xref: /dragonfly/sys/kern/uipc_socket.c (revision 25a2db75)
1 /*
2  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
67  * $FreeBSD: src/sys/kern/uipc_socket.c,v 1.68.2.24 2003/11/11 17:18:18 silby Exp $
68  */
69 
70 #include "opt_inet.h"
71 #include "opt_sctp.h"
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/fcntl.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/domain.h>
79 #include <sys/file.h>			/* for struct knote */
80 #include <sys/kernel.h>
81 #include <sys/event.h>
82 #include <sys/proc.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/socketops.h>
87 #include <sys/resourcevar.h>
88 #include <sys/signalvar.h>
89 #include <sys/sysctl.h>
90 #include <sys/uio.h>
91 #include <sys/jail.h>
92 #include <vm/vm_zone.h>
93 #include <vm/pmap.h>
94 #include <net/netmsg2.h>
95 #include <net/netisr2.h>
96 
97 #include <sys/thread2.h>
98 #include <sys/socketvar2.h>
99 #include <sys/spinlock2.h>
100 
101 #include <machine/limits.h>
102 
103 #ifdef INET
104 extern int tcp_sosend_agglim;
105 extern int tcp_sosend_async;
106 extern int udp_sosend_async;
107 extern int udp_sosend_prepend;
108 
109 static int	 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt);
110 #endif /* INET */
111 
112 static void 	filt_sordetach(struct knote *kn);
113 static int 	filt_soread(struct knote *kn, long hint);
114 static void 	filt_sowdetach(struct knote *kn);
115 static int	filt_sowrite(struct knote *kn, long hint);
116 static int	filt_solisten(struct knote *kn, long hint);
117 
118 static void	sodiscard(struct socket *so);
119 static int	soclose_sync(struct socket *so, int fflag);
120 static void	soclose_fast(struct socket *so);
121 
122 static struct filterops solisten_filtops =
123 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_solisten };
124 static struct filterops soread_filtops =
125 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
126 static struct filterops sowrite_filtops =
127 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sowdetach, filt_sowrite };
128 static struct filterops soexcept_filtops =
129 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
130 
131 MALLOC_DEFINE(M_SOCKET, "socket", "socket struct");
132 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
133 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
134 
135 
136 static int somaxconn = SOMAXCONN;
137 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW,
138     &somaxconn, 0, "Maximum pending socket connection queue size");
139 
140 static int use_soclose_fast = 1;
141 SYSCTL_INT(_kern_ipc, OID_AUTO, soclose_fast, CTLFLAG_RW,
142     &use_soclose_fast, 0, "Fast socket close");
143 
144 int use_soaccept_pred_fast = 1;
145 SYSCTL_INT(_kern_ipc, OID_AUTO, soaccept_pred_fast, CTLFLAG_RW,
146     &use_soaccept_pred_fast, 0, "Fast socket accept predication");
147 
148 int use_sendfile_async = 1;
149 SYSCTL_INT(_kern_ipc, OID_AUTO, sendfile_async, CTLFLAG_RW,
150     &use_sendfile_async, 0, "sendfile uses asynchronized pru_send");
151 
152 /*
153  * Socket operation routines.
154  * These routines are called by the routines in
155  * sys_socket.c or from a system process, and
156  * implement the semantics of socket operations by
157  * switching out to the protocol specific routines.
158  */
159 
160 /*
161  * Get a socket structure, and initialize it.
162  * Note that it would probably be better to allocate socket
163  * and PCB at the same time, but I'm not convinced that all
164  * the protocols can be easily modified to do this.
165  */
166 struct socket *
167 soalloc(int waitok, struct protosw *pr)
168 {
169 	struct socket *so;
170 	unsigned waitmask;
171 
172 	waitmask = waitok ? M_WAITOK : M_NOWAIT;
173 	so = kmalloc(sizeof(struct socket), M_SOCKET, M_ZERO|waitmask);
174 	if (so) {
175 		/* XXX race condition for reentrant kernel */
176 		so->so_proto = pr;
177 		TAILQ_INIT(&so->so_aiojobq);
178 		TAILQ_INIT(&so->so_rcv.ssb_kq.ki_mlist);
179 		TAILQ_INIT(&so->so_snd.ssb_kq.ki_mlist);
180 		lwkt_token_init(&so->so_rcv.ssb_token, "rcvtok");
181 		lwkt_token_init(&so->so_snd.ssb_token, "sndtok");
182 		spin_init(&so->so_rcvd_spin);
183 		netmsg_init(&so->so_rcvd_msg.base, so, &netisr_adone_rport,
184 		    MSGF_DROPABLE, so->so_proto->pr_usrreqs->pru_rcvd);
185 		so->so_rcvd_msg.nm_pru_flags |= PRUR_ASYNC;
186 		so->so_state = SS_NOFDREF;
187 		so->so_refs = 1;
188 	}
189 	return so;
190 }
191 
192 int
193 socreate(int dom, struct socket **aso, int type,
194 	int proto, struct thread *td)
195 {
196 	struct proc *p = td->td_proc;
197 	struct protosw *prp;
198 	struct socket *so;
199 	struct pru_attach_info ai;
200 	int error;
201 
202 	if (proto)
203 		prp = pffindproto(dom, proto, type);
204 	else
205 		prp = pffindtype(dom, type);
206 
207 	if (prp == NULL || prp->pr_usrreqs->pru_attach == 0)
208 		return (EPROTONOSUPPORT);
209 
210 	if (p->p_ucred->cr_prison && jail_socket_unixiproute_only &&
211 	    prp->pr_domain->dom_family != PF_LOCAL &&
212 	    prp->pr_domain->dom_family != PF_INET &&
213 	    prp->pr_domain->dom_family != PF_INET6 &&
214 	    prp->pr_domain->dom_family != PF_ROUTE) {
215 		return (EPROTONOSUPPORT);
216 	}
217 
218 	if (prp->pr_type != type)
219 		return (EPROTOTYPE);
220 	so = soalloc(p != NULL, prp);
221 	if (so == NULL)
222 		return (ENOBUFS);
223 
224 	/*
225 	 * Callers of socreate() presumably will connect up a descriptor
226 	 * and call soclose() if they cannot.  This represents our so_refs
227 	 * (which should be 1) from soalloc().
228 	 */
229 	soclrstate(so, SS_NOFDREF);
230 
231 	/*
232 	 * Set a default port for protocol processing.  No action will occur
233 	 * on the socket on this port until an inpcb is attached to it and
234 	 * is able to match incoming packets, or until the socket becomes
235 	 * available to userland.
236 	 *
237 	 * We normally default the socket to the protocol thread on cpu 0.
238 	 * If PR_SYNC_PORT is set (unix domain sockets) there is no protocol
239 	 * thread and all pr_*()/pru_*() calls are executed synchronously.
240 	 */
241 	if (prp->pr_flags & PR_SYNC_PORT)
242 		so->so_port = &netisr_sync_port;
243 	else
244 		so->so_port = netisr_cpuport(0);
245 
246 	TAILQ_INIT(&so->so_incomp);
247 	TAILQ_INIT(&so->so_comp);
248 	so->so_type = type;
249 	so->so_cred = crhold(p->p_ucred);
250 	ai.sb_rlimit = &p->p_rlimit[RLIMIT_SBSIZE];
251 	ai.p_ucred = p->p_ucred;
252 	ai.fd_rdir = p->p_fd->fd_rdir;
253 
254 	/*
255 	 * Auto-sizing of socket buffers is managed by the protocols and
256 	 * the appropriate flags must be set in the pru_attach function.
257 	 */
258 	error = so_pru_attach(so, proto, &ai);
259 	if (error) {
260 		sosetstate(so, SS_NOFDREF);
261 		sofree(so);	/* from soalloc */
262 		return error;
263 	}
264 
265 	/*
266 	 * NOTE: Returns referenced socket.
267 	 */
268 	*aso = so;
269 	return (0);
270 }
271 
272 int
273 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
274 {
275 	int error;
276 
277 	error = so_pru_bind(so, nam, td);
278 	return (error);
279 }
280 
281 static void
282 sodealloc(struct socket *so)
283 {
284 	if (so->so_rcv.ssb_hiwat)
285 		(void)chgsbsize(so->so_cred->cr_uidinfo,
286 		    &so->so_rcv.ssb_hiwat, 0, RLIM_INFINITY);
287 	if (so->so_snd.ssb_hiwat)
288 		(void)chgsbsize(so->so_cred->cr_uidinfo,
289 		    &so->so_snd.ssb_hiwat, 0, RLIM_INFINITY);
290 #ifdef INET
291 	/* remove accept filter if present */
292 	if (so->so_accf != NULL)
293 		do_setopt_accept_filter(so, NULL);
294 #endif /* INET */
295 	crfree(so->so_cred);
296 	if (so->so_faddr != NULL)
297 		kfree(so->so_faddr, M_SONAME);
298 	kfree(so, M_SOCKET);
299 }
300 
301 int
302 solisten(struct socket *so, int backlog, struct thread *td)
303 {
304 	int error;
305 #ifdef SCTP
306 	short oldopt, oldqlimit;
307 #endif /* SCTP */
308 
309 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING))
310 		return (EINVAL);
311 
312 #ifdef SCTP
313 	oldopt = so->so_options;
314 	oldqlimit = so->so_qlimit;
315 #endif /* SCTP */
316 
317 	lwkt_gettoken(&so->so_rcv.ssb_token);
318 	if (TAILQ_EMPTY(&so->so_comp))
319 		so->so_options |= SO_ACCEPTCONN;
320 	lwkt_reltoken(&so->so_rcv.ssb_token);
321 	if (backlog < 0 || backlog > somaxconn)
322 		backlog = somaxconn;
323 	so->so_qlimit = backlog;
324 	/* SCTP needs to look at tweak both the inbound backlog parameter AND
325 	 * the so_options (UDP model both connect's and gets inbound
326 	 * connections .. implicitly).
327 	 */
328 	error = so_pru_listen(so, td);
329 	if (error) {
330 #ifdef SCTP
331 		/* Restore the params */
332 		so->so_options = oldopt;
333 		so->so_qlimit = oldqlimit;
334 #endif /* SCTP */
335 		return (error);
336 	}
337 	return (0);
338 }
339 
340 /*
341  * Destroy a disconnected socket.  This routine is a NOP if entities
342  * still have a reference on the socket:
343  *
344  *	so_pcb -	The protocol stack still has a reference
345  *	SS_NOFDREF -	There is no longer a file pointer reference
346  */
347 void
348 sofree(struct socket *so)
349 {
350 	struct socket *head;
351 
352 	/*
353 	 * This is a bit hackish at the moment.  We need to interlock
354 	 * any accept queue we are on before we potentially lose the
355 	 * last reference to avoid races against a re-reference from
356 	 * someone operating on the queue.
