EXT.
619  */
620 int
621 m_sharecount(struct mbuf *m)
622 {
623 	switch (m->m_flags & (M_EXT | M_EXT_CLUSTER)) {
624 	case 0:
625 		return (0);
626 	case M_EXT:
627 		return (99);
628 	case M_EXT | M_EXT_CLUSTER:
629 		return (((struct mbcluster *)m->m_ext.ext_arg)->mcl_refs);
630 	}
631 	/* NOTREACHED */
632 	return (0);		/* to shut up compiler */
633 }
634 
635 /*
636  * change mbuf to new type
637  */
638 void
639 m_chtype(struct mbuf *m, int type)
640 {
641 	struct globaldata *gd = mycpu;
642 
643 	atomic_add_long_nonlocked(&mbtypes[gd->gd_cpuid][type], 1);
644 	atomic_subtract_long_nonlocked(&mbtypes[gd->gd_cpuid][m->m_type], 1);
645 	atomic_set_short_nonlocked(&m->m_type, type);
646 }
647 
648 static void
649 m_reclaim(void)
650 {
651 	struct domain *dp;
652 	struct protosw *pr;
653 
654 	kprintf("Debug: m_reclaim() called\n");
655 
656 	SLIST_FOREACH(dp, &domains, dom_next) {
657 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
658 			if (pr->pr_drain)
659 				(*pr->pr_drain)();
660 		}
661 	}
662 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_drain, 1);
663 }
664 
665 static void __inline
666 updatestats(struct mbuf *m, int type)
667 {
668 	struct globaldata *gd = mycpu;
669 
670 	m->m_type = type;
671 	mbuftrack(m);
672 #ifdef MBUF_DEBUG
673 	KASSERT(m->m_next == NULL, ("mbuf %p: bad m_next in get", m));
674 	KASSERT(m->m_nextpkt == NULL, ("mbuf %p: bad m_nextpkt in get", m));
675 #endif
676 
677 	atomic_add_long_nonlocked(&mbtypes[gd->gd_cpuid][type], 1);
678 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mbufs, 1);
679 
680 }
681 
682 /*
683  * Allocate an mbuf.
684  */
685 struct mbuf *
686 m_get(int how, int type)
687 {
688 	struct mbuf *m;
689 	int ntries = 0;
690 	int ocf = MBTOM(how);
691 
692 retryonce:
693 
694 	m = objcache_get(mbuf_cache, ocf);
695 
696 	if (m == NULL) {
697 		if ((how & MB_TRYWAIT) && ntries++ == 0) {
698 			struct objcache *reclaimlist[] = {
699 				mbufphdr_cache,
700 				mbufcluster_cache,
701 				mbufphdrcluster_cache
702 			};
703 			const int nreclaims = __arysize(reclaimlist);
704 
705 			if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
706 				m_reclaim();
707 			goto retryonce;
708 		}
709 		++mbstat[mycpu->gd_cpuid].m_drops;
710 		return (NULL);
711 	}
712 #ifdef MBUF_DEBUG
713 	KASSERT(m->m_data == m->m_dat, ("mbuf %p: bad m_data in get", m));
714 #endif
715 	m->m_len = 0;
716 
717 	updatestats(m, type);
718 	return (m);
719 }
720 
721 struct mbuf *
722 m_gethdr(int how, int type)
723 {
724 	struct mbuf *m;
725 	int ocf = MBTOM(how);
726 	int ntries = 0;
727 
728 retryonce:
729 
730 	m = objcache_get(mbufphdr_cache, ocf);
731 
732 	if (m == NULL) {
733 		if ((how & MB_TRYWAIT) && ntries++ == 0) {
734 			struct objcache *reclaimlist[] = {
735 				mbuf_cache,
736 				mbufcluster_cache, mbufphdrcluster_cache
737 			};
738 			const int nreclaims = __arysize(reclaimlist);
739 
740 			if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
741 				m_reclaim();
742 			goto retryonce;
743 		}
744 		++mbstat[mycpu->gd_cpuid].m_drops;
745 		return (NULL);
746 	}
747 #ifdef MBUF_DEBUG
748 	KASSERT(m->m_data == m->m_pktdat, ("mbuf %p: bad m_data in get", m));
749 #endif
750 	m->m_len = 0;
751 	m->m_pkthdr.len = 0;
752 
753 	updatestats(m, type);
754 	return (m);
755 }
756 
757 /*
758  * Get a mbuf (not a mbuf cluster!) and zero it.
759  * Deprecated.
760  */
761 struct mbuf *
762 m_getclr(int how, int type)
763 {
764 	struct mbuf *m;
765 
766 	m = m_get(how, type);
767 	if (m != NULL)
768 		bzero(m->m_data, MLEN);
769 	return (m);
770 }
771 
772 /*
773  * Returns an mbuf with an attached cluster.
774  * Because many network drivers use this kind of buffers a lot, it is
775  * convenient to keep a small pool of free buffers of this kind.
776  * Even a small size such as 10 gives about 10% improvement in the
777  * forwarding rate in a bridge or router.
778  */
779 struct mbuf *
780 m_getcl(int how, short type, int flags)
781 {
782 	struct mbuf *m;
783 	int ocflags = MBTOM(how);
784 	int ntries = 0;
785 
786 retryonce:
787 
788 	if (flags & M_PKTHDR)
789 		m = objcache_get(mbufphdrcluster_cache, ocflags);
790 	else
791 		m = objcache_get(mbufcluster_cache, ocflags);
792 
793 	if (m == NULL) {
794 		if ((how & MB_TRYWAIT) && ntries++ == 0) {
795 			struct objcache *reclaimlist[1];
796 
797 			if (flags & M_PKTHDR)
798 				reclaimlist[0] = mbufcluster_cache;
799 			else
800 				reclaimlist[0] = mbufphdrcluster_cache;
801 			if (!objcache_reclaimlist(reclaimlist, 1, ocflags))
802 				m_reclaim();
803 			goto retryonce;
804 		}
805 		++mbstat[mycpu->gd_cpuid].m_drops;
806 		return (NULL);
807 	}
808 
809 #ifdef MBUF_DEBUG
810 	KASSERT(m->m_data == m->m_ext.ext_buf,
811 		("mbuf %p: bad m_data in get", m));
812 #endif
813 	m->m_type = type;
814 	m->m_len = 0;
815 	m->m_pkthdr.len = 0;	/* just do it unconditonally */
816 
817 	mbuftrack(m);
818 
819 	atomic_add_long_nonlocked(&mbtypes[mycpu->gd_cpuid][type], 1);
820 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters, 1);
821 	return (m);
822 }
823 
824 /*
825  * Allocate chain of requested length.
