xref: /dragonfly/sys/kern/uipc_msg.c (revision cf37dc20)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/msgport.h>
38 #include <sys/protosw.h>
39 #include <sys/socket.h>
40 #include <sys/socketvar.h>
41 #include <sys/socketops.h>
42 #include <sys/thread.h>
43 #include <sys/thread2.h>
44 #include <sys/msgport2.h>
45 #include <sys/spinlock2.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <vm/pmap.h>
49 
50 #include <net/netmsg2.h>
51 #include <sys/socketvar2.h>
52 
53 #include <net/netisr.h>
54 #include <net/netmsg.h>
55 
56 static int async_rcvd_drop_race = 0;
57 SYSCTL_INT(_kern_ipc, OID_AUTO, async_rcvd_drop_race, CTLFLAG_RW,
58     &async_rcvd_drop_race, 0, "# of asynchronized pru_rcvd msg drop races");
59 
60 /*
61  * Abort a socket and free it, asynchronously.  Called from
62  * soabort_async() only.  soabort_async() got a ref on the
63  * socket which we must free on reply.
64  */
65 void
66 so_pru_abort_async(struct socket *so)
67 {
68 	struct netmsg_pru_abort *msg;
69 
70 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK | M_ZERO);
71 	netmsg_init(&msg->base, so, &netisr_afree_free_so_rport,
72 		    0, so->so_proto->pr_usrreqs->pru_abort);
73 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
74 }
75 
76 /*
77  * Abort a socket and free it.  Called from soabort_oncpu() only.
78  * Caller must make sure that the current CPU is inpcb's owner CPU.
79  * soabort_oncpu() got a ref on the socket which we must free.
80  */
81 void
82 so_pru_abort_direct(struct socket *so)
83 {
84 	struct netmsg_pru_abort msg;
85 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_abort;
86 
87 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
88 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
89 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
90 	func((netmsg_t)&msg);
91 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
92 	sofree(msg.base.nm_so);
93 }
94 
95 int
96 so_pru_accept(struct socket *so, struct sockaddr **nam)
97 {
98 	struct netmsg_pru_accept msg;
99 
100 	netmsg_init(&msg.base, so, &curthread->td_msgport,
101 	    0, so->so_proto->pr_usrreqs->pru_accept);
102 	msg.nm_nam = nam;
103 
104 	return lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
105 }
106 
107 int
108 so_pru_attach(struct socket *so, int proto, struct pru_attach_info *ai)
109 {
110 	struct netmsg_pru_attach msg;
111 	int error;
112 
113 	netmsg_init(&msg.base, so, &curthread->td_msgport,
114 		    0, so->so_proto->pr_usrreqs->pru_attach);
115 	msg.nm_proto = proto;
116 	msg.nm_ai = ai;
117 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
118 	return (error);
119 }
120 
121 int
122 so_pru_attach_direct(struct socket *so, int proto, struct pru_attach_info *ai)
123 {
124 	struct netmsg_pru_attach msg;
125 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_attach;
126 
127 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
128 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
129 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
130 	msg.nm_proto = proto;
131 	msg.nm_ai = ai;
132 	func((netmsg_t)&msg);
133 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
134 	return(msg.base.lmsg.ms_error);
135 }
136 
137 /*
138  * NOTE: If the target port changes the bind operation will deal with it.