357 	 */
358 	while ((head = so->so_head) != NULL) {
359 		lwkt_getpooltoken(head);
360 		if (so->so_head == head)
361 			break;
362 		lwkt_relpooltoken(head);
363 	}
364 
365 	/*
366 	 * Arbitrage the last free.
367 	 */
368 	KKASSERT(so->so_refs > 0);
369 	if (atomic_fetchadd_int(&so->so_refs, -1) != 1) {
370 		if (head)
371 			lwkt_relpooltoken(head);
372 		return;
373 	}
374 
375 	KKASSERT(so->so_pcb == NULL && (so->so_state & SS_NOFDREF));
376 	KKASSERT((so->so_state & SS_ASSERTINPROG) == 0);
377 
378 	/*
379 	 * We're done, remove ourselves from the accept queue we are
380 	 * on, if we are on one.
381 	 */
382 	if (head != NULL) {
383 		if (so->so_state & SS_INCOMP) {
384 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
385 			head->so_incqlen--;
386 		} else if (so->so_state & SS_COMP) {
387 			/*
388 			 * We must not decommission a socket that's
389 			 * on the accept(2) queue.  If we do, then
390 			 * accept(2) may hang after select(2) indicated
391 			 * that the listening socket was ready.
392 			 */
393 			lwkt_relpooltoken(head);
394 			return;
395 		} else {
396 			panic("sofree: not queued");
397 		}
398 		soclrstate(so, SS_INCOMP);
399 		so->so_head = NULL;
400 		lwkt_relpooltoken(head);
401 	}
402 	ssb_release(&so->so_snd, so);
403 	sorflush(so);
404 	sodealloc(so);
405 }
406 
407 /*
408  * Close a socket on last file table reference removal.
409  * Initiate disconnect if connected.
410  * Free socket when disconnect complete.
411  */
412 int
413 soclose(struct socket *so, int fflag)
414 {
415 	int error;
416 
417 	funsetown(&so->so_sigio);
418 	if (!use_soclose_fast ||
419 	    (so->so_proto->pr_flags & PR_SYNC_PORT) ||
420 	    (so->so_options & SO_LINGER)) {
421 		error = soclose_sync(so, fflag);
422 	} else {
423 		soclose_fast(so);
424 		error = 0;
425 	}
426 	return error;
427 }
428 
429 static void
430 sodiscard(struct socket *so)
431 {
432 	lwkt_getpooltoken(so);
433 	if (so->so_options & SO_ACCEPTCONN) {
434 		struct socket *sp;
435 
436 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
437 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
438 			soclrstate(sp, SS_INCOMP);
439 			sp->so_head = NULL;
440 			so->so_incqlen--;
441 			soaborta(sp);
442 		}
443 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
444 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
445 			soclrstate(sp, SS_COMP);
446 			sp->so_head = NULL;
447 			so->so_qlen--;
448 			soaborta(sp);
449 		}
450 	}
451 	lwkt_relpooltoken(so);
452 
453 	if (so->so_state & SS_NOFDREF)
454 		panic("soclose: NOFDREF");
455 	sosetstate(so, SS_NOFDREF);	/* take ref */
456 }
457 
458 static int
459 soclose_sync(struct socket *so, int fflag)
460 {
461 	int error = 0;
462 
463 	if (so->so_pcb == NULL)
464 		goto discard;
465 	if (so->so_state & SS_ISCONNECTED) {
466 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
467 			error = sodisconnect(so);
468 			if (error)
469 				goto drop;
470 		}
471 		if (so->so_options & SO_LINGER) {
472 			if ((so->so_state & SS_ISDISCONNECTING) &&
473 			    (fflag & FNONBLOCK))
474 				goto drop;
475 			while (so->so_state & SS_ISCONNECTED) {
476 				error = tsleep(&so->so_timeo, PCATCH,
477 					       "soclos", so->so_linger * hz);
478 				if (error)
479 					break;
480 			}
481 		}
482 	}
483 drop:
484 	if (so->so_pcb) {
485 		int error2;
486 
487 		error2 = so_pru_detach(so);
488 		if (error == 0)
489 			error = error2;
490 	}
491 discard:
492 	sodiscard(so);
493 	so_pru_sync(so);	/* unpend async sending */
494 	sofree(so);		/* dispose of ref */
495 
496 	return (error);
497 }
498 
499 static void
500 soclose_sofree_async_handler(netmsg_t msg)
501 {
502 	sofree(msg->base.nm_so);
503 }
504 
505 static void
506 soclose_sofree_async(struct socket *so)
507 {
508 	struct netmsg_base *base = &so->so_clomsg;
509 
510 	netmsg_init(base, so, &netisr_apanic_rport, 0,
511 	    soclose_sofree_async_handler);
512 	lwkt_sendmsg(so->so_port, &base->lmsg);
513 }
514 
515 static void
516 soclose_disconn_async_handler(netmsg_t msg)
517 {
518 	struct socket *so = msg->base.nm_so;
519 
520 	if ((so->so_state & SS_ISCONNECTED) &&
521 	    (so->so_state & SS_ISDISCONNECTING) == 0)
522 		so_pru_disconnect_direct(so);
523 
524 	if (so->so_pcb)
525 		so_pru_detach_direct(so);
526 
527 	sodiscard(so);
528 	sofree(so);
529 }
530 
531 static void
532 soclose_disconn_async(struct socket *so)
533 {
534 	struct netmsg_base *base = &so->so_clomsg;
535 
536 	netmsg_init(base, so, &netisr_apanic_rport, 0,
537 	    soclose_disconn_async_handler);
538 	lwkt_sendmsg(so->so_port, &base->lmsg);
539 }
540 
541 static void
542 soclose_detach_async_handler(netmsg_t msg)
543 {
544 	struct socket *so = msg->base.nm_so;
545 
546 	if (so->so_pcb)
547 		so_pru_detach_direct(so);
548 
549 	sodiscard(so);
550 	sofree(so);
551 }
552 
553 static void
554 soclose_detach_async(struct socket *so)
555 {
556 	struct netmsg_base *base = &so->so_clomsg;
557 
558 	netmsg_init(base, so, &netisr_apanic_rport, 0,
559 	    soclose_detach_async_handler);
560 	lwkt_sendmsg(so->so_port, &base->lmsg);
561 }
562 
563 static void
564 soclose_fast(struct socket *so)
565 {
566 	if (so->so_pcb == NULL)
567 		goto discard;
568 
569 	if ((so->so_state & SS_ISCONNECTED) &&
570 	    (so->so_state & SS_ISDISCONNECTING) == 0) {
571 		soclose_disconn_async(so);
572 		return;
573 	}
574 
575 	if (so->so_pcb) {
576 		soclose_detach_async(so);
577 		return;
578 	}
579 
580 discard:
581 	sodiscard(so);
582 	soclose_sofree_async(so);
583 }
584 
585 /*
586  * Abort and destroy a socket.  Only one abort can be in progress
587  * at any given moment.
588  */
589 void
590 soabort(struct socket *so)
591 {
592 	soreference(so);
593 	so_pru_abort(so);
594 }
595 
596 void
597 soaborta(struct socket *so)
598 {
599 	soreference(so);
600 	so_pru_aborta(so);
601 }
602 
603 void
604 soabort_oncpu(struct socket *so)
605 {
606 	soreference(so);
607 	so_pru_abort_oncpu(so);
608 }
609 
610 /*
611  * so is passed in ref'd, which becomes owned by
612  * the cleared SS_NOFDREF flag.
613  */
614 void
615 soaccept_generic(struct socket *so)
616 {
617 	if ((so->so_state & SS_NOFDREF) == 0)
618 		panic("soaccept: !NOFDREF");
619 	soclrstate(so, SS_NOFDREF);	/* owned by lack of SS_NOFDREF */
620 }
621 
622 int
623 soaccept(struct socket *so, struct sockaddr **nam)
624 {
625 	int error;
626 
627 	soaccept_generic(so);
628 	error = so_pru_accept(so, nam);
629 	return (error);
630 }
631 
632 int
633 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
634 {
635 	int error;
636 
637 	if (so->so_options & SO_ACCEPTCONN)
638 		return (EOPNOTSUPP);
639 	/*
640 	 * If protocol is connection-based, can only connect once.
641 	 * Otherwise, if connected, try to disconnect first.
642 	 * This allows user to disconnect by connecting to, e.g.,
643 	 * a null address.
644 	 */
645 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
646 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
647 	    (error = sodisconnect(so)))) {
648 		error = EISCONN;
649 	} else {
650 		/*
651 		 * Prevent accumulated error from previous connection
652 		 * from biting us.
653 		 */
654 		so->so_error = 0;
655 		error = so_pru_connect(so, nam, td);
656 	}
657 	return (error);
658 }
659 
660 int
661 soconnect2(struct socket *so1, struct socket *so2)
662 {
663 	int error;
664 
665 	error = so_pru_connect2(so1, so2);
666 	return (error);
667 }
668 
669 int
670 sodisconnect(struct socket *so)
671 {
672 	int error;
673 
674 	if ((so->so_state & SS_ISCONNECTED) == 0) {
675 		error = ENOTCONN;
676 		goto bad;
677 	}
678 	if (so->so_state & SS_ISDISCONNECTING) {
679 		error = EALREADY;
680 		goto bad;
681 	}
682 	error = so_pru_disconnect(so);
683 bad:
684 	return (error);
685 }
686 
687 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
688 /*
689  * Send on a socket.
690  * If send must go all at once and message is larger than
691  * send buffering, then hard error.
692  * Lock against other senders.
693  * If must go all at once and not enough room now, then
694  * inform user that this would block and do nothing.
695  * Otherwise, if nonblocking, send as much as possible.
696  * The data to be sent is described by "uio" if nonzero,
697  * otherwise by the mbuf chain "top" (which must be null
698  * if uio is not).  Data provided in mbuf chain must be small
699  * enough to send all at once.
700  *
701  * Returns nonzero on error, timeout or signal; callers
702  * must check for short counts if EINTR/ERESTART are returned.
703  * Data and control buffers are freed on return.