826  */
827 struct mbuf *
828 m_getc(int len, int how, int type)
829 {
830 	struct mbuf *n, *nfirst = NULL, **ntail = &nfirst;
831 	int nsize;
832 
833 	while (len > 0) {
834 		n = m_getl(len, how, type, 0, &nsize);
835 		if (n == NULL)
836 			goto failed;
837 		n->m_len = 0;
838 		*ntail = n;
839 		ntail = &n->m_next;
840 		len -= nsize;
841 	}
842 	return (nfirst);
843 
844 failed:
845 	m_freem(nfirst);
846 	return (NULL);
847 }
848 
849 /*
850  * Allocate len-worth of mbufs and/or mbuf clusters (whatever fits best)
851  * and return a pointer to the head of the allocated chain. If m0 is
852  * non-null, then we assume that it is a single mbuf or an mbuf chain to
853  * which we want len bytes worth of mbufs and/or clusters attached, and so
854  * if we succeed in allocating it, we will just return a pointer to m0.
855  *
856  * If we happen to fail at any point during the allocation, we will free
857  * up everything we have already allocated and return NULL.
858  *
859  * Deprecated.  Use m_getc() and m_cat() instead.
860  */
861 struct mbuf *
862 m_getm(struct mbuf *m0, int len, int type, int how)
863 {
864 	struct mbuf *nfirst;
865 
866 	nfirst = m_getc(len, how, type);
867 
868 	if (m0 != NULL) {
869 		m_last(m0)->m_next = nfirst;
870 		return (m0);
871 	}
872 
873 	return (nfirst);
874 }
875 
876 /*
877  * Adds a cluster to a normal mbuf, M_EXT is set on success.
878  * Deprecated.  Use m_getcl() instead.
879  */
880 void
881 m_mclget(struct mbuf *m, int how)
882 {
883 	struct mbcluster *mcl;
884 
885 	KKASSERT((m->m_flags & M_EXT) == 0);
886 	mcl = objcache_get(mclmeta_cache, MBTOM(how));
887 	if (mcl != NULL) {
888 		linkcluster(m, mcl);
889 		atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters,
890 					  1);
891 	} else {
892 		++mbstat[mycpu->gd_cpuid].m_drops;
893 	}
894 }
895 
896 /*
897  * Updates to mbcluster must be MPSAFE.  Only an entity which already has
898  * a reference to the cluster can ref it, so we are in no danger of
899  * racing an add with a subtract.  But the operation must still be atomic
900  * since multiple entities may have a reference on the cluster.
901  *
902  * m_mclfree() is almost the same but it must contend with two entities
903  * freeing the cluster at the same time.
904  */
905 static void
906 m_mclref(void *arg)
907 {
908 	struct mbcluster *mcl = arg;
909 
910 	atomic_add_int(&mcl->mcl_refs, 1);
911 }
912 
913 /*
914  * When dereferencing a cluster we have to deal with a N->0 race, where
915  * N entities free their references simultaniously.  To do this we use
916  * atomic_fetchadd_int().
917  */
918 static void
919 m_mclfree(void *arg)
920 {
921 	struct mbcluster *mcl = arg;
922 
923 	if (atomic_fetchadd_int(&mcl->mcl_refs, -1) == 1)
924 		objcache_put(mclmeta_cache, mcl);
925 }
926 
927 /*
928  * Free a single mbuf and any associated external storage.  The successor,
929  * if any, is returned.
930  *
931  * We do need to check non-first mbuf for m_aux, since some of existing
932  * code does not call M_PREPEND properly.
933  * (example: call to bpf_mtap from drivers)
934  */
935 
936 #ifdef MBUF_DEBUG
937 
938 struct mbuf  *
939 _m_free(struct mbuf *m, const char *func)
940 
941 #else
942 
943 struct mbuf *
944 m_free(struct mbuf *m)
945 
946 #endif
947 {
948 	struct mbuf *n;
949 	struct globaldata *gd = mycpu;
950 
951 	KASSERT(m->m_type != MT_FREE, ("freeing free mbuf %p", m));
952 	KASSERT(M_TRAILINGSPACE(m) >= 0, ("overflowed mbuf %p", m));
953 	atomic_subtract_long_nonlocked(&mbtypes[gd->gd_cpuid][m->m_type], 1);
954 
955 	n = m->m_next;
956 
957 	/*
958 	 * Make sure the mbuf is in constructed state before returning it
959 	 * to the objcache.
960 	 */
961 	m->m_next = NULL;
962 	mbufuntrack(m);
963 #ifdef MBUF_DEBUG
964 	m->m_hdr.mh_lastfunc = func;
965 #endif
966 #ifdef notyet
967 	KKASSERT(m->m_nextpkt == NULL);
968 #else
969 	if (m->m_nextpkt != NULL) {
970 		static int afewtimes = 10;
971 
972 		if (afewtimes-- > 0) {
973 			kprintf("mfree: m->m_nextpkt != NULL\n");
974 			print_backtrace(-1);
975 		}
976 		m->m_nextpkt = NULL;
977 	}
978 #endif
979 	if (m->m_flags & M_PKTHDR) {
980 		m_tag_delete_chain(m);		/* eliminate XXX JH */
981 	}
982 
983 	m->m_flags &= (M_EXT | M_EXT_CLUSTER | M_CLCACHE | M_PHCACHE);
984 
985 	/*
986 	 * Clean the M_PKTHDR state so we can return the mbuf to its original
987 	 * cache.  This is based on the PHCACHE flag which tells us whether
988 	 * the mbuf was originally allocated out of a packet-header cache
989 	 * or a non-packet-header cache.
990 	 */
991 	if (m->m_flags & M_PHCACHE) {
992 		m->m_flags |= M_PKTHDR;
993 		m->m_pkthdr.rcvif = NULL;	/* eliminate XXX JH */
994 		m->m_pkthdr.csum_flags = 0;	/* eliminate XXX JH */
995 		m->m_pkthdr.fw_flags = 0;	/* eliminate XXX JH */
996 		SLIST_INIT(&m->m_pkthdr.tags);
997 	}
998 
999 	/*
1000 	 * Handle remaining flags combinations.  M_CLCACHE tells us whether
1001 	 * the mbuf was originally allocated from a cluster cache or not,
1002 	 * and is totally separate from whether the mbuf is currently
1003 	 * associated with a cluster.
