xref: /dragonfly/sys/kern/uipc_socket2.c (revision 25a2db75)
1 /*
2  * Copyright (c) 2005 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 1982, 1986, 1988, 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
35  * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
36  * $DragonFly: src/sys/kern/uipc_socket2.c,v 1.33 2008/09/02 16:17:52 dillon Exp $
37  */
38 
39 #include "opt_param.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/domain.h>
43 #include <sys/file.h>	/* for maxfiles */
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/protosw.h>
49 #include <sys/resourcevar.h>
50 #include <sys/stat.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/socketops.h>
54 #include <sys/signalvar.h>
55 #include <sys/sysctl.h>
56 #include <sys/event.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/msgport2.h>
60 #include <sys/socketvar2.h>
61 
62 #include <net/netisr2.h>
63 
64 int	maxsockets;
65 
66 /*
67  * Primitive routines for operating on sockets and socket buffers
68  */
69 
70 u_long	sb_max = SB_MAX;
71 u_long	sb_max_adj =
72     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
73 
74 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
75 
76 /************************************************************************
77  * signalsockbuf procedures						*
78  ************************************************************************/
79 
80 /*
81  * Wait for data to arrive at/drain from a socket buffer.
82  *
83  * NOTE: Caller must generally hold the ssb_lock (client side lock) since
84  *	 WAIT/WAKEUP only works for one client at a time.
85  *
86  * NOTE: Caller always retries whatever operation it was waiting on.
87  */
88 int
89 ssb_wait(struct signalsockbuf *ssb)
90 {
91 	uint32_t flags;
92 	int pflags;
93 	int error;
94 
95 	pflags = (ssb->ssb_flags & SSB_NOINTR) ? 0 : PCATCH;
96 
97 	for (;;) {
98 		flags = ssb->ssb_flags;
99 		cpu_ccfence();
100 
101 		/*
102 		 * WAKEUP and WAIT interlock eachother.  We can catch the
103 		 * race by checking to see if WAKEUP has already been set,
104 		 * and only setting WAIT if WAKEUP is clear.
105 		 */
106 		if (flags & SSB_WAKEUP) {
107 			if (atomic_cmpset_int(&ssb->ssb_flags, flags,
108 					      flags & ~SSB_WAKEUP)) {
109 				error = 0;
110 				break;
111 			}
112 			continue;
113 		}
114 
115 		/*
116 		 * Only set WAIT if WAKEUP is clear.
117 		 */
118 		tsleep_interlock(&ssb->ssb_cc, pflags);
119 		if (atomic_cmpset_int(&ssb->ssb_flags, flags,
120 				      flags | SSB_WAIT)) {
121 			error = tsleep(&ssb->ssb_cc, pflags | PINTERLOCKED,
122 				       "sbwait", ssb->ssb_timeo);
123 			break;
124 		}
125 	}
126 	return (error);
127 }
128 
129 /*
130  * Lock a sockbuf already known to be locked;
131  * return any error returned from sleep (EINTR).
132  */
133 int
134 _ssb_lock(struct signalsockbuf *ssb)
135 {
136 	uint32_t flags;
137 	int pflags;
138 	int error;
139 
140 	pflags = (ssb->ssb_flags & SSB_NOINTR) ? 0 : PCATCH;
141 
142 	for (;;) {
143 		flags = ssb->ssb_flags;
144 		cpu_ccfence();
145 		if (flags & SSB_LOCK) {
146 			tsleep_interlock(&ssb->ssb_flags, pflags);
147 			if (atomic_cmpset_int(&ssb->ssb_flags, flags,
148 					      flags | SSB_WANT)) {
149 				error = tsleep(&ssb->ssb_flags,
150 					       pflags | PINTERLOCKED,
151 					       "sblock", 0);
152 				if (error)
153 					break;
154 			}
155 		} else {
156 			if (atomic_cmpset_int(&ssb->ssb_flags, flags,
157 					      flags | SSB_LOCK)) {
158 				lwkt_gettoken(&ssb->ssb_token);
159 				error = 0;
160 				break;
161 			}
162 		}
163 	}
164 	return (error);
165 }
166 
167 /*
168  * This does the same for sockbufs.  Note that the xsockbuf structure,
169  * since it is always embedded in a socket, does not include a self
170  * pointer nor a length.  We make this entry point public in case
171  * some other mechanism needs it.