704  */
705 int
706 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
707 	struct mbuf *top, struct mbuf *control, int flags,
708 	struct thread *td)
709 {
710 	struct mbuf **mp;
711 	struct mbuf *m;
712 	size_t resid;
713 	int space, len;
714 	int clen = 0, error, dontroute, mlen;
715 	int atomic = sosendallatonce(so) || top;
716 	int pru_flags;
717 
718 	if (uio) {
719 		resid = uio->uio_resid;
720 	} else {
721 		resid = (size_t)top->m_pkthdr.len;
722 #ifdef INVARIANTS
723 		len = 0;
724 		for (m = top; m; m = m->m_next)
725 			len += m->m_len;
726 		KKASSERT(top->m_pkthdr.len == len);
727 #endif
728 	}
729 
730 	/*
731 	 * WARNING!  resid is unsigned, space and len are signed.  space
732 	 * 	     can wind up negative if the sockbuf is overcommitted.
733 	 *
734 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
735 	 * type sockets since that's an error.
736 	 */
737 	if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
738 		error = EINVAL;
739 		goto out;
740 	}
741 
742 	dontroute =
743 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
744 	    (so->so_proto->pr_flags & PR_ATOMIC);
745 	if (td->td_lwp != NULL)
746 		td->td_lwp->lwp_ru.ru_msgsnd++;
747 	if (control)
748 		clen = control->m_len;
749 #define	gotoerr(errcode)	{ error = errcode; goto release; }
750 
751 restart:
752 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
753 	if (error)
754 		goto out;
755 
756 	do {
757 		if (so->so_state & SS_CANTSENDMORE)
758 			gotoerr(EPIPE);
759 		if (so->so_error) {
760 			error = so->so_error;
761 			so->so_error = 0;
762 			goto release;
763 		}
764 		if ((so->so_state & SS_ISCONNECTED) == 0) {
765 			/*
766 			 * `sendto' and `sendmsg' is allowed on a connection-
767 			 * based socket if it supports implied connect.
768 			 * Return ENOTCONN if not connected and no address is
769 			 * supplied.
770 			 */
771 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
772 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
773 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
774 				    !(resid == 0 && clen != 0))
775 					gotoerr(ENOTCONN);
776 			} else if (addr == NULL)
777 			    gotoerr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
778 				   ENOTCONN : EDESTADDRREQ);
779 		}
780 		if ((atomic && resid > so->so_snd.ssb_hiwat) ||
781 		    clen > so->so_snd.ssb_hiwat) {
782 			gotoerr(EMSGSIZE);
783 		}
784 		space = ssb_space(&so->so_snd);
785 		if (flags & MSG_OOB)
786 			space += 1024;
787 		if ((space < 0 || (size_t)space < resid + clen) && uio &&
788 		    (atomic || space < so->so_snd.ssb_lowat || space < clen)) {
789 			if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
790 				gotoerr(EWOULDBLOCK);
791 			ssb_unlock(&so->so_snd);
792 			error = ssb_wait(&so->so_snd);
793 			if (error)
794 				goto out;
795 			goto restart;
796 		}
797 		mp = &top;
798 		space -= clen;
799 		do {
800 		    if (uio == NULL) {
801 			/*
802 			 * Data is prepackaged in "top".
803 			 */
804 			resid = 0;
805 			if (flags & MSG_EOR)
806 				top->m_flags |= M_EOR;
807 		    } else do {
808 			if (resid > INT_MAX)
809 				resid = INT_MAX;
810 			m = m_getl((int)resid, MB_WAIT, MT_DATA,
811 				   top == NULL ? M_PKTHDR : 0, &mlen);
812 			if (top == NULL) {
813 				m->m_pkthdr.len = 0;
814 				m->m_pkthdr.rcvif = NULL;
815 			}
816 			len = imin((int)szmin(mlen, resid), space);
817 			if (resid < MINCLSIZE) {
818 				/*
819 				 * For datagram protocols, leave room
820 				 * for protocol headers in first mbuf.
821 				 */
822 				if (atomic && top == NULL && len < mlen)
823 					MH_ALIGN(m, len);
824 			}
825 			space -= len;
826 			error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
827 			resid = uio->uio_resid;
828 			m->m_len = len;
829 			*mp = m;
830 			top->m_pkthdr.len += len;
831 			if (error)
832 				goto release;
833 			mp = &m->m_next;
834 			if (resid == 0) {
835 				if (flags & MSG_EOR)
836 					top->m_flags |= M_EOR;
837 				break;
838 			}
839 		    } while (space > 0 && atomic);
840 		    if (dontroute)
841 			    so->so_options |= SO_DONTROUTE;
842 		    if (flags & MSG_OOB) {
843 		    	    pru_flags = PRUS_OOB;
844 		    } else if ((flags & MSG_EOF) &&
845 		    	       (so->so_proto->pr_flags & PR_IMPLOPCL) &&
846 			       (resid == 0)) {
847 			    /*
848 			     * If the user set MSG_EOF, the protocol
849 			     * understands this flag and nothing left to
850 			     * send then use PRU_SEND_EOF instead of PRU_SEND.
851 			     */
852 		    	    pru_flags = PRUS_EOF;
853 		    } else if (resid > 0 && space > 0) {
854 			    /* If there is more to send, set PRUS_MORETOCOME */
855 		    	    pru_flags = PRUS_MORETOCOME;
856 		    } else {
857 		    	    pru_flags = 0;
858 		    }
859 		    /*
860 		     * XXX all the SS_CANTSENDMORE checks previously
861 		     * done could be out of date.  We could have recieved
862 		     * a reset packet in an interrupt or maybe we slept
863 		     * while doing page faults in uiomove() etc. We could
864 		     * probably recheck again inside the splnet() protection
865 		     * here, but there are probably other places that this
866 		     * also happens.  We must rethink this.
867 		     */
868 		    error = so_pru_send(so, pru_flags, top, addr, control, td);
869 		    if (dontroute)
870 			    so->so_options &= ~SO_DONTROUTE;
871 		    clen = 0;
872 		    control = NULL;
873 		    top = NULL;
874 		    mp = &top;
875 		    if (error)
876 			    goto release;
877 		} while (resid && space > 0);
878 	} while (resid);
879 
880 release:
881 	ssb_unlock(&so->so_snd);
882 out:
883 	if (top)
884 		m_freem(top);
885 	if (control)
886 		m_freem(control);
887 	return (error);
888 }
889 
890 #ifdef INET
891 /*
892  * A specialization of sosend() for UDP based on protocol-specific knowledge:
893  *   so->so_proto->pr_flags has the PR_ATOMIC field set.  This means that
894  *	sosendallatonce() returns true,
895  *	the "atomic" variable is true,
896  *	and sosendudp() blocks until space is available for the entire send.
897  *   so->so_proto->pr_flags does not have the PR_CONNREQUIRED or
898  *	PR_IMPLOPCL flags set.
899  *   UDP has no out-of-band data.
900  *   UDP has no control data.
901  *   UDP does not support MSG_EOR.
902  */
903 int
904 sosendudp(struct socket *so, struct sockaddr *addr, struct uio *uio,
905 	  struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
906 {
907 	size_t resid;
908 	int error, pru_flags = 0;
909 	int space;
910 
911 	if (td->td_lwp != NULL)
912 		td->td_lwp->lwp_ru.ru_msgsnd++;
913 	if (control)
914 		m_freem(control);
915 
916 	KASSERT((uio && !top) || (top && !uio), ("bad arguments to sosendudp"));
917 	resid = uio ? uio->uio_resid : (size_t)top->m_pkthdr.len;
918 
919 restart:
920 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
921 	if (error)
922 		goto out;
923 
924 	if (so->so_state & SS_CANTSENDMORE)
925 		gotoerr(EPIPE);
926 	if (so->so_error) {
927 		error = so->so_error;
928 		so->so_error = 0;
929 		goto release;
930 	}
931 	if (!(so->so_state & SS_ISCONNECTED) && addr == NULL)
932 		gotoerr(EDESTADDRREQ);
933 	if (resid > so->so_snd.ssb_hiwat)
934 		gotoerr(EMSGSIZE);
935 	space = ssb_space(&so->so_snd);
936 	if (uio && (space < 0 || (size_t)space < resid)) {
937 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
938 			gotoerr(EWOULDBLOCK);
939 		ssb_unlock(&so->so_snd);
940 		error = ssb_wait(&so->so_snd);
941 		if (error)
942 			goto out;
943 		goto restart;
944 	}
945 
946 	if (uio) {
947 		int hdrlen = max_hdr;
948 
949 		/*
950 		 * We try to optimize out the additional mbuf
951 		 * allocations in M_PREPEND() on output path, e.g.
952 		 * - udp_output(), when it tries to prepend protocol
953 		 *   headers.
954 		 * - Link layer output function, when it tries to
955 		 *   prepend link layer header.
956 		 *
957 		 * This probably will not benefit any data that will
958 		 * be fragmented, so this optimization is only performed
959 		 * when the size of data and max size of protocol+link
960 		 * headers fit into one mbuf cluster.
961 		 */
962 		if (uio->uio_resid > MCLBYTES - hdrlen ||
963 		    !udp_sosend_prepend) {
964 			top = m_uiomove(uio);
965 			if (top == NULL)
966 				goto release;
967 		} else {
968 			int nsize;
969 
970 			top = m_getl(uio->uio_resid + hdrlen, MB_WAIT,
971 			    MT_DATA, M_PKTHDR, &nsize);
972 			KASSERT(nsize >= uio->uio_resid + hdrlen,
973 			    ("sosendudp invalid nsize %d, "
974 			     "resid %zu, hdrlen %d",
975 			     nsize, uio->uio_resid, hdrlen));
976 
977 			top->m_len = uio->uio_resid;
978 			top->m_pkthdr.len = uio->uio_resid;
979 			top->m_data += hdrlen;
980 
981 			error = uiomove(mtod(top, caddr_t), top->m_len, uio);
982 			if (error)
983 				goto out;
984 		}
985 	}
986 
987 	if (flags & MSG_DONTROUTE)
988 		pru_flags |= PRUS_DONTROUTE;
989 
990 	if (udp_sosend_async && (flags & MSG_SYNC) == 0) {
991 		so_pru_send_async(so, pru_flags, top, addr, NULL, td);
992 		error = 0;
993 	} else {
994 		error = so_pru_send(so, pru_flags, top, addr, NULL, td);
995 	}
996 	top = NULL;		/* sent or freed in lower layer */
997 
998 release:
999 	ssb_unlock(&so->so_snd);
1000 out:
1001 	if (top)
1002 		m_freem(top);
1003 	return (error);
1004 }
1005 
1006 int
1007 sosendtcp(struct socket *so, struct sockaddr *addr, struct uio *uio,
1008 	struct mbuf *top, struct mbuf *control, int flags,
1009 	struct thread *td)
1010 {
1011 	struct mbuf **mp;
1012 	struct mbuf *m;
1013 	size_t resid;
1014 	int space, len;
1015 	int error, mlen;
1016 	int allatonce;
1017 	int pru_flags;
1018 
1019 	if (uio) {
1020 		KKASSERT(top == NULL);
1021 		allatonce = 0;
1022 		resid = uio->uio_resid;
1023 	} else {
1024 		allatonce = 1;
1025 		resid = (size_t)top->m_pkthdr.len;
1026 #ifdef INVARIANTS
1027 		len = 0;
1028 		for (m = top; m; m = m->m_next)
1029 			len += m->m_len;
1030 		KKASSERT(top->m_pkthdr.len == len);
1031 #endif
1032 	}
1033 
1034 	/*
1035 	 * WARNING!  resid is unsigned, space and len are signed.  space
1036 	 * 	     can wind up negative if the sockbuf is overcommitted.