1004 	 */
1005 	switch(m->m_flags & (M_CLCACHE | M_EXT | M_EXT_CLUSTER)) {
1006 	case M_CLCACHE | M_EXT | M_EXT_CLUSTER:
1007 		/*
1008 		 * mbuf+cluster cache case.  The mbuf was allocated from the
1009 		 * combined mbuf_cluster cache and can be returned to the
1010 		 * cache if the cluster hasn't been shared.
1011 		 */
1012 		if (m_sharecount(m) == 1) {
1013 			/*
1014 			 * The cluster has not been shared, we can just
1015 			 * reset the data pointer and return the mbuf
1016 			 * to the cluster cache.  Note that the reference
1017 			 * count is left intact (it is still associated with
1018 			 * an mbuf).
1019 			 */
1020 			m->m_data = m->m_ext.ext_buf;
1021 			if (m->m_flags & M_PHCACHE)
1022 				objcache_put(mbufphdrcluster_cache, m);
1023 			else
1024 				objcache_put(mbufcluster_cache, m);
1025 			atomic_subtract_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters, 1);
1026 		} else {
1027 			/*
1028 			 * Hell.  Someone else has a ref on this cluster,
1029 			 * we have to disconnect it which means we can't
1030 			 * put it back into the mbufcluster_cache, we
1031 			 * have to destroy the mbuf.
1032 			 *
1033 			 * Other mbuf references to the cluster will typically
1034 			 * be M_EXT | M_EXT_CLUSTER but without M_CLCACHE.
1035 			 *
1036 			 * XXX we could try to connect another cluster to
1037 			 * it.
1038 			 */
1039 			m->m_ext.ext_free(m->m_ext.ext_arg);
1040 			m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1041 			if (m->m_flags & M_PHCACHE)
1042 				objcache_dtor(mbufphdrcluster_cache, m);
1043 			else
1044 				objcache_dtor(mbufcluster_cache, m);
1045 		}
1046 		break;
1047 	case M_EXT | M_EXT_CLUSTER:
1048 		/*
1049 		 * Normal cluster associated with an mbuf that was allocated
1050 		 * from the normal mbuf pool rather then the cluster pool.
1051 		 * The cluster has to be independantly disassociated from the
1052 		 * mbuf.
1053 		 */
1054 		if (m_sharecount(m) == 1)
1055 			atomic_subtract_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters, 1);
1056 		/* fall through */
1057 	case M_EXT:
1058 		/*
1059 		 * Normal cluster association case, disconnect the cluster from
1060 		 * the mbuf.  The cluster may or may not be custom.
1061 		 */
1062 		m->m_ext.ext_free(m->m_ext.ext_arg);
1063 		m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1064 		/* fall through */
1065 	case 0:
1066 		/*
1067 		 * return the mbuf to the mbuf cache.
1068 		 */
1069 		if (m->m_flags & M_PHCACHE) {
1070 			m->m_data = m->m_pktdat;
1071 			objcache_put(mbufphdr_cache, m);
1072 		} else {
1073 			m->m_data = m->m_dat;
1074 			objcache_put(mbuf_cache, m);
1075 		}
1076 		atomic_subtract_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mbufs, 1);
1077 		break;
1078 	default:
1079 		if (!panicstr)
1080 			panic("bad mbuf flags %p %08x\n", m, m->m_flags);
1081 		break;
1082 	}
1083 	return (n);
1084 }
1085 
1086 #ifdef MBUF_DEBUG
1087 
1088 void
1089 _m_freem(struct mbuf *m, const char *func)
1090 {
1091 	while (m)
1092 		m = _m_free(m, func);
1093 }
1094 
1095 #else
1096 
1097 void
1098 m_freem(struct mbuf *m)
1099 {
1100 	while (m)
1101 		m = m_free(m);
1102 }
1103 
1104 #endif
1105 
1106 /*
1107  * mbuf utility routines
1108  */
1109 
1110 /*
1111  * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain and
1112  * copy junk along.
1113  */
1114 struct mbuf *
1115 m_prepend(struct mbuf *m, int len, int how)
1116 {
1117 	struct mbuf *mn;
1118 
1119 	if (m->m_flags & M_PKTHDR)
1120 	    mn = m_gethdr(how, m->m_type);
1121 	else
1122 	    mn = m_get(how, m->m_type);
1123 	if (mn == NULL) {
1124 		m_freem(m);
1125 		return (NULL);
1126 	}
1127 	if (m->m_flags & M_PKTHDR)
1128 		M_MOVE_PKTHDR(mn, m);
1129 	mn->m_next = m;
1130 	m = mn;
1131 	if (len < MHLEN)
1132 		MH_ALIGN(m, len);
1133 	m->m_len = len;
1134 	return (m);
1135 }
1136 
1137 /*
1138  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
1139  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
1140  * The wait parameter is a choice of MB_WAIT/MB_DONTWAIT from caller.
1141  * Note that the copy is read-only, because clusters are not copied,
1142  * only their reference counts are incremented.
1143  */
1144 struct mbuf *
1145 m_copym(const struct mbuf *m, int off0, int len, int wait)
1146 {
1147 	struct mbuf *n, **np;
1148 	int off = off0;
1149 	struct mbuf *top;
1150 	int copyhdr = 0;
1151 
1152 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
1153 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
1154 	if (off == 0 && (m->m_flags & M_PKTHDR))
1155 		copyhdr = 1;
1156 	while (off > 0) {
1157 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
1158 		if (off < m->m_len)
1159 			break;
1160 		off -= m->m_len;
1161 		m = m->m_next;
1162 	}
1163 	np = &top;
1164 	top = NULL;
1165 	while (len > 0) {
1166 		if (m == NULL) {
1167 			KASSERT(len == M_COPYALL,
1168 			    ("m_copym, length > size of mbuf chain"));
1169 			break;
1170 		}
1171 		/*
1172 		 * Because we are sharing any cluster attachment below,
1173 		 * be sure to get an mbuf that does not have a cluster
1174 		 * associated with it.
