xref: /dragonfly/sys/kern/uipc_socket2.c (revision 984263bc)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
35  */
36 
37 #include "opt_param.h"
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/domain.h>
41 #include <sys/file.h>	/* for maxfiles */
42 #include <sys/kernel.h>
43 #include <sys/proc.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/resourcevar.h>
48 #include <sys/stat.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/signalvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/aio.h> /* for aio_swake proto */
54 #include <sys/event.h>
55 
56 int	maxsockets;
57 
58 /*
59  * Primitive routines for operating on sockets and socket buffers
60  */
61 
62 u_long	sb_max = SB_MAX;
63 u_long	sb_max_adj =
64     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
65 
66 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
67 
68 /*
69  * Procedures to manipulate state flags of socket
70  * and do appropriate wakeups.  Normal sequence from the
71  * active (originating) side is that soisconnecting() is
72  * called during processing of connect() call,
73  * resulting in an eventual call to soisconnected() if/when the
74  * connection is established.  When the connection is torn down
75  * soisdisconnecting() is called during processing of disconnect() call,
76  * and soisdisconnected() is called when the connection to the peer
77  * is totally severed.  The semantics of these routines are such that
78  * connectionless protocols can call soisconnected() and soisdisconnected()
79  * only, bypassing the in-progress calls when setting up a ``connection''
80  * takes no time.
81  *
82  * From the passive side, a socket is created with
83  * two queues of sockets: so_incomp for connections in progress
84  * and so_comp for connections already made and awaiting user acceptance.
85  * As a protocol is preparing incoming connections, it creates a socket
86  * structure queued on so_incomp by calling sonewconn().  When the connection
87  * is established, soisconnected() is called, and transfers the
88  * socket structure to so_comp, making it available to accept().
89  *
90  * If a socket is closed with sockets on either
91  * so_incomp or so_comp, these sockets are dropped.
92  *
93  * If higher level protocols are implemented in
94  * the kernel, the wakeups done here will sometimes
95  * cause software-interrupt process scheduling.
96  */
97 
98 void
99 soisconnecting(so)
100 	register struct socket *so;
101 {
102 
103 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
104 	so->so_state |= SS_ISCONNECTING;
105 }
106 
107 void
108 soisconnected(so)
109 	struct socket *so;
110 {
111 	struct socket *head = so->so_head;
112 
113 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
114 	so->so_state |= SS_ISCONNECTED;
115 	if (head && (so->so_state & SS_INCOMP)) {
116 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
117 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
118 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
119 			so->so_rcv.sb_flags |= SB_UPCALL;
120 			so->so_options &= ~SO_ACCEPTFILTER;
121 			so->so_upcall(so, so->so_upcallarg, 0);
122 			return;
123 		}
124 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
125 		head->so_incqlen--;
126 		so->so_state &= ~SS_INCOMP;
127 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
128 		head->so_qlen++;
129 		so->so_state |= SS_COMP;
130 		sorwakeup(head);
131 		wakeup_one(&head->so_timeo);
132 	} else {
133 		wakeup(&so->so_timeo);
134 		sorwakeup(so);
135 		sowwakeup(so);
136 	}
137 }
138 
139 void
140 soisdisconnecting(so)
141 	register struct socket *so;
142 {
143 
144 	so->so_state &= ~SS_ISCONNECTING;
145 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
146 	wakeup((caddr_t)&so->so_timeo);
147 	sowwakeup(so);
148 	sorwakeup(so);
149 }
150 
151 void
152 soisdisconnected(so)
153 	register struct socket *so;
154 {
155 
156 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
157 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
158 	wakeup((caddr_t)&so->so_timeo);
159 	sbdrop(&so->so_snd, so->so_snd.sb_cc);
160 	sowwakeup(so);
161 	sorwakeup(so);
162 }
163 
164 /*
165  * When an attempt at a new connection is noted on a socket
166  * which accepts connections, sonewconn is called.  If the
167  * connection is possible (subject to space constraints, etc.)
168  * then we allocate a new structure, propoerly linked into the
169  * data structure of the original socket, and return this.