1037 	 *
1038 	 * Also check to make sure that MSG_EOR isn't used on TCP
1039 	 */
1040 	if (flags & MSG_EOR) {
1041 		error = EINVAL;
1042 		goto out;
1043 	}
1044 
1045 	if (control) {
1046 		/* TCP doesn't do control messages (rights, creds, etc) */
1047 		if (control->m_len) {
1048 			error = EINVAL;
1049 			goto out;
1050 		}
1051 		m_freem(control);	/* empty control, just free it */
1052 		control = NULL;
1053 	}
1054 
1055 	if (td->td_lwp != NULL)
1056 		td->td_lwp->lwp_ru.ru_msgsnd++;
1057 
1058 #define	gotoerr(errcode)	{ error = errcode; goto release; }
1059 
1060 restart:
1061 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
1062 	if (error)
1063 		goto out;
1064 
1065 	do {
1066 		if (so->so_state & SS_CANTSENDMORE)
1067 			gotoerr(EPIPE);
1068 		if (so->so_error) {
1069 			error = so->so_error;
1070 			so->so_error = 0;
1071 			goto release;
1072 		}
1073 		if ((so->so_state & SS_ISCONNECTED) == 0 &&
1074 		    (so->so_state & SS_ISCONFIRMING) == 0)
1075 			gotoerr(ENOTCONN);
1076 		if (allatonce && resid > so->so_snd.ssb_hiwat)
1077 			gotoerr(EMSGSIZE);
1078 
1079 		space = ssb_space_prealloc(&so->so_snd);
1080 		if (flags & MSG_OOB)
1081 			space += 1024;
1082 		if ((space < 0 || (size_t)space < resid) && !allatonce &&
1083 		    space < so->so_snd.ssb_lowat) {
1084 			if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
1085 				gotoerr(EWOULDBLOCK);
1086 			ssb_unlock(&so->so_snd);
1087 			error = ssb_wait(&so->so_snd);
1088 			if (error)
1089 				goto out;
1090 			goto restart;
1091 		}
1092 		mp = &top;
1093 		do {
1094 		    int cnt = 0, async = 0;
1095 
1096 		    if (uio == NULL) {
1097 			/*
1098 			 * Data is prepackaged in "top".
1099 			 */
1100 			resid = 0;
1101 		    } else do {
1102 			if (resid > INT_MAX)
1103 				resid = INT_MAX;
1104 			m = m_getl((int)resid, MB_WAIT, MT_DATA,
1105 				   top == NULL ? M_PKTHDR : 0, &mlen);
1106 			if (top == NULL) {
1107 				m->m_pkthdr.len = 0;
1108 				m->m_pkthdr.rcvif = NULL;
1109 			}
1110 			len = imin((int)szmin(mlen, resid), space);
1111 			space -= len;
1112 			error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
1113 			resid = uio->uio_resid;
1114 			m->m_len = len;
1115 			*mp = m;
1116 			top->m_pkthdr.len += len;
1117 			if (error)
1118 				goto release;
1119 			mp = &m->m_next;
1120 			if (resid == 0)
1121 				break;
1122 			++cnt;
1123 		    } while (space > 0 && cnt < tcp_sosend_agglim);
1124 
1125 		    if (tcp_sosend_async)
1126 			    async = 1;
1127 
1128 		    if (flags & MSG_OOB) {
1129 		    	    pru_flags = PRUS_OOB;
1130 			    async = 0;
1131 		    } else if ((flags & MSG_EOF) && resid == 0) {
1132 			    pru_flags = PRUS_EOF;
1133 		    } else if (resid > 0 && space > 0) {
1134 			    /* If there is more to send, set PRUS_MORETOCOME */
1135 		    	    pru_flags = PRUS_MORETOCOME;
1136 			    async = 1;
1137 		    } else {
1138 		    	    pru_flags = 0;
1139 		    }
1140 
1141 		    if (flags & MSG_SYNC)
1142 			    async = 0;
1143 
1144 		    /*
1145 		     * XXX all the SS_CANTSENDMORE checks previously
1146 		     * done could be out of date.  We could have recieved
1147 		     * a reset packet in an interrupt or maybe we slept
1148 		     * while doing page faults in uiomove() etc. We could
1149 		     * probably recheck again inside the splnet() protection
1150 		     * here, but there are probably other places that this
1151 		     * also happens.  We must rethink this.
1152 		     */
1153 		    for (m = top; m; m = m->m_next)
1154 			    ssb_preallocstream(&so->so_snd, m);
1155 		    if (!async) {
1156 			    error = so_pru_send(so, pru_flags, top,
1157 			        NULL, NULL, td);
1158 		    } else {
1159 			    so_pru_send_async(so, pru_flags, top,
1160 			        NULL, NULL, td);
1161 			    error = 0;
1162 		    }
1163 
1164 		    top = NULL;
1165 		    mp = &top;
1166 		    if (error)
1167 			    goto release;
1168 		} while (resid && space > 0);
1169 	} while (resid);
1170 
1171 release:
1172 	ssb_unlock(&so->so_snd);
1173 out:
1174 	if (top)
1175 		m_freem(top);
1176 	if (control)
1177 		m_freem(control);
1178 	return (error);
1179 }
1180 #endif
1181 
1182 /*
1183  * Implement receive operations on a socket.
1184  *
1185  * We depend on the way that records are added to the signalsockbuf
1186  * by sbappend*.  In particular, each record (mbufs linked through m_next)
1187  * must begin with an address if the protocol so specifies,
1188  * followed by an optional mbuf or mbufs containing ancillary data,
1189  * and then zero or more mbufs of data.
1190  *
1191  * Although the signalsockbuf is locked, new data may still be appended.
1192  * A token inside the ssb_lock deals with MP issues and still allows
1193  * the network to access the socket if we block in a uio.
1194  *
1195  * The caller may receive the data as a single mbuf chain by supplying
1196  * an mbuf **mp0 for use in returning the chain.  The uio is then used
1197  * only for the count in uio_resid.
1198  */
1199 int
1200 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
1201 	  struct sockbuf *sio, struct mbuf **controlp, int *flagsp)
1202 {
1203 	struct mbuf *m, *n;
1204 	struct mbuf *free_chain = NULL;
1205 	int flags, len, error, offset;
1206 	struct protosw *pr = so->so_proto;
1207 	int moff, type = 0;
1208 	size_t resid, orig_resid;
1209 
1210 	if (uio)
1211 		resid = uio->uio_resid;
1212 	else
1213 		resid = (size_t)(sio->sb_climit - sio->sb_cc);
1214 	orig_resid = resid;
1215 
1216 	if (psa)
1217 		*psa = NULL;
1218 	if (controlp)
1219 		*controlp = NULL;
1220 	if (flagsp)
1221 		flags = *flagsp &~ MSG_EOR;
1222 	else
1223 		flags = 0;
1224 	if (flags & MSG_OOB) {
1225 		m = m_get(MB_WAIT, MT_DATA);
1226 		if (m == NULL)
1227 			return (ENOBUFS);
1228 		error = so_pru_rcvoob(so, m, flags & MSG_PEEK);
1229 		if (error)
1230 			goto bad;
1231 		if (sio) {
1232 			do {
1233 				sbappend(sio, m);
1234 				KKASSERT(resid >= (size_t)m->m_len);
1235 				resid -= (size_t)m->m_len;
1236 			} while (resid > 0 && m);
1237 		} else {
1238 			do {
1239 				uio->uio_resid = resid;
1240 				error = uiomove(mtod(m, caddr_t),
1241 						(int)szmin(resid, m->m_len),
1242 						uio);
1243 				resid = uio->uio_resid;
1244 				m = m_free(m);
1245 			} while (uio->uio_resid && error == 0 && m);
1246 		}
1247 bad:
1248 		if (m)
1249 			m_freem(m);
1250 		return (error);
1251 	}
1252 	if ((so->so_state & SS_ISCONFIRMING) && resid)
1253 		so_pru_rcvd(so, 0);
1254 
1255 	/*
1256 	 * The token interlocks against the protocol thread while
1257 	 * ssb_lock is a blocking lock against other userland entities.
1258 	 */
1259 	lwkt_gettoken(&so->so_rcv.ssb_token);
1260 restart:
1261 	error = ssb_lock(&so->so_rcv, SBLOCKWAIT(flags));
1262 	if (error)
1263 		goto done;
1264 
1265 	m = so->so_rcv.ssb_mb;
1266 	/*
1267 	 * If we have less data than requested, block awaiting more
1268 	 * (subject to any timeout) if:
1269 	 *   1. the current count is less than the low water mark, or
1270 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1271 	 *	receive operation at once if we block (resid <= hiwat).
1272 	 *   3. MSG_DONTWAIT is not set
1273 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1274 	 * we have to do the receive in sections, and thus risk returning
1275 	 * a short count if a timeout or signal occurs after we start.