172  */
173 void
174 ssbtoxsockbuf(struct signalsockbuf *ssb, struct xsockbuf *xsb)
175 {
176 	xsb->sb_cc = ssb->ssb_cc;
177 	xsb->sb_hiwat = ssb->ssb_hiwat;
178 	xsb->sb_mbcnt = ssb->ssb_mbcnt;
179 	xsb->sb_mbmax = ssb->ssb_mbmax;
180 	xsb->sb_lowat = ssb->ssb_lowat;
181 	xsb->sb_flags = ssb->ssb_flags;
182 	xsb->sb_timeo = ssb->ssb_timeo;
183 }
184 
185 
186 /************************************************************************
187  * Procedures which manipulate socket state flags, wakeups, etc.	*
188  ************************************************************************
189  *
190  * Normal sequence from the active (originating) side is that
191  * soisconnecting() is called during processing of connect() call, resulting
192  * in an eventual call to soisconnected() if/when the connection is
193  * established.  When the connection is torn down soisdisconnecting() is
194  * called during processing of disconnect() call, and soisdisconnected() is
195  * called when the connection to the peer is totally severed.
196  *
197  * The semantics of these routines are such that connectionless protocols
198  * can call soisconnected() and soisdisconnected() only, bypassing the
199  * in-progress calls when setting up a ``connection'' takes no time.
200  *
201  * From the passive side, a socket is created with two queues of sockets:
202  * so_incomp for connections in progress and so_comp for connections
203  * already made and awaiting user acceptance.  As a protocol is preparing
204  * incoming connections, it creates a socket structure queued on so_incomp
205  * by calling sonewconn().  When the connection is established,
206  * soisconnected() is called, and transfers the socket structure to so_comp,
207  * making it available to accept().
208  *
209  * If a socket is closed with sockets on either so_incomp or so_comp, these
210  * sockets are dropped.
211  *
212  * If higher level protocols are implemented in the kernel, the wakeups
213  * done here will sometimes cause software-interrupt process scheduling.
214  */
215 
216 void
217 soisconnecting(struct socket *so)
218 {
219 	soclrstate(so, SS_ISCONNECTED | SS_ISDISCONNECTING);
220 	sosetstate(so, SS_ISCONNECTING);
221 }
222 
223 void
224 soisconnected(struct socket *so)
225 {
226 	struct socket *head;
227 
228 	while ((head = so->so_head) != NULL) {
229 		lwkt_getpooltoken(head);
230 		if (so->so_head == head)
231 			break;
232 		lwkt_relpooltoken(head);
233 	}
234 
235 	soclrstate(so, SS_ISCONNECTING | SS_ISDISCONNECTING | SS_ISCONFIRMING);
236 	sosetstate(so, SS_ISCONNECTED);
237 	if (head && (so->so_state & SS_INCOMP)) {
238 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
239 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
240 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
241 			atomic_set_int(&so->so_rcv.ssb_flags, SSB_UPCALL);
242 			so->so_options &= ~SO_ACCEPTFILTER;
243 			so->so_upcall(so, so->so_upcallarg, 0);
244 			lwkt_relpooltoken(head);
245 			return;
246 		}
247 
248 		/*
249 		 * Listen socket are not per-cpu.
250 		 */
251 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
252 		head->so_incqlen--;
253 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
254 		head->so_qlen++;
255 		sosetstate(so, SS_COMP);
256 		soclrstate(so, SS_INCOMP);
257 
258 		/*
259 		 * XXX head may be on a different protocol thread.
260 		 *     sorwakeup()->sowakeup() is hacked atm.