170  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
171  */
172 struct socket *
173 sonewconn(head, connstatus)
174 	register struct socket *head;
175 	int connstatus;
176 {
177 
178 	return (sonewconn3(head, connstatus, NULL));
179 }
180 
181 struct socket *
182 sonewconn3(head, connstatus, p)
183 	register struct socket *head;
184 	int connstatus;
185 	struct proc *p;
186 {
187 	register struct socket *so;
188 
189 	if (head->so_qlen > 3 * head->so_qlimit / 2)
190 		return ((struct socket *)0);
191 	so = soalloc(0);
192 	if (so == NULL)
193 		return ((struct socket *)0);
194 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
195 		connstatus = 0;
196 	so->so_head = head;
197 	so->so_type = head->so_type;
198 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
199 	so->so_linger = head->so_linger;
200 	so->so_state = head->so_state | SS_NOFDREF;
201 	so->so_proto = head->so_proto;
202 	so->so_timeo = head->so_timeo;
203 	so->so_cred = p ? p->p_ucred : head->so_cred;
204 	crhold(so->so_cred);
205 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
206 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
207 		sodealloc(so);
208 		return ((struct socket *)0);
209 	}
210 
211 	if (connstatus) {
212 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
213 		so->so_state |= SS_COMP;
214 		head->so_qlen++;
215 	} else {
216 		if (head->so_incqlen > head->so_qlimit) {
217 			struct socket *sp;
218 			sp = TAILQ_FIRST(&head->so_incomp);
219 			(void) soabort(sp);
220 		}
221 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
222 		so->so_state |= SS_INCOMP;
223 		head->so_incqlen++;
224 	}
225 	if (connstatus) {
226 		sorwakeup(head);
227 		wakeup((caddr_t)&head->so_timeo);
228 		so->so_state |= connstatus;
229 	}
230 	return (so);
231 }
232 
233 /*
234  * Socantsendmore indicates that no more data will be sent on the
235  * socket; it would normally be applied to a socket when the user
236  * informs the system that no more data is to be sent, by the protocol
237  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
238  * will be received, and will normally be applied to the socket by a
239  * protocol when it detects that the peer will send no more data.
240  * Data queued for reading in the socket may yet be read.
241  */
242 
243 void
244 socantsendmore(so)
245 	struct socket *so;
246 {
247 
248 	so->so_state |= SS_CANTSENDMORE;
249 	sowwakeup(so);
250 }
251 
252 void
253 socantrcvmore(so)
254 	struct socket *so;
255 {
256 
257 	so->so_state |= SS_CANTRCVMORE;
258 	sorwakeup(so);
259 }
260 
261 /*
262  * Wait for data to arrive at/drain from a socket buffer.
263  */
264 int
265 sbwait(sb)
266 	struct sockbuf *sb;
267 {
268 
269 	sb->sb_flags |= SB_WAIT;
270 	return (tsleep((caddr_t)&sb->sb_cc,
271 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
272 	    sb->sb_timeo));
273 }
274 
275 /*
276  * Lock a sockbuf already known to be locked;
277  * return any error returned from sleep (EINTR).
278  */
279 int
280 sb_lock(sb)
281 	register struct sockbuf *sb;
282 {
283 	int error;
284 
285 	while (sb->sb_flags & SB_LOCK) {
286 		sb->sb_flags |= SB_WANT;
287 		error = tsleep((caddr_t)&sb->sb_flags,
288 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
289 		    "sblock", 0);
290 		if (error)
291 			return (error);
292 	}
293 	sb->sb_flags |= SB_LOCK;
294 	return (0);
295 }
296 
297 /*
298  * Wakeup processes waiting on a socket buffer.
299  * Do asynchronous notification via SIGIO
300  * if the socket has the SS_ASYNC flag set.
301  */
302 void
303 sowakeup(so, sb)
304 	register struct socket *so;
305 	register struct sockbuf *sb;
306 {
307 	selwakeup(&sb->sb_sel);
308 	sb->sb_flags &= ~SB_SEL;
309 	if (sb->sb_flags & SB_WAIT) {
310 		sb->sb_flags &= ~SB_WAIT;
311 		wakeup((caddr_t)&sb->sb_cc);
312 	}
313 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
314 		pgsigio(so->so_sigio, SIGIO, 0);
315 	if (sb->sb_flags & SB_UPCALL)
316 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
317 	if (sb->sb_flags & SB_AIO)
318 		aio_swake(so, sb);
319 	KNOTE(&sb->sb_sel.si_note, 0);
320 }
321 
322 /*
323  * Socket buffer (struct sockbuf) utility routines.
