xref: /dragonfly/sys/kern/uipc_socket.c (revision a4f37ab4)
1 /*
2  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
63  * $FreeBSD: src/sys/kern/uipc_socket.c,v 1.68.2.24 2003/11/11 17:18:18 silby Exp $
64  */
65 
66 #include "opt_inet.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/fcntl.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/domain.h>
74 #include <sys/file.h>			/* for struct knote */
75 #include <sys/kernel.h>
76 #include <sys/event.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/socketops.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/uio.h>
86 #include <sys/jail.h>
87 #include <vm/vm_zone.h>
88 #include <vm/pmap.h>
89 #include <net/netmsg2.h>
90 #include <net/netisr2.h>
91 
92 #include <sys/thread2.h>
93 #include <sys/socketvar2.h>
94 #include <sys/spinlock2.h>
95 
96 #include <machine/limits.h>
97 
98 #ifdef INET
99 extern int tcp_sosend_agglim;
100 extern int tcp_sosend_async;
101 extern int tcp_sosend_jcluster;
102 extern int udp_sosend_async;
103 extern int udp_sosend_prepend;
104 
105 static int	 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt);
106 #endif /* INET */
107 
108 static void 	filt_sordetach(struct knote *kn);
109 static int 	filt_soread(struct knote *kn, long hint);
110 static void 	filt_sowdetach(struct knote *kn);
111 static int	filt_sowrite(struct knote *kn, long hint);
112 static int	filt_solisten(struct knote *kn, long hint);
113 
114 static int	soclose_sync(struct socket *so, int fflag);
115 static void	soclose_fast(struct socket *so);
116 
117 static struct filterops solisten_filtops =
118 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_solisten };
119 static struct filterops soread_filtops =
120 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
121 static struct filterops sowrite_filtops =
122 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sowdetach, filt_sowrite };
123 static struct filterops soexcept_filtops =
124 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
125 
126 MALLOC_DEFINE(M_SOCKET, "socket", "socket struct");
127 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
128 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
129 
130 
131 static int somaxconn = SOMAXCONN;
132 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW,
133     &somaxconn, 0, "Maximum pending socket connection queue size");
134 
135 static int use_soclose_fast = 1;
136 SYSCTL_INT(_kern_ipc, OID_AUTO, soclose_fast, CTLFLAG_RW,
137     &use_soclose_fast, 0, "Fast socket close");
138 
139 int use_soaccept_pred_fast = 1;
140 SYSCTL_INT(_kern_ipc, OID_AUTO, soaccept_pred_fast, CTLFLAG_RW,
141     &use_soaccept_pred_fast, 0, "Fast socket accept predication");
142 
143 int use_sendfile_async = 1;
144 SYSCTL_INT(_kern_ipc, OID_AUTO, sendfile_async, CTLFLAG_RW,
145     &use_sendfile_async, 0, "sendfile uses asynchronized pru_send");
146 
147 int use_soconnect_async = 1;
148 SYSCTL_INT(_kern_ipc, OID_AUTO, soconnect_async, CTLFLAG_RW,
149     &use_soconnect_async, 0, "soconnect uses asynchronized pru_connect");
150 
151 static int use_socreate_fast = 1;
152 SYSCTL_INT(_kern_ipc, OID_AUTO, socreate_fast, CTLFLAG_RW,
153     &use_socreate_fast, 0, "Fast socket creation");
154 
155 static int soavailconn = 32;
156 SYSCTL_INT(_kern_ipc, OID_AUTO, soavailconn, CTLFLAG_RW,
157     &soavailconn, 0, "Maximum available socket connection queue size");
158 
159 /*
160  * Socket operation routines.
161  * These routines are called by the routines in
162  * sys_socket.c or from a system process, and
163  * implement the semantics of socket operations by
164  * switching out to the protocol specific routines.
165  */
166 
167 /*
168  * Get a socket structure, and initialize it.
169  * Note that it would probably be better to allocate socket
170  * and PCB at the same time, but I'm not convinced that all
171  * the protocols can be easily modified to do this.
172  */
173 struct socket *
174 soalloc(int waitok, struct protosw *pr)
175 {
176 	struct socket *so;
177 	unsigned waitmask;
178 
179 	waitmask = waitok ? M_WAITOK : M_NOWAIT;
180 	so = kmalloc(sizeof(struct socket), M_SOCKET, M_ZERO|waitmask);
181 	if (so) {
182 		/* XXX race condition for reentrant kernel */
183 		so->so_proto = pr;
184 		TAILQ_INIT(&so->so_aiojobq);
185 		TAILQ_INIT(&so->so_rcv.ssb_mlist);
186 		TAILQ_INIT(&so->so_snd.ssb_mlist);
187 		lwkt_token_init(&so->so_rcv.ssb_token, "rcvtok");
188 		lwkt_token_init(&so->so_snd.ssb_token, "sndtok");
189 		spin_init(&so->so_rcvd_spin, "soalloc");
190 		netmsg_init(&so->so_rcvd_msg.base, so, &netisr_adone_rport,
191 		    MSGF_DROPABLE | MSGF_PRIORITY,
192 		    so->so_proto->pr_usrreqs->pru_rcvd);
193 		so->so_rcvd_msg.nm_pru_flags |= PRUR_ASYNC;
194 		so->so_state = SS_NOFDREF;
195 		so->so_refs = 1;
196 	}
197 	return so;
198 }
199 
200 int
201 socreate(int dom, struct socket **aso, int type,
202 	int proto, struct thread *td)
203 {
204 	struct proc *p = td->td_proc;
205 	struct protosw *prp;
206 	struct socket *so;
207 	struct pru_attach_info ai;
208 	int error;
209 
210 	if (proto)
211 		prp = pffindproto(dom, proto, type);
212 	else
213 		prp = pffindtype(dom, type);
214 
215 	if (prp == NULL || prp->pr_usrreqs->pru_attach == 0)
216 		return (EPROTONOSUPPORT);
217 
218 	if (p->p_ucred->cr_prison && jail_socket_unixiproute_only &&
219 	    prp->pr_domain->dom_family != PF_LOCAL &&
220 	    prp->pr_domain->dom_family != PF_INET &&
221 	    prp->pr_domain->dom_family != PF_INET6 &&
222 	    prp->pr_domain->dom_family != PF_ROUTE) {
223 		return (EPROTONOSUPPORT);
224 	}
225 
226 	if (prp->pr_type != type)
227 		return (EPROTOTYPE);
228 	so = soalloc(p != NULL, prp);
229 	if (so == NULL)
230 		return (ENOBUFS);
231 
232 	/*
233 	 * Callers of socreate() presumably will connect up a descriptor
234 	 * and call soclose() if they cannot.  This represents our so_refs
235 	 * (which should be 1) from soalloc().
236 	 */
237 	soclrstate(so, SS_NOFDREF);
238 
239 	/*
240 	 * Set a default port for protocol processing.  No action will occur
241 	 * on the socket on this port until an inpcb is attached to it and
242 	 * is able to match incoming packets, or until the socket becomes
243 	 * available to userland.
244 	 *
245 	 * We normally default the socket to the protocol thread on cpu 0,
246 	 * if protocol does not provide its own method to initialize the
247 	 * default port.
248 	 *
249 	 * If PR_SYNC_PORT is set (unix domain sockets) there is no protocol
250 	 * thread and all pr_*()/pru_*() calls are executed synchronously.
251 	 */
252 	if (prp->pr_flags & PR_SYNC_PORT)
253 		so->so_port = &netisr_sync_port;
254 	else if (prp->pr_initport != NULL)
255 		so->so_port = prp->pr_initport();
256 	else
257 		so->so_port = netisr_cpuport(0);
258 
259 	TAILQ_INIT(&so->so_incomp);
260 	TAILQ_INIT(&so->so_comp);
261 	so->so_type = type;
262 	so->so_cred = crhold(p->p_ucred);
263 	ai.sb_rlimit = &p->p_rlimit[RLIMIT_SBSIZE];
264 	ai.p_ucred = p->p_ucred;
265 	ai.fd_rdir = p->p_fd->fd_rdir;
266 
267 	/*
268 	 * Auto-sizing of socket buffers is managed by the protocols and
269 	 * the appropriate flags must be set in the pru_attach function.
270 	 */
271 	if (use_socreate_fast && prp->pr_usrreqs->pru_preattach)
272 		error = so_pru_attach_fast(so, proto, &ai);
273 	else
274 		error = so_pru_attach(so, proto, &ai);
275 	if (error) {
276 		sosetstate(so, SS_NOFDREF);
277 		sofree(so);	/* from soalloc */
278 		return error;
279 	}
280 
281 	/*
282 	 * NOTE: Returns referenced socket.
283 	 */
284 	*aso = so;
285 	return (0);
286 }
287 
288 int
289 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
290 {
291 	int error;
292 
293 	error = so_pru_bind(so, nam, td);
294 	return (error);
295 }
296 
297 static void
298 sodealloc(struct socket *so)
299 {
300 	KKASSERT((so->so_state & (SS_INCOMP | SS_COMP)) == 0);
301 
302 #ifdef INVARIANTS
303 	if (so->so_options & SO_ACCEPTCONN) {
304 		KASSERT(TAILQ_EMPTY(&so->so_comp), ("so_comp is not empty"));
305 		KASSERT(TAILQ_EMPTY(&so->so_incomp),
306 		    ("so_incomp is not empty"));
307 	}
308 #endif
309 
310 	if (so->so_rcv.ssb_hiwat)
311 		(void)chgsbsize(so->so_cred->cr_uidinfo,
312 		    &so->so_rcv.ssb_hiwat, 0, RLIM_INFINITY);
313 	if (so->so_snd.ssb_hiwat)
314 		(void)chgsbsize(so->so_cred->cr_uidinfo,
315 		    &so->so_snd.ssb_hiwat, 0, RLIM_INFINITY);
316 #ifdef INET
317 	/* remove accept filter if present */
318 	if (so->so_accf != NULL)
319 		do_setopt_accept_filter(so, NULL);
320 #endif /* INET */
321 	crfree(so->so_cred);
322 	if (so->so_faddr != NULL)
323 		kfree(so->so_faddr, M_SONAME);
324 	kfree(so, M_SOCKET);
325 }
326 
327 int
328 solisten(struct socket *so, int backlog, struct thread *td)
329 {
330 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING))
331 		return (EINVAL);
332 
333 	lwkt_gettoken(&so->so_rcv.ssb_token);
334 	if (TAILQ_EMPTY(&so->so_comp))
335 		so->so_options |= SO_ACCEPTCONN;
336 	lwkt_reltoken(&so->so_rcv.ssb_token);
337 	if (backlog < 0 || backlog > somaxconn)
338 		backlog = somaxconn;
339 	so->so_qlimit = backlog;
340 	return so_pru_listen(so, td);
341 }
342 
343 static void
344 soqflush(struct socket *so)
345 {
346 	lwkt_getpooltoken(so);
347 	if (so->so_options & SO_ACCEPTCONN) {
348 		struct socket *sp;
349 
350 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
351 			KKASSERT((sp->so_state & (SS_INCOMP | SS_COMP)) ==
352 			    SS_INCOMP);
353 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
354 			so->so_incqlen--;
355 			soclrstate(sp, SS_INCOMP);
356 			soabort_async(sp, TRUE);
357 		}
358 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
359 			KKASSERT((sp->so_state & (SS_INCOMP | SS_COMP)) ==
360 			    SS_COMP);
361 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
362 			so->so_qlen--;
363 			soclrstate(sp, SS_COMP);
364 			soabort_async(sp, TRUE);
365 		}
366 	}
367 	lwkt_relpooltoken(so);
368 }
369 
370 /*
371  * Destroy a disconnected socket.  This routine is a NOP if entities
372  * still have a reference on the socket:
373  *
374  *	so_pcb -	The protocol stack still has a reference
375  *	SS_NOFDREF -	There is no longer a file pointer reference
376  */
377 void
378 sofree(struct socket *so)
379 {
380 	struct socket *head;
381 
382 	/*
383 	 * This is a bit hackish at the moment.  We need to interlock
384 	 * any accept queue we are on before we potentially lose the
385 	 * last reference to avoid races against a re-reference from
386 	 * someone operating on the queue.