261 		 */
262 		sorwakeup(head);
263 		wakeup_one(&head->so_timeo);
264 	} else {
265 		wakeup(&so->so_timeo);
266 		sorwakeup(so);
267 		sowwakeup(so);
268 	}
269 	if (head)
270 		lwkt_relpooltoken(head);
271 }
272 
273 void
274 soisdisconnecting(struct socket *so)
275 {
276 	soclrstate(so, SS_ISCONNECTING);
277 	sosetstate(so, SS_ISDISCONNECTING | SS_CANTRCVMORE | SS_CANTSENDMORE);
278 	wakeup((caddr_t)&so->so_timeo);
279 	sowwakeup(so);
280 	sorwakeup(so);
281 }
282 
283 void
284 soisdisconnected(struct socket *so)
285 {
286 	soclrstate(so, SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING);
287 	sosetstate(so, SS_CANTRCVMORE | SS_CANTSENDMORE | SS_ISDISCONNECTED);
288 	wakeup((caddr_t)&so->so_timeo);
289 	sbdrop(&so->so_snd.sb, so->so_snd.ssb_cc);
290 	sowwakeup(so);
291 	sorwakeup(so);
292 }
293 
294 void
295 soisreconnecting(struct socket *so)
296 {
297         soclrstate(so, SS_ISDISCONNECTING | SS_ISDISCONNECTED |
298 		       SS_CANTRCVMORE | SS_CANTSENDMORE);
299 	sosetstate(so, SS_ISCONNECTING);
300 }
301 
302 void
303 soisreconnected(struct socket *so)
304 {
305 	soclrstate(so, SS_ISDISCONNECTED | SS_CANTRCVMORE | SS_CANTSENDMORE);
306 	soisconnected(so);
307 }
308 
309 /*
310  * Set or change the message port a socket receives commands on.
311  *
312  * XXX
313  */
314 void
315 sosetport(struct socket *so, lwkt_port_t port)
316 {
317 	so->so_port = port;
318 }
319 
320 /*
321  * When an attempt at a new connection is noted on a socket
322  * which accepts connections, sonewconn is called.  If the
323  * connection is possible (subject to space constraints, etc.)
324  * then we allocate a new structure, propoerly linked into the
325  * data structure of the original socket, and return this.
326  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
327  *
328  * The new socket is returned with one ref and so_pcb assigned.
329  * The reference is implied by so_pcb.
330  */
331 struct socket *
332 sonewconn_faddr(struct socket *head, int connstatus,
333     const struct sockaddr *faddr)
334 {
335 	struct socket *so;
336 	struct socket *sp;
337 	struct pru_attach_info ai;
338 
339 	if (head->so_qlen > 3 * head->so_qlimit / 2)
340 		return (NULL);
341 	so = soalloc(1, head->so_proto);
342 	if (so == NULL)
343 		return (NULL);
344 
345 	/*
346 	 * Set the port prior to attaching the inpcb to the current
347 	 * cpu's protocol thread (which should be the current thread
348 	 * but might not be in all cases).  This serializes any pcb ops
349 	 * which occur to our cpu allowing us to complete the attachment
350 	 * without racing anything.
351 	 */
352 	if (head->so_proto->pr_flags & PR_SYNC_PORT)
353 		sosetport(so, &netisr_sync_port);
354 	else
355 		sosetport(so, netisr_cpuport(mycpuid));
356 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
357 		connstatus = 0;
358 	so->so_head = head;
359 	so->so_type = head->so_type;
360 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
361 	so->so_linger = head->so_linger;
362 
363 	/*
364 	 * NOTE: Clearing NOFDREF implies referencing the so with
365 	 *	 soreference().
366 	 */
367 	so->so_state = head->so_state | SS_NOFDREF | SS_ASSERTINPROG;
368 	so->so_cred = crhold(head->so_cred);
369 	ai.sb_rlimit = NULL;
370 	ai.p_ucred = NULL;
371 	ai.fd_rdir = NULL;		/* jail code cruft XXX JH */
372 
373 	/*
374 	 * Reserve space and call pru_attach.  We can direct-call the
375 	 * function since we're already in the protocol thread.