324  *
325  * Each socket contains two socket buffers: one for sending data and
326  * one for receiving data.  Each buffer contains a queue of mbufs,
327  * information about the number of mbufs and amount of data in the
328  * queue, and other fields allowing select() statements and notification
329  * on data availability to be implemented.
330  *
331  * Data stored in a socket buffer is maintained as a list of records.
332  * Each record is a list of mbufs chained together with the m_next
333  * field.  Records are chained together with the m_nextpkt field. The upper
334  * level routine soreceive() expects the following conventions to be
335  * observed when placing information in the receive buffer:
336  *
337  * 1. If the protocol requires each message be preceded by the sender's
338  *    name, then a record containing that name must be present before
339  *    any associated data (mbuf's must be of type MT_SONAME).
340  * 2. If the protocol supports the exchange of ``access rights'' (really
341  *    just additional data associated with the message), and there are
342  *    ``rights'' to be received, then a record containing this data
343  *    should be present (mbuf's must be of type MT_RIGHTS).
344  * 3. If a name or rights record exists, then it must be followed by
345  *    a data record, perhaps of zero length.
346  *
347  * Before using a new socket structure it is first necessary to reserve
348  * buffer space to the socket, by calling sbreserve().  This should commit
349  * some of the available buffer space in the system buffer pool for the
350  * socket (currently, it does nothing but enforce limits).  The space
351  * should be released by calling sbrelease() when the socket is destroyed.
352  */
353 
354 int
355 soreserve(so, sndcc, rcvcc)
356 	register struct socket *so;
357 	u_long sndcc, rcvcc;
358 {
359 	struct proc *p = curproc;
360 
361 	if (sbreserve(&so->so_snd, sndcc, so, p) == 0)
362 		goto bad;
363 	if (sbreserve(&so->so_rcv, rcvcc, so, p) == 0)
364 		goto bad2;
365 	if (so->so_rcv.sb_lowat == 0)
366 		so->so_rcv.sb_lowat = 1;
367 	if (so->so_snd.sb_lowat == 0)
368 		so->so_snd.sb_lowat = MCLBYTES;
369 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
370 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
371 	return (0);
372 bad2:
373 	sbrelease(&so->so_snd, so);
374 bad:
375 	return (ENOBUFS);
376 }
377 
378 static int
379 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
380 {
381 	int error = 0;
382 	u_long old_sb_max = sb_max;
383 
384 	error = SYSCTL_OUT(req, arg1, sizeof(int));
385 	if (error || !req->newptr)
386 		return (error);
387 	error = SYSCTL_IN(req, arg1, sizeof(int));
388 	if (error)
389 		return (error);
390 	if (sb_max < MSIZE + MCLBYTES) {
391 		sb_max = old_sb_max;
392 		return (EINVAL);
393 	}
394 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
395 	return (0);
396 }
397 
398 /*
399  * Allot mbufs to a sockbuf.
400  * Attempt to scale mbmax so that mbcnt doesn't become limiting
401  * if buffering efficiency is near the normal case.
402  */
403 int
404 sbreserve(sb, cc, so, p)
405 	struct sockbuf *sb;
406 	u_long cc;
407 	struct socket *so;
408 	struct proc *p;
409 {
410 
411 	/*
412 	 * p will only be NULL when we're in an interrupt
413 	 * (e.g. in tcp_input())
414 	 */
415 	if (cc > sb_max_adj)
416 		return (0);
417 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
418 	    p ? p->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) {
419 		return (0);
420 	}
421 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
422 	if (sb->sb_lowat > sb->sb_hiwat)
423 		sb->sb_lowat = sb->sb_hiwat;
424 	return (1);
425 }
426 
427 /*
428  * Free mbufs held by a socket, and reserved mbuf space.
429  */
430 void
431 sbrelease(sb, so)
432 	struct sockbuf *sb;
433 	struct socket *so;
434 {
435 
436 	sbflush(sb);
437 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
438 	    RLIM_INFINITY);
439 	sb->sb_mbmax = 0;
440 }
441 
442 /*
443  * Routines to add and remove
444  * data from an mbuf queue.