139  */
140 int
141 so_pru_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
142 {
143 	struct netmsg_pru_bind msg;
144 	int error;
145 
146 	netmsg_init(&msg.base, so, &curthread->td_msgport,
147 		    0, so->so_proto->pr_usrreqs->pru_bind);
148 	msg.nm_nam = nam;
149 	msg.nm_td = td;		/* used only for prison_ip() */
150 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
151 	return (error);
152 }
153 
154 int
155 so_pru_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
156 {
157 	struct netmsg_pru_connect msg;
158 	int error;
159 
160 	netmsg_init(&msg.base, so, &curthread->td_msgport,
161 		    0, so->so_proto->pr_usrreqs->pru_connect);
162 	msg.nm_nam = nam;
163 	msg.nm_td = td;
164 	msg.nm_m = NULL;
165 	msg.nm_sndflags = 0;
166 	msg.nm_flags = 0;
167 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
168 	return (error);
169 }
170 
171 int
172 so_pru_connect_async(struct socket *so, struct sockaddr *nam, struct thread *td)
173 {
174 	struct netmsg_pru_connect *msg;
175 	int error, flags;
176 
177 	KASSERT(so->so_proto->pr_usrreqs->pru_preconnect != NULL,
178 	    ("async pru_connect is not supported"));
179 
180 	/* NOTE: sockaddr immediately follows netmsg */
181 	msg = kmalloc(sizeof(*msg) + nam->sa_len, M_LWKTMSG, M_NOWAIT);
182 	if (msg == NULL) {
183 		/*
184 		 * Fail to allocate message w/o waiting;
185 		 * fallback to synchronized pru_connect.
186 		 */
187 		return so_pru_connect(so, nam, td);
188 	}
189 
190 	error = so->so_proto->pr_usrreqs->pru_preconnect(so, nam, td);
191 	if (error) {
192 		kfree(msg, M_LWKTMSG);
193 		return error;
194 	}
195 
196 	flags = PRUC_ASYNC;
197 	if (td != NULL && (so->so_proto->pr_flags & PR_ACONN_HOLDTD)) {
198 		lwkt_hold(td);
199 		flags |= PRUC_HELDTD;
200 	}
201 
202 	netmsg_init(&msg->base, so, &netisr_afree_rport, 0,
203 	    so->so_proto->pr_usrreqs->pru_connect);
204 	msg->nm_nam = (struct sockaddr *)(msg + 1);
205 	memcpy(msg->nm_nam, nam, nam->sa_len);
206 	msg->nm_td = td;
207 	msg->nm_m = NULL;
208 	msg->nm_sndflags = 0;
209 	msg->nm_flags = flags;
210 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
211 	return 0;
212 }
213 
214 int
215 so_pru_connect2(struct socket *so1, struct socket *so2)
216 {
217 	struct netmsg_pru_connect2 msg;
218 	int error;
219 
220 	netmsg_init(&msg.base, so1, &curthread->td_msgport,
221 		    0, so1->so_proto->pr_usrreqs->pru_connect2);
222 	msg.nm_so1 = so1;
223 	msg.nm_so2 = so2;
224 	error = lwkt_domsg(so1->so_port, &msg.base.lmsg, 0);
225 	return (error);
226 }
227 
228 /*
229  * WARNING!  Synchronous call from user context.  Control function may do
230  *	     copyin/copyout.
231  */
232 int
233 so_pru_control_direct(struct socket *so, u_long cmd, caddr_t data,
234 		      struct ifnet *ifp)
235 {
236 	struct netmsg_pru_control msg;
237 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_control;
238 
239 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
240 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
241 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
242 	msg.nm_cmd = cmd;
243 	msg.nm_data = data;
244 	msg.nm_ifp = ifp;
245 	msg.nm_td = curthread;
246 	func((netmsg_t)&msg);
247 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
248 	return(msg.base.lmsg.ms_error);
249 }
250 
251 int
252 so_pru_detach(struct socket *so)
253 {
254 	struct netmsg_pru_detach msg;
255 	int error;
256 
257 	netmsg_init(&msg.base, so, &curthread->td_msgport,
258 		    0, so->so_proto->pr_usrreqs->pru_detach);
259 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
260 	return (error);
261 }