1276 	 */
1277 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1278 	    (size_t)so->so_rcv.ssb_cc < resid) &&
1279 	    (so->so_rcv.ssb_cc < so->so_rcv.ssb_lowat ||
1280 	    ((flags & MSG_WAITALL) && resid <= (size_t)so->so_rcv.ssb_hiwat)) &&
1281 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1282 		KASSERT(m != NULL || !so->so_rcv.ssb_cc, ("receive 1"));
1283 		if (so->so_error) {
1284 			if (m)
1285 				goto dontblock;
1286 			error = so->so_error;
1287 			if ((flags & MSG_PEEK) == 0)
1288 				so->so_error = 0;
1289 			goto release;
1290 		}
1291 		if (so->so_state & SS_CANTRCVMORE) {
1292 			if (m)
1293 				goto dontblock;
1294 			else
1295 				goto release;
1296 		}
1297 		for (; m; m = m->m_next) {
1298 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1299 				m = so->so_rcv.ssb_mb;
1300 				goto dontblock;
1301 			}
1302 		}
1303 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1304 		    (pr->pr_flags & PR_CONNREQUIRED)) {
1305 			error = ENOTCONN;
1306 			goto release;
1307 		}
1308 		if (resid == 0)
1309 			goto release;
1310 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT)) {
1311 			error = EWOULDBLOCK;
1312 			goto release;
1313 		}
1314 		ssb_unlock(&so->so_rcv);
1315 		error = ssb_wait(&so->so_rcv);
1316 		if (error)
1317 			goto done;
1318 		goto restart;
1319 	}
1320 dontblock:
1321 	if (uio && uio->uio_td && uio->uio_td->td_proc)
1322 		uio->uio_td->td_lwp->lwp_ru.ru_msgrcv++;
1323 
1324 	/*
1325 	 * note: m should be == sb_mb here.  Cache the next record while
1326 	 * cleaning up.  Note that calling m_free*() will break out critical
1327 	 * section.
1328 	 */
1329 	KKASSERT(m == so->so_rcv.ssb_mb);
1330 
1331 	/*
1332 	 * Skip any address mbufs prepending the record.
1333 	 */
1334 	if (pr->pr_flags & PR_ADDR) {
1335 		KASSERT(m->m_type == MT_SONAME, ("receive 1a"));
1336 		orig_resid = 0;
1337 		if (psa)
1338 			*psa = dup_sockaddr(mtod(m, struct sockaddr *));
1339 		if (flags & MSG_PEEK)
1340 			m = m->m_next;
1341 		else
1342 			m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1343 	}
1344 
1345 	/*
1346 	 * Skip any control mbufs prepending the record.
1347 	 */
1348 #ifdef SCTP
1349 	if (pr->pr_flags & PR_ADDR_OPT) {
1350 		/*
1351 		 * For SCTP we may be getting a
1352 		 * whole message OR a partial delivery.
1353 		 */
1354 		if (m && m->m_type == MT_SONAME) {
1355 			orig_resid = 0;
1356 			if (psa)
1357 				*psa = dup_sockaddr(mtod(m, struct sockaddr *));
1358 			if (flags & MSG_PEEK)
1359 				m = m->m_next;
1360 			else
1361 				m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1362 		}
1363 	}
1364 #endif /* SCTP */
1365 	while (m && m->m_type == MT_CONTROL && error == 0) {
1366 		if (flags & MSG_PEEK) {
1367 			if (controlp)
1368 				*controlp = m_copy(m, 0, m->m_len);
1369 			m = m->m_next;	/* XXX race */
1370 		} else {
1371 			if (controlp) {
1372 				n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1373 				if (pr->pr_domain->dom_externalize &&
1374 				    mtod(m, struct cmsghdr *)->cmsg_type ==
1375 				    SCM_RIGHTS)
1376 				   error = (*pr->pr_domain->dom_externalize)(m);
1377 				*controlp = m;
1378 				m = n;
1379 			} else {
1380 				m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1381 			}
1382 		}
1383 		if (controlp && *controlp) {
1384 			orig_resid = 0;
1385 			controlp = &(*controlp)->m_next;
1386 		}
1387 	}
1388 
1389 	/*
1390 	 * flag OOB data.
1391 	 */
1392 	if (m) {
1393 		type = m->m_type;
1394 		if (type == MT_OOBDATA)
1395 			flags |= MSG_OOB;
1396 	}
1397 
1398 	/*
1399 	 * Copy to the UIO or mbuf return chain (*mp).
1400 	 */
1401 	moff = 0;
1402 	offset = 0;
1403 	while (m && resid > 0 && error == 0) {
1404 		if (m->m_type == MT_OOBDATA) {
1405 			if (type != MT_OOBDATA)
1406 				break;
1407 		} else if (type == MT_OOBDATA)
1408 			break;
1409 		else
1410 		    KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1411 			("receive 3"));
1412 		soclrstate(so, SS_RCVATMARK);
1413 		len = (resid > INT_MAX) ? INT_MAX : resid;
1414 		if (so->so_oobmark && len > so->so_oobmark - offset)
1415 			len = so->so_oobmark - offset;
1416 		if (len > m->m_len - moff)
1417 			len = m->m_len - moff;
1418 
1419 		/*
1420 		 * Copy out to the UIO or pass the mbufs back to the SIO.
1421 		 * The SIO is dealt with when we eat the mbuf, but deal
1422 		 * with the resid here either way.
1423 		 */
1424 		if (uio) {
1425 			uio->uio_resid = resid;
1426 			error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1427 			resid = uio->uio_resid;
1428 			if (error)
1429 				goto release;
1430 		} else {
1431 			resid -= (size_t)len;
1432 		}
1433 
1434 		/*
1435 		 * Eat the entire mbuf or just a piece of it
1436 		 */
1437 		if (len == m->m_len - moff) {
1438 			if (m->m_flags & M_EOR)
1439 				flags |= MSG_EOR;
1440 #ifdef SCTP
1441 			if (m->m_flags & M_NOTIFICATION)
1442 				flags |= MSG_NOTIFICATION;
1443 #endif /* SCTP */
1444 			if (flags & MSG_PEEK) {
1445 				m = m->m_next;
1446 				moff = 0;
1447 			} else {
1448 				if (sio) {
1449 					n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1450 					sbappend(sio, m);
1451 					m = n;
1452 				} else {
1453 					m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1454 				}
1455 			}
1456 		} else {
1457 			if (flags & MSG_PEEK) {
1458 				moff += len;
1459 			} else {
1460 				if (sio) {
1461 					n = m_copym(m, 0, len, MB_WAIT);
1462 					if (n)
1463 						sbappend(sio, n);
1464 				}
1465 				m->m_data += len;
1466 				m->m_len -= len;
1467 				so->so_rcv.ssb_cc -= len;
1468 			}
1469 		}
1470 		if (so->so_oobmark) {
1471 			if ((flags & MSG_PEEK) == 0) {
1472 				so->so_oobmark -= len;
1473 				if (so->so_oobmark == 0) {
1474 					sosetstate(so, SS_RCVATMARK);
1475 					break;
1476 				}
1477 			} else {
1478 				offset += len;
1479 				if (offset == so->so_oobmark)
1480 					break;
1481 			}
1482 		}
1483 		if (flags & MSG_EOR)
1484 			break;
1485 		/*
1486 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1487 		 * we must not quit until resid == 0 or an error
1488 		 * termination.  If a signal/timeout occurs, return
1489 		 * with a short count but without error.
1490 		 * Keep signalsockbuf locked against other readers.
1491 		 */
1492 		while ((flags & MSG_WAITALL) && m == NULL &&
1493 		       resid > 0 && !sosendallatonce(so) &&
1494 		       so->so_rcv.ssb_mb == NULL) {
1495 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
1496 				break;
1497 			/*
1498 			 * The window might have closed to zero, make
1499 			 * sure we send an ack now that we've drained
1500 			 * the buffer or we might end up blocking until
1501 			 * the idle takes over (5 seconds).
1502 			 */
1503 			if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1504 				so_pru_rcvd(so, flags);
1505 			error = ssb_wait(&so->so_rcv);
1506 			if (error) {
1507 				ssb_unlock(&so->so_rcv);
1508 				error = 0;
1509 				goto done;
1510 			}
1511 			m = so->so_rcv.ssb_mb;
1512 		}
1513 	}
1514 
1515 	/*
1516 	 * If an atomic read was requested but unread data still remains
1517 	 * in the record, set MSG_TRUNC.
1518 	 */
1519 	if (m && pr->pr_flags & PR_ATOMIC)
1520 		flags |= MSG_TRUNC;
1521 
1522 	/*
1523 	 * Cleanup.  If an atomic read was requested drop any unread data.
1524 	 */
1525 	if ((flags & MSG_PEEK) == 0) {
1526 		if (m && (pr->pr_flags & PR_ATOMIC))
1527 			sbdroprecord(&so->so_rcv.sb);
1528 		if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1529 			so_pru_rcvd(so, flags);
1530 	}
1531 
1532 	if (orig_resid == resid && orig_resid &&
1533 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1534 		ssb_unlock(&so->so_rcv);
1535 		goto restart;
1536 	}
1537 
1538 	if (flagsp)
1539 		*flagsp |= flags;
1540 release:
1541 	ssb_unlock(&so->so_rcv);
1542 done:
1543 	lwkt_reltoken(&so->so_rcv.ssb_token);
1544 	if (free_chain)
1545 		m_freem(free_chain);
1546 	return (error);
1547 }
1548 
1549 int
1550 sorecvtcp(struct socket *so, struct sockaddr **psa, struct uio *uio,
1551 	  struct sockbuf *sio, struct mbuf **controlp, int *flagsp)
1552 {
1553 	struct mbuf *m, *n;
1554 	struct mbuf *free_chain = NULL;
1555 	int flags, len, error, offset;
1556 	struct protosw *pr = so->so_proto;
1557 	int moff;
1558 	size_t resid, orig_resid;
1559 
1560 	if (uio)
1561 		resid = uio->uio_resid;
1562 	else
1563 		resid = (size_t)(sio->sb_climit - sio->sb_cc);
1564 	orig_resid = resid;
1565 
1566 	if (psa)
1567 		*psa = NULL;
1568 	if (controlp)
1569 		*controlp = NULL;
1570 	if (flagsp)
1571 		flags = *flagsp &~ MSG_EOR;
1572 	else
1573 		flags = 0;
1574 	if (flags & MSG_OOB) {
1575 		m = m_get(MB_WAIT, MT_DATA);
1576 		if (m == NULL)
1577 			return (ENOBUFS);
1578 		error = so_pru_rcvoob(so, m, flags & MSG_PEEK);
1579 		if (error)
1580 			goto bad;
1581 		if (sio) {
1582 			do {
1583 				sbappend(sio, m);
1584 				KKASSERT(resid >= (size_t)m->m_len);
1585 				resid -= (size_t)m->m_len;
1586 			} while (resid > 0 && m);
1587 		} else {
1588 			do {
1589 				uio->uio_resid = resid;
1590 				error = uiomove(mtod(m, caddr_t),
1591 						(int)szmin(resid, m->m_len),
1592 						uio);
1593 				resid = uio->uio_resid;
1594 				m = m_free(m);
1595 			} while (uio->uio_resid && error == 0 && m);
1596 		}
1597 bad:
1598 		if (m)
1599 			m_freem(m);
1600 		return (error);
1601 	}
1602 
1603 	/*
1604 	 * The token interlocks against the protocol thread while
1605 	 * ssb_lock is a blocking lock against other userland entities.