387 	 */
388 	while ((head = so->so_head) != NULL) {
389 		lwkt_getpooltoken(head);
390 		if (so->so_head == head)
391 			break;
392 		lwkt_relpooltoken(head);
393 	}
394 
395 	/*
396 	 * Arbitrage the last free.
397 	 */
398 	KKASSERT(so->so_refs > 0);
399 	if (atomic_fetchadd_int(&so->so_refs, -1) != 1) {
400 		if (head)
401 			lwkt_relpooltoken(head);
402 		return;
403 	}
404 
405 	KKASSERT(so->so_pcb == NULL && (so->so_state & SS_NOFDREF));
406 	KKASSERT((so->so_state & SS_ASSERTINPROG) == 0);
407 
408 	if (head != NULL) {
409 		/*
410 		 * We're done, remove ourselves from the accept queue we are
411 		 * on, if we are on one.
412 		 */
413 		if (so->so_state & SS_INCOMP) {
414 			KKASSERT((so->so_state & (SS_INCOMP | SS_COMP)) ==
415 			    SS_INCOMP);
416 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
417 			head->so_incqlen--;
418 		} else if (so->so_state & SS_COMP) {
419 			/*
420 			 * We must not decommission a socket that's
421 			 * on the accept(2) queue.  If we do, then
422 			 * accept(2) may hang after select(2) indicated
423 			 * that the listening socket was ready.
424 			 */
425 			KKASSERT((so->so_state & (SS_INCOMP | SS_COMP)) ==
426 			    SS_COMP);
427 			lwkt_relpooltoken(head);
428 			return;
429 		} else {
430 			panic("sofree: not queued");
431 		}
432 		soclrstate(so, SS_INCOMP);
433 		so->so_head = NULL;
434 		lwkt_relpooltoken(head);
435 	} else {
436 		/* Flush accept queues, if we are accepting. */
437 		soqflush(so);
438 	}
439 	ssb_release(&so->so_snd, so);
440 	sorflush(so);
441 	sodealloc(so);
442 }
443 
444 /*
445  * Close a socket on last file table reference removal.
446  * Initiate disconnect if connected.
447  * Free socket when disconnect complete.
448  */
449 int
450 soclose(struct socket *so, int fflag)
451 {
452 	int error;
453 
454 	funsetown(&so->so_sigio);
455 	sosetstate(so, SS_ISCLOSING);
456 	if (!use_soclose_fast ||
457 	    (so->so_proto->pr_flags & PR_SYNC_PORT) ||
458 	    ((so->so_state & SS_ISCONNECTED) &&
459 	     (so->so_options & SO_LINGER) &&
460 	     so->so_linger != 0)) {
461 		error = soclose_sync(so, fflag);
462 	} else {
463 		soclose_fast(so);
464 		error = 0;
465 	}
466 	return error;
467 }
468 
469 void
470 sodiscard(struct socket *so)
471 {
472 	if (so->so_state & SS_NOFDREF)
473 		panic("soclose: NOFDREF");
474 	sosetstate(so, SS_NOFDREF);	/* take ref */
475 }
476 
477 /*
478  * Append the completed queue of head to head_inh (inherting listen socket).
479  */
480 void
481 soinherit(struct socket *head, struct socket *head_inh)
482 {
483 	boolean_t do_wakeup = FALSE;
484 
485 	KASSERT(head->so_options & SO_ACCEPTCONN,
486 	    ("head does not accept connection"));
487 	KASSERT(head_inh->so_options & SO_ACCEPTCONN,
488 	    ("head_inh does not accept connection"));
489 
490 	lwkt_getpooltoken(head);
491 	lwkt_getpooltoken(head_inh);
492 
493 	if (head->so_qlen > 0)
494 		do_wakeup = TRUE;
495 
496 	while (!TAILQ_EMPTY(&head->so_comp)) {
497 		struct ucred *old_cr;
498 		struct socket *sp;
499 
500 		sp = TAILQ_FIRST(&head->so_comp);
501 		KKASSERT((sp->so_state & (SS_INCOMP | SS_COMP)) == SS_COMP);
502 
503 		/*
504 		 * Remove this socket from the current listen socket
505 		 * completed queue.
506 		 */
507 		TAILQ_REMOVE(&head->so_comp, sp, so_list);
508 		head->so_qlen--;
509 
510 		/* Save the old ucred for later free. */
511 		old_cr = sp->so_cred;
512 
513 		/*
514 		 * Install this socket to the inheriting listen socket
515 		 * completed queue.
516 		 */
517 		sp->so_cred = crhold(head_inh->so_cred); /* non-blocking */
518 		sp->so_head = head_inh;
519 
520 		TAILQ_INSERT_TAIL(&head_inh->so_comp, sp, so_list);
521 		head_inh->so_qlen++;
522 
523 		/*
524 		 * NOTE:
525 		 * crfree() may block and release the tokens temporarily.
526 		 * However, we are fine here, since the transition is done.
527 		 */
528 		crfree(old_cr);
529 	}
530 
531 	lwkt_relpooltoken(head_inh);
532 	lwkt_relpooltoken(head);
533 
534 	if (do_wakeup) {
535 		/*
536 		 * "New" connections have arrived
537 		 */
538 		sorwakeup(head_inh);
539 		wakeup(&head_inh->so_timeo);
540 	}
541 }
542 
543 static int
544 soclose_sync(struct socket *so, int fflag)
545 {
546 	int error = 0;
547 
548 	if ((so->so_proto->pr_flags & PR_SYNC_PORT) == 0)
549 		so_pru_sync(so); /* unpend async prus */
550 
551 	if (so->so_pcb == NULL)
552 		goto discard;
553 
554 	if (so->so_state & SS_ISCONNECTED) {
555 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
556 			error = sodisconnect(so);
557 			if (error)
558 				goto drop;
559 		}
560 		if (so->so_options & SO_LINGER) {
561 			if ((so->so_state & SS_ISDISCONNECTING) &&
562 			    (fflag & FNONBLOCK))
563 				goto drop;
564 			while (so->so_state & SS_ISCONNECTED) {
565 				error = tsleep(&so->so_timeo, PCATCH,
566 					       "soclos", so->so_linger * hz);
567 				if (error)
568 					break;
569 			}
570 		}
571 	}
572 drop:
573 	if (so->so_pcb) {
574 		int error2;
575 
576 		error2 = so_pru_detach(so);
577 		if (error2 == EJUSTRETURN) {
578 			/*
579 			 * Protocol will call sodiscard()
580 			 * and sofree() for us.
581 			 */
582 			return error;
583 		}
584 		if (error == 0)
585 			error = error2;
586 	}
587 discard:
588 	sodiscard(so);
589 	sofree(so);		/* dispose of ref */
590 
591 	return (error);
592 }
593 
594 static void
595 soclose_fast_handler(netmsg_t msg)
596 {
597 	struct socket *so = msg->base.nm_so;
598 
599 	if (so->so_pcb == NULL)
600 		goto discard;
601 
602 	if ((so->so_state & SS_ISCONNECTED) &&
603 	    (so->so_state & SS_ISDISCONNECTING) == 0)
604 		so_pru_disconnect_direct(so);
605 
606 	if (so->so_pcb) {
607 		int error;
608 
609 		error = so_pru_detach_direct(so);
610 		if (error == EJUSTRETURN) {
611 			/*
612 			 * Protocol will call sodiscard()
613 			 * and sofree() for us.
614 			 */
615 			return;
616 		}
617 	}
618 discard:
619 	sodiscard(so);
620 	sofree(so);
621 }
622 
623 static void
624 soclose_fast(struct socket *so)
625 {
626 	struct netmsg_base *base = &so->so_clomsg;
627 
628 	netmsg_init(base, so, &netisr_apanic_rport, 0,
629 	    soclose_fast_handler);
630 	if (so->so_port == netisr_curport())
631 		lwkt_sendmsg_oncpu(so->so_port, &base->lmsg);
632 	else
633 		lwkt_sendmsg(so->so_port, &base->lmsg);
634 }
635 
636 /*
637  * Abort and destroy a socket.  Only one abort can be in progress
638  * at any given moment.
639  */
640 void
641 soabort_async(struct socket *so, boolean_t clr_head)
642 {
643 	/*
644 	 * Keep a reference before clearing the so_head
645 	 * to avoid racing socket close in netisr.
646 	 */
647 	soreference(so);
648 	if (clr_head)
649 		so->so_head = NULL;
650 	so_pru_abort_async(so);
651 }
652 
653 void
654 soabort_direct(struct socket *so)
655 {
656 	soreference(so);
657 	so_pru_abort_direct(so);
658 }
659 
660 /*
661  * so is passed in ref'd, which becomes owned by
662  * the cleared SS_NOFDREF flag.
663  */
664 void
665 soaccept_generic(struct socket *so)
666 {
667 	if ((so->so_state & SS_NOFDREF) == 0)
668 		panic("soaccept: !NOFDREF");
669 	soclrstate(so, SS_NOFDREF);	/* owned by lack of SS_NOFDREF */
670 }
671 
672 int
673 soaccept(struct socket *so, struct sockaddr **nam)
674 {
675 	int error;
676 
677 	soaccept_generic(so);
678 	error = so_pru_accept(so, nam);
679 	return (error);
680 }
681 
682 int
683 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td,
684     boolean_t sync)
685 {
686 	int error;
687 
688 	if (so->so_options & SO_ACCEPTCONN)
689 		return (EOPNOTSUPP);
690 	/*
691 	 * If protocol is connection-based, can only connect once.
692 	 * Otherwise, if connected, try to disconnect first.
693 	 * This allows user to disconnect by connecting to, e.g.,
694 	 * a null address.
695 	 */
696 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
697 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
698 	    (error = sodisconnect(so)))) {
699 		error = EISCONN;
700 	} else {
701 		/*
702 		 * Prevent accumulated error from previous connection
703 		 * from biting us.
704 		 */
705 		so->so_error = 0;
706 		if (!sync && so->so_proto->pr_usrreqs->pru_preconnect)
707 			error = so_pru_connect_async(so, nam, td);
708 		else
709 			error = so_pru_connect(so, nam, td);
710 	}
711 	return (error);
712 }
713 
714 int
715 soconnect2(struct socket *so1, struct socket *so2)
716 {
717 	int error;
718 
719 	error = so_pru_connect2(so1, so2);
720 	return (error);
721 }
722 
723 int
724 sodisconnect(struct socket *so)
725 {
726 	int error;
727 
728 	if ((so->so_state & SS_ISCONNECTED) == 0) {
729 		error = ENOTCONN;
730 		goto bad;
731 	}
732 	if (so->so_state & SS_ISDISCONNECTING) {
733 		error = EALREADY;
734 		goto bad;
735 	}
736 	error = so_pru_disconnect(so);
737 bad:
738 	return (error);
739 }
740 
741 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
742 /*
743  * Send on a socket.