1175 		 */
1176 		if (copyhdr)
1177 			n = m_gethdr(wait, m->m_type);
1178 		else
1179 			n = m_get(wait, m->m_type);
1180 		*np = n;
1181 		if (n == NULL)
1182 			goto nospace;
1183 		if (copyhdr) {
1184 			if (!m_dup_pkthdr(n, m, wait))
1185 				goto nospace;
1186 			if (len == M_COPYALL)
1187 				n->m_pkthdr.len -= off0;
1188 			else
1189 				n->m_pkthdr.len = len;
1190 			copyhdr = 0;
1191 		}
1192 		n->m_len = min(len, m->m_len - off);
1193 		if (m->m_flags & M_EXT) {
1194 			KKASSERT((n->m_flags & M_EXT) == 0);
1195 			n->m_data = m->m_data + off;
1196 			m->m_ext.ext_ref(m->m_ext.ext_arg);
1197 			n->m_ext = m->m_ext;
1198 			n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1199 		} else {
1200 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
1201 			    (unsigned)n->m_len);
1202 		}
1203 		if (len != M_COPYALL)
1204 			len -= n->m_len;
1205 		off = 0;
1206 		m = m->m_next;
1207 		np = &n->m_next;
1208 	}
1209 	if (top == NULL)
1210 		atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1211 	return (top);
1212 nospace:
1213 	m_freem(top);
1214 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1215 	return (NULL);
1216 }
1217 
1218 /*
1219  * Copy an entire packet, including header (which must be present).
1220  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
1221  * Note that the copy is read-only, because clusters are not copied,
1222  * only their reference counts are incremented.
1223  * Preserve alignment of the first mbuf so if the creator has left
1224  * some room at the beginning (e.g. for inserting protocol headers)
1225  * the copies also have the room available.
1226  */
1227 struct mbuf *
1228 m_copypacket(struct mbuf *m, int how)
1229 {
1230 	struct mbuf *top, *n, *o;
1231 
1232 	n = m_gethdr(how, m->m_type);
1233 	top = n;
1234 	if (!n)
1235 		goto nospace;
1236 
1237 	if (!m_dup_pkthdr(n, m, how))
1238 		goto nospace;
1239 	n->m_len = m->m_len;
1240 	if (m->m_flags & M_EXT) {
1241 		KKASSERT((n->m_flags & M_EXT) == 0);
1242 		n->m_data = m->m_data;
1243 		m->m_ext.ext_ref(m->m_ext.ext_arg);
1244 		n->m_ext = m->m_ext;
1245 		n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1246 	} else {
1247 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
1248 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1249 	}
1250 
1251 	m = m->m_next;
1252 	while (m) {
1253 		o = m_get(how, m->m_type);
1254 		if (!o)
1255 			goto nospace;
1256 
1257 		n->m_next = o;
1258 		n = n->m_next;
1259 
1260 		n->m_len = m->m_len;
1261 		if (m->m_flags & M_EXT) {
1262 			KKASSERT((n->m_flags & M_EXT) == 0);
1263 			n->m_data = m->m_data;
1264 			m->m_ext.ext_ref(m->m_ext.ext_arg);
1265 			n->m_ext = m->m_ext;
1266 			n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1267 		} else {
1268 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1269 		}
1270 
1271 		m = m->m_next;
1272 	}
1273 	return top;
1274 nospace:
1275 	m_freem(top);
1276 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1277 	return (NULL);
1278 }
1279 
1280 /*
1281  * Copy data from an mbuf chain starting "off" bytes from the beginning,
1282  * continuing for "len" bytes, into the indicated buffer.
1283  */
1284 void
1285 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
1286 {
1287 	unsigned count;
1288 
1289 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
1290 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
1291 	while (off > 0) {
1292 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
1293 		if (off < m->m_len)
1294 			break;
1295 		off -= m->m_len;
1296 		m = m->m_next;
1297 	}
1298 	while (len > 0) {
1299 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
1300 		count = min(m->m_len - off, len);
1301 		bcopy(mtod(m, caddr_t) + off, cp, count);
1302 		len -= count;
1303 		cp += count;
1304 		off = 0;
1305 		m = m->m_next;
1306 	}
1307 }
1308 
1309 /*
1310  * Copy a packet header mbuf chain into a completely new chain, including
1311  * copying any mbuf clusters.  Use this instead of m_copypacket() when
1312  * you need a writable copy of an mbuf chain.
1313  */
1314 struct mbuf *
1315 m_dup(struct mbuf *m, int how)
1316 {
1317 	struct mbuf **p, *top = NULL;
1318 	int remain, moff, nsize;
1319 
1320 	/* Sanity check */
1321 	if (m == NULL)
1322 		return (NULL);
1323 	KASSERT((m->m_flags & M_PKTHDR) != 0, ("%s: !PKTHDR", __func__));
1324 
1325 	/* While there's more data, get a new mbuf, tack it on, and fill it */
1326 	remain = m->m_pkthdr.len;
1327 	moff = 0;
1328 	p = &top;
1329 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
1330 		struct mbuf *n;
1331 
1332 		/* Get the next new mbuf */
1333 		n = m_getl(remain, how, m->m_type, top == NULL ? M_PKTHDR : 0,
1334 			   &nsize);
1335 		if (n == NULL)
1336 			goto nospace;
1337 		if (top == NULL)
1338 			if (!m_dup_pkthdr(n, m, how))
1339 				goto nospace0;
1340 
1341 		/* Link it into the new chain */
1342 		*p = n;
1343 		p = &n->m_next;
1344 
1345 		/* Copy data from original mbuf(s) into new mbuf */
1346 		n->m_len = 0;
1347 		while (n->m_len < nsize && m != NULL) {
1348 			int chunk = min(nsize - n->m_len, m->m_len - moff);
1349 
1350 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1351 			moff += chunk;
1352 			n->m_len += chunk;
1353 			remain -= chunk;
1354 			if (moff == m->m_len) {
1355 				m = m->m_next;
1356 				moff = 0;
1357 			}
1358 		}
1359 
1360 		/* Check correct total mbuf length */
1361 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
1362 			("%s: bogus m_pkthdr.len", __func__));
1363 	}
1364 	return (top);
1365 
1366 nospace:
1367 	m_freem(top);
1368 nospace0:
1369 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1370 	return (NULL);
1371 }
1372 
1373 /*
1374  * Copy the non-packet mbuf data chain into a new set of mbufs, including
1375  * copying any mbuf clusters.  This is typically used to realign a data
1376  * chain by nfs_realign().
1377  *
1378  * The original chain is left intact.  how should be MB_WAIT or MB_DONTWAIT
1379  * and NULL can be returned if MB_DONTWAIT is passed.
1380  *
1381  * Be careful to use cluster mbufs, a large mbuf chain converted to non
1382  * cluster mbufs can exhaust our supply of mbufs.