376 	 */
377 	if (soreserve(so, head->so_snd.ssb_hiwat,
378 		      head->so_rcv.ssb_hiwat, NULL) ||
379 	    so_pru_attach_direct(so, 0, &ai)) {
380 		so->so_head = NULL;
381 		soclrstate(so, SS_ASSERTINPROG);
382 		sofree(so);		/* remove implied pcb ref */
383 		return (NULL);
384 	}
385 	KKASSERT(((so->so_proto->pr_flags & PR_ASYNC_RCVD) == 0 &&
386 	    so->so_refs == 2) ||	/* attach + our base ref */
387 	   ((so->so_proto->pr_flags & PR_ASYNC_RCVD) &&
388 	    so->so_refs == 3));		/* + async rcvd ref */
389 	sofree(so);
390 	KKASSERT(so->so_port != NULL);
391 	so->so_rcv.ssb_lowat = head->so_rcv.ssb_lowat;
392 	so->so_snd.ssb_lowat = head->so_snd.ssb_lowat;
393 	so->so_rcv.ssb_timeo = head->so_rcv.ssb_timeo;
394 	so->so_snd.ssb_timeo = head->so_snd.ssb_timeo;
395 
396 	if (head->so_rcv.ssb_flags & SSB_AUTOLOWAT)
397 		so->so_rcv.ssb_flags |= SSB_AUTOLOWAT;
398 	else
399 		so->so_rcv.ssb_flags &= ~SSB_AUTOLOWAT;
400 
401 	if (head->so_snd.ssb_flags & SSB_AUTOLOWAT)
402 		so->so_snd.ssb_flags |= SSB_AUTOLOWAT;
403 	else
404 		so->so_snd.ssb_flags &= ~SSB_AUTOLOWAT;
405 
406 	if (head->so_rcv.ssb_flags & SSB_AUTOSIZE)
407 		so->so_rcv.ssb_flags |= SSB_AUTOSIZE;
408 	else
409 		so->so_rcv.ssb_flags &= ~SSB_AUTOSIZE;
410 
411 	if (head->so_snd.ssb_flags & SSB_AUTOSIZE)
412 		so->so_snd.ssb_flags |= SSB_AUTOSIZE;
413 	else
414 		so->so_snd.ssb_flags &= ~SSB_AUTOSIZE;
415 
416 	/*
417 	 * Save the faddr, if the information is provided and
418 	 * the protocol can perform the saving opertation.
419 	 */
420 	if (faddr != NULL && so->so_proto->pr_usrreqs->pru_savefaddr != NULL)
421 		so->so_proto->pr_usrreqs->pru_savefaddr(so, faddr);
422 
423 	lwkt_getpooltoken(head);
424 	if (connstatus) {
425 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
426 		sosetstate(so, SS_COMP);
427 		head->so_qlen++;
428 	} else {
429 		if (head->so_incqlen > head->so_qlimit) {
430 			sp = TAILQ_FIRST(&head->so_incomp);
431 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
432 			head->so_incqlen--;
433 			soclrstate(sp, SS_INCOMP);
434 			sp->so_head = NULL;
435 			soaborta(sp);
436 		}
437 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
438 		sosetstate(so, SS_INCOMP);
439 		head->so_incqlen++;
440 	}
441 	lwkt_relpooltoken(head);
442 	if (connstatus) {
443 		/*
444 		 * XXX head may be on a different protocol thread.
445 		 *     sorwakeup()->sowakeup() is hacked atm.
446 		 */
447 		sorwakeup(head);
448 		wakeup((caddr_t)&head->so_timeo);
449 		sosetstate(so, connstatus);
450 	}
451 	soclrstate(so, SS_ASSERTINPROG);
452 	return (so);
453 }
454 
455 struct socket *
456 sonewconn(struct socket *head, int connstatus)
457 {
458 	return sonewconn_faddr(head, connstatus, NULL);
459 }
460 
461 /*
462  * Socantsendmore indicates that no more data will be sent on the
463  * socket; it would normally be applied to a socket when the user
464  * informs the system that no more data is to be sent, by the protocol
465  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
466  * will be received, and will normally be applied to the socket by a
467  * protocol when it detects that the peer will send no more data.
468  * Data queued for reading in the socket may yet be read.
469  */
470 void
471 socantsendmore(struct socket *so)
472 {
473 	sosetstate(so, SS_CANTSENDMORE);
474 	sowwakeup(so);
475 }
476 
477 void
478 socantrcvmore(struct socket *so)
479 {
480 	sosetstate(so, SS_CANTRCVMORE);
481 	sorwakeup(so);
482 }
483 
484 /*
485  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
486  * via SIGIO if the socket has the SS_ASYNC flag set.
487  *
488  * For users waiting on send/recv try to avoid unnecessary context switch
489  * thrashing.  Particularly for senders of large buffers (needs to be
490  * extended to sel and aio? XXX)
491  *
492  * WARNING!  Can be called on a foreign socket from the wrong protocol
493  *	     thread.  aka is called on the 'head' listen socket when
494  *	     a new connection comes in.