744  * If send must go all at once and message is larger than
745  * send buffering, then hard error.
746  * Lock against other senders.
747  * If must go all at once and not enough room now, then
748  * inform user that this would block and do nothing.
749  * Otherwise, if nonblocking, send as much as possible.
750  * The data to be sent is described by "uio" if nonzero,
751  * otherwise by the mbuf chain "top" (which must be null
752  * if uio is not).  Data provided in mbuf chain must be small
753  * enough to send all at once.
754  *
755  * Returns nonzero on error, timeout or signal; callers
756  * must check for short counts if EINTR/ERESTART are returned.
757  * Data and control buffers are freed on return.
758  */
759 int
760 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
761 	struct mbuf *top, struct mbuf *control, int flags,
762 	struct thread *td)
763 {
764 	struct mbuf **mp;
765 	struct mbuf *m;
766 	size_t resid;
767 	int space, len;
768 	int clen = 0, error, dontroute, mlen;
769 	int atomic = sosendallatonce(so) || top;
770 	int pru_flags;
771 
772 	if (uio) {
773 		resid = uio->uio_resid;
774 	} else {
775 		resid = (size_t)top->m_pkthdr.len;
776 #ifdef INVARIANTS
777 		len = 0;
778 		for (m = top; m; m = m->m_next)
779 			len += m->m_len;
780 		KKASSERT(top->m_pkthdr.len == len);
781 #endif
782 	}
783 
784 	/*
785 	 * WARNING!  resid is unsigned, space and len are signed.  space
786 	 * 	     can wind up negative if the sockbuf is overcommitted.
787 	 *
788 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
789 	 * type sockets since that's an error.
790 	 */
791 	if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
792 		error = EINVAL;
793 		goto out;
794 	}
795 
796 	dontroute =
797 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
798 	    (so->so_proto->pr_flags & PR_ATOMIC);
799 	if (td->td_lwp != NULL)
800 		td->td_lwp->lwp_ru.ru_msgsnd++;
801 	if (control)
802 		clen = control->m_len;
803 #define	gotoerr(errcode)	{ error = errcode; goto release; }
804 
805 restart:
806 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
807 	if (error)
808 		goto out;
809 
810 	do {
811 		if (so->so_state & SS_CANTSENDMORE)
812 			gotoerr(EPIPE);
813 		if (so->so_error) {
814 			error = so->so_error;
815 			so->so_error = 0;
816 			goto release;
817 		}
818 		if ((so->so_state & SS_ISCONNECTED) == 0) {
819 			/*
820 			 * `sendto' and `sendmsg' is allowed on a connection-
821 			 * based socket if it supports implied connect.
822 			 * Return ENOTCONN if not connected and no address is
823 			 * supplied.
824 			 */
825 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
826 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
827 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
828 				    !(resid == 0 && clen != 0))
829 					gotoerr(ENOTCONN);
830 			} else if (addr == NULL)
831 			    gotoerr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
832 				   ENOTCONN : EDESTADDRREQ);
833 		}
834 		if ((atomic && resid > so->so_snd.ssb_hiwat) ||
835 		    clen > so->so_snd.ssb_hiwat) {
836 			gotoerr(EMSGSIZE);
837 		}
838 		space = ssb_space(&so->so_snd);
839 		if (flags & MSG_OOB)
840 			space += 1024;
841 		if ((space < 0 || (size_t)space < resid + clen) && uio &&
842 		    (atomic || space < so->so_snd.ssb_lowat || space < clen)) {
843 			if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
844 				gotoerr(EWOULDBLOCK);
845 			ssb_unlock(&so->so_snd);
846 			error = ssb_wait(&so->so_snd);
847 			if (error)
848 				goto out;
849 			goto restart;
850 		}
851 		mp = &top;
852 		space -= clen;
853 		do {
854 		    if (uio == NULL) {
855 			/*
856 			 * Data is prepackaged in "top".
857 			 */
858 			resid = 0;
859 			if (flags & MSG_EOR)
860 				top->m_flags |= M_EOR;
861 		    } else do {
862 			if (resid > INT_MAX)
863 				resid = INT_MAX;
864 			m = m_getl((int)resid, M_WAITOK, MT_DATA,
865 				   top == NULL ? M_PKTHDR : 0, &mlen);
866 			if (top == NULL) {
867 				m->m_pkthdr.len = 0;
868 				m->m_pkthdr.rcvif = NULL;
869 			}
870 			len = imin((int)szmin(mlen, resid), space);
871 			if (resid < MINCLSIZE) {
872 				/*
873 				 * For datagram protocols, leave room
874 				 * for protocol headers in first mbuf.
875 				 */
876 				if (atomic && top == NULL && len < mlen)
877 					MH_ALIGN(m, len);
878 			}
879 			space -= len;
880 			error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
881 			resid = uio->uio_resid;
882 			m->m_len = len;
883 			*mp = m;
884 			top->m_pkthdr.len += len;
885 			if (error)
886 				goto release;
887 			mp = &m->m_next;
888 			if (resid == 0) {
889 				if (flags & MSG_EOR)
890 					top->m_flags |= M_EOR;
891 				break;
892 			}
893 		    } while (space > 0 && atomic);
894 		    if (dontroute)
895 			    so->so_options |= SO_DONTROUTE;
896 		    if (flags & MSG_OOB) {
897 		    	    pru_flags = PRUS_OOB;
898 		    } else if ((flags & MSG_EOF) &&
899 		    	       (so->so_proto->pr_flags & PR_IMPLOPCL) &&
900 			       (resid == 0)) {
901 			    /*
902 			     * If the user set MSG_EOF, the protocol
903 			     * understands this flag and nothing left to
904 			     * send then use PRU_SEND_EOF instead of PRU_SEND.
905 			     */
906 		    	    pru_flags = PRUS_EOF;
907 		    } else if (resid > 0 && space > 0) {
908 			    /* If there is more to send, set PRUS_MORETOCOME */
909 		    	    pru_flags = PRUS_MORETOCOME;
910 		    } else {
911 		    	    pru_flags = 0;
912 		    }
913 		    /*
914 		     * XXX all the SS_CANTSENDMORE checks previously
915 		     * done could be out of date.  We could have recieved
916 		     * a reset packet in an interrupt or maybe we slept
917 		     * while doing page faults in uiomove() etc. We could
918 		     * probably recheck again inside the splnet() protection
919 		     * here, but there are probably other places that this
920 		     * also happens.  We must rethink this.
921 		     */
922 		    error = so_pru_send(so, pru_flags, top, addr, control, td);
923 		    if (dontroute)
924 			    so->so_options &= ~SO_DONTROUTE;
925 		    clen = 0;
926 		    control = NULL;
927 		    top = NULL;
928 		    mp = &top;
929 		    if (error)
930 			    goto release;
931 		} while (resid && space > 0);
932 	} while (resid);
933 
934 release:
935 	ssb_unlock(&so->so_snd);
936 out:
937 	if (top)
938 		m_freem(top);
939 	if (control)
940 		m_freem(control);
941 	return (error);
942 }
943 
944 #ifdef INET
945 /*
946  * A specialization of sosend() for UDP based on protocol-specific knowledge:
947  *   so->so_proto->pr_flags has the PR_ATOMIC field set.  This means that
948  *	sosendallatonce() returns true,
949  *	the "atomic" variable is true,
950  *	and sosendudp() blocks until space is available for the entire send.
951  *   so->so_proto->pr_flags does not have the PR_CONNREQUIRED or
952  *	PR_IMPLOPCL flags set.
953  *   UDP has no out-of-band data.
954  *   UDP has no control data.
955  *   UDP does not support MSG_EOR.
956  */
957 int
958 sosendudp(struct socket *so, struct sockaddr *addr, struct uio *uio,
959 	  struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
960 {
961 	size_t resid;
962 	int error, pru_flags = 0;
963 	int space;
964 
965 	if (td->td_lwp != NULL)
966 		td->td_lwp->lwp_ru.ru_msgsnd++;
967 	if (control)
968 		m_freem(control);
969 
970 	KASSERT((uio && !top) || (top && !uio), ("bad arguments to sosendudp"));
971 	resid = uio ? uio->uio_resid : (size_t)top->m_pkthdr.len;
972 
973 restart:
974 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
975 	if (error)
976 		goto out;
977 
978 	if (so->so_state & SS_CANTSENDMORE)
979 		gotoerr(EPIPE);
980 	if (so->so_error) {
981 		error = so->so_error;
982 		so->so_error = 0;
983 		goto release;
984 	}
985 	if (!(so->so_state & SS_ISCONNECTED) && addr == NULL)
986 		gotoerr(EDESTADDRREQ);
987 	if (resid > so->so_snd.ssb_hiwat)
988 		gotoerr(EMSGSIZE);
989 	space = ssb_space(&so->so_snd);
990 	if (uio && (space < 0 || (size_t)space < resid)) {
991 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
992 			gotoerr(EWOULDBLOCK);
993 		ssb_unlock(&so->so_snd);
994 		error = ssb_wait(&so->so_snd);
995 		if (error)
996 			goto out;
997 		goto restart;
998 	}
999 
1000 	if (uio) {
1001 		int hdrlen = max_hdr;
1002 
1003 		/*
1004 		 * We try to optimize out the additional mbuf
1005 		 * allocations in M_PREPEND() on output path, e.g.
1006 		 * - udp_output(), when it tries to prepend protocol
1007 		 *   headers.
1008 		 * - Link layer output function, when it tries to
1009 		 *   prepend link layer header.
1010 		 *
1011 		 * This probably will not benefit any data that will
1012 		 * be fragmented, so this optimization is only performed
1013 		 * when the size of data and max size of protocol+link
1014 		 * headers fit into one mbuf cluster.