262 
263 int
264 so_pru_detach_direct(struct socket *so)
265 {
266 	struct netmsg_pru_detach msg;
267 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_detach;
268 
269 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
270 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
271 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
272 	func((netmsg_t)&msg);
273 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
274 	return(msg.base.lmsg.ms_error);
275 }
276 
277 int
278 so_pru_disconnect(struct socket *so)
279 {
280 	struct netmsg_pru_disconnect msg;
281 	int error;
282 
283 	netmsg_init(&msg.base, so, &curthread->td_msgport,
284 		    0, so->so_proto->pr_usrreqs->pru_disconnect);
285 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
286 	return (error);
287 }
288 
289 void
290 so_pru_disconnect_direct(struct socket *so)
291 {
292 	struct netmsg_pru_disconnect msg;
293 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_disconnect;
294 
295 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
296 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
297 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
298 	func((netmsg_t)&msg);
299 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
300 }
301 
302 int
303 so_pru_listen(struct socket *so, struct thread *td)
304 {
305 	struct netmsg_pru_listen msg;
306 	int error;
307 
308 	netmsg_init(&msg.base, so, &curthread->td_msgport,
309 		    0, so->so_proto->pr_usrreqs->pru_listen);
310 	msg.nm_td = td;		/* used only for prison_ip() XXX JH */
311 	msg.nm_flags = 0;
312 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
313 	return (error);
314 }
315 
316 int
317 so_pru_peeraddr(struct socket *so, struct sockaddr **nam)
318 {
319 	struct netmsg_pru_peeraddr msg;
320 	int error;
321 
322 	netmsg_init(&msg.base, so, &curthread->td_msgport,
323 		    0, so->so_proto->pr_usrreqs->pru_peeraddr);
324 	msg.nm_nam = nam;
325 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
326 	return (error);
327 }
328 
329 int
330 so_pru_rcvd(struct socket *so, int flags)
331 {
332 	struct netmsg_pru_rcvd msg;
333 	int error;
334 
335 	netmsg_init(&msg.base, so, &curthread->td_msgport,
336 		    0, so->so_proto->pr_usrreqs->pru_rcvd);
337 	msg.nm_flags = flags;
338 	msg.nm_pru_flags = 0;
339 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
340 	return (error);
341 }
342 
343 void
344 so_pru_rcvd_async(struct socket *so)
345 {
346 	lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg;
347 
348 	KASSERT(so->so_proto->pr_flags & PR_ASYNC_RCVD,
349 	    ("async pru_rcvd is not supported"));
350 
351 	/*
352 	 * WARNING!  Spinlock is a bit dodgy, use hacked up sendmsg
353 	 *	     to avoid deadlocking.
354 	 */
355 	spin_lock(&so->so_rcvd_spin);
356 	if ((so->so_rcvd_msg.nm_pru_flags & PRUR_DEAD) == 0) {
357 		if (lmsg->ms_flags & MSGF_DONE) {
358 			lwkt_sendmsg_prepare(so->so_port, lmsg);
359 			spin_unlock(&so->so_rcvd_spin);
360 			lwkt_sendmsg_start(so->so_port, lmsg);
361 		} else {
362 			spin_unlock(&so->so_rcvd_spin);
363 		}
364 	} else {
365 		spin_unlock(&so->so_rcvd_spin);
366 	}
367 }
368 
369 int
370 so_pru_rcvoob(struct socket *so, struct mbuf *m, int flags)
371 {
372 	struct netmsg_pru_rcvoob msg;
373 	int error;
374 
375 	netmsg_init(&msg.base, so, &curthread->td_msgport,
376 		    0, so->so_proto->pr_usrreqs->pru_rcvoob);
377 	msg.nm_m = m;
378 	msg.nm_flags = flags;
379 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
380 	return (error);
381 }
382 
383 /*
384  * NOTE: If the target port changes the implied connect will deal with it.