1606 	 */
1607 	lwkt_gettoken(&so->so_rcv.ssb_token);
1608 restart:
1609 	error = ssb_lock(&so->so_rcv, SBLOCKWAIT(flags));
1610 	if (error)
1611 		goto done;
1612 
1613 	m = so->so_rcv.ssb_mb;
1614 	/*
1615 	 * If we have less data than requested, block awaiting more
1616 	 * (subject to any timeout) if:
1617 	 *   1. the current count is less than the low water mark, or
1618 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1619 	 *	receive operation at once if we block (resid <= hiwat).
1620 	 *   3. MSG_DONTWAIT is not set
1621 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1622 	 * we have to do the receive in sections, and thus risk returning
1623 	 * a short count if a timeout or signal occurs after we start.
1624 	 */
1625 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1626 	    (size_t)so->so_rcv.ssb_cc < resid) &&
1627 	    (so->so_rcv.ssb_cc < so->so_rcv.ssb_lowat ||
1628 	   ((flags & MSG_WAITALL) && resid <= (size_t)so->so_rcv.ssb_hiwat)))) {
1629 		KASSERT(m != NULL || !so->so_rcv.ssb_cc, ("receive 1"));
1630 		if (so->so_error) {
1631 			if (m)
1632 				goto dontblock;
1633 			error = so->so_error;
1634 			if ((flags & MSG_PEEK) == 0)
1635 				so->so_error = 0;
1636 			goto release;
1637 		}
1638 		if (so->so_state & SS_CANTRCVMORE) {
1639 			if (m)
1640 				goto dontblock;
1641 			else
1642 				goto release;
1643 		}
1644 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1645 		    (pr->pr_flags & PR_CONNREQUIRED)) {
1646 			error = ENOTCONN;
1647 			goto release;
1648 		}
1649 		if (resid == 0)
1650 			goto release;
1651 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT)) {
1652 			error = EWOULDBLOCK;
1653 			goto release;
1654 		}
1655 		ssb_unlock(&so->so_rcv);
1656 		error = ssb_wait(&so->so_rcv);
1657 		if (error)
1658 			goto done;
1659 		goto restart;
1660 	}
1661 dontblock:
1662 	if (uio && uio->uio_td && uio->uio_td->td_proc)
1663 		uio->uio_td->td_lwp->lwp_ru.ru_msgrcv++;
1664 
1665 	/*
1666 	 * note: m should be == sb_mb here.  Cache the next record while
1667 	 * cleaning up.  Note that calling m_free*() will break out critical
1668 	 * section.
1669 	 */
1670 	KKASSERT(m == so->so_rcv.ssb_mb);
1671 
1672 	/*
1673 	 * Copy to the UIO or mbuf return chain (*mp).
1674 	 */
1675 	moff = 0;
1676 	offset = 0;
1677 	while (m && resid > 0 && error == 0) {
1678 		KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1679 		    ("receive 3"));
1680 
1681 		soclrstate(so, SS_RCVATMARK);
1682 		len = (resid > INT_MAX) ? INT_MAX : resid;
1683 		if (so->so_oobmark && len > so->so_oobmark - offset)
1684 			len = so->so_oobmark - offset;
1685 		if (len > m->m_len - moff)
1686 			len = m->m_len - moff;
1687 
1688 		/*
1689 		 * Copy out to the UIO or pass the mbufs back to the SIO.
1690 		 * The SIO is dealt with when we eat the mbuf, but deal
1691 		 * with the resid here either way.
1692 		 */
1693 		if (uio) {
1694 			uio->uio_resid = resid;
1695 			error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1696 			resid = uio->uio_resid;
1697 			if (error)
1698 				goto release;
1699 		} else {
1700 			resid -= (size_t)len;
1701 		}
1702 
1703 		/*
1704 		 * Eat the entire mbuf or just a piece of it
1705 		 */
1706 		if (len == m->m_len - moff) {
1707 			if (flags & MSG_PEEK) {
1708 				m = m->m_next;
1709 				moff = 0;
1710 			} else {
1711 				if (sio) {
1712 					n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1713 					sbappend(sio, m);
1714 					m = n;
1715 				} else {
1716 					m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1717 				}
1718 			}
1719 		} else {
1720 			if (flags & MSG_PEEK) {
1721 				moff += len;
1722 			} else {
1723 				if (sio) {
1724 					n = m_copym(m, 0, len, MB_WAIT);
1725 					if (n)
1726 						sbappend(sio, n);
1727 				}
1728 				m->m_data += len;
1729 				m->m_len -= len;
1730 				so->so_rcv.ssb_cc -= len;
1731 			}
1732 		}
1733 		if (so->so_oobmark) {
1734 			if ((flags & MSG_PEEK) == 0) {
1735 				so->so_oobmark -= len;
1736 				if (so->so_oobmark == 0) {
1737 					sosetstate(so, SS_RCVATMARK);
1738 					break;
1739 				}
1740 			} else {
1741 				offset += len;
1742 				if (offset == so->so_oobmark)
1743 					break;
1744 			}
1745 		}
1746 		/*
1747 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1748 		 * we must not quit until resid == 0 or an error
1749 		 * termination.  If a signal/timeout occurs, return
1750 		 * with a short count but without error.
1751 		 * Keep signalsockbuf locked against other readers.
1752 		 */
1753 		while ((flags & MSG_WAITALL) && m == NULL &&
1754 		       resid > 0 && !sosendallatonce(so) &&
1755 		       so->so_rcv.ssb_mb == NULL) {
1756 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
1757 				break;
1758 			/*
1759 			 * The window might have closed to zero, make
1760 			 * sure we send an ack now that we've drained
1761 			 * the buffer or we might end up blocking until
1762 			 * the idle takes over (5 seconds).
1763 			 */
1764 			if (so->so_pcb)
1765 				so_pru_rcvd_async(so);
1766 			error = ssb_wait(&so->so_rcv);
1767 			if (error) {
1768 				ssb_unlock(&so->so_rcv);
1769 				error = 0;
1770 				goto done;
1771 			}
1772 			m = so->so_rcv.ssb_mb;
1773 		}
1774 	}
1775 
1776 	/*
1777 	 * Cleanup.  If an atomic read was requested drop any unread data.
1778 	 */
1779 	if ((flags & MSG_PEEK) == 0) {
1780 		if (so->so_pcb)
1781 			so_pru_rcvd_async(so);
1782 	}
1783 
1784 	if (orig_resid == resid && orig_resid &&
1785 	    (so->so_state & SS_CANTRCVMORE) == 0) {
1786 		ssb_unlock(&so->so_rcv);
1787 		goto restart;
1788 	}
1789 
1790 	if (flagsp)
1791 		*flagsp |= flags;
1792 release:
1793 	ssb_unlock(&so->so_rcv);
1794 done:
1795 	lwkt_reltoken(&so->so_rcv.ssb_token);
1796 	if (free_chain)
1797 		m_freem(free_chain);
1798 	return (error);
1799 }
1800 
1801 /*
1802  * Shut a socket down.  Note that we do not get a frontend lock as we
1803  * want to be able to shut the socket down even if another thread is
1804  * blocked in a read(), thus waking it up.
1805  */
1806 int
1807 soshutdown(struct socket *so, int how)
1808 {
1809 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1810 		return (EINVAL);
1811 
1812 	if (how != SHUT_WR) {
1813 		/*ssb_lock(&so->so_rcv, M_WAITOK);*/
1814 		sorflush(so);
1815 		/*ssb_unlock(&so->so_rcv);*/
1816 	}
1817 	if (how != SHUT_RD)
1818 		return (so_pru_shutdown(so));
1819 	return (0);
1820 }
1821 
1822 void
1823 sorflush(struct socket *so)
1824 {
1825 	struct signalsockbuf *ssb = &so->so_rcv;
1826 	struct protosw *pr = so->so_proto;
1827 	struct signalsockbuf asb;
1828 
1829 	atomic_set_int(&ssb->ssb_flags, SSB_NOINTR);
1830 
1831 	lwkt_gettoken(&ssb->ssb_token);
1832 	socantrcvmore(so);
1833 	asb = *ssb;
1834 
1835 	/*
1836 	 * Can't just blow up the ssb structure here
1837 	 */
1838 	bzero(&ssb->sb, sizeof(ssb->sb));
1839 	ssb->ssb_timeo = 0;
1840 	ssb->ssb_lowat = 0;
1841 	ssb->ssb_hiwat = 0;
1842 	ssb->ssb_mbmax = 0;
1843 	atomic_clear_int(&ssb->ssb_flags, SSB_CLEAR_MASK);
1844 
1845 	if ((pr->pr_flags & PR_RIGHTS) && pr->pr_domain->dom_dispose)
1846 		(*pr->pr_domain->dom_dispose)(asb.ssb_mb);
1847 	ssb_release(&asb, so);
1848 
1849 	lwkt_reltoken(&ssb->ssb_token);
1850 }
1851 
1852 #ifdef INET
1853 static int
1854 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt)
1855 {
1856 	struct accept_filter_arg	*afap = NULL;
1857 	struct accept_filter	*afp;
1858 	struct so_accf	*af = so->so_accf;
1859 	int	error = 0;
1860 
1861 	/* do not set/remove accept filters on non listen sockets */
1862 	if ((so->so_options & SO_ACCEPTCONN) == 0) {
1863 		error = EINVAL;
1864 		goto out;
1865 	}
1866 
1867 	/* removing the filter */
1868 	if (sopt == NULL) {
1869 		if (af != NULL) {
1870 			if (af->so_accept_filter != NULL &&
1871 				af->so_accept_filter->accf_destroy != NULL) {
1872 				af->so_accept_filter->accf_destroy(so);
1873 			}
1874 			if (af->so_accept_filter_str != NULL) {
1875 				kfree(af->so_accept_filter_str, M_ACCF);
1876 			}
1877 			kfree(af, M_ACCF);
1878 			so->so_accf = NULL;
1879 		}
1880 		so->so_options &= ~SO_ACCEPTFILTER;
1881 		return (0);
1882 	}
1883 	/* adding a filter */
1884 	/* must remove previous filter first */
1885 	if (af != NULL) {
1886 		error = EINVAL;
1887 		goto out;
1888 	}
1889 	/* don't put large objects on the kernel stack */
1890 	afap = kmalloc(sizeof(*afap), M_TEMP, M_WAITOK);
1891 	error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap);
1892 	afap->af_name[sizeof(afap->af_name)-1] = '\0';
1893 	afap->af_arg[sizeof(afap->af_arg)-1] = '\0';
1894 	if (error)
1895 		goto out;
1896 	afp = accept_filt_get(afap->af_name);
1897 	if (afp == NULL) {
1898 		error = ENOENT;
1899 		goto out;
1900 	}
1901 	af = kmalloc(sizeof(*af), M_ACCF, M_WAITOK | M_ZERO);
1902 	if (afp->accf_create != NULL) {
1903 		if (afap->af_name[0] != '\0') {
1904 			int len = strlen(afap->af_name) + 1;
1905 
1906 			af->so_accept_filter_str = kmalloc(len, M_ACCF,
1907 							   M_WAITOK);
1908 			strcpy(af->so_accept_filter_str, afap->af_name);
1909 		}
1910 		af->so_accept_filter_arg = afp->accf_create(so, afap->af_arg);
1911 		if (af->so_accept_filter_arg == NULL) {
1912 			kfree(af->so_accept_filter_str, M_ACCF);
1913 			kfree(af, M_ACCF);
1914 			so->so_accf = NULL;
1915 			error = EINVAL;
1916 			goto out;
1917 		}
1918 	}
1919 	af->so_accept_filter = afp;
1920 	so->so_accf = af;
1921 	so->so_options |= SO_ACCEPTFILTER;
1922 out:
1923 	if (afap != NULL)
1924 		kfree(afap, M_TEMP);
1925 	return (error);
1926 }
1927 #endif /* INET */
1928 
1929 /*
1930  * Perhaps this routine, and sooptcopyout(), below, ought to come in
1931  * an additional variant to handle the case where the option value needs
1932  * to be some kind of integer, but not a specific size.