1383  */
1384 struct mbuf *
1385 m_dup_data(struct mbuf *m, int how)
1386 {
1387 	struct mbuf **p, *n, *top = NULL;
1388 	int mlen, moff, chunk, gsize, nsize;
1389 
1390 	/*
1391 	 * Degenerate case
1392 	 */
1393 	if (m == NULL)
1394 		return (NULL);
1395 
1396 	/*
1397 	 * Optimize the mbuf allocation but do not get too carried away.
1398 	 */
1399 	if (m->m_next || m->m_len > MLEN)
1400 		gsize = MCLBYTES;
1401 	else
1402 		gsize = MLEN;
1403 
1404 	/* Chain control */
1405 	p = &top;
1406 	n = NULL;
1407 	nsize = 0;
1408 
1409 	/*
1410 	 * Scan the mbuf chain until nothing is left, the new mbuf chain
1411 	 * will be allocated on the fly as needed.
1412 	 */
1413 	while (m) {
1414 		mlen = m->m_len;
1415 		moff = 0;
1416 
1417 		while (mlen) {
1418 			KKASSERT(m->m_type == MT_DATA);
1419 			if (n == NULL) {
1420 				n = m_getl(gsize, how, MT_DATA, 0, &nsize);
1421 				n->m_len = 0;
1422 				if (n == NULL)
1423 					goto nospace;
1424 				*p = n;
1425 				p = &n->m_next;
1426 			}
1427 			chunk = imin(mlen, nsize);
1428 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1429 			mlen -= chunk;
1430 			moff += chunk;
1431 			n->m_len += chunk;
1432 			nsize -= chunk;
1433 			if (nsize == 0)
1434 				n = NULL;
1435 		}
1436 		m = m->m_next;
1437 	}
1438 	*p = NULL;
1439 	return(top);
1440 nospace:
1441 	*p = NULL;
1442 	m_freem(top);
1443 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1444 	return (NULL);
1445 }
1446 
1447 /*
1448  * Concatenate mbuf chain n to m.
1449  * Both chains must be of the same type (e.g. MT_DATA).
1450  * Any m_pkthdr is not updated.
1451  */
1452 void
1453 m_cat(struct mbuf *m, struct mbuf *n)
1454 {
1455 	m = m_last(m);
1456 	while (n) {
1457 		if (m->m_flags & M_EXT ||
1458 		    m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
1459 			/* just join the two chains */
1460 			m->m_next = n;
1461 			return;
1462 		}
1463 		/* splat the data from one into the other */
1464 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1465 		    (u_int)n->m_len);
1466 		m->m_len += n->m_len;
1467 		n = m_free(n);
1468 	}
1469 }
1470 
1471 void
1472 m_adj(struct mbuf *mp, int req_len)
1473 {
1474 	int len = req_len;
1475 	struct mbuf *m;
1476 	int count;
1477 
1478 	if ((m = mp) == NULL)
1479 		return;
1480 	if (len >= 0) {
1481 		/*
1482 		 * Trim from head.
1483 		 */
1484 		while (m != NULL && len > 0) {
1485 			if (m->m_len <= len) {
1486 				len -= m->m_len;
1487 				m->m_len = 0;
1488 				m = m->m_next;
1489 			} else {
1490 				m->m_len -= len;
1491 				m->m_data += len;
1492 				len = 0;
1493 			}
1494 		}
1495 		m = mp;
1496 		if (mp->m_flags & M_PKTHDR)
1497 			m->m_pkthdr.len -= (req_len - len);
1498 	} else {
1499 		/*
1500 		 * Trim from tail.  Scan the mbuf chain,
1501 		 * calculating its length and finding the last mbuf.
1502 		 * If the adjustment only affects this mbuf, then just
1503 		 * adjust and return.  Otherwise, rescan and truncate
1504 		 * after the remaining size.
1505 		 */
1506 		len = -len;
1507 		count = 0;
1508 		for (;;) {
1509 			count += m->m_len;
1510 			if (m->m_next == NULL)
1511 				break;
1512 			m = m->m_next;
1513 		}
1514 		if (m->m_len >= len) {
1515 			m->m_len -= len;
1516 			if (mp->m_flags & M_PKTHDR)
1517 				mp->m_pkthdr.len -= len;
1518 			return;
1519 		}
1520 		count -= len;
1521 		if (count < 0)
1522 			count = 0;
1523 		/*
1524 		 * Correct length for chain is "count".
1525 		 * Find the mbuf with last data, adjust its length,
1526 		 * and toss data from remaining mbufs on chain.
1527 		 */
1528 		m = mp;
1529 		if (m->m_flags & M_PKTHDR)
1530 			m->m_pkthdr.len = count;
1531 		for (; m; m = m->m_next) {
1532 			if (m->m_len >= count) {
1533 				m->m_len = count;
1534 				break;
1535 			}
1536 			count -= m->m_len;
1537 		}
1538 		while (m->m_next)
1539 			(m = m->m_next) ->m_len = 0;
1540 	}
1541 }
1542 
1543 /*
1544  * Set the m_data pointer of a newly-allocated mbuf
1545  * to place an object of the specified size at the
1546  * end of the mbuf, longword aligned.
1547  */
1548 void
1549 m_align(struct mbuf *m, int len)
1550 {
1551 	int adjust;
1552 
1553 	if (m->m_flags & M_EXT)
1554 		adjust = m->m_ext.ext_size - len;
1555 	else if (m->m_flags & M_PKTHDR)
1556 		adjust = MHLEN - len;
1557 	else
1558 		adjust = MLEN - len;
1559 	m->m_data += adjust &~ (sizeof(long)-1);
1560 }
1561 
1562 /*
1563  * Rearrange an mbuf chain so that len bytes are contiguous
1564  * and in the data area of an mbuf (so that mtod will work for a structure
1565  * of size len).  Returns the resulting mbuf chain on success, frees it and
1566  * returns null on failure.  If there is room, it will add up to
1567  * max_protohdr-len extra bytes to the contiguous region in an attempt to
1568  * avoid being called next time.
1569  */
1570 struct mbuf *
1571 m_pullup(struct mbuf *n, int len)
1572 {
1573 	struct mbuf *m;
1574 	int count;
1575 	int space;
1576 
1577 	/*
1578 	 * If first mbuf has no cluster, and has room for len bytes
1579 	 * without shifting current data, pullup into it,
1580 	 * otherwise allocate a new mbuf to prepend to the chain.