1015 		 */
1016 		if (uio->uio_resid > MCLBYTES - hdrlen ||
1017 		    !udp_sosend_prepend) {
1018 			top = m_uiomove(uio);
1019 			if (top == NULL)
1020 				goto release;
1021 		} else {
1022 			int nsize;
1023 
1024 			top = m_getl(uio->uio_resid + hdrlen, M_WAITOK,
1025 			    MT_DATA, M_PKTHDR, &nsize);
1026 			KASSERT(nsize >= uio->uio_resid + hdrlen,
1027 			    ("sosendudp invalid nsize %d, "
1028 			     "resid %zu, hdrlen %d",
1029 			     nsize, uio->uio_resid, hdrlen));
1030 
1031 			top->m_len = uio->uio_resid;
1032 			top->m_pkthdr.len = uio->uio_resid;
1033 			top->m_data += hdrlen;
1034 
1035 			error = uiomove(mtod(top, caddr_t), top->m_len, uio);
1036 			if (error)
1037 				goto out;
1038 		}
1039 	}
1040 
1041 	if (flags & MSG_DONTROUTE)
1042 		pru_flags |= PRUS_DONTROUTE;
1043 
1044 	if (udp_sosend_async && (flags & MSG_SYNC) == 0) {
1045 		so_pru_send_async(so, pru_flags, top, addr, NULL, td);
1046 		error = 0;
1047 	} else {
1048 		error = so_pru_send(so, pru_flags, top, addr, NULL, td);
1049 	}
1050 	top = NULL;		/* sent or freed in lower layer */
1051 
1052 release:
1053 	ssb_unlock(&so->so_snd);
1054 out:
1055 	if (top)
1056 		m_freem(top);
1057 	return (error);
1058 }
1059 
1060 int
1061 sosendtcp(struct socket *so, struct sockaddr *addr, struct uio *uio,
1062 	struct mbuf *top, struct mbuf *control, int flags,
1063 	struct thread *td)
1064 {
1065 	struct mbuf **mp;
1066 	struct mbuf *m;
1067 	size_t resid;
1068 	int space, len;
1069 	int error, mlen;
1070 	int allatonce;
1071 	int pru_flags;
1072 
1073 	if (uio) {
1074 		KKASSERT(top == NULL);
1075 		allatonce = 0;
1076 		resid = uio->uio_resid;
1077 	} else {
1078 		allatonce = 1;
1079 		resid = (size_t)top->m_pkthdr.len;
1080 #ifdef INVARIANTS
1081 		len = 0;
1082 		for (m = top; m; m = m->m_next)
1083 			len += m->m_len;
1084 		KKASSERT(top->m_pkthdr.len == len);
1085 #endif
1086 	}
1087 
1088 	/*
1089 	 * WARNING!  resid is unsigned, space and len are signed.  space
1090 	 * 	     can wind up negative if the sockbuf is overcommitted.
1091 	 *
1092 	 * Also check to make sure that MSG_EOR isn't used on TCP
1093 	 */
1094 	if (flags & MSG_EOR) {
1095 		error = EINVAL;
1096 		goto out;
1097 	}
1098 
1099 	if (control) {
1100 		/* TCP doesn't do control messages (rights, creds, etc) */
1101 		if (control->m_len) {
1102 			error = EINVAL;
1103 			goto out;
1104 		}
1105 		m_freem(control);	/* empty control, just free it */
1106 		control = NULL;
1107 	}
1108 
1109 	if (td->td_lwp != NULL)
1110 		td->td_lwp->lwp_ru.ru_msgsnd++;
1111 
1112 #define	gotoerr(errcode)	{ error = errcode; goto release; }
1113 
1114 restart:
1115 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
1116 	if (error)
1117 		goto out;
1118 
1119 	do {
1120 		if (so->so_state & SS_CANTSENDMORE)
1121 			gotoerr(EPIPE);
1122 		if (so->so_error) {
1123 			error = so->so_error;
1124 			so->so_error = 0;
1125 			goto release;
1126 		}
1127 		if ((so->so_state & SS_ISCONNECTED) == 0 &&
1128 		    (so->so_state & SS_ISCONFIRMING) == 0)
1129 			gotoerr(ENOTCONN);
1130 		if (allatonce && resid > so->so_snd.ssb_hiwat)
1131 			gotoerr(EMSGSIZE);
1132 
1133 		space = ssb_space_prealloc(&so->so_snd);
1134 		if (flags & MSG_OOB)
1135 			space += 1024;
1136 		if ((space < 0 || (size_t)space < resid) && !allatonce &&
1137 		    space < so->so_snd.ssb_lowat) {
1138 			if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
1139 				gotoerr(EWOULDBLOCK);
1140 			ssb_unlock(&so->so_snd);
1141 			error = ssb_wait(&so->so_snd);
1142 			if (error)
1143 				goto out;
1144 			goto restart;
1145 		}
1146 		mp = &top;
1147 		do {
1148 		    int cnt = 0, async = 0;
1149 
1150 		    if (uio == NULL) {
1151 			/*
1152 			 * Data is prepackaged in "top".
1153 			 */
1154 			resid = 0;
1155 		    } else do {
1156 			if (resid > INT_MAX)
1157 				resid = INT_MAX;
1158 			if (tcp_sosend_jcluster) {
1159 				m = m_getlj((int)resid, M_WAITOK, MT_DATA,
1160 					   top == NULL ? M_PKTHDR : 0, &mlen);
1161 			} else {
1162 				m = m_getl((int)resid, M_WAITOK, MT_DATA,
1163 					   top == NULL ? M_PKTHDR : 0, &mlen);
1164 			}
1165 			if (top == NULL) {
1166 				m->m_pkthdr.len = 0;
1167 				m->m_pkthdr.rcvif = NULL;
1168 			}
1169 			len = imin((int)szmin(mlen, resid), space);
1170 			space -= len;
1171 			error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
1172 			resid = uio->uio_resid;
1173 			m->m_len = len;
1174 			*mp = m;
1175 			top->m_pkthdr.len += len;
1176 			if (error)
1177 				goto release;
1178 			mp = &m->m_next;
1179 			if (resid == 0)
1180 				break;
1181 			++cnt;
1182 		    } while (space > 0 && cnt < tcp_sosend_agglim);
1183 
1184 		    if (tcp_sosend_async)
1185 			    async = 1;
1186 
1187 		    if (flags & MSG_OOB) {
1188 		    	    pru_flags = PRUS_OOB;
1189 			    async = 0;
1190 		    } else if ((flags & MSG_EOF) && resid == 0) {
1191 			    pru_flags = PRUS_EOF;
1192 		    } else if (resid > 0 && space > 0) {
1193 			    /* If there is more to send, set PRUS_MORETOCOME */
1194 		    	    pru_flags = PRUS_MORETOCOME;
1195 			    async = 1;
1196 		    } else {
1197 		    	    pru_flags = 0;
1198 		    }
1199 
1200 		    if (flags & MSG_SYNC)
1201 			    async = 0;
1202 
1203 		    /*
1204 		     * XXX all the SS_CANTSENDMORE checks previously
1205 		     * done could be out of date.  We could have recieved
1206 		     * a reset packet in an interrupt or maybe we slept
1207 		     * while doing page faults in uiomove() etc. We could
1208 		     * probably recheck again inside the splnet() protection
1209 		     * here, but there are probably other places that this
1210 		     * also happens.  We must rethink this.
1211 		     */
1212 		    for (m = top; m; m = m->m_next)
1213 			    ssb_preallocstream(&so->so_snd, m);
1214 		    if (!async) {
1215 			    error = so_pru_send(so, pru_flags, top,
1216 			        NULL, NULL, td);
1217 		    } else {
1218 			    so_pru_send_async(so, pru_flags, top,
1219 			        NULL, NULL, td);
1220 			    error = 0;
1221 		    }
1222 
1223 		    top = NULL;
1224 		    mp = &top;
1225 		    if (error)
1226 			    goto release;
1227 		} while (resid && space > 0);
1228 	} while (resid);
1229 
1230 release:
1231 	ssb_unlock(&so->so_snd);
1232 out:
1233 	if (top)
1234 		m_freem(top);
1235 	if (control)
1236 		m_freem(control);
1237 	return (error);
1238 }
1239 #endif
1240 
1241 /*
1242  * Implement receive operations on a socket.
1243  *
1244  * We depend on the way that records are added to the signalsockbuf
1245  * by sbappend*.  In particular, each record (mbufs linked through m_next)
1246  * must begin with an address if the protocol so specifies,
1247  * followed by an optional mbuf or mbufs containing ancillary data,
1248  * and then zero or more mbufs of data.
1249  *
1250  * Although the signalsockbuf is locked, new data may still be appended.
1251  * A token inside the ssb_lock deals with MP issues and still allows
1252  * the network to access the socket if we block in a uio.
1253  *
1254  * The caller may receive the data as a single mbuf chain by supplying
1255  * an mbuf **mp0 for use in returning the chain.  The uio is then used
1256  * only for the count in uio_resid.
1257  */
1258 int
1259 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
1260 	  struct sockbuf *sio, struct mbuf **controlp, int *flagsp)
1261 {
1262 	struct mbuf *m, *n;
1263 	struct mbuf *free_chain = NULL;
1264 	int flags, len, error, offset;
1265 	struct protosw *pr = so->so_proto;
1266 	int moff, type = 0;
1267 	size_t resid, orig_resid;
1268 	boolean_t free_rights = FALSE;
1269 
1270 	if (uio)
1271 		resid = uio->uio_resid;
1272 	else
1273 		resid = (size_t)(sio->sb_climit - sio->sb_cc);
1274 	orig_resid = resid;
1275 
1276 	if (psa)
1277 		*psa = NULL;
1278 	if (controlp)
1279 		*controlp = NULL;
1280 	if (flagsp)
1281 		flags = *flagsp &~ MSG_EOR;
1282 	else
1283 		flags = 0;
1284 	if (flags & MSG_OOB) {
1285 		m = m_get(M_WAITOK, MT_DATA);
1286 		if (m == NULL)
1287 			return (ENOBUFS);
1288 		error = so_pru_rcvoob(so, m, flags & MSG_PEEK);
1289 		if (error)
1290 			goto bad;
1291 		if (sio) {
1292 			do {
1293 				sbappend(sio, m);
1294 				KKASSERT(resid >= (size_t)m->m_len);
1295 				resid -= (size_t)m->m_len;
1296 			} while (resid > 0 && m);
1297 		} else {
1298 			do {
1299 				uio->uio_resid = resid;
1300 				error = uiomove(mtod(m, caddr_t),
1301 						(int)szmin(resid, m->m_len),
1302 						uio);
1303 				resid = uio->uio_resid;
1304 				m = m_free(m);
1305 			} while (uio->uio_resid && error == 0 && m);
1306 		}
1307 bad:
1308 		if (m)
1309 			m_freem(m);
1310 		return (error);
1311 	}
1312 	if ((so->so_state & SS_ISCONFIRMING) && resid)
1313 		so_pru_rcvd(so, 0);
1314 
1315 	/*
1316 	 * The token interlocks against the protocol thread while
1317 	 * ssb_lock is a blocking lock against other userland entities.
1318 	 */
1319 	lwkt_gettoken(&so->so_rcv.ssb_token);
1320 restart:
1321 	error = ssb_lock(&so->so_rcv, SBLOCKWAIT(flags));
1322 	if (error)
1323 		goto done;
1324 
1325 	m = so->so_rcv.ssb_mb;
1326 	/*
1327 	 * If we have less data than requested, block awaiting more
1328 	 * (subject to any timeout) if:
1329 	 *   1. the current count is less than the low water mark, or
1330 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1331 	 *	receive operation at once if we block (resid <= hiwat).
1332 	 *   3. MSG_DONTWAIT is not set
1333 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1334 	 * we have to do the receive in sections, and thus risk returning
1335 	 * a short count if a timeout or signal occurs after we start.