1933  * In addition to their use here, these functions are also called by the
1934  * protocol-level pr_ctloutput() routines.
1935  */
1936 int
1937 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
1938 {
1939 	return soopt_to_kbuf(sopt, buf, len, minlen);
1940 }
1941 
1942 int
1943 soopt_to_kbuf(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
1944 {
1945 	size_t	valsize;
1946 
1947 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
1948 	KKASSERT(kva_p(buf));
1949 
1950 	/*
1951 	 * If the user gives us more than we wanted, we ignore it,
1952 	 * but if we don't get the minimum length the caller
1953 	 * wants, we return EINVAL.  On success, sopt->sopt_valsize
1954 	 * is set to however much we actually retrieved.
1955 	 */
1956 	if ((valsize = sopt->sopt_valsize) < minlen)
1957 		return EINVAL;
1958 	if (valsize > len)
1959 		sopt->sopt_valsize = valsize = len;
1960 
1961 	bcopy(sopt->sopt_val, buf, valsize);
1962 	return 0;
1963 }
1964 
1965 
1966 int
1967 sosetopt(struct socket *so, struct sockopt *sopt)
1968 {
1969 	int	error, optval;
1970 	struct	linger l;
1971 	struct	timeval tv;
1972 	u_long  val;
1973 	struct signalsockbuf *sotmp;
1974 
1975 	error = 0;
1976 	sopt->sopt_dir = SOPT_SET;
1977 	if (sopt->sopt_level != SOL_SOCKET) {
1978 		if (so->so_proto && so->so_proto->pr_ctloutput) {
1979 			return (so_pr_ctloutput(so, sopt));
1980 		}
1981 		error = ENOPROTOOPT;
1982 	} else {
1983 		switch (sopt->sopt_name) {
1984 #ifdef INET
1985 		case SO_ACCEPTFILTER:
1986 			error = do_setopt_accept_filter(so, sopt);
1987 			if (error)
1988 				goto bad;
1989 			break;
1990 #endif /* INET */
1991 		case SO_LINGER:
1992 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1993 			if (error)
1994 				goto bad;
1995 
1996 			so->so_linger = l.l_linger;
1997 			if (l.l_onoff)
1998 				so->so_options |= SO_LINGER;
1999 			else
2000 				so->so_options &= ~SO_LINGER;
2001 			break;
2002 
2003 		case SO_DEBUG:
2004 		case SO_KEEPALIVE:
2005 		case SO_DONTROUTE:
2006 		case SO_USELOOPBACK:
2007 		case SO_BROADCAST:
2008 		case SO_REUSEADDR:
2009 		case SO_REUSEPORT:
2010 		case SO_OOBINLINE:
2011 		case SO_TIMESTAMP:
2012 		case SO_NOSIGPIPE:
2013 			error = sooptcopyin(sopt, &optval, sizeof optval,
2014 					    sizeof optval);
2015 			if (error)
2016 				goto bad;
2017 			if (optval)
2018 				so->so_options |= sopt->sopt_name;
2019 			else
2020 				so->so_options &= ~sopt->sopt_name;
2021 			break;
2022 
2023 		case SO_SNDBUF:
2024 		case SO_RCVBUF:
2025 		case SO_SNDLOWAT:
2026 		case SO_RCVLOWAT:
2027 			error = sooptcopyin(sopt, &optval, sizeof optval,
2028 					    sizeof optval);
2029 			if (error)
2030 				goto bad;
2031 
2032 			/*
2033 			 * Values < 1 make no sense for any of these
2034 			 * options, so disallow them.
2035 			 */
2036 			if (optval < 1) {
2037 				error = EINVAL;
2038 				goto bad;
2039 			}
2040 
2041 			switch (sopt->sopt_name) {
2042 			case SO_SNDBUF:
2043 			case SO_RCVBUF:
2044 				if (ssb_reserve(sopt->sopt_name == SO_SNDBUF ?
2045 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2046 				    so,
2047 				    &curproc->p_rlimit[RLIMIT_SBSIZE]) == 0) {
2048 					error = ENOBUFS;
2049 					goto bad;
2050 				}
2051 				sotmp = (sopt->sopt_name == SO_SNDBUF) ?
2052 						&so->so_snd : &so->so_rcv;
2053 				atomic_clear_int(&sotmp->ssb_flags,
2054 						 SSB_AUTOSIZE);
2055 				break;
2056 
2057 			/*
2058 			 * Make sure the low-water is never greater than
2059 			 * the high-water.
2060 			 */
2061 			case SO_SNDLOWAT:
2062 				so->so_snd.ssb_lowat =
2063 				    (optval > so->so_snd.ssb_hiwat) ?
2064 				    so->so_snd.ssb_hiwat : optval;
2065 				atomic_clear_int(&so->so_snd.ssb_flags,
2066 						 SSB_AUTOLOWAT);
2067 				break;
2068 			case SO_RCVLOWAT:
2069 				so->so_rcv.ssb_lowat =
2070 				    (optval > so->so_rcv.ssb_hiwat) ?
2071 				    so->so_rcv.ssb_hiwat : optval;
2072 				atomic_clear_int(&so->so_rcv.ssb_flags,
2073 						 SSB_AUTOLOWAT);
2074 				break;
2075 			}
2076 			break;
2077 
2078 		case SO_SNDTIMEO:
2079 		case SO_RCVTIMEO:
2080 			error = sooptcopyin(sopt, &tv, sizeof tv,
2081 					    sizeof tv);
2082 			if (error)
2083 				goto bad;
2084 
2085 			/* assert(hz > 0); */
2086 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2087 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2088 				error = EDOM;
2089 				goto bad;
2090 			}
2091 			/* assert(tick > 0); */
2092 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2093 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / ustick;
2094 			if (val > INT_MAX) {
2095 				error = EDOM;
2096 				goto bad;
2097 			}
2098 			if (val == 0 && tv.tv_usec != 0)
2099 				val = 1;
2100 
2101 			switch (sopt->sopt_name) {
2102 			case SO_SNDTIMEO:
2103 				so->so_snd.ssb_timeo = val;
2104 				break;
2105 			case SO_RCVTIMEO:
2106 				so->so_rcv.ssb_timeo = val;
2107 				break;
2108 			}
2109 			break;
2110 		default:
2111 			error = ENOPROTOOPT;
2112 			break;
2113 		}
2114 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
2115 			(void) so_pr_ctloutput(so, sopt);
2116 		}
2117 	}
2118 bad:
2119 	return (error);
2120 }
2121 
2122 /* Helper routine for getsockopt */
2123 int
2124 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2125 {
2126 	soopt_from_kbuf(sopt, buf, len);
2127 	return 0;
2128 }
2129 
2130 void
2131 soopt_from_kbuf(struct sockopt *sopt, const void *buf, size_t len)
2132 {
2133 	size_t	valsize;
2134 
2135 	if (len == 0) {
2136 		sopt->sopt_valsize = 0;
2137 		return;
2138 	}
2139 
2140 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2141 	KKASSERT(kva_p(buf));
2142 
2143 	/*
2144 	 * Documented get behavior is that we always return a value,
2145 	 * possibly truncated to fit in the user's buffer.
2146 	 * Traditional behavior is that we always tell the user
2147 	 * precisely how much we copied, rather than something useful
2148 	 * like the total amount we had available for her.
2149 	 * Note that this interface is not idempotent; the entire answer must
2150 	 * generated ahead of time.