1581 	 */
1582 	if (!(n->m_flags & M_EXT) &&
1583 	    n->m_data + len < &n->m_dat[MLEN] &&
1584 	    n->m_next) {
1585 		if (n->m_len >= len)
1586 			return (n);
1587 		m = n;
1588 		n = n->m_next;
1589 		len -= m->m_len;
1590 	} else {
1591 		if (len > MHLEN)
1592 			goto bad;
1593 		if (n->m_flags & M_PKTHDR)
1594 			m = m_gethdr(MB_DONTWAIT, n->m_type);
1595 		else
1596 			m = m_get(MB_DONTWAIT, n->m_type);
1597 		if (m == NULL)
1598 			goto bad;
1599 		m->m_len = 0;
1600 		if (n->m_flags & M_PKTHDR)
1601 			M_MOVE_PKTHDR(m, n);
1602 	}
1603 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1604 	do {
1605 		count = min(min(max(len, max_protohdr), space), n->m_len);
1606 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1607 		  (unsigned)count);
1608 		len -= count;
1609 		m->m_len += count;
1610 		n->m_len -= count;
1611 		space -= count;
1612 		if (n->m_len)
1613 			n->m_data += count;
1614 		else
1615 			n = m_free(n);
1616 	} while (len > 0 && n);
1617 	if (len > 0) {
1618 		m_free(m);
1619 		goto bad;
1620 	}
1621 	m->m_next = n;
1622 	return (m);
1623 bad:
1624 	m_freem(n);
1625 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1626 	return (NULL);
1627 }
1628 
1629 /*
1630  * Partition an mbuf chain in two pieces, returning the tail --
1631  * all but the first len0 bytes.  In case of failure, it returns NULL and
1632  * attempts to restore the chain to its original state.
1633  *
1634  * Note that the resulting mbufs might be read-only, because the new
1635  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1636  * the "breaking point" happens to lie within a cluster mbuf. Use the
1637  * M_WRITABLE() macro to check for this case.
1638  */
1639 struct mbuf *
1640 m_split(struct mbuf *m0, int len0, int wait)
1641 {
1642 	struct mbuf *m, *n;
1643 	unsigned len = len0, remain;
1644 
1645 	for (m = m0; m && len > m->m_len; m = m->m_next)
1646 		len -= m->m_len;
1647 	if (m == NULL)
1648 		return (NULL);
1649 	remain = m->m_len - len;
1650 	if (m0->m_flags & M_PKTHDR) {
1651 		n = m_gethdr(wait, m0->m_type);
1652 		if (n == NULL)
1653 			return (NULL);
1654 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1655 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1656 		m0->m_pkthdr.len = len0;
1657 		if (m->m_flags & M_EXT)
1658 			goto extpacket;
1659 		if (remain > MHLEN) {
1660 			/* m can't be the lead packet */
1661 			MH_ALIGN(n, 0);
1662 			n->m_next = m_split(m, len, wait);
1663 			if (n->m_next == NULL) {
1664 				m_free(n);
1665 				return (NULL);
1666 			} else {
1667 				n->m_len = 0;
1668 				return (n);
1669 			}
1670 		} else
1671 			MH_ALIGN(n, remain);
1672 	} else if (remain == 0) {
1673 		n = m->m_next;
1674 		m->m_next = 0;
1675 		return (n);
1676 	} else {
1677 		n = m_get(wait, m->m_type);
1678 		if (n == NULL)
1679 			return (NULL);
1680 		M_ALIGN(n, remain);
1681 	}
1682 extpacket:
1683 	if (m->m_flags & M_EXT) {
1684 		KKASSERT((n->m_flags & M_EXT) == 0);
1685 		n->m_data = m->m_data + len;
1686 		m->m_ext.ext_ref(m->m_ext.ext_arg);
1687 		n->m_ext = m->m_ext;
1688 		n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1689 	} else {
1690 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1691 	}
1692 	n->m_len = remain;
1693 	m->m_len = len;
1694 	n->m_next = m->m_next;
1695 	m->m_next = 0;
1696 	return (n);
1697 }
1698 
1699 /*
1700  * Routine to copy from device local memory into mbufs.
1701  * Note: "offset" is ill-defined and always called as 0, so ignore it.
1702  */
1703 struct mbuf *
1704 m_devget(char *buf, int len, int offset, struct ifnet *ifp,
1705     void (*copy)(volatile const void *from, volatile void *to, size_t length))
1706 {
1707 	struct mbuf *m, *mfirst = NULL, **mtail;
1708 	int nsize, flags;
1709 
1710 	if (copy == NULL)
1711 		copy = bcopy;
1712 	mtail = &mfirst;
1713 	flags = M_PKTHDR;
1714 
1715 	while (len > 0) {
1716 		m = m_getl(len, MB_DONTWAIT, MT_DATA, flags, &nsize);
1717 		if (m == NULL) {
1718 			m_freem(mfirst);
1719 			return (NULL);
1720 		}
1721 		m->m_len = min(len, nsize);
1722 
1723 		if (flags & M_PKTHDR) {
1724 			if (len + max_linkhdr <= nsize)
1725 				m->m_data += max_linkhdr;
1726 			m->m_pkthdr.rcvif = ifp;
1727 			m->m_pkthdr.len = len;
1728 			flags = 0;
1729 		}
1730 
1731 		copy(buf, m->m_data, (unsigned)m->m_len);
1732 		buf += m->m_len;
1733 		len -= m->m_len;
1734 		*mtail = m;
1735 		mtail = &m->m_next;
1736 	}
1737 
1738 	return (mfirst);
1739 }
1740 
1741 /*
1742  * Routine to pad mbuf to the specified length 'padto'.
1743  */
1744 int
1745 m_devpad(struct mbuf *m, int padto)
1746 {
1747 	struct mbuf *last = NULL;
1748 	int padlen;
1749 
1750 	if (padto <= m->m_pkthdr.len)
1751 		return 0;
1752 
1753 	padlen = padto - m->m_pkthdr.len;
1754 
1755 	/* if there's only the packet-header and we can pad there, use it. */
1756 	if (m->m_pkthdr.len == m->m_len && M_TRAILINGSPACE(m) >= padlen) {
1757 		last = m;
1758 	} else {
1759 		/*
1760 		 * Walk packet chain to find last mbuf. We will either
1761 		 * pad there, or append a new mbuf and pad it
1762 		 */
1763 		for (last = m; last->m_next != NULL; last = last->m_next)
1764 			; /* EMPTY */
1765 
1766 		/* `last' now points to last in chain. */
1767 		if (M_TRAILINGSPACE(last) < padlen) {
1768 			struct mbuf *n;
1769 
1770 			/* Allocate new empty mbuf, pad it.  Compact later. */
1771 			MGET(n, MB_DONTWAIT, MT_DATA);
1772 			if (n == NULL)
1773 				return ENOBUFS;
1774 			n->m_len = 0;
1775 			last->m_next = n;
1776 			last = n;
1777 		}
1778 	}
1779 	KKASSERT(M_TRAILINGSPACE(last) >= padlen);
1780 	KKASSERT(M_WRITABLE(last));
1781 
1782 	/* Now zero the pad area */
1783 	bzero(mtod(last, char *) + last->m_len, padlen);
1784 	last->m_len += padlen;
1785 	m->m_pkthdr.len += padlen;
1786 	return 0;
1787 }
1788 
1789 /*
1790  * Copy data from a buffer back into the indicated mbuf chain,
1791  * starting "off" bytes from the beginning, extending the mbuf
1792  * chain if necessary.