445  *
446  * The routines sbappend() or sbappendrecord() are normally called to
447  * append new mbufs to a socket buffer, after checking that adequate
448  * space is available, comparing the function sbspace() with the amount
449  * of data to be added.  sbappendrecord() differs from sbappend() in
450  * that data supplied is treated as the beginning of a new record.
451  * To place a sender's address, optional access rights, and data in a
452  * socket receive buffer, sbappendaddr() should be used.  To place
453  * access rights and data in a socket receive buffer, sbappendrights()
454  * should be used.  In either case, the new data begins a new record.
455  * Note that unlike sbappend() and sbappendrecord(), these routines check
456  * for the caller that there will be enough space to store the data.
457  * Each fails if there is not enough space, or if it cannot find mbufs
458  * to store additional information in.
459  *
460  * Reliable protocols may use the socket send buffer to hold data
461  * awaiting acknowledgement.  Data is normally copied from a socket
462  * send buffer in a protocol with m_copy for output to a peer,
463  * and then removing the data from the socket buffer with sbdrop()
464  * or sbdroprecord() when the data is acknowledged by the peer.
465  */
466 
467 /*
468  * Append mbuf chain m to the last record in the
469  * socket buffer sb.  The additional space associated
470  * the mbuf chain is recorded in sb.  Empty mbufs are
471  * discarded and mbufs are compacted where possible.
472  */
473 void
474 sbappend(sb, m)
475 	struct sockbuf *sb;
476 	struct mbuf *m;
477 {
478 	register struct mbuf *n;
479 
480 	if (m == 0)
481 		return;
482 	n = sb->sb_mb;
483 	if (n) {
484 		while (n->m_nextpkt)
485 			n = n->m_nextpkt;
486 		do {
487 			if (n->m_flags & M_EOR) {
488 				sbappendrecord(sb, m); /* XXXXXX!!!! */
489 				return;
490 			}
491 		} while (n->m_next && (n = n->m_next));
492 	}
493 	sbcompress(sb, m, n);
494 }
495 
496 #ifdef SOCKBUF_DEBUG
497 void
498 sbcheck(sb)
499 	register struct sockbuf *sb;
500 {
501 	register struct mbuf *m;
502 	register struct mbuf *n = 0;
503 	register u_long len = 0, mbcnt = 0;
504 
505 	for (m = sb->sb_mb; m; m = n) {
506 	    n = m->m_nextpkt;
507 	    for (; m; m = m->m_next) {
508 		len += m->m_len;
509 		mbcnt += MSIZE;
510 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
511 			mbcnt += m->m_ext.ext_size;
512 	    }
513 	}
514 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
515 		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
516 		    mbcnt, sb->sb_mbcnt);
517 		panic("sbcheck");
518 	}
519 }
520 #endif
521 
522 /*
523  * As above, except the mbuf chain
524  * begins a new record.
525  */
526 void
527 sbappendrecord(sb, m0)
528 	register struct sockbuf *sb;
529 	register struct mbuf *m0;
530 {
531 	register struct mbuf *m;
532 
533 	if (m0 == 0)
534 		return;
535 	m = sb->sb_mb;
536 	if (m)
537 		while (m->m_nextpkt)
538 			m = m->m_nextpkt;
539 	/*
540 	 * Put the first mbuf on the queue.
541 	 * Note this permits zero length records.
542 	 */
543 	sballoc(sb, m0);
544 	if (m)
545 		m->m_nextpkt = m0;
546 	else
547 		sb->sb_mb = m0;
548 	m = m0->m_next;
549 	m0->m_next = 0;
550 	if (m && (m0->m_flags & M_EOR)) {
551 		m0->m_flags &= ~M_EOR;
552 		m->m_flags |= M_EOR;
553 	}
554 	sbcompress(sb, m, m0);
555 }
556 
557 /*
558  * As above except that OOB data
559  * is inserted at the beginning of the sockbuf,
560  * but after any other OOB data.
561  */
562 void
563 sbinsertoob(sb, m0)
564 	register struct sockbuf *sb;
565 	register struct mbuf *m0;
566 {
567 	register struct mbuf *m;
568 	register struct mbuf **mp;
569 
570 	if (m0 == 0)
571 		return;
572 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
573 	    m = *mp;
574 	    again:
575 		switch (m->m_type) {
576 
577 		case MT_OOBDATA:
578 			continue;		/* WANT next train */
579 
580 		case MT_CONTROL:
581 			m = m->m_next;
582 			if (m)
583 				goto again;	/* inspect THIS train further */
584 		}
585 		break;
586 	}
587 	/*
588 	 * Put the first mbuf on the queue.