1336 	 */
1337 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1338 	    (size_t)so->so_rcv.ssb_cc < resid) &&
1339 	    (so->so_rcv.ssb_cc < so->so_rcv.ssb_lowat ||
1340 	    ((flags & MSG_WAITALL) && resid <= (size_t)so->so_rcv.ssb_hiwat)) &&
1341 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1342 		KASSERT(m != NULL || !so->so_rcv.ssb_cc, ("receive 1"));
1343 		if (so->so_error) {
1344 			if (m)
1345 				goto dontblock;
1346 			error = so->so_error;
1347 			if ((flags & MSG_PEEK) == 0)
1348 				so->so_error = 0;
1349 			goto release;
1350 		}
1351 		if (so->so_state & SS_CANTRCVMORE) {
1352 			if (m)
1353 				goto dontblock;
1354 			else
1355 				goto release;
1356 		}
1357 		for (; m; m = m->m_next) {
1358 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1359 				m = so->so_rcv.ssb_mb;
1360 				goto dontblock;
1361 			}
1362 		}
1363 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1364 		    (pr->pr_flags & PR_CONNREQUIRED)) {
1365 			error = ENOTCONN;
1366 			goto release;
1367 		}
1368 		if (resid == 0)
1369 			goto release;
1370 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT)) {
1371 			error = EWOULDBLOCK;
1372 			goto release;
1373 		}
1374 		ssb_unlock(&so->so_rcv);
1375 		error = ssb_wait(&so->so_rcv);
1376 		if (error)
1377 			goto done;
1378 		goto restart;
1379 	}
1380 dontblock:
1381 	if (uio && uio->uio_td && uio->uio_td->td_proc)
1382 		uio->uio_td->td_lwp->lwp_ru.ru_msgrcv++;
1383 
1384 	/*
1385 	 * note: m should be == sb_mb here.  Cache the next record while
1386 	 * cleaning up.  Note that calling m_free*() will break out critical
1387 	 * section.
1388 	 */
1389 	KKASSERT(m == so->so_rcv.ssb_mb);
1390 
1391 	/*
1392 	 * Skip any address mbufs prepending the record.
1393 	 */
1394 	if (pr->pr_flags & PR_ADDR) {
1395 		KASSERT(m->m_type == MT_SONAME, ("receive 1a"));
1396 		orig_resid = 0;
1397 		if (psa)
1398 			*psa = dup_sockaddr(mtod(m, struct sockaddr *));
1399 		if (flags & MSG_PEEK)
1400 			m = m->m_next;
1401 		else
1402 			m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1403 	}
1404 
1405 	/*
1406 	 * Skip any control mbufs prepending the record.
1407 	 */
1408 	while (m && m->m_type == MT_CONTROL && error == 0) {
1409 		if (flags & MSG_PEEK) {
1410 			if (controlp)
1411 				*controlp = m_copy(m, 0, m->m_len);
1412 			m = m->m_next;	/* XXX race */
1413 		} else {
1414 			const struct cmsghdr *cm = mtod(m, struct cmsghdr *);
1415 
1416 			if (controlp) {
1417 				n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1418 				if (pr->pr_domain->dom_externalize &&
1419 				    cm->cmsg_level == SOL_SOCKET &&
1420 				    cm->cmsg_type == SCM_RIGHTS) {
1421 					error = pr->pr_domain->dom_externalize
1422 					    (m, flags);
1423 				}
1424 				*controlp = m;
1425 				m = n;
1426 			} else {
1427 				if (cm->cmsg_level == SOL_SOCKET &&
1428 				    cm->cmsg_type == SCM_RIGHTS)
1429 					free_rights = TRUE;
1430 				m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1431 			}
1432 		}
1433 		if (controlp && *controlp) {
1434 			orig_resid = 0;
1435 			controlp = &(*controlp)->m_next;
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * flag OOB data.
1441 	 */
1442 	if (m) {
1443 		type = m->m_type;
1444 		if (type == MT_OOBDATA)
1445 			flags |= MSG_OOB;
1446 	}
1447 
1448 	/*
1449 	 * Copy to the UIO or mbuf return chain (*mp).
1450 	 */
1451 	moff = 0;
1452 	offset = 0;
1453 	while (m && resid > 0 && error == 0) {
1454 		if (m->m_type == MT_OOBDATA) {
1455 			if (type != MT_OOBDATA)
1456 				break;
1457 		} else if (type == MT_OOBDATA)
1458 			break;
1459 		else
1460 		    KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1461 			("receive 3"));
1462 		soclrstate(so, SS_RCVATMARK);
1463 		len = (resid > INT_MAX) ? INT_MAX : resid;
1464 		if (so->so_oobmark && len > so->so_oobmark - offset)
1465 			len = so->so_oobmark - offset;
1466 		if (len > m->m_len - moff)
1467 			len = m->m_len - moff;
1468 
1469 		/*
1470 		 * Copy out to the UIO or pass the mbufs back to the SIO.
1471 		 * The SIO is dealt with when we eat the mbuf, but deal
1472 		 * with the resid here either way.
1473 		 */
1474 		if (uio) {
1475 			uio->uio_resid = resid;
1476 			error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1477 			resid = uio->uio_resid;
1478 			if (error)
1479 				goto release;
1480 		} else {
1481 			resid -= (size_t)len;
1482 		}
1483 
1484 		/*
1485 		 * Eat the entire mbuf or just a piece of it
1486 		 */
1487 		if (len == m->m_len - moff) {
1488 			if (m->m_flags & M_EOR)
1489 				flags |= MSG_EOR;
1490 			if (flags & MSG_PEEK) {
1491 				m = m->m_next;
1492 				moff = 0;
1493 			} else {
1494 				if (sio) {
1495 					n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1496 					sbappend(sio, m);
1497 					m = n;
1498 				} else {
1499 					m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1500 				}
1501 			}
1502 		} else {
1503 			if (flags & MSG_PEEK) {
1504 				moff += len;
1505 			} else {
1506 				if (sio) {
1507 					n = m_copym(m, 0, len, M_WAITOK);
1508 					if (n)
1509 						sbappend(sio, n);
1510 				}
1511 				m->m_data += len;
1512 				m->m_len -= len;
1513 				so->so_rcv.ssb_cc -= len;
1514 			}
1515 		}
1516 		if (so->so_oobmark) {
1517 			if ((flags & MSG_PEEK) == 0) {
1518 				so->so_oobmark -= len;
1519 				if (so->so_oobmark == 0) {
1520 					sosetstate(so, SS_RCVATMARK);
1521 					break;
1522 				}
1523 			} else {
1524 				offset += len;
1525 				if (offset == so->so_oobmark)
1526 					break;
1527 			}
1528 		}
1529 		if (flags & MSG_EOR)
1530 			break;
1531 		/*
1532 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1533 		 * we must not quit until resid == 0 or an error
1534 		 * termination.  If a signal/timeout occurs, return
1535 		 * with a short count but without error.
1536 		 * Keep signalsockbuf locked against other readers.
1537 		 */
1538 		while ((flags & MSG_WAITALL) && m == NULL &&
1539 		       resid > 0 && !sosendallatonce(so) &&
1540 		       so->so_rcv.ssb_mb == NULL) {
1541 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
1542 				break;
1543 			/*
1544 			 * The window might have closed to zero, make
1545 			 * sure we send an ack now that we've drained
1546 			 * the buffer or we might end up blocking until
1547 			 * the idle takes over (5 seconds).
1548 			 */
1549 			if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1550 				so_pru_rcvd(so, flags);
1551 			error = ssb_wait(&so->so_rcv);
1552 			if (error) {
1553 				ssb_unlock(&so->so_rcv);
1554 				error = 0;
1555 				goto done;
1556 			}
1557 			m = so->so_rcv.ssb_mb;
1558 		}
1559 	}
1560 
1561 	/*
1562 	 * If an atomic read was requested but unread data still remains
1563 	 * in the record, set MSG_TRUNC.
1564 	 */
1565 	if (m && pr->pr_flags & PR_ATOMIC)
1566 		flags |= MSG_TRUNC;
1567 
1568 	/*
1569 	 * Cleanup.  If an atomic read was requested drop any unread data.
1570 	 */
1571 	if ((flags & MSG_PEEK) == 0) {
1572 		if (m && (pr->pr_flags & PR_ATOMIC))
1573 			sbdroprecord(&so->so_rcv.sb);
1574 		if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1575 			so_pru_rcvd(so, flags);
1576 	}
1577 
1578 	if (orig_resid == resid && orig_resid &&
1579 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1580 		ssb_unlock(&so->so_rcv);
1581 		goto restart;
1582 	}
1583 
1584 	if (flagsp)
1585 		*flagsp |= flags;
1586 release:
1587 	ssb_unlock(&so->so_rcv);
1588 done:
1589 	lwkt_reltoken(&so->so_rcv.ssb_token);
1590 	if (free_chain) {
1591 		if (free_rights && (pr->pr_flags & PR_RIGHTS) &&
1592 		    pr->pr_domain->dom_dispose)
1593 			pr->pr_domain->dom_dispose(free_chain);
1594 		m_freem(free_chain);
1595 	}
1596 	return (error);
1597 }
1598 
1599 int
1600 sorecvtcp(struct socket *so, struct sockaddr **psa, struct uio *uio,
1601 	  struct sockbuf *sio, struct mbuf **controlp, int *flagsp)
1602 {
1603 	struct mbuf *m, *n;
1604 	struct mbuf *free_chain = NULL;
1605 	int flags, len, error, offset;
1606 	struct protosw *pr = so->so_proto;
1607 	int moff;
1608 	int didoob;
1609 	size_t resid, orig_resid, restmp;
1610 
1611 	if (uio)
1612 		resid = uio->uio_resid;
1613 	else
1614 		resid = (size_t)(sio->sb_climit - sio->sb_cc);
1615 	orig_resid = resid;
1616 
1617 	if (psa)
1618 		*psa = NULL;
1619 	if (controlp)
1620 		*controlp = NULL;
1621 	if (flagsp)
1622 		flags = *flagsp &~ MSG_EOR;
1623 	else
1624 		flags = 0;
1625 	if (flags & MSG_OOB) {
1626 		m = m_get(M_WAITOK, MT_DATA);
1627 		if (m == NULL)
1628 			return (ENOBUFS);
1629 		error = so_pru_rcvoob(so, m, flags & MSG_PEEK);
1630 		if (error)
1631 			goto bad;
1632 		if (sio) {
1633 			do {
1634 				sbappend(sio, m);
1635 				KKASSERT(resid >= (size_t)m->m_len);
1636 				resid -= (size_t)m->m_len;
1637 			} while (resid > 0 && m);
1638 		} else {
1639 			do {
1640 				uio->uio_resid = resid;
1641 				error = uiomove(mtod(m, caddr_t),
1642 						(int)szmin(resid, m->m_len),
1643 						uio);
1644 				resid = uio->uio_resid;
1645 				m = m_free(m);
1646 			} while (uio->uio_resid && error == 0 && m);
1647 		}
1648 bad:
1649 		if (m)
1650 			m_freem(m);
1651 		return (error);
1652 	}
1653 
1654 	/*
1655 	 * The token interlocks against the protocol thread while
1656 	 * ssb_lock is a blocking lock against other userland entities.
1657 	 *
1658 	 * Lock a limited number of mbufs (not all, so sbcompress() still
1659 	 * works well).  The token is used as an interlock for sbwait() so
1660 	 * release it afterwords.
1661 	 */
1662 restart:
1663 	error = ssb_lock(&so->so_rcv, SBLOCKWAIT(flags));
1664 	if (error)
1665 		goto done;
1666 
1667 	lwkt_gettoken(&so->so_rcv.ssb_token);
1668 	m = so->so_rcv.ssb_mb;
1669 
1670 	/*
1671 	 * If we have less data than requested, block awaiting more
1672 	 * (subject to any timeout) if:
1673 	 *   1. the current count is less than the low water mark, or
1674 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1675 	 *	receive operation at once if we block (resid <= hiwat).
1676 	 *   3. MSG_DONTWAIT is not set
1677 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1678 	 * we have to do the receive in sections, and thus risk returning
1679 	 * a short count if a timeout or signal occurs after we start.