1793  */
1794 void
1795 m_copyback(struct mbuf *m0, int off, int len, caddr_t cp)
1796 {
1797 	int mlen;
1798 	struct mbuf *m = m0, *n;
1799 	int totlen = 0;
1800 
1801 	if (m0 == NULL)
1802 		return;
1803 	while (off > (mlen = m->m_len)) {
1804 		off -= mlen;
1805 		totlen += mlen;
1806 		if (m->m_next == NULL) {
1807 			n = m_getclr(MB_DONTWAIT, m->m_type);
1808 			if (n == NULL)
1809 				goto out;
1810 			n->m_len = min(MLEN, len + off);
1811 			m->m_next = n;
1812 		}
1813 		m = m->m_next;
1814 	}
1815 	while (len > 0) {
1816 		mlen = min (m->m_len - off, len);
1817 		bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
1818 		cp += mlen;
1819 		len -= mlen;
1820 		mlen += off;
1821 		off = 0;
1822 		totlen += mlen;
1823 		if (len == 0)
1824 			break;
1825 		if (m->m_next == NULL) {
1826 			n = m_get(MB_DONTWAIT, m->m_type);
1827 			if (n == NULL)
1828 				break;
1829 			n->m_len = min(MLEN, len);
1830 			m->m_next = n;
1831 		}
1832 		m = m->m_next;
1833 	}
1834 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1835 		m->m_pkthdr.len = totlen;
1836 }
1837 
1838 /*
1839  * Append the specified data to the indicated mbuf chain,
1840  * Extend the mbuf chain if the new data does not fit in
1841  * existing space.
1842  *
1843  * Return 1 if able to complete the job; otherwise 0.
1844  */
1845 int
1846 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1847 {
1848 	struct mbuf *m, *n;
1849 	int remainder, space;
1850 
1851 	for (m = m0; m->m_next != NULL; m = m->m_next)
1852 		;
1853 	remainder = len;
1854 	space = M_TRAILINGSPACE(m);
1855 	if (space > 0) {
1856 		/*
1857 		 * Copy into available space.
1858 		 */
1859 		if (space > remainder)
1860 			space = remainder;
1861 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1862 		m->m_len += space;
1863 		cp += space, remainder -= space;
1864 	}
1865 	while (remainder > 0) {
1866 		/*
1867 		 * Allocate a new mbuf; could check space
1868 		 * and allocate a cluster instead.
1869 		 */
1870 		n = m_get(MB_DONTWAIT, m->m_type);
1871 		if (n == NULL)
1872 			break;
1873 		n->m_len = min(MLEN, remainder);
1874 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1875 		cp += n->m_len, remainder -= n->m_len;
1876 		m->m_next = n;
1877 		m = n;
1878 	}
1879 	if (m0->m_flags & M_PKTHDR)
1880 		m0->m_pkthdr.len += len - remainder;
1881 	return (remainder == 0);
1882 }
1883 
1884 /*
1885  * Apply function f to the data in an mbuf chain starting "off" bytes from
1886  * the beginning, continuing for "len" bytes.
1887  */
1888 int
1889 m_apply(struct mbuf *m, int off, int len,
1890     int (*f)(void *, void *, u_int), void *arg)
1891 {
1892 	u_int count;
1893 	int rval;
1894 
1895 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1896 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1897 	while (off > 0) {
1898 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1899 		if (off < m->m_len)
1900 			break;
1901 		off -= m->m_len;
1902 		m = m->m_next;
1903 	}
1904 	while (len > 0) {
1905 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1906 		count = min(m->m_len - off, len);
1907 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1908 		if (rval)
1909 			return (rval);
1910 		len -= count;
1911 		off = 0;
1912 		m = m->m_next;
1913 	}
1914 	return (0);
1915 }
1916 
1917 /*
1918  * Return a pointer to mbuf/offset of location in mbuf chain.
1919  */
1920 struct mbuf *
1921 m_getptr(struct mbuf *m, int loc, int *off)
1922 {
1923 
1924 	while (loc >= 0) {
1925 		/* Normal end of search. */
1926 		if (m->m_len > loc) {
1927 			*off = loc;
1928 			return (m);
1929 		} else {
1930 			loc -= m->m_len;
1931 			if (m->m_next == NULL) {
1932 				if (loc == 0) {
1933 					/* Point at the end of valid data. */
1934 					*off = m->m_len;
1935 					return (m);
1936 				}
1937 				return (NULL);
1938 			}
1939 			m = m->m_next;
1940 		}
1941 	}
1942 	return (NULL);
1943 }
1944 
1945 void
1946 m_print(const struct mbuf *m)
1947 {
1948 	int len;
1949 	const struct mbuf *m2;
1950 
1951 	len = m->m_pkthdr.len;
1952 	m2 = m;
1953 	while (len) {
1954 		kprintf("%p %*D\n", m2, m2->m_len, (u_char *)m2->m_data, "-");
1955 		len -= m2->m_len;
1956 		m2 = m2->m_next;
1957 	}
1958 	return;
1959 }
1960 
1961 /*
1962  * "Move" mbuf pkthdr from "from" to "to".
1963  * "from" must have M_PKTHDR set, and "to" must be empty.
1964  */
1965 void
1966 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
1967 {
1968 	KASSERT((to->m_flags & M_PKTHDR), ("m_move_pkthdr: not packet header"));
1969 
1970 	to->m_flags |= from->m_flags & M_COPYFLAGS;
1971 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
1972 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
1973 }
1974 
1975 /*
1976  * Duplicate "from"'s mbuf pkthdr in "to".
1977  * "from" must have M_PKTHDR set, and "to" must be empty.
1978  * In particular, this does a deep copy of the packet tags.