589 	 * Note this permits zero length records.
590 	 */
591 	sballoc(sb, m0);
592 	m0->m_nextpkt = *mp;
593 	*mp = m0;
594 	m = m0->m_next;
595 	m0->m_next = 0;
596 	if (m && (m0->m_flags & M_EOR)) {
597 		m0->m_flags &= ~M_EOR;
598 		m->m_flags |= M_EOR;
599 	}
600 	sbcompress(sb, m, m0);
601 }
602 
603 /*
604  * Append address and data, and optionally, control (ancillary) data
605  * to the receive queue of a socket.  If present,
606  * m0 must include a packet header with total length.
607  * Returns 0 if no space in sockbuf or insufficient mbufs.
608  */
609 int
610 sbappendaddr(sb, asa, m0, control)
611 	register struct sockbuf *sb;
612 	struct sockaddr *asa;
613 	struct mbuf *m0, *control;
614 {
615 	register struct mbuf *m, *n;
616 	int space = asa->sa_len;
617 
618 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
619 panic("sbappendaddr");
620 	if (m0)
621 		space += m0->m_pkthdr.len;
622 	for (n = control; n; n = n->m_next) {
623 		space += n->m_len;
624 		if (n->m_next == 0)	/* keep pointer to last control buf */
625 			break;
626 	}
627 	if (space > sbspace(sb))
628 		return (0);
629 	if (asa->sa_len > MLEN)
630 		return (0);
631 	MGET(m, M_DONTWAIT, MT_SONAME);
632 	if (m == 0)
633 		return (0);
634 	m->m_len = asa->sa_len;
635 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
636 	if (n)
637 		n->m_next = m0;		/* concatenate data to control */
638 	else
639 		control = m0;
640 	m->m_next = control;
641 	for (n = m; n; n = n->m_next)
642 		sballoc(sb, n);
643 	n = sb->sb_mb;
644 	if (n) {
645 		while (n->m_nextpkt)
646 			n = n->m_nextpkt;
647 		n->m_nextpkt = m;
648 	} else
649 		sb->sb_mb = m;
650 	return (1);
651 }
652 
653 int
654 sbappendcontrol(sb, m0, control)
655 	struct sockbuf *sb;
656 	struct mbuf *control, *m0;
657 {
658 	register struct mbuf *m, *n;
659 	int space = 0;
660 
661 	if (control == 0)
662 		panic("sbappendcontrol");
663 	for (m = control; ; m = m->m_next) {
664 		space += m->m_len;
665 		if (m->m_next == 0)
666 			break;
667 	}
668 	n = m;			/* save pointer to last control buffer */
669 	for (m = m0; m; m = m->m_next)
670 		space += m->m_len;
671 	if (space > sbspace(sb))
672 		return (0);
673 	n->m_next = m0;			/* concatenate data to control */
674 	for (m = control; m; m = m->m_next)
675 		sballoc(sb, m);
676 	n = sb->sb_mb;
677 	if (n) {
678 		while (n->m_nextpkt)
679 			n = n->m_nextpkt;
680 		n->m_nextpkt = control;
681 	} else
682 		sb->sb_mb = control;
683 	return (1);
684 }
685 
686 /*
687  * Compress mbuf chain m into the socket
688  * buffer sb following mbuf n.  If n
689  * is null, the buffer is presumed empty.
