xref: /dragonfly/sys/kern/uipc_socket2.c (revision 9bb2a92d)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
35  * $DragonFly: src/sys/kern/uipc_socket2.c,v 1.8 2004/03/06 01:58:54 hsu Exp $
36  */
37 
38 #include "opt_param.h"
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/domain.h>
42 #include <sys/file.h>	/* for maxfiles */
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/protosw.h>
48 #include <sys/resourcevar.h>
49 #include <sys/stat.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/signalvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/aio.h> /* for aio_swake proto */
55 #include <sys/event.h>
56 
57 int	maxsockets;
58 
59 /*
60  * Primitive routines for operating on sockets and socket buffers
61  */
62 
63 u_long	sb_max = SB_MAX;
64 u_long	sb_max_adj =
65     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
66 
67 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
68 
69 /*
70  * Procedures to manipulate state flags of socket
71  * and do appropriate wakeups.  Normal sequence from the
72  * active (originating) side is that soisconnecting() is
73  * called during processing of connect() call,
74  * resulting in an eventual call to soisconnected() if/when the
75  * connection is established.  When the connection is torn down
76  * soisdisconnecting() is called during processing of disconnect() call,
77  * and soisdisconnected() is called when the connection to the peer
78  * is totally severed.  The semantics of these routines are such that
79  * connectionless protocols can call soisconnected() and soisdisconnected()
80  * only, bypassing the in-progress calls when setting up a ``connection''
81  * takes no time.
82  *
83  * From the passive side, a socket is created with
84  * two queues of sockets: so_incomp for connections in progress
85  * and so_comp for connections already made and awaiting user acceptance.
86  * As a protocol is preparing incoming connections, it creates a socket
87  * structure queued on so_incomp by calling sonewconn().  When the connection
88  * is established, soisconnected() is called, and transfers the
89  * socket structure to so_comp, making it available to accept().
90  *
91  * If a socket is closed with sockets on either
92  * so_incomp or so_comp, these sockets are dropped.
93  *
94  * If higher level protocols are implemented in
95  * the kernel, the wakeups done here will sometimes
96  * cause software-interrupt process scheduling.
97  */
98 
99 void
100 soisconnecting(so)
101 	struct socket *so;
102 {
103 
104 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
105 	so->so_state |= SS_ISCONNECTING;
106 }
107 
108 void
109 soisconnected(so)
110 	struct socket *so;
111 {
112 	struct socket *head = so->so_head;
113 
114 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
115 	so->so_state |= SS_ISCONNECTED;
116 	if (head && (so->so_state & SS_INCOMP)) {
117 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
118 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
119 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
120 			so->so_rcv.sb_flags |= SB_UPCALL;
121 			so->so_options &= ~SO_ACCEPTFILTER;
122 			so->so_upcall(so, so->so_upcallarg, 0);
123 			return;
124 		}
125 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
126 		head->so_incqlen--;
127 		so->so_state &= ~SS_INCOMP;
128 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
129 		head->so_qlen++;
130 		so->so_state |= SS_COMP;
131 		sorwakeup(head);
132 		wakeup_one(&head->so_timeo);
133 	} else {
134 		wakeup(&so->so_timeo);
135 		sorwakeup(so);
136 		sowwakeup(so);
137 	}
138 }
139 
140 void
141 soisdisconnecting(so)
142 	struct socket *so;
143 {
144 
145 	so->so_state &= ~SS_ISCONNECTING;
146 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
147 	wakeup((caddr_t)&so->so_timeo);
148 	sowwakeup(so);
149 	sorwakeup(so);
150 }
151 
152 void
153 soisdisconnected(so)
154 	struct socket *so;
155 {
156 
157 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
158 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
159 	wakeup((caddr_t)&so->so_timeo);
160 	sbdrop(&so->so_snd, so->so_snd.sb_cc);
161 	sowwakeup(so);
162 	sorwakeup(so);
163 }
164 
165 /*
166  * When an attempt at a new connection is noted on a socket
167  * which accepts connections, sonewconn is called.  If the
168  * connection is possible (subject to space constraints, etc.)
169  * then we allocate a new structure, propoerly linked into the
170  * data structure of the original socket, and return this.