2151 	 */
2152 	valsize = szmin(len, sopt->sopt_valsize);
2153 	sopt->sopt_valsize = valsize;
2154 	if (sopt->sopt_val != 0) {
2155 		bcopy(buf, sopt->sopt_val, valsize);
2156 	}
2157 }
2158 
2159 int
2160 sogetopt(struct socket *so, struct sockopt *sopt)
2161 {
2162 	int	error, optval;
2163 	long	optval_l;
2164 	struct	linger l;
2165 	struct	timeval tv;
2166 #ifdef INET
2167 	struct accept_filter_arg *afap;
2168 #endif
2169 
2170 	error = 0;
2171 	sopt->sopt_dir = SOPT_GET;
2172 	if (sopt->sopt_level != SOL_SOCKET) {
2173 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2174 			return (so_pr_ctloutput(so, sopt));
2175 		} else
2176 			return (ENOPROTOOPT);
2177 	} else {
2178 		switch (sopt->sopt_name) {
2179 #ifdef INET
2180 		case SO_ACCEPTFILTER:
2181 			if ((so->so_options & SO_ACCEPTCONN) == 0)
2182 				return (EINVAL);
2183 			afap = kmalloc(sizeof(*afap), M_TEMP,
2184 				       M_WAITOK | M_ZERO);
2185 			if ((so->so_options & SO_ACCEPTFILTER) != 0) {
2186 				strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name);
2187 				if (so->so_accf->so_accept_filter_str != NULL)
2188 					strcpy(afap->af_arg, so->so_accf->so_accept_filter_str);
2189 			}
2190 			error = sooptcopyout(sopt, afap, sizeof(*afap));
2191 			kfree(afap, M_TEMP);
2192 			break;
2193 #endif /* INET */
2194 
2195 		case SO_LINGER:
2196 			l.l_onoff = so->so_options & SO_LINGER;
2197 			l.l_linger = so->so_linger;
2198 			error = sooptcopyout(sopt, &l, sizeof l);
2199 			break;
2200 
2201 		case SO_USELOOPBACK:
2202 		case SO_DONTROUTE:
2203 		case SO_DEBUG:
2204 		case SO_KEEPALIVE:
2205 		case SO_REUSEADDR:
2206 		case SO_REUSEPORT:
2207 		case SO_BROADCAST:
2208 		case SO_OOBINLINE:
2209 		case SO_TIMESTAMP:
2210 		case SO_NOSIGPIPE:
2211 			optval = so->so_options & sopt->sopt_name;
2212 integer:
2213 			error = sooptcopyout(sopt, &optval, sizeof optval);
2214 			break;
2215 
2216 		case SO_TYPE:
2217 			optval = so->so_type;
2218 			goto integer;
2219 
2220 		case SO_ERROR:
2221 			optval = so->so_error;
2222 			so->so_error = 0;
2223 			goto integer;
2224 
2225 		case SO_SNDBUF:
2226 			optval = so->so_snd.ssb_hiwat;
2227 			goto integer;
2228 
2229 		case SO_RCVBUF:
2230 			optval = so->so_rcv.ssb_hiwat;
2231 			goto integer;
2232 
2233 		case SO_SNDLOWAT:
2234 			optval = so->so_snd.ssb_lowat;
2235 			goto integer;
2236 
2237 		case SO_RCVLOWAT:
2238 			optval = so->so_rcv.ssb_lowat;
2239 			goto integer;
2240 
2241 		case SO_SNDTIMEO:
2242 		case SO_RCVTIMEO:
2243 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2244 				  so->so_snd.ssb_timeo : so->so_rcv.ssb_timeo);
2245 
2246 			tv.tv_sec = optval / hz;
2247 			tv.tv_usec = (optval % hz) * ustick;
2248 			error = sooptcopyout(sopt, &tv, sizeof tv);
2249 			break;
2250 
2251 		case SO_SNDSPACE:
2252 			optval_l = ssb_space(&so->so_snd);
2253 			error = sooptcopyout(sopt, &optval_l, sizeof(optval_l));
2254 			break;
2255 
2256 		default:
2257 			error = ENOPROTOOPT;
2258 			break;
2259 		}
2260 		return (error);
2261 	}
2262 }
2263 
2264 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2265 int
2266 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2267 {
2268 	struct mbuf *m, *m_prev;
2269 	int sopt_size = sopt->sopt_valsize, msize;
2270 
2271 	m = m_getl(sopt_size, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_DATA,
2272 		   0, &msize);
2273 	if (m == NULL)
2274 		return (ENOBUFS);
2275 	m->m_len = min(msize, sopt_size);
2276 	sopt_size -= m->m_len;
2277 	*mp = m;
2278 	m_prev = m;
2279 
2280 	while (sopt_size > 0) {
2281 		m = m_getl(sopt_size, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT,
2282 			   MT_DATA, 0, &msize);
2283 		if (m == NULL) {
2284 			m_freem(*mp);
2285 			return (ENOBUFS);
2286 		}
2287 		m->m_len = min(msize, sopt_size);
2288 		sopt_size -= m->m_len;
2289 		m_prev->m_next = m;
2290 		m_prev = m;
2291 	}
2292 	return (0);
2293 }
2294 
2295 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2296 int
2297 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2298 {
2299 	soopt_to_mbuf(sopt, m);
2300 	return 0;
2301 }
2302 
2303 void
2304 soopt_to_mbuf(struct sockopt *sopt, struct mbuf *m)
2305 {
2306 	size_t valsize;
2307 	void *val;
2308 
2309 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2310 	KKASSERT(kva_p(m));
2311 	if (sopt->sopt_val == NULL)
2312 		return;
2313 	val = sopt->sopt_val;
2314 	valsize = sopt->sopt_valsize;
2315 	while (m != NULL && valsize >= m->m_len) {
2316 		bcopy(val, mtod(m, char *), m->m_len);
2317 		valsize -= m->m_len;
2318 		val = (caddr_t)val + m->m_len;
2319 		m = m->m_next;
2320 	}
2321 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2322 		panic("ip6_sooptmcopyin");
2323 }
2324 
2325 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2326 int
2327 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2328 {
2329 	return soopt_from_mbuf(sopt, m);
2330 }
2331 
2332 int
2333 soopt_from_mbuf(struct sockopt *sopt, struct mbuf *m)
2334 {
2335 	struct mbuf *m0 = m;
2336 	size_t valsize = 0;
2337 	size_t maxsize;
2338 	void *val;
2339 
2340 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2341 	KKASSERT(kva_p(m));
2342 	if (sopt->sopt_val == NULL)
2343 		return 0;
2344 	val = sopt->sopt_val;
2345 	maxsize = sopt->sopt_valsize;
2346 	while (m != NULL && maxsize >= m->m_len) {
2347 		bcopy(mtod(m, char *), val, m->m_len);
2348 	       maxsize -= m->m_len;
2349 	       val = (caddr_t)val + m->m_len;
2350 	       valsize += m->m_len;
2351 	       m = m->m_next;
2352 	}
2353 	if (m != NULL) {
2354 		/* enough soopt buffer should be given from user-land */
2355 		m_freem(m0);
2356 		return (EINVAL);
2357 	}
2358 	sopt->sopt_valsize = valsize;
2359 	return 0;
2360 }
2361 
2362 void
2363 sohasoutofband(struct socket *so)
2364 {
2365 	if (so->so_sigio != NULL)
2366 		pgsigio(so->so_sigio, SIGURG, 0);
2367 	KNOTE(&so->so_rcv.ssb_kq.ki_note, NOTE_OOB);
2368 }
2369 
2370 int
2371 sokqfilter(struct file *fp, struct knote *kn)
2372 {
2373 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2374 	struct signalsockbuf *ssb;
2375 
2376 	switch (kn->kn_filter) {
2377 	case EVFILT_READ:
2378 		if (so->so_options & SO_ACCEPTCONN)
2379 			kn->kn_fop = &solisten_filtops;
2380 		else
2381 			kn->kn_fop = &soread_filtops;
2382 		ssb = &so->so_rcv;
2383 		break;
2384 	case EVFILT_WRITE:
2385 		kn->kn_fop = &sowrite_filtops;
2386 		ssb = &so->so_snd;
2387 		break;
2388 	case EVFILT_EXCEPT:
2389 		kn->kn_fop = &soexcept_filtops;
2390 		ssb = &so->so_rcv;
2391 		break;
2392 	default:
2393 		return (EOPNOTSUPP);
2394 	}
2395 
2396 	knote_insert(&ssb->ssb_kq.ki_note, kn);
2397 	atomic_set_int(&ssb->ssb_flags, SSB_KNOTE);
2398 	return (0);
2399 }
2400 
2401 static void
2402 filt_sordetach(struct knote *kn)
2403 {
2404 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2405 
2406 	knote_remove(&so->so_rcv.ssb_kq.ki_note, kn);
2407 	if (SLIST_EMPTY(&so->so_rcv.ssb_kq.ki_note))
2408 		atomic_clear_int(&so->so_rcv.ssb_flags, SSB_KNOTE);
2409 }
2410 
2411 /*ARGSUSED*/
2412 static int
2413 filt_soread(struct knote *kn, long hint)
2414 {
2415 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2416 
2417 	if (kn->kn_sfflags & NOTE_OOB) {
2418 		if ((so->so_oobmark || (so->so_state & SS_RCVATMARK))) {
2419 			kn->kn_fflags |= NOTE_OOB;
2420 			return (1);
2421 		}
2422 		return (0);
2423 	}
2424 	kn->kn_data = so->so_rcv.ssb_cc;
2425 
2426 	if (so->so_state & SS_CANTRCVMORE) {
2427 		/*
2428 		 * Only set NODATA if all data has been exhausted.
2429 		 */
2430 		if (kn->kn_data == 0)
2431 			kn->kn_flags |= EV_NODATA;
2432 		kn->kn_flags |= EV_EOF;
2433 		kn->kn_fflags = so->so_error;
2434 		return (1);
2435 	}
2436 	if (so->so_error)	/* temporary udp error */
2437 		return (1);
2438 	if (kn->kn_sfflags & NOTE_LOWAT)
2439 		return (kn->kn_data >= kn->kn_sdata);
2440 	return ((kn->kn_data >= so->so_rcv.ssb_lowat) ||
2441 		!TAILQ_EMPTY(&so->so_comp));
2442 }
2443 
2444 static void
2445 filt_sowdetach(struct knote *kn)
2446 {
2447 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2448 
2449 	knote_remove(&so->so_snd.ssb_kq.ki_note, kn);
2450 	if (SLIST_EMPTY(&so->so_snd.ssb_kq.ki_note))
2451 		atomic_clear_int(&so->so_snd.ssb_flags, SSB_KNOTE);
2452 }
2453 
2454 /*ARGSUSED*/
2455 static int
2456 filt_sowrite(struct knote *kn, long hint)
2457 {
2458 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2459 
2460 	kn->kn_data = ssb_space(&so->so_snd);
2461 	if (so->so_state & SS_CANTSENDMORE) {
2462 		kn->kn_flags |= (EV_EOF | EV_NODATA);
2463 		kn->kn_fflags = so->so_error;
2464 		return (1);
2465 	}
2466 	if (so->so_error)	/* temporary udp error */
2467 		return (1);
2468 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
2469 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2470 		return (0);
2471 	if (kn->kn_sfflags & NOTE_LOWAT)
2472 		return (kn->kn_data >= kn->kn_sdata);
2473 	return (kn->kn_data >= so->so_snd.ssb_lowat);
2474 }
2475 
2476 /*ARGSUSED*/
2477 static int
2478 filt_solisten(struct knote *kn, long hint)
2479 {
2480 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2481 
2482 	kn->kn_data = so->so_qlen;
2483 	return (! TAILQ_EMPTY(&so->so_comp));
2484 }
2485