690  */
691 void
692 sbcompress(sb, m, n)
693 	register struct sockbuf *sb;
694 	register struct mbuf *m, *n;
695 {
696 	register int eor = 0;
697 	register struct mbuf *o;
698 
699 	while (m) {
700 		eor |= m->m_flags & M_EOR;
701 		if (m->m_len == 0 &&
702 		    (eor == 0 ||
703 		     (((o = m->m_next) || (o = n)) &&
704 		      o->m_type == m->m_type))) {
705 			m = m_free(m);
706 			continue;
707 		}
708 		if (n && (n->m_flags & M_EOR) == 0 &&
709 		    M_WRITABLE(n) &&
710 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
711 		    m->m_len <= M_TRAILINGSPACE(n) &&
712 		    n->m_type == m->m_type) {
713 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
714 			    (unsigned)m->m_len);
715 			n->m_len += m->m_len;
716 			sb->sb_cc += m->m_len;
717 			m = m_free(m);
718 			continue;
719 		}
720 		if (n)
721 			n->m_next = m;
722 		else
723 			sb->sb_mb = m;
724 		sballoc(sb, m);
725 		n = m;
726 		m->m_flags &= ~M_EOR;
727 		m = m->m_next;
728 		n->m_next = 0;
729 	}
730 	if (eor) {
731 		if (n)
732 			n->m_flags |= eor;
733 		else
734 			printf("semi-panic: sbcompress\n");
735 	}
736 }
737 
738 /*
739  * Free all mbufs in a sockbuf.
740  * Check that all resources are reclaimed.
741  */
742 void
743 sbflush(sb)
744 	register struct sockbuf *sb;
745 {
746 
747 	if (sb->sb_flags & SB_LOCK)
748 		panic("sbflush: locked");
749 	while (sb->sb_mbcnt) {
750 		/*
751 		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
752 		 * we would loop forever. Panic instead.
753 		 */
754 		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
755 			break;
756 		sbdrop(sb, (int)sb->sb_cc);
757 	}
758 	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
759 		panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
760 }
761 
762 /*
763  * Drop data from (the front of) a sockbuf.
764  */
765 void
766 sbdrop(sb, len)
767 	register struct sockbuf *sb;
768 	register int len;
769 {
770 	register struct mbuf *m;
771 	struct mbuf *next;
772 
773 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
774 	while (len > 0) {
775 		if (m == 0) {
776 			if (next == 0)
777 				panic("sbdrop");
778 			m = next;
779 			next = m->m_nextpkt;
780 			continue;
781 		}
782 		if (m->m_len > len) {
783 			m->m_len -= len;
784 			m->m_data += len;
785 			sb->sb_cc -= len;
786 			break;
787 		}
788 		len -= m->m_len;
789 		sbfree(sb, m);
790 		m = m_free(m);
791 	}
792 	while (m && m->m_len == 0) {
793 		sbfree(sb, m);
794 		m = m_free(m);
795 	}
796 	if (m) {
797 		sb->sb_mb = m;
798 		m->m_nextpkt = next;
799 	} else
800 		sb->sb_mb = next;
801 }
802 
803 /*
804  * Drop a record off the front of a sockbuf
805  * and move the next record to the front.
806  */
807 void
808 sbdroprecord(sb)
809 	register struct sockbuf *sb;
810 {
811 	register struct mbuf *m;
812 
813 	m = sb->sb_mb;
814 	if (m) {
815 		sb->sb_mb = m->m_nextpkt;
816 		do {
817 			sbfree(sb, m);
818 			m = m_free(m);
819 		} while (m);
820 	}
821 }
822 
823 /*
824  * Create a "control" mbuf containing the specified data
825  * with the specified type for presentation on a socket buffer.
826  */
827 struct mbuf *
828 sbcreatecontrol(p, size, type, level)
829 	caddr_t p;
830 	register int size;
831 	int type, level;
832 {
833 	register struct cmsghdr *cp;
834 	struct mbuf *m;
835 
836 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
837 		return ((struct mbuf *) NULL);
838 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
839 		return ((struct mbuf *) NULL);
840 	if (CMSG_SPACE((u_int)size) > MLEN) {
841 		MCLGET(m, M_DONTWAIT);
842 		if ((m->m_flags & M_EXT) == 0) {
843 			m_free(m);
844 			return ((struct mbuf *) NULL);
845 		}
846 	}
847 	cp = mtod(m, struct cmsghdr *);
848 	m->m_len = 0;
849 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
850 	    ("sbcreatecontrol: short mbuf"));
851 	if (p != NULL)
852 		(void)memcpy(CMSG_DATA(cp), p, size);
853 	m->m_len = CMSG_SPACE(size);
854 	cp->cmsg_len = CMSG_LEN(size);
855 	cp->cmsg_level = level;
856 	cp->cmsg_type = type;
857 	return (m);
858 }
859 
860 /*
861  * Some routines that return EOPNOTSUPP for entry points that are not
862  * supported by a protocol.  Fill in as needed.