1680 	 */
1681 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1682 	    (size_t)so->so_rcv.ssb_cc < resid) &&
1683 	    (so->so_rcv.ssb_cc < so->so_rcv.ssb_lowat ||
1684 	   ((flags & MSG_WAITALL) && resid <= (size_t)so->so_rcv.ssb_hiwat)))) {
1685 		KASSERT(m != NULL || !so->so_rcv.ssb_cc, ("receive 1"));
1686 		if (so->so_error) {
1687 			if (m)
1688 				goto dontblock;
1689 			lwkt_reltoken(&so->so_rcv.ssb_token);
1690 			error = so->so_error;
1691 			if ((flags & MSG_PEEK) == 0)
1692 				so->so_error = 0;
1693 			goto release;
1694 		}
1695 		if (so->so_state & SS_CANTRCVMORE) {
1696 			if (m)
1697 				goto dontblock;
1698 			lwkt_reltoken(&so->so_rcv.ssb_token);
1699 			goto release;
1700 		}
1701 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1702 		    (pr->pr_flags & PR_CONNREQUIRED)) {
1703 			lwkt_reltoken(&so->so_rcv.ssb_token);
1704 			error = ENOTCONN;
1705 			goto release;
1706 		}
1707 		if (resid == 0) {
1708 			lwkt_reltoken(&so->so_rcv.ssb_token);
1709 			goto release;
1710 		}
1711 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT)) {
1712 			lwkt_reltoken(&so->so_rcv.ssb_token);
1713 			error = EWOULDBLOCK;
1714 			goto release;
1715 		}
1716 		ssb_unlock(&so->so_rcv);
1717 		error = ssb_wait(&so->so_rcv);
1718 		lwkt_reltoken(&so->so_rcv.ssb_token);
1719 		if (error)
1720 			goto done;
1721 		goto restart;
1722 	}
1723 
1724 	/*
1725 	 * Token still held
1726 	 */
1727 dontblock:
1728 	n = m;
1729 	restmp = 0;
1730 	while (n && restmp < resid) {
1731 		n->m_flags |= M_SOLOCKED;
1732 		restmp += n->m_len;
1733 		if (n->m_next == NULL)
1734 			n = n->m_nextpkt;
1735 		else
1736 			n = n->m_next;
1737 	}
1738 
1739 	/*
1740 	 * Release token for loop
1741 	 */
1742 	lwkt_reltoken(&so->so_rcv.ssb_token);
1743 	if (uio && uio->uio_td && uio->uio_td->td_proc)
1744 		uio->uio_td->td_lwp->lwp_ru.ru_msgrcv++;
1745 
1746 	/*
1747 	 * note: m should be == sb_mb here.  Cache the next record while
1748 	 * cleaning up.  Note that calling m_free*() will break out critical
1749 	 * section.
1750 	 */
1751 	KKASSERT(m == so->so_rcv.ssb_mb);
1752 
1753 	/*
1754 	 * Copy to the UIO or mbuf return chain (*mp).
1755 	 *
1756 	 * NOTE: Token is not held for loop
1757 	 */
1758 	moff = 0;
1759 	offset = 0;
1760 	didoob = 0;
1761 
1762 	while (m && (m->m_flags & M_SOLOCKED) && resid > 0 && error == 0) {
1763 		KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1764 		    ("receive 3"));
1765 
1766 		soclrstate(so, SS_RCVATMARK);
1767 		len = (resid > INT_MAX) ? INT_MAX : resid;
1768 		if (so->so_oobmark && len > so->so_oobmark - offset)
1769 			len = so->so_oobmark - offset;
1770 		if (len > m->m_len - moff)
1771 			len = m->m_len - moff;
1772 
1773 		/*
1774 		 * Copy out to the UIO or pass the mbufs back to the SIO.
1775 		 * The SIO is dealt with when we eat the mbuf, but deal
1776 		 * with the resid here either way.
1777 		 */
1778 		if (uio) {
1779 			uio->uio_resid = resid;
1780 			error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1781 			resid = uio->uio_resid;
1782 			if (error)
1783 				goto release;
1784 		} else {
1785 			resid -= (size_t)len;
1786 		}
1787 
1788 		/*
1789 		 * Eat the entire mbuf or just a piece of it
1790 		 */
1791 		offset += len;
1792 		if (len == m->m_len - moff) {
1793 			m = m->m_next;
1794 			moff = 0;
1795 		} else {
1796 			moff += len;
1797 		}
1798 
1799 		/*
1800 		 * Check oobmark
1801 		 */
1802 		if (so->so_oobmark && offset == so->so_oobmark) {
1803 			didoob = 1;
1804 			break;
1805 		}
1806 	}
1807 
1808 	/*
1809 	 * Synchronize sockbuf with data we read.
1810 	 *
1811 	 * NOTE: (m) is junk on entry (it could be left over from the
1812 	 *	 previous loop).
1813 	 */
1814 	if ((flags & MSG_PEEK) == 0) {
1815 		lwkt_gettoken(&so->so_rcv.ssb_token);
1816 		m = so->so_rcv.ssb_mb;
1817 		while (m && offset >= m->m_len) {
1818 			if (so->so_oobmark) {
1819 				so->so_oobmark -= m->m_len;
1820 				if (so->so_oobmark == 0) {
1821 					sosetstate(so, SS_RCVATMARK);
1822 					didoob = 1;
1823 				}
1824 			}
1825 			offset -= m->m_len;
1826 			if (sio) {
1827 				n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1828 				sbappend(sio, m);
1829 				m = n;
1830 			} else {
1831 				m = sbunlinkmbuf(&so->so_rcv.sb,
1832 						 m, &free_chain);
1833 			}
1834 		}
1835 		if (offset) {
1836 			KKASSERT(m);
1837 			if (sio) {
1838 				n = m_copym(m, 0, offset, M_WAITOK);
1839 				if (n)
1840 					sbappend(sio, n);
1841 			}
1842 			m->m_data += offset;
1843 			m->m_len -= offset;
1844 			so->so_rcv.ssb_cc -= offset;
1845 			if (so->so_oobmark) {
1846 				so->so_oobmark -= offset;
1847 				if (so->so_oobmark == 0) {
1848 					sosetstate(so, SS_RCVATMARK);
1849 					didoob = 1;
1850 				}
1851 			}
1852 			offset = 0;
1853 		}
1854 		lwkt_reltoken(&so->so_rcv.ssb_token);
1855 	}
1856 
1857 	/*
1858 	 * If the MSG_WAITALL flag is set (for non-atomic socket),
1859 	 * we must not quit until resid == 0 or an error termination.
1860 	 *
1861 	 * If a signal/timeout occurs, return with a short count but without
1862 	 * error.
1863 	 *
1864 	 * Keep signalsockbuf locked against other readers.
1865 	 *
1866 	 * XXX if MSG_PEEK we currently do quit.
1867 	 */
1868 	if ((flags & MSG_WAITALL) && !(flags & MSG_PEEK) &&
1869 	    didoob == 0 && resid > 0 &&
1870 	    !sosendallatonce(so)) {
1871 		lwkt_gettoken(&so->so_rcv.ssb_token);
1872 		error = 0;
1873 		while ((m = so->so_rcv.ssb_mb) == NULL) {
1874 			if (so->so_error || (so->so_state & SS_CANTRCVMORE)) {
1875 				error = so->so_error;
1876 				break;
1877 			}
1878 			/*
1879 			 * The window might have closed to zero, make
1880 			 * sure we send an ack now that we've drained
1881 			 * the buffer or we might end up blocking until
1882 			 * the idle takes over (5 seconds).
1883 			 */
1884 			if (so->so_pcb)
1885 				so_pru_rcvd_async(so);
1886 			if (so->so_rcv.ssb_mb == NULL)
1887 				error = ssb_wait(&so->so_rcv);
1888 			if (error) {
1889 				lwkt_reltoken(&so->so_rcv.ssb_token);
1890 				ssb_unlock(&so->so_rcv);
1891 				error = 0;
1892 				goto done;
1893 			}
1894 		}
1895 		if (m && error == 0)
1896 			goto dontblock;
1897 		lwkt_reltoken(&so->so_rcv.ssb_token);
1898 	}
1899 
1900 	/*
1901 	 * Token not held here.
1902 	 *
1903 	 * Cleanup.  If an atomic read was requested drop any unread data XXX
1904 	 */
1905 	if ((flags & MSG_PEEK) == 0) {
1906 		if (so->so_pcb)
1907 			so_pru_rcvd_async(so);
1908 	}
1909 
1910 	if (orig_resid == resid && orig_resid &&
1911 	    (so->so_state & SS_CANTRCVMORE) == 0) {
1912 		ssb_unlock(&so->so_rcv);
1913 		goto restart;
1914 	}
1915 
1916 	if (flagsp)
1917 		*flagsp |= flags;
1918 release:
1919 	ssb_unlock(&so->so_rcv);
1920 done:
1921 	if (free_chain)
1922 		m_freem(free_chain);
1923 	return (error);
1924 }
1925 
1926 /*
1927  * Shut a socket down.  Note that we do not get a frontend lock as we
1928  * want to be able to shut the socket down even if another thread is
1929  * blocked in a read(), thus waking it up.