385  */
386 int
387 so_pru_send(struct socket *so, int flags, struct mbuf *m,
388 	    struct sockaddr *addr, struct mbuf *control, struct thread *td)
389 {
390 	struct netmsg_pru_send msg;
391 	int error;
392 
393 	netmsg_init(&msg.base, so, &curthread->td_msgport,
394 		    0, so->so_proto->pr_usrreqs->pru_send);
395 	msg.nm_flags = flags;
396 	msg.nm_m = m;
397 	msg.nm_addr = addr;
398 	msg.nm_control = control;
399 	msg.nm_td = td;
400 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
401 	return (error);
402 }
403 
404 void
405 so_pru_sync(struct socket *so)
406 {
407 	struct netmsg_base msg;
408 
409 	netmsg_init(&msg, so, &curthread->td_msgport, 0,
410 	    netmsg_sync_handler);
411 	lwkt_domsg(so->so_port, &msg.lmsg, 0);
412 }
413 
414 void
415 so_pru_send_async(struct socket *so, int flags, struct mbuf *m,
416     struct sockaddr *addr0, struct mbuf *control, struct thread *td)
417 {
418 	struct netmsg_pru_send *msg;
419 	struct sockaddr *addr = NULL;
420 
421 	KASSERT(so->so_proto->pr_flags & PR_ASYNC_SEND,
422 	    ("async pru_send is not supported"));
423 
424 	if (addr0 != NULL) {
425 		addr = kmalloc(addr0->sa_len, M_SONAME, M_WAITOK | M_NULLOK);
426 		if (addr == NULL) {
427 			/*
428 			 * Fail to allocate address; fallback to
429 			 * synchronized pru_send.
430 			 */
431 			so_pru_send(so, flags, m, addr0, control, td);
432 			return;
433 		}
434 		memcpy(addr, addr0, addr0->sa_len);
435 		flags |= PRUS_FREEADDR;
436 	}
437 	flags |= PRUS_NOREPLY;
438 
439 	if (td != NULL && (so->so_proto->pr_flags & PR_ASEND_HOLDTD)) {
440 		lwkt_hold(td);
441 		flags |= PRUS_HELDTD;
442 	}
443 
444 	msg = &m->m_hdr.mh_sndmsg;
445 	netmsg_init(&msg->base, so, &netisr_apanic_rport,
446 		    0, so->so_proto->pr_usrreqs->pru_send);
447 	msg->nm_flags = flags;
448 	msg->nm_m = m;
449 	msg->nm_addr = addr;
450 	msg->nm_control = control;
451 	msg->nm_td = td;
452 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
453 }
454 
455 int
456 so_pru_sense(struct socket *so, struct stat *sb)
457 {
458 	struct netmsg_pru_sense msg;
459 	int error;
460 
461 	netmsg_init(&msg.base, so, &curthread->td_msgport,
462 		    0, so->so_proto->pr_usrreqs->pru_sense);
463 	msg.nm_stat = sb;
464 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
465 	return (error);
466 }
467 
468 int
469 so_pru_shutdown(struct socket *so)
470 {
471 	struct netmsg_pru_shutdown msg;
472 	int error;
473 
474 	netmsg_init(&msg.base, so, &curthread->td_msgport,
475 		    0, so->so_proto->pr_usrreqs->pru_shutdown);
476 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
477 	return (error);
478 }
479 
480 int
481 so_pru_sockaddr(struct socket *so, struct sockaddr **nam)
482 {
483 	struct netmsg_pru_sockaddr msg;
484 	int error;
485 
486 	netmsg_init(&msg.base, so, &curthread->td_msgport,
487 		    0, so->so_proto->pr_usrreqs->pru_sockaddr);
488 	msg.nm_nam = nam;
489 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
490 	return (error);
491 }
492 
493 int
494 so_pr_ctloutput(struct socket *so, struct sockopt *sopt)
495 {
496 	struct netmsg_pr_ctloutput msg;
497 	int error;
498 
499 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
500 	netmsg_init(&msg.base, so, &curthread->td_msgport,
501 		    0, so->so_proto->pr_ctloutput);
502 	msg.nm_sopt = sopt;
503 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
504 	return (error);
505 }
506 
507 struct lwkt_port *
508 so_pr_ctlport(struct protosw *pr, int cmd, struct sockaddr *arg,
509     void *extra, int *cpuid)
510 {
511 	if (pr->pr_ctlport == NULL)
512 		return NULL;
513 	KKASSERT(pr->pr_ctlinput != NULL);
514 
515 	return pr->pr_ctlport(cmd, arg, extra, cpuid);
516 }
517 
518 /*
519  * Protocol control input, typically via icmp.
520  *
521  * If the protocol pr_ctlport is not NULL we call it to figure out the
522  * protocol port.  If NULL is returned we can just return, otherwise
523  * we issue a netmsg to call pr_ctlinput in the proper thread.