1979  */
1980 int
1981 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
1982 {
1983 	KASSERT((to->m_flags & M_PKTHDR), ("m_dup_pkthdr: not packet header"));
1984 
1985 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
1986 		      (to->m_flags & ~M_COPYFLAGS);
1987 	to->m_pkthdr = from->m_pkthdr;
1988 	SLIST_INIT(&to->m_pkthdr.tags);
1989 	return (m_tag_copy_chain(to, from, how));
1990 }
1991 
1992 /*
1993  * Defragment a mbuf chain, returning the shortest possible
1994  * chain of mbufs and clusters.  If allocation fails and
1995  * this cannot be completed, NULL will be returned, but
1996  * the passed in chain will be unchanged.  Upon success,
1997  * the original chain will be freed, and the new chain
1998  * will be returned.
1999  *
2000  * If a non-packet header is passed in, the original
2001  * mbuf (chain?) will be returned unharmed.
2002  *
2003  * m_defrag_nofree doesn't free the passed in mbuf.
2004  */
2005 struct mbuf *
2006 m_defrag(struct mbuf *m0, int how)
2007 {
2008 	struct mbuf *m_new;
2009 
2010 	if ((m_new = m_defrag_nofree(m0, how)) == NULL)
2011 		return (NULL);
2012 	if (m_new != m0)
2013 		m_freem(m0);
2014 	return (m_new);
2015 }
2016 
2017 struct mbuf *
2018 m_defrag_nofree(struct mbuf *m0, int how)
2019 {
2020 	struct mbuf	*m_new = NULL, *m_final = NULL;
2021 	int		progress = 0, length, nsize;
2022 
2023 	if (!(m0->m_flags & M_PKTHDR))
2024 		return (m0);
2025 
2026 #ifdef MBUF_STRESS_TEST
2027 	if (m_defragrandomfailures) {
2028 		int temp = karc4random() & 0xff;
2029 		if (temp == 0xba)
2030 			goto nospace;
2031 	}
2032 #endif
2033 
2034 	m_final = m_getl(m0->m_pkthdr.len, how, MT_DATA, M_PKTHDR, &nsize);
2035 	if (m_final == NULL)
2036 		goto nospace;
2037 	m_final->m_len = 0;	/* in case m0->m_pkthdr.len is zero */
2038 
2039 	if (m_dup_pkthdr(m_final, m0, how) == 0)
2040 		goto nospace;
2041 
2042 	m_new = m_final;
2043 
2044 	while (progress < m0->m_pkthdr.len) {
2045 		length = m0->m_pkthdr.len - progress;
2046 		if (length > MCLBYTES)
2047 			length = MCLBYTES;
2048 
2049 		if (m_new == NULL) {
2050 			m_new = m_getl(length, how, MT_DATA, 0, &nsize);
2051 			if (m_new == NULL)
2052 				goto nospace;
2053 		}
2054 
2055 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
2056 		progress += length;
2057 		m_new->m_len = length;
2058 		if (m_new != m_final)
2059 			m_cat(m_final, m_new);
2060 		m_new = NULL;
2061 	}
2062 	if (m0->m_next == NULL)
2063 		m_defraguseless++;
2064 	m_defragpackets++;
2065 	m_defragbytes += m_final->m_pkthdr.len;
2066 	return (m_final);
2067 nospace:
2068 	m_defragfailure++;
2069 	if (m_new)
2070 		m_free(m_new);
2071 	m_freem(m_final);
2072 	return (NULL);
2073 }
2074 
2075 /*
2076  * Move data from uio into mbufs.
2077  */
2078 struct mbuf *
2079 m_uiomove(struct uio *uio)
2080 {
2081 	struct mbuf *m;			/* current working mbuf */
2082 	struct mbuf *head = NULL;	/* result mbuf chain */
2083 	struct mbuf **mp = &head;
2084 	int flags = M_PKTHDR;
2085 	int nsize;
2086 	int error;
2087 	int resid;
2088 
2089 	do {
2090 		if (uio->uio_resid > INT_MAX)
2091 			resid = INT_MAX;
2092 		else
2093 			resid = (int)uio->uio_resid;
2094 		m = m_getl(resid, MB_WAIT, MT_DATA, flags, &nsize);
2095 		if (flags) {
2096 			m->m_pkthdr.len = 0;
2097 			/* Leave room for protocol headers. */
2098 			if (resid < MHLEN)
2099 				MH_ALIGN(m, resid);
2100 			flags = 0;
2101 		}
2102 		m->m_len = imin(nsize, resid);
2103 		error = uiomove(mtod(m, caddr_t), m->m_len, uio);
2104 		if (error) {
2105 			m_free(m);
2106 			goto failed;
2107 		}
2108 		*mp = m;
2109 		mp = &m->m_next;
2110 		head->m_pkthdr.len += m->m_len;
2111 	} while (uio->uio_resid > 0);
2112 
2113 	return (head);
2114 
2115 failed:
2116 	m_freem(head);
2117 	return (NULL);
2118 }
2119 
2120 struct mbuf *
2121 m_last(struct mbuf *m)
2122 {
2123 	while (m->m_next)
2124 		m = m->m_next;
2125 	return (m);
2126 }
2127 
2128 /*
2129  * Return the number of bytes in an mbuf chain.
2130  * If lastm is not NULL, also return the last mbuf.
2131  */
2132 u_int
2133 m_lengthm(struct mbuf *m, struct mbuf **lastm)
2134 {
2135 	u_int len = 0;
2136 	struct mbuf *prev = m;
2137 
2138 	while (m) {
2139 		len += m->m_len;
2140 		prev = m;
2141 		m = m->m_next;
2142 	}
2143 	if (lastm != NULL)
2144 		*lastm = prev;
2145 	return (len);
2146 }
2147 
2148 /*
2149  * Like m_lengthm(), except also keep track of mbuf usage.
2150  */
2151 u_int
2152 m_countm(struct mbuf *m, struct mbuf **lastm, u_int *pmbcnt)
2153 {
2154 	u_int len = 0, mbcnt = 0;
2155 	struct mbuf *prev = m;
2156 
2157 	while (m) {
2158 		len += m->m_len;
2159 		mbcnt += MSIZE;
2160 		if (m->m_flags & M_EXT)
2161 			mbcnt += m->m_ext.ext_size;
2162 		prev = m;
2163 		m = m->m_next;
2164 	}
2165 	if (lastm != NULL)
2166 		*lastm = prev;
2167 	*pmbcnt = mbcnt;
2168 	return (len);
2169 }
2170