1930  */
1931 int
1932 soshutdown(struct socket *so, int how)
1933 {
1934 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1935 		return (EINVAL);
1936 
1937 	if (how != SHUT_WR) {
1938 		/*ssb_lock(&so->so_rcv, M_WAITOK);*/
1939 		sorflush(so);
1940 		/*ssb_unlock(&so->so_rcv);*/
1941 	}
1942 	if (how != SHUT_RD)
1943 		return (so_pru_shutdown(so));
1944 	return (0);
1945 }
1946 
1947 void
1948 sorflush(struct socket *so)
1949 {
1950 	struct signalsockbuf *ssb = &so->so_rcv;
1951 	struct protosw *pr = so->so_proto;
1952 	struct signalsockbuf asb;
1953 
1954 	atomic_set_int(&ssb->ssb_flags, SSB_NOINTR);
1955 
1956 	lwkt_gettoken(&ssb->ssb_token);
1957 	socantrcvmore(so);
1958 	asb = *ssb;
1959 
1960 	/*
1961 	 * Can't just blow up the ssb structure here
1962 	 */
1963 	bzero(&ssb->sb, sizeof(ssb->sb));
1964 	ssb->ssb_timeo = 0;
1965 	ssb->ssb_lowat = 0;
1966 	ssb->ssb_hiwat = 0;
1967 	ssb->ssb_mbmax = 0;
1968 	atomic_clear_int(&ssb->ssb_flags, SSB_CLEAR_MASK);
1969 
1970 	if ((pr->pr_flags & PR_RIGHTS) && pr->pr_domain->dom_dispose)
1971 		(*pr->pr_domain->dom_dispose)(asb.ssb_mb);
1972 	ssb_release(&asb, so);
1973 
1974 	lwkt_reltoken(&ssb->ssb_token);
1975 }
1976 
1977 #ifdef INET
1978 static int
1979 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt)
1980 {
1981 	struct accept_filter_arg	*afap = NULL;
1982 	struct accept_filter	*afp;
1983 	struct so_accf	*af = so->so_accf;
1984 	int	error = 0;
1985 
1986 	/* do not set/remove accept filters on non listen sockets */
1987 	if ((so->so_options & SO_ACCEPTCONN) == 0) {
1988 		error = EINVAL;
1989 		goto out;
1990 	}
1991 
1992 	/* removing the filter */
1993 	if (sopt == NULL) {
1994 		if (af != NULL) {
1995 			if (af->so_accept_filter != NULL &&
1996 				af->so_accept_filter->accf_destroy != NULL) {
1997 				af->so_accept_filter->accf_destroy(so);
1998 			}
1999 			if (af->so_accept_filter_str != NULL) {
2000 				kfree(af->so_accept_filter_str, M_ACCF);
2001 			}
2002 			kfree(af, M_ACCF);
2003 			so->so_accf = NULL;
2004 		}
2005 		so->so_options &= ~SO_ACCEPTFILTER;
2006 		return (0);
2007 	}
2008 	/* adding a filter */
2009 	/* must remove previous filter first */
2010 	if (af != NULL) {
2011 		error = EINVAL;
2012 		goto out;
2013 	}
2014 	/* don't put large objects on the kernel stack */
2015 	afap = kmalloc(sizeof(*afap), M_TEMP, M_WAITOK);
2016 	error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap);
2017 	afap->af_name[sizeof(afap->af_name)-1] = '\0';
2018 	afap->af_arg[sizeof(afap->af_arg)-1] = '\0';
2019 	if (error)
2020 		goto out;
2021 	afp = accept_filt_get(afap->af_name);
2022 	if (afp == NULL) {
2023 		error = ENOENT;
2024 		goto out;
2025 	}
2026 	af = kmalloc(sizeof(*af), M_ACCF, M_WAITOK | M_ZERO);
2027 	if (afp->accf_create != NULL) {
2028 		if (afap->af_name[0] != '\0') {
2029 			int len = strlen(afap->af_name) + 1;
2030 
2031 			af->so_accept_filter_str = kmalloc(len, M_ACCF,
2032 							   M_WAITOK);
2033 			strcpy(af->so_accept_filter_str, afap->af_name);
2034 		}
2035 		af->so_accept_filter_arg = afp->accf_create(so, afap->af_arg);
2036 		if (af->so_accept_filter_arg == NULL) {
2037 			kfree(af->so_accept_filter_str, M_ACCF);
2038 			kfree(af, M_ACCF);
2039 			so->so_accf = NULL;
2040 			error = EINVAL;
2041 			goto out;
2042 		}
2043 	}
2044 	af->so_accept_filter = afp;
2045 	so->so_accf = af;
2046 	so->so_options |= SO_ACCEPTFILTER;
2047 out:
2048 	if (afap != NULL)
2049 		kfree(afap, M_TEMP);
2050 	return (error);
2051 }
2052 #endif /* INET */
2053 
2054 /*
2055  * Perhaps this routine, and sooptcopyout(), below, ought to come in
2056  * an additional variant to handle the case where the option value needs
2057  * to be some kind of integer, but not a specific size.
2058  * In addition to their use here, these functions are also called by the
2059  * protocol-level pr_ctloutput() routines.
2060  */
2061 int
2062 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2063 {
2064 	return soopt_to_kbuf(sopt, buf, len, minlen);
2065 }
2066 
2067 int
2068 soopt_to_kbuf(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2069 {
2070 	size_t	valsize;
2071 
2072 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2073 	KKASSERT(kva_p(buf));
2074 
2075 	/*
2076 	 * If the user gives us more than we wanted, we ignore it,
2077 	 * but if we don't get the minimum length the caller
2078 	 * wants, we return EINVAL.  On success, sopt->sopt_valsize
2079 	 * is set to however much we actually retrieved.
2080 	 */
2081 	if ((valsize = sopt->sopt_valsize) < minlen)
2082 		return EINVAL;
2083 	if (valsize > len)
2084 		sopt->sopt_valsize = valsize = len;
2085 
2086 	bcopy(sopt->sopt_val, buf, valsize);
2087 	return 0;
2088 }
2089 
2090 
2091 int
2092 sosetopt(struct socket *so, struct sockopt *sopt)
2093 {
2094 	int	error, optval;
2095 	struct	linger l;
2096 	struct	timeval tv;
2097 	u_long  val;
2098 	struct signalsockbuf *sotmp;
2099 
2100 	error = 0;
2101 	sopt->sopt_dir = SOPT_SET;
2102 	if (sopt->sopt_level != SOL_SOCKET) {
2103 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2104 			return (so_pr_ctloutput(so, sopt));
2105 		}
2106 		error = ENOPROTOOPT;
2107 	} else {
2108 		switch (sopt->sopt_name) {
2109 #ifdef INET
2110 		case SO_ACCEPTFILTER:
2111 			error = do_setopt_accept_filter(so, sopt);
2112 			if (error)
2113 				goto bad;
2114 			break;
2115 #endif /* INET */
2116 		case SO_LINGER:
2117 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2118 			if (error)
2119 				goto bad;
2120 
2121 			so->so_linger = l.l_linger;
2122 			if (l.l_onoff)
2123 				so->so_options |= SO_LINGER;
2124 			else
2125 				so->so_options &= ~SO_LINGER;
2126 			break;
2127 
2128 		case SO_DEBUG:
2129 		case SO_KEEPALIVE:
2130 		case SO_DONTROUTE:
2131 		case SO_USELOOPBACK:
2132 		case SO_BROADCAST:
2133 		case SO_REUSEADDR:
2134 		case SO_REUSEPORT:
2135 		case SO_OOBINLINE:
2136 		case SO_TIMESTAMP:
2137 		case SO_NOSIGPIPE:
2138 			error = sooptcopyin(sopt, &optval, sizeof optval,
2139 					    sizeof optval);
2140 			if (error)
2141 				goto bad;
2142 			if (optval)
2143 				so->so_options |= sopt->sopt_name;
2144 			else
2145 				so->so_options &= ~sopt->sopt_name;
2146 			break;
2147 
2148 		case SO_SNDBUF:
2149 		case SO_RCVBUF:
2150 		case SO_SNDLOWAT:
2151 		case SO_RCVLOWAT:
2152 			error = sooptcopyin(sopt, &optval, sizeof optval,
2153 					    sizeof optval);
2154 			if (error)
2155 				goto bad;
2156 
2157 			/*
2158 			 * Values < 1 make no sense for any of these
2159 			 * options, so disallow them.
2160 			 */
2161 			if (optval < 1) {
2162 				error = EINVAL;
2163 				goto bad;
2164 			}
2165 
2166 			switch (sopt->sopt_name) {
2167 			case SO_SNDBUF:
2168 			case SO_RCVBUF:
2169 				if (ssb_reserve(sopt->sopt_name == SO_SNDBUF ?
2170 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2171 				    so,
2172 				    &curproc->p_rlimit[RLIMIT_SBSIZE]) == 0) {
2173 					error = ENOBUFS;
2174 					goto bad;
2175 				}
2176 				sotmp = (sopt->sopt_name == SO_SNDBUF) ?
2177 						&so->so_snd : &so->so_rcv;
2178 				atomic_clear_int(&sotmp->ssb_flags,
2179 						 SSB_AUTOSIZE);
2180 				break;
2181 
2182 			/*
2183 			 * Make sure the low-water is never greater than
2184 			 * the high-water.
2185 			 */
2186 			case SO_SNDLOWAT:
2187 				so->so_snd.ssb_lowat =
2188 				    (optval > so->so_snd.ssb_hiwat) ?
2189 				    so->so_snd.ssb_hiwat : optval;
2190 				atomic_clear_int(&so->so_snd.ssb_flags,
2191 						 SSB_AUTOLOWAT);
2192 				break;
2193 			case SO_RCVLOWAT:
2194 				so->so_rcv.ssb_lowat =
2195 				    (optval > so->so_rcv.ssb_hiwat) ?
2196 				    so->so_rcv.ssb_hiwat : optval;
2197 				atomic_clear_int(&so->so_rcv.ssb_flags,
2198 						 SSB_AUTOLOWAT);
2199 				break;
2200 			}
2201 			break;
2202 
2203 		case SO_SNDTIMEO:
2204 		case SO_RCVTIMEO:
2205 			error = sooptcopyin(sopt, &tv, sizeof tv,
2206 					    sizeof tv);
2207 			if (error)
2208 				goto bad;
2209 
2210 			/* assert(hz > 0); */
2211 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2212 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2213 				error = EDOM;
2214 				goto bad;
2215 			}
2216 			/* assert(tick > 0); */
2217 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2218 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / ustick;
2219 			if (val > INT_MAX) {
2220 				error = EDOM;
2221 				goto bad;
2222 			}
2223 			if (val == 0 && tv.tv_usec != 0)
2224 				val = 1;
2225 
2226 			switch (sopt->sopt_name) {
2227 			case SO_SNDTIMEO:
2228 				so->so_snd.ssb_timeo = val;
2229 				break;
2230 			case SO_RCVTIMEO:
2231 				so->so_rcv.ssb_timeo = val;
2232 				break;
2233 			}
2234 			break;
2235 		default:
2236 			error = ENOPROTOOPT;
2237 			break;
2238 		}
2239 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
2240 			(void) so_pr_ctloutput(so, sopt);
2241 		}
2242 	}
2243 bad:
2244 	return (error);
2245 }
2246 
2247 /* Helper routine for getsockopt */
2248 int
2249 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2250 {
2251 	soopt_from_kbuf(sopt, buf, len);
2252 	return 0;
2253 }
2254 
2255 void
2256 soopt_from_kbuf(struct sockopt *sopt, const void *buf, size_t len)
2257 {
2258 	size_t	valsize;
2259 
2260 	if (len == 0) {
2261 		sopt->sopt_valsize = 0;
2262 		return;
2263 	}
2264 
2265 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2266 	KKASSERT(kva_p(buf));
2267 
2268 	/*
2269 	 * Documented get behavior is that we always return a value,
2270 	 * possibly truncated to fit in the user's buffer.
2271 	 * Traditional behavior is that we always tell the user
2272 	 * precisely how much we copied, rather than something useful
2273 	 * like the total amount we had available for her.
2274 	 * Note that this interface is not idempotent; the entire answer must
2275 	 * generated ahead of time.