524  *
525  * This must be done synchronously as arg and/or extra may point to
526  * temporary data.
527  */
528 void
529 so_pr_ctlinput(struct protosw *pr, int cmd, struct sockaddr *arg, void *extra)
530 {
531 	struct netmsg_pr_ctlinput msg;
532 	lwkt_port_t port;
533 	int cpuid;
534 
535 	port = so_pr_ctlport(pr, cmd, arg, extra, &cpuid);
536 	if (port == NULL)
537 		return;
538 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
539 		    0, pr->pr_ctlinput);
540 	msg.nm_cmd = cmd;
541 	msg.nm_direct = 0;
542 	msg.nm_arg = arg;
543 	msg.nm_extra = extra;
544 	lwkt_domsg(port, &msg.base.lmsg, 0);
545 }
546 
547 void
548 so_pr_ctlinput_direct(struct protosw *pr, int cmd, struct sockaddr *arg,
549     void *extra)
550 {
551 	struct netmsg_pr_ctlinput msg;
552 	netisr_fn_t func;
553 	lwkt_port_t port;
554 	int cpuid;
555 
556 	port = so_pr_ctlport(pr, cmd, arg, extra, &cpuid);
557 	if (port == NULL)
558 		return;
559 	if (cpuid != ncpus && cpuid != mycpuid)
560 		return;
561 
562 	func = pr->pr_ctlinput;
563 	netmsg_init(&msg.base, NULL, &netisr_adone_rport, 0, func);
564 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
565 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
566 	msg.nm_cmd = cmd;
567 	msg.nm_direct = 1;
568 	msg.nm_arg = arg;
569 	msg.nm_extra = extra;
570 	func((netmsg_t)&msg);
571 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
572 }
573 
574 /*
575  * If we convert all the protosw pr_ functions for all the protocols
576  * to take a message directly, this layer can go away.  For the moment
577  * our dispatcher ignores the return value, but since we are handling
578  * the replymsg ourselves we return EASYNC by convention.
579  */
580 
581 /*
582  * Handle a predicate event request.  This function is only called once
583  * when the predicate message queueing request is received.
584  */
585 void
586 netmsg_so_notify(netmsg_t msg)
587 {
588 	struct lwkt_token *tok;
589 	struct signalsockbuf *ssb;
590 
591 	ssb = (msg->notify.nm_etype & NM_REVENT) ?
592 			&msg->base.nm_so->so_rcv :
593 			&msg->base.nm_so->so_snd;
594 
595 	/*
596 	 * Reply immediately if the event has occured, otherwise queue the
597 	 * request.
598 	 *
599 	 * NOTE: Socket can change if this is an accept predicate so cache
600 	 *	 the token.
601 	 */
602 	tok = lwkt_token_pool_lookup(msg->base.nm_so);
603 	lwkt_gettoken(tok);
604 	atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
605 	if (msg->notify.nm_predicate(&msg->notify)) {
606 		if (TAILQ_EMPTY(&ssb->ssb_kq.ki_mlist))
607 			atomic_clear_int(&ssb->ssb_flags, SSB_MEVENT);
608 		lwkt_reltoken(tok);
609 		lwkt_replymsg(&msg->base.lmsg,
610 			      msg->base.lmsg.ms_error);
611 	} else {
612 		TAILQ_INSERT_TAIL(&ssb->ssb_kq.ki_mlist, &msg->notify, nm_list);
613 		/*
614 		 * NOTE:
615 		 * If predict ever blocks, 'tok' will be released, so
616 		 * SSB_MEVENT set beforehand could have been cleared
617 		 * when we reach here.  In case that happens, we set
618 		 * SSB_MEVENT again, after the notify has been queued.
619 		 */
620 		atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
621 		lwkt_reltoken(tok);
622 	}
623 }
624 
625 /*
626  * Called by doio when trying to abort a netmsg_so_notify message.
627  * Unlike the other functions this one is dispatched directly by
628  * the LWKT subsystem, so it takes a lwkt_msg_t as an argument.