171  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
172  */
173 struct socket *
174 sonewconn(struct socket *head, int connstatus)
175 {
176 	struct socket *so;
177 	struct pru_attach_info ai;
178 
179 	if (head->so_qlen > 3 * head->so_qlimit / 2)
180 		return ((struct socket *)0);
181 	so = soalloc(0);
182 	if (so == NULL)
183 		return ((struct socket *)0);
184 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
185 		connstatus = 0;
186 	so->so_head = head;
187 	so->so_type = head->so_type;
188 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
189 	so->so_linger = head->so_linger;
190 	so->so_state = head->so_state | SS_NOFDREF;
191 	so->so_proto = head->so_proto;
192 	so->so_timeo = head->so_timeo;
193 	so->so_cred = crhold(head->so_cred);
194 	ai.sb_rlimit = NULL;
195 	ai.p_ucred = NULL;
196 	ai.fd_rdir = NULL;		/* jail code cruft XXX JH */
197 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat, NULL) ||
198 	    /* Directly call function since we're already at protocol level. */
199 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, &ai)) {
200 		sodealloc(so);
201 		return ((struct socket *)0);
202 	}
203 
204 	if (connstatus) {
205 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
206 		so->so_state |= SS_COMP;
207 		head->so_qlen++;
208 	} else {
209 		if (head->so_incqlen > head->so_qlimit) {
210 			struct socket *sp;
211 			sp = TAILQ_FIRST(&head->so_incomp);
212 			(void) soabort(sp);
213 		}
214 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
215 		so->so_state |= SS_INCOMP;
216 		head->so_incqlen++;
217 	}
218 	if (connstatus) {
219 		sorwakeup(head);
220 		wakeup((caddr_t)&head->so_timeo);
221 		so->so_state |= connstatus;
222 	}
223 	return (so);
224 }
225 
226 /*
227  * Socantsendmore indicates that no more data will be sent on the
228  * socket; it would normally be applied to a socket when the user
229  * informs the system that no more data is to be sent, by the protocol
230  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
231  * will be received, and will normally be applied to the socket by a
232  * protocol when it detects that the peer will send no more data.
233  * Data queued for reading in the socket may yet be read.
234  */
235 
236 void
237 socantsendmore(so)
238 	struct socket *so;
239 {
240 
241 	so->so_state |= SS_CANTSENDMORE;
242 	sowwakeup(so);
243 }
244 
245 void
246 socantrcvmore(so)
247 	struct socket *so;
248 {
249 
250 	so->so_state |= SS_CANTRCVMORE;
251 	sorwakeup(so);
252 }
253 
254 /*
255  * Wait for data to arrive at/drain from a socket buffer.
256  */
257 int
258 sbwait(sb)
259 	struct sockbuf *sb;
260 {
261 
262 	sb->sb_flags |= SB_WAIT;
263 	return (tsleep((caddr_t)&sb->sb_cc,
264 			((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
265 			"sbwait",
266 			sb->sb_timeo));
267 }
268 
269 /*
270  * Lock a sockbuf already known to be locked;
271  * return any error returned from sleep (EINTR).
272  */
273 int
274 sb_lock(sb)
275 	struct sockbuf *sb;
276 {
277 	int error;
278 
279 	while (sb->sb_flags & SB_LOCK) {
280 		sb->sb_flags |= SB_WANT;
281 		error = tsleep((caddr_t)&sb->sb_flags,
282 			    ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
283 			    "sblock", 0);
284 		if (error)
285 			return (error);
286 	}
287 	sb->sb_flags |= SB_LOCK;
288 	return (0);
289 }
290 
291 /*
292  * Wakeup processes waiting on a socket buffer.
293  * Do asynchronous notification via SIGIO
294  * if the socket has the SS_ASYNC flag set.
295  */
296 void
297 sowakeup(so, sb)
298 	struct socket *so;
299 	struct sockbuf *sb;
300 {
301 	selwakeup(&sb->sb_sel);
302 	sb->sb_flags &= ~SB_SEL;
303 	if (sb->sb_flags & SB_WAIT) {
304 		sb->sb_flags &= ~SB_WAIT;
305 		wakeup((caddr_t)&sb->sb_cc);
306 	}
307 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
308 		pgsigio(so->so_sigio, SIGIO, 0);
309 	if (sb->sb_flags & SB_UPCALL)
310 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
311 	if (sb->sb_flags & SB_AIO)
312 		aio_swake(so, sb);
313 	KNOTE(&sb->sb_sel.si_note, 0);
314 }
315 
316 /*
317  * Socket buffer (struct sockbuf) utility routines.
318  *
319  * Each socket contains two socket buffers: one for sending data and
320  * one for receiving data.  Each buffer contains a queue of mbufs,
321  * information about the number of mbufs and amount of data in the
322  * queue, and other fields allowing select() statements and notification
323  * on data availability to be implemented.
324  *
325  * Data stored in a socket buffer is maintained as a list of records.
326  * Each record is a list of mbufs chained together with the m_next
327  * field.  Records are chained together with the m_nextpkt field. The upper
328  * level routine soreceive() expects the following conventions to be
329  * observed when placing information in the receive buffer:
330  *
331  * 1. If the protocol requires each message be preceded by the sender's
332  *    name, then a record containing that name must be present before
333  *    any associated data (mbuf's must be of type MT_SONAME).
334  * 2. If the protocol supports the exchange of ``access rights'' (really
335  *    just additional data associated with the message), and there are
336  *    ``rights'' to be received, then a record containing this data
337  *    should be present (mbuf's must be of type MT_RIGHTS).