2276 	 */
2277 	valsize = szmin(len, sopt->sopt_valsize);
2278 	sopt->sopt_valsize = valsize;
2279 	if (sopt->sopt_val != 0) {
2280 		bcopy(buf, sopt->sopt_val, valsize);
2281 	}
2282 }
2283 
2284 int
2285 sogetopt(struct socket *so, struct sockopt *sopt)
2286 {
2287 	int	error, optval;
2288 	long	optval_l;
2289 	struct	linger l;
2290 	struct	timeval tv;
2291 #ifdef INET
2292 	struct accept_filter_arg *afap;
2293 #endif
2294 
2295 	error = 0;
2296 	sopt->sopt_dir = SOPT_GET;
2297 	if (sopt->sopt_level != SOL_SOCKET) {
2298 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2299 			return (so_pr_ctloutput(so, sopt));
2300 		} else
2301 			return (ENOPROTOOPT);
2302 	} else {
2303 		switch (sopt->sopt_name) {
2304 #ifdef INET
2305 		case SO_ACCEPTFILTER:
2306 			if ((so->so_options & SO_ACCEPTCONN) == 0)
2307 				return (EINVAL);
2308 			afap = kmalloc(sizeof(*afap), M_TEMP,
2309 				       M_WAITOK | M_ZERO);
2310 			if ((so->so_options & SO_ACCEPTFILTER) != 0) {
2311 				strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name);
2312 				if (so->so_accf->so_accept_filter_str != NULL)
2313 					strcpy(afap->af_arg, so->so_accf->so_accept_filter_str);
2314 			}
2315 			error = sooptcopyout(sopt, afap, sizeof(*afap));
2316 			kfree(afap, M_TEMP);
2317 			break;
2318 #endif /* INET */
2319 
2320 		case SO_LINGER:
2321 			l.l_onoff = so->so_options & SO_LINGER;
2322 			l.l_linger = so->so_linger;
2323 			error = sooptcopyout(sopt, &l, sizeof l);
2324 			break;
2325 
2326 		case SO_USELOOPBACK:
2327 		case SO_DONTROUTE:
2328 		case SO_DEBUG:
2329 		case SO_KEEPALIVE:
2330 		case SO_REUSEADDR:
2331 		case SO_REUSEPORT:
2332 		case SO_BROADCAST:
2333 		case SO_OOBINLINE:
2334 		case SO_TIMESTAMP:
2335 		case SO_NOSIGPIPE:
2336 			optval = so->so_options & sopt->sopt_name;
2337 integer:
2338 			error = sooptcopyout(sopt, &optval, sizeof optval);
2339 			break;
2340 
2341 		case SO_TYPE:
2342 			optval = so->so_type;
2343 			goto integer;
2344 
2345 		case SO_ERROR:
2346 			optval = so->so_error;
2347 			so->so_error = 0;
2348 			goto integer;
2349 
2350 		case SO_SNDBUF:
2351 			optval = so->so_snd.ssb_hiwat;
2352 			goto integer;
2353 
2354 		case SO_RCVBUF:
2355 			optval = so->so_rcv.ssb_hiwat;
2356 			goto integer;
2357 
2358 		case SO_SNDLOWAT:
2359 			optval = so->so_snd.ssb_lowat;
2360 			goto integer;
2361 
2362 		case SO_RCVLOWAT:
2363 			optval = so->so_rcv.ssb_lowat;
2364 			goto integer;
2365 
2366 		case SO_SNDTIMEO:
2367 		case SO_RCVTIMEO:
2368 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2369 				  so->so_snd.ssb_timeo : so->so_rcv.ssb_timeo);
2370 
2371 			tv.tv_sec = optval / hz;
2372 			tv.tv_usec = (optval % hz) * ustick;
2373 			error = sooptcopyout(sopt, &tv, sizeof tv);
2374 			break;
2375 
2376 		case SO_SNDSPACE:
2377 			optval_l = ssb_space(&so->so_snd);
2378 			error = sooptcopyout(sopt, &optval_l, sizeof(optval_l));
2379 			break;
2380 
2381 		case SO_CPUHINT:
2382 			optval = -1; /* no hint */
2383 			goto integer;
2384 
2385 		default:
2386 			error = ENOPROTOOPT;
2387 			break;
2388 		}
2389 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput)
2390 			so_pr_ctloutput(so, sopt);
2391 		return (error);
2392 	}
2393 }
2394 
2395 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2396 int
2397 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2398 {
2399 	struct mbuf *m, *m_prev;
2400 	int sopt_size = sopt->sopt_valsize, msize;
2401 
2402 	m = m_getl(sopt_size, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA,
2403 		   0, &msize);
2404 	if (m == NULL)
2405 		return (ENOBUFS);
2406 	m->m_len = min(msize, sopt_size);
2407 	sopt_size -= m->m_len;
2408 	*mp = m;
2409 	m_prev = m;
2410 
2411 	while (sopt_size > 0) {
2412 		m = m_getl(sopt_size, sopt->sopt_td ? M_WAITOK : M_NOWAIT,
2413 			   MT_DATA, 0, &msize);
2414 		if (m == NULL) {
2415 			m_freem(*mp);
2416 			return (ENOBUFS);
2417 		}
2418 		m->m_len = min(msize, sopt_size);
2419 		sopt_size -= m->m_len;
2420 		m_prev->m_next = m;
2421 		m_prev = m;
2422 	}
2423 	return (0);
2424 }
2425 
2426 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2427 int
2428 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2429 {
2430 	soopt_to_mbuf(sopt, m);
2431 	return 0;
2432 }
2433 
2434 void
2435 soopt_to_mbuf(struct sockopt *sopt, struct mbuf *m)
2436 {
2437 	size_t valsize;
2438 	void *val;
2439 
2440 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2441 	KKASSERT(kva_p(m));
2442 	if (sopt->sopt_val == NULL)
2443 		return;
2444 	val = sopt->sopt_val;
2445 	valsize = sopt->sopt_valsize;
2446 	while (m != NULL && valsize >= m->m_len) {
2447 		bcopy(val, mtod(m, char *), m->m_len);
2448 		valsize -= m->m_len;
2449 		val = (caddr_t)val + m->m_len;
2450 		m = m->m_next;
2451 	}
2452 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2453 		panic("ip6_sooptmcopyin");
2454 }
2455 
2456 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2457 int
2458 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2459 {
2460 	return soopt_from_mbuf(sopt, m);
2461 }
2462 
2463 int
2464 soopt_from_mbuf(struct sockopt *sopt, struct mbuf *m)
2465 {
2466 	struct mbuf *m0 = m;
2467 	size_t valsize = 0;
2468 	size_t maxsize;
2469 	void *val;
2470 
2471 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2472 	KKASSERT(kva_p(m));
2473 	if (sopt->sopt_val == NULL)
2474 		return 0;
2475 	val = sopt->sopt_val;
2476 	maxsize = sopt->sopt_valsize;
2477 	while (m != NULL && maxsize >= m->m_len) {
2478 		bcopy(mtod(m, char *), val, m->m_len);
2479 	       maxsize -= m->m_len;
2480 	       val = (caddr_t)val + m->m_len;
2481 	       valsize += m->m_len;
2482 	       m = m->m_next;
2483 	}
2484 	if (m != NULL) {
2485 		/* enough soopt buffer should be given from user-land */
2486 		m_freem(m0);
2487 		return (EINVAL);
2488 	}
2489 	sopt->sopt_valsize = valsize;
2490 	return 0;
2491 }
2492 
2493 void
2494 sohasoutofband(struct socket *so)
2495 {
2496 	if (so->so_sigio != NULL)
2497 		pgsigio(so->so_sigio, SIGURG, 0);
2498 	/*
2499 	 * NOTE:
2500 	 * There is no need to use NOTE_OOB as KNOTE hint here:
2501 	 * soread filter depends on so_oobmark and SS_RCVATMARK
2502 	 * so_state.  NOTE_OOB would cause unnecessary penalty
2503 	 * in KNOTE, if there was knote processing contention.
2504 	 */
2505 	KNOTE(&so->so_rcv.ssb_kq.ki_note, 0);
2506 }
2507 
2508 int
2509 sokqfilter(struct file *fp, struct knote *kn)
2510 {
2511 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2512 	struct signalsockbuf *ssb;
2513 
2514 	switch (kn->kn_filter) {
2515 	case EVFILT_READ:
2516 		if (so->so_options & SO_ACCEPTCONN)
2517 			kn->kn_fop = &solisten_filtops;
2518 		else
2519 			kn->kn_fop = &soread_filtops;
2520 		ssb = &so->so_rcv;
2521 		break;
2522 	case EVFILT_WRITE:
2523 		kn->kn_fop = &sowrite_filtops;
2524 		ssb = &so->so_snd;
2525 		break;
2526 	case EVFILT_EXCEPT:
2527 		kn->kn_fop = &soexcept_filtops;
2528 		ssb = &so->so_rcv;
2529 		break;
2530 	default:
2531 		return (EOPNOTSUPP);
2532 	}
2533 
2534 	knote_insert(&ssb->ssb_kq.ki_note, kn);
2535 	atomic_set_int(&ssb->ssb_flags, SSB_KNOTE);
2536 	return (0);
2537 }
2538 
2539 static void
2540 filt_sordetach(struct knote *kn)
2541 {
2542 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2543 
2544 	knote_remove(&so->so_rcv.ssb_kq.ki_note, kn);
2545 	if (SLIST_EMPTY(&so->so_rcv.ssb_kq.ki_note))
2546 		atomic_clear_int(&so->so_rcv.ssb_flags, SSB_KNOTE);
2547 }
2548 
2549 /*ARGSUSED*/
2550 static int
2551 filt_soread(struct knote *kn, long hint __unused)
2552 {
2553 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2554 
2555 	if (kn->kn_sfflags & NOTE_OOB) {
2556 		if ((so->so_oobmark || (so->so_state & SS_RCVATMARK))) {
2557 			kn->kn_fflags |= NOTE_OOB;
2558 			return (1);
2559 		}
2560 		return (0);
2561 	}
2562 	kn->kn_data = so->so_rcv.ssb_cc;
2563 
2564 	if (so->so_state & SS_CANTRCVMORE) {
2565 		/*
2566 		 * Only set NODATA if all data has been exhausted.
2567 		 */
2568 		if (kn->kn_data == 0)
2569 			kn->kn_flags |= EV_NODATA;
2570 		kn->kn_flags |= EV_EOF;
2571 		kn->kn_fflags = so->so_error;
2572 		return (1);
2573 	}
2574 	if (so->so_error)	/* temporary udp error */
2575 		return (1);
2576 	if (kn->kn_sfflags & NOTE_LOWAT)
2577 		return (kn->kn_data >= kn->kn_sdata);
2578 	return ((kn->kn_data >= so->so_rcv.ssb_lowat) ||
2579 		!TAILQ_EMPTY(&so->so_comp));
2580 }
2581 
2582 static void
2583 filt_sowdetach(struct knote *kn)
2584 {
2585 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2586 
2587 	knote_remove(&so->so_snd.ssb_kq.ki_note, kn);
2588 	if (SLIST_EMPTY(&so->so_snd.ssb_kq.ki_note))
2589 		atomic_clear_int(&so->so_snd.ssb_flags, SSB_KNOTE);
2590 }
2591 
2592 /*ARGSUSED*/
2593 static int
2594 filt_sowrite(struct knote *kn, long hint __unused)
2595 {
2596 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2597 
2598 	if (so->so_snd.ssb_flags & SSB_PREALLOC)
2599 		kn->kn_data = ssb_space_prealloc(&so->so_snd);
2600 	else
2601 		kn->kn_data = ssb_space(&so->so_snd);
2602 
2603 	if (so->so_state & SS_CANTSENDMORE) {
2604 		kn->kn_flags |= (EV_EOF | EV_NODATA);
2605 		kn->kn_fflags = so->so_error;
2606 		return (1);
2607 	}
2608 	if (so->so_error)	/* temporary udp error */
2609 		return (1);
2610 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
2611 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2612 		return (0);
2613 	if (kn->kn_sfflags & NOTE_LOWAT)
2614 		return (kn->kn_data >= kn->kn_sdata);
2615 	return (kn->kn_data >= so->so_snd.ssb_lowat);
2616 }
2617 
2618 /*ARGSUSED*/
2619 static int
2620 filt_solisten(struct knote *kn, long hint __unused)
2621 {
2622 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2623 	int qlen = so->so_qlen;
2624 
2625 	if (soavailconn > 0 && qlen > soavailconn)
2626 		qlen = soavailconn;
2627 	kn->kn_data = qlen;
2628 
2629 	return (!TAILQ_EMPTY(&so->so_comp));
2630 }
2631