863  */
864 int
865 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
866 {
867 	return EOPNOTSUPP;
868 }
869 
870 int
871 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
872 {
873 	return EOPNOTSUPP;
874 }
875 
876 int
877 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
878 {
879 	return EOPNOTSUPP;
880 }
881 
882 int
883 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
884 		    struct ifnet *ifp, struct proc *p)
885 {
886 	return EOPNOTSUPP;
887 }
888 
889 int
890 pru_listen_notsupp(struct socket *so, struct proc *p)
891 {
892 	return EOPNOTSUPP;
893 }
894 
895 int
896 pru_rcvd_notsupp(struct socket *so, int flags)
897 {
898 	return EOPNOTSUPP;
899 }
900 
901 int
902 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
903 {
904 	return EOPNOTSUPP;
905 }
906 
907 /*
908  * This isn't really a ``null'' operation, but it's the default one
909  * and doesn't do anything destructive.
910  */
911 int
912 pru_sense_null(struct socket *so, struct stat *sb)
913 {
914 	sb->st_blksize = so->so_snd.sb_hiwat;
915 	return 0;
916 }
917 
918 /*
919  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
920  */
921 struct sockaddr *
922 dup_sockaddr(sa, canwait)
923 	struct sockaddr *sa;
924 	int canwait;
925 {
926 	struct sockaddr *sa2;
927 
928 	MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
929 	       canwait ? M_WAITOK : M_NOWAIT);
930 	if (sa2)
931 		bcopy(sa, sa2, sa->sa_len);
932 	return sa2;
933 }
934 
935 /*
936  * Create an external-format (``xsocket'') structure using the information
937  * in the kernel-format socket structure pointed to by so.  This is done
938  * to reduce the spew of irrelevant information over this interface,
939  * to isolate user code from changes in the kernel structure, and
940  * potentially to provide information-hiding if we decide that
941  * some of this information should be hidden from users.
942  */
943 void
944 sotoxsocket(struct socket *so, struct xsocket *xso)
945 {
946 	xso->xso_len = sizeof *xso;
947 	xso->xso_so = so;
948 	xso->so_type = so->so_type;
949 	xso->so_options = so->so_options;
950 	xso->so_linger = so->so_linger;
951 	xso->so_state = so->so_state;
952 	xso->so_pcb = so->so_pcb;
953 	xso->xso_protocol = so->so_proto->pr_protocol;
954 	xso->xso_family = so->so_proto->pr_domain->dom_family;
955 	xso->so_qlen = so->so_qlen;
956 	xso->so_incqlen = so->so_incqlen;
957 	xso->so_qlimit = so->so_qlimit;
958 	xso->so_timeo = so->so_timeo;
959 	xso->so_error = so->so_error;
960 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
961 	xso->so_oobmark = so->so_oobmark;
962 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
963 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
964 	xso->so_uid = so->so_cred->cr_uid;
965 }
966 
967 /*
968  * This does the same for sockbufs.  Note that the xsockbuf structure,
969  * since it is always embedded in a socket, does not include a self
970  * pointer nor a length.  We make this entry point public in case
971  * some other mechanism needs it.
972  */
973 void
974 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
975 {
976 	xsb->sb_cc = sb->sb_cc;
977 	xsb->sb_hiwat = sb->sb_hiwat;
978 	xsb->sb_mbcnt = sb->sb_mbcnt;
979 	xsb->sb_mbmax = sb->sb_mbmax;
980 	xsb->sb_lowat = sb->sb_lowat;
981 	xsb->sb_flags = sb->sb_flags;
982 	xsb->sb_timeo = sb->sb_timeo;
983 }
984 
985 /*
986  * Here is the definition of some of the basic objects in the kern.ipc
987  * branch of the MIB.
988  */
989 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
990 
991 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
992 static int dummy;
993 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
994 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
995     &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
996 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
997     &maxsockets, 0, "Maximum number of sockets avaliable");
998 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
999     &sb_efficiency, 0, "");
1000 
1001 /*
1002  * Initialise maxsockets
1003  */
1004 static void init_maxsockets(void *ignored)
1005 {
1006     TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
1007     maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
1008 }
1009 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
1010