495  */
496 void
497 sowakeup(struct socket *so, struct signalsockbuf *ssb)
498 {
499 	struct kqinfo *kqinfo = &ssb->ssb_kq;
500 	uint32_t flags;
501 
502 	/*
503 	 * Check conditions, set the WAKEUP flag, and clear and signal if
504 	 * the WAIT flag is found to be set.  This interlocks against the
505 	 * client side.
506 	 */
507 	for (;;) {
508 		flags = ssb->ssb_flags;
509 		cpu_ccfence();
510 
511 		if ((ssb == &so->so_snd && ssb_space(ssb) >= ssb->ssb_lowat) ||
512 		    (ssb == &so->so_rcv && ssb->ssb_cc >= ssb->ssb_lowat) ||
513 		    (ssb == &so->so_snd && (so->so_state & SS_CANTSENDMORE)) ||
514 		    (ssb == &so->so_rcv && (so->so_state & SS_CANTRCVMORE))
515 		) {
516 			if (atomic_cmpset_int(&ssb->ssb_flags, flags,
517 					  (flags | SSB_WAKEUP) & ~SSB_WAIT)) {
518 				if (flags & SSB_WAIT)
519 					wakeup(&ssb->ssb_cc);
520 				break;
521 			}
522 		} else {
523 			break;
524 		}
525 	}
526 
527 	/*
528 	 * Misc other events
529 	 */
530 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
531 		pgsigio(so->so_sigio, SIGIO, 0);
532 	if (ssb->ssb_flags & SSB_UPCALL)
533 		(*so->so_upcall)(so, so->so_upcallarg, MB_DONTWAIT);
534 	KNOTE(&kqinfo->ki_note, 0);
535 
536 	/*
537 	 * This is a bit of a hack.  Multiple threads can wind up scanning
538 	 * ki_mlist concurrently due to the fact that this function can be
539 	 * called on a foreign socket, so we can't afford to block here.
540 	 *
541 	 * We need the pool token for (so) (likely the listne socket if
542 	 * SSB_MEVENT is set) because the predicate function may have
543 	 * to access the accept queue.
544 	 */
545 	if (ssb->ssb_flags & SSB_MEVENT) {
546 		struct netmsg_so_notify *msg, *nmsg;
547 
548 		lwkt_getpooltoken(so);
549 		TAILQ_FOREACH_MUTABLE(msg, &kqinfo->ki_mlist, nm_list, nmsg) {
550 			if (msg->nm_predicate(msg)) {
551 				TAILQ_REMOVE(&kqinfo->ki_mlist, msg, nm_list);
552 				lwkt_replymsg(&msg->base.lmsg,
553 					      msg->base.lmsg.ms_error);
554 			}
555 		}
556 		if (TAILQ_EMPTY(&ssb->ssb_kq.ki_mlist))
557 			atomic_clear_int(&ssb->ssb_flags, SSB_MEVENT);
558 		lwkt_relpooltoken(so);
559 	}
560 }
561 
562 /*
563  * Socket buffer (struct signalsockbuf) utility routines.
564  *
565  * Each socket contains two socket buffers: one for sending data and
566  * one for receiving data.  Each buffer contains a queue of mbufs,
567  * information about the number of mbufs and amount of data in the
568  * queue, and other fields allowing kevent()/select()/poll() statements
569  * and notification on data availability to be implemented.
570  *
571  * Data stored in a socket buffer is maintained as a list of records.
572  * Each record is a list of mbufs chained together with the m_next
573  * field.  Records are chained together with the m_nextpkt field. The upper
574  * level routine soreceive() expects the following conventions to be
575  * observed when placing information in the receive buffer:
576  *
577  * 1. If the protocol requires each message be preceded by the sender's
578  *    name, then a record containing that name must be present before
579  *    any associated data (mbuf's must be of type MT_SONAME).
580  * 2. If the protocol supports the exchange of ``access rights'' (really
581  *    just additional data associated with the message), and there are
582  *    ``rights'' to be received, then a record containing this data
583  *    should be present (mbuf's must be of type MT_RIGHTS).