338  * 3. If a name or rights record exists, then it must be followed by
339  *    a data record, perhaps of zero length.
340  *
341  * Before using a new socket structure it is first necessary to reserve
342  * buffer space to the socket, by calling sbreserve().  This should commit
343  * some of the available buffer space in the system buffer pool for the
344  * socket (currently, it does nothing but enforce limits).  The space
345  * should be released by calling sbrelease() when the socket is destroyed.
346  */
347 
348 int
349 soreserve(struct socket *so, u_long sndcc, u_long rcvcc, struct rlimit *rl)
350 {
351 	if (sbreserve(&so->so_snd, sndcc, so, rl) == 0)
352 		goto bad;
353 	if (sbreserve(&so->so_rcv, rcvcc, so, rl) == 0)
354 		goto bad2;
355 	if (so->so_rcv.sb_lowat == 0)
356 		so->so_rcv.sb_lowat = 1;
357 	if (so->so_snd.sb_lowat == 0)
358 		so->so_snd.sb_lowat = MCLBYTES;
359 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
360 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
361 	return (0);
362 bad2:
363 	sbrelease(&so->so_snd, so);
364 bad:
365 	return (ENOBUFS);
366 }
367 
368 static int
369 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
370 {
371 	int error = 0;
372 	u_long old_sb_max = sb_max;
373 
374 	error = SYSCTL_OUT(req, arg1, sizeof(int));
375 	if (error || !req->newptr)
376 		return (error);
377 	error = SYSCTL_IN(req, arg1, sizeof(int));
378 	if (error)
379 		return (error);
380 	if (sb_max < MSIZE + MCLBYTES) {
381 		sb_max = old_sb_max;
382 		return (EINVAL);
383 	}
384 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
385 	return (0);
386 }
387 
388 /*
389  * Allot mbufs to a sockbuf.
390  * Attempt to scale mbmax so that mbcnt doesn't become limiting
391  * if buffering efficiency is near the normal case.
392  */
393 int
394 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so, struct rlimit *rl)
395 {
396 
397 	/*
398 	 * rl will only be NULL when we're in an interrupt (eg, in tcp_input)
399 	 * or when called from netgraph (ie, ngd_attach)
400 	 */
401 	if (cc > sb_max_adj)
402 		return (0);
403 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
404 		       rl ? rl->rlim_cur : RLIM_INFINITY)) {
405 		return (0);
406 	}
407 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
408 	if (sb->sb_lowat > sb->sb_hiwat)
409 		sb->sb_lowat = sb->sb_hiwat;
410 	return (1);
411 }
412 
413 /*
414  * Free mbufs held by a socket, and reserved mbuf space.
415  */
416 void
417 sbrelease(sb, so)
418 	struct sockbuf *sb;
419 	struct socket *so;
420 {
421 
422 	sbflush(sb);
423 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
424 	    RLIM_INFINITY);
425 	sb->sb_mbmax = 0;
426 }
427 
428 /*
429  * Routines to add and remove
430  * data from an mbuf queue.
431  *
432  * The routines sbappend() or sbappendrecord() are normally called to
433  * append new mbufs to a socket buffer, after checking that adequate
434  * space is available, comparing the function sbspace() with the amount
435  * of data to be added.  sbappendrecord() differs from sbappend() in
436  * that data supplied is treated as the beginning of a new record.
437  * To place a sender's address, optional access rights, and data in a
438  * socket receive buffer, sbappendaddr() should be used.  To place
439  * access rights and data in a socket receive buffer, sbappendrights()
440  * should be used.  In either case, the new data begins a new record.
441  * Note that unlike sbappend() and sbappendrecord(), these routines check
442  * for the caller that there will be enough space to store the data.
443  * Each fails if there is not enough space, or if it cannot find mbufs
444  * to store additional information in.
445  *
446  * Reliable protocols may use the socket send buffer to hold data
447  * awaiting acknowledgement.  Data is normally copied from a socket
448  * send buffer in a protocol with m_copy for output to a peer,
449  * and then removing the data from the socket buffer with sbdrop()
450  * or sbdroprecord() when the data is acknowledged by the peer.
451  */
452 
453 /*
454  * Append mbuf chain m to the last record in the
455  * socket buffer sb.  The additional space associated
456  * the mbuf chain is recorded in sb.  Empty mbufs are
457  * discarded and mbufs are compacted where possible.
458  */
459 void
460 sbappend(sb, m)
461 	struct sockbuf *sb;
462 	struct mbuf *m;
463 {
464 	struct mbuf *n;
465 
466 	if (m == 0)
467 		return;
468 	n = sb->sb_mb;
469 	if (n) {
470 		while (n->m_nextpkt)
471 			n = n->m_nextpkt;