629  *
630  * The original message, lmsg, is under the control of the caller and
631  * will not be destroyed until we return so we can safely reference it
632  * in our synchronous abort request.
633  *
634  * This part of the abort request occurs on the originating cpu which
635  * means we may race the message flags and the original message may
636  * not even have been processed by the target cpu yet.
637  */
638 void
639 netmsg_so_notify_doabort(lwkt_msg_t lmsg)
640 {
641 	struct netmsg_so_notify_abort msg;
642 
643 	if ((lmsg->ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
644 		const struct netmsg_base *nmsg =
645 		    (const struct netmsg_base *)lmsg;
646 
647 		netmsg_init(&msg.base, nmsg->nm_so, &curthread->td_msgport,
648 			    0, netmsg_so_notify_abort);
649 		msg.nm_notifymsg = (void *)lmsg;
650 		lwkt_domsg(lmsg->ms_target_port, &msg.base.lmsg, 0);
651 	}
652 }
653 
654 /*
655  * Predicate requests can be aborted.  This function is only called once
656  * and will interlock against processing/reply races (since such races
657  * occur on the same thread that controls the port where the abort is
658  * requeued).
659  *
660  * This part of the abort request occurs on the target cpu.  The message
661  * flags must be tested again in case the test that we did on the
662  * originating cpu raced.  Since messages are handled in sequence, the
663  * original message will have already been handled by the loop and either
664  * replied to or queued.
665  *
666  * We really only need to interlock with MSGF_REPLY (a bit that is set on
667  * our cpu when we reply).  Note that MSGF_DONE is not set until the
668  * reply reaches the originating cpu.  Test both bits anyway.
669  */
670 void
671 netmsg_so_notify_abort(netmsg_t msg)
672 {
673 	struct netmsg_so_notify_abort *abrtmsg = &msg->notify_abort;
674 	struct netmsg_so_notify *nmsg = abrtmsg->nm_notifymsg;
675 	struct signalsockbuf *ssb;
676 
677 	/*
678 	 * The original notify message is not destroyed until after the
679 	 * abort request is returned, so we can check its state.
680 	 */
681 	lwkt_getpooltoken(nmsg->base.nm_so);
682 	if ((nmsg->base.lmsg.ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
683 		ssb = (nmsg->nm_etype & NM_REVENT) ?
684 				&nmsg->base.nm_so->so_rcv :
685 				&nmsg->base.nm_so->so_snd;
686 		TAILQ_REMOVE(&ssb->ssb_kq.ki_mlist, nmsg, nm_list);
687 		lwkt_relpooltoken(nmsg->base.nm_so);
688 		lwkt_replymsg(&nmsg->base.lmsg, EINTR);
689 	} else {
690 		lwkt_relpooltoken(nmsg->base.nm_so);
691 	}
692 
693 	/*
694 	 * Reply to the abort message
695 	 */
696 	lwkt_replymsg(&abrtmsg->base.lmsg, 0);
697 }
698 
699 void
700 so_async_rcvd_reply(struct socket *so)
701 {
702 	/*
703 	 * Spinlock safe, reply runs to degenerate lwkt_null_replyport()
704 	 */
705 	spin_lock(&so->so_rcvd_spin);
706 	lwkt_replymsg(&so->so_rcvd_msg.base.lmsg, 0);
707 	spin_unlock(&so->so_rcvd_spin);
708 }
709 
710 void
711 so_async_rcvd_drop(struct socket *so)
712 {
713 	lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg;
714 
715 	/*
716 	 * Spinlock safe, drop runs to degenerate lwkt_spin_dropmsg()
717 	 */
718 	spin_lock(&so->so_rcvd_spin);
719 	so->so_rcvd_msg.nm_pru_flags |= PRUR_DEAD;
720 again:
721 	lwkt_dropmsg(lmsg);
722 	if ((lmsg->ms_flags & MSGF_DONE) == 0) {
723 		++async_rcvd_drop_race;
724 		ssleep(so, &so->so_rcvd_spin, 0, "soadrop", 1);
725 		goto again;
726 	}
727 	spin_unlock(&so->so_rcvd_spin);
728 }
729