584  * 3. If a name or rights record exists, then it must be followed by
585  *    a data record, perhaps of zero length.
586  *
587  * Before using a new socket structure it is first necessary to reserve
588  * buffer space to the socket, by calling sbreserve().  This should commit
589  * some of the available buffer space in the system buffer pool for the
590  * socket (currently, it does nothing but enforce limits).  The space
591  * should be released by calling ssb_release() when the socket is destroyed.
592  */
593 int
594 soreserve(struct socket *so, u_long sndcc, u_long rcvcc, struct rlimit *rl)
595 {
596 	if (so->so_snd.ssb_lowat == 0)
597 		atomic_set_int(&so->so_snd.ssb_flags, SSB_AUTOLOWAT);
598 	if (ssb_reserve(&so->so_snd, sndcc, so, rl) == 0)
599 		goto bad;
600 	if (ssb_reserve(&so->so_rcv, rcvcc, so, rl) == 0)
601 		goto bad2;
602 	if (so->so_rcv.ssb_lowat == 0)
603 		so->so_rcv.ssb_lowat = 1;
604 	if (so->so_snd.ssb_lowat == 0)
605 		so->so_snd.ssb_lowat = MCLBYTES;
606 	if (so->so_snd.ssb_lowat > so->so_snd.ssb_hiwat)
607 		so->so_snd.ssb_lowat = so->so_snd.ssb_hiwat;
608 	return (0);
609 bad2:
610 	ssb_release(&so->so_snd, so);
611 bad:
612 	return (ENOBUFS);
613 }
614 
615 static int
616 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
617 {
618 	int error = 0;
619 	u_long old_sb_max = sb_max;
620 
621 	error = SYSCTL_OUT(req, arg1, sizeof(int));
622 	if (error || !req->newptr)
623 		return (error);
624 	error = SYSCTL_IN(req, arg1, sizeof(int));
625 	if (error)
626 		return (error);
627 	if (sb_max < MSIZE + MCLBYTES) {
628 		sb_max = old_sb_max;
629 		return (EINVAL);
630 	}
631 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
632 	return (0);
633 }
634 
635 /*
636  * Allot mbufs to a signalsockbuf.
637  *
638  * Attempt to scale mbmax so that mbcnt doesn't become limiting
639  * if buffering efficiency is near the normal case.
640  *
641  * sb_max only applies to user-sockets (where rl != NULL).  It does
642  * not apply to kernel sockets or kernel-controlled sockets.  Note
643  * that NFS overrides the sockbuf limits created when nfsd creates
644  * a socket.
645  */
646 int
647 ssb_reserve(struct signalsockbuf *ssb, u_long cc, struct socket *so,
648 	    struct rlimit *rl)
649 {
650 	/*
651 	 * rl will only be NULL when we're in an interrupt (eg, in tcp_input)
652 	 * or when called from netgraph (ie, ngd_attach)
653 	 */
654 	if (rl && cc > sb_max_adj)
655 		cc = sb_max_adj;
656 	if (!chgsbsize(so->so_cred->cr_uidinfo, &ssb->ssb_hiwat, cc,
657 		       rl ? rl->rlim_cur : RLIM_INFINITY)) {
658 		return (0);
659 	}
660 	if (rl)
661 		ssb->ssb_mbmax = min(cc * sb_efficiency, sb_max);
662 	else
663 		ssb->ssb_mbmax = cc * sb_efficiency;
664 
665 	/*
666 	 * AUTOLOWAT is set on send buffers and prevents large writes
667 	 * from generating a huge number of context switches.
668 	 */
669 	if (ssb->ssb_flags & SSB_AUTOLOWAT) {
670 		ssb->ssb_lowat = ssb->ssb_hiwat / 2;
671 		if (ssb->ssb_lowat < MCLBYTES)
672 			ssb->ssb_lowat = MCLBYTES;
673 	}
674 	if (ssb->ssb_lowat > ssb->ssb_hiwat)
675 		ssb->ssb_lowat = ssb->ssb_hiwat;
676 	return (1);
677 }
678 
679 /*
680  * Free mbufs held by a socket, and reserved mbuf space.
681  */
682 void
683 ssb_release(struct signalsockbuf *ssb, struct socket *so)
684 {
685 	sbflush(&ssb->sb);
686 	(void)chgsbsize(so->so_cred->cr_uidinfo, &ssb->ssb_hiwat, 0,
687 	    RLIM_INFINITY);
688 	ssb->ssb_mbmax = 0;
689 }
690 
691 /*
692  * Some routines that return EOPNOTSUPP for entry points that are not
693  * supported by a protocol.  Fill in as needed.
694  */
695 void
696 pr_generic_notsupp(netmsg_t msg)
697 {
698 	lwkt_replymsg(&msg->lmsg, EOPNOTSUPP);
699 }
700 
701 int
702 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
703 	   struct mbuf *top, struct mbuf *control, int flags,
704 	   struct thread *td)
705 {
706 	if (top)
707 		m_freem(top);
708 	if (control)
709 		m_freem(control);
710 	return (EOPNOTSUPP);
711 }
712 
713 int
714 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
715 		      struct uio *uio, struct sockbuf *sio,
716 		      struct mbuf **controlp, int *flagsp)
717 {
718 	return (EOPNOTSUPP);
719 }
720 
721 /*
722  * This isn't really a ``null'' operation, but it's the default one
723  * and doesn't do anything destructive.
724  */
725 void
726 pru_sense_null(netmsg_t msg)
727 {
728 	msg->sense.nm_stat->st_blksize = msg->base.nm_so->so_snd.ssb_hiwat;
729 	lwkt_replymsg(&msg->lmsg, 0);
730 }
731 
732 /*
733  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.  Callers
734  * of this routine assume that it always succeeds, so we have to use a
735  * blockable allocation even though we might be called from a critical thread.
736  */
737 struct sockaddr *
738 dup_sockaddr(const struct sockaddr *sa)
739 {
740 	struct sockaddr *sa2;
741 
742 	sa2 = kmalloc(sa->sa_len, M_SONAME, M_INTWAIT);
743 	bcopy(sa, sa2, sa->sa_len);
744 	return (sa2);
745 }
746 
747 /*
748  * Create an external-format (``xsocket'') structure using the information
749  * in the kernel-format socket structure pointed to by so.  This is done
750  * to reduce the spew of irrelevant information over this interface,
751  * to isolate user code from changes in the kernel structure, and
752  * potentially to provide information-hiding if we decide that
753  * some of this information should be hidden from users.
754  */
755 void
756 sotoxsocket(struct socket *so, struct xsocket *xso)
757 {
758 	xso->xso_len = sizeof *xso;
759 	xso->xso_so = so;
760 	xso->so_type = so->so_type;
761 	xso->so_options = so->so_options;
762 	xso->so_linger = so->so_linger;
763 	xso->so_state = so->so_state;
764 	xso->so_pcb = so->so_pcb;
765 	xso->xso_protocol = so->so_proto->pr_protocol;
766 	xso->xso_family = so->so_proto->pr_domain->dom_family;
767 	xso->so_qlen = so->so_qlen;
768 	xso->so_incqlen = so->so_incqlen;
769 	xso->so_qlimit = so->so_qlimit;
770 	xso->so_timeo = so->so_timeo;
771 	xso->so_error = so->so_error;
772 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
773 	xso->so_oobmark = so->so_oobmark;
774 	ssbtoxsockbuf(&so->so_snd, &xso->so_snd);
775 	ssbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
776 	xso->so_uid = so->so_cred->cr_uid;
777 }
778 
779 /*
780  * Here is the definition of some of the basic objects in the kern.ipc
781  * branch of the MIB.
782  */
783 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
784 
785 /*
786  * This takes the place of kern.maxsockbuf, which moved to kern.ipc.
787  *
788  * NOTE! sb_max only applies to user-created socket buffers.
789  */
790 static int dummy;
791 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
792 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
793     &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
794 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
795     &maxsockets, 0, "Maximum number of sockets available");
796 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
797     &sb_efficiency, 0,
798     "Socket buffer limit scaler");
799 
800 /*
801  * Initialize maxsockets
802  */
803 static void
804 init_maxsockets(void *ignored)
805 {
806     TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
807     maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
808 }
809 SYSINIT(param, SI_BOOT1_TUNABLES, SI_ORDER_ANY,
810 	init_maxsockets, NULL);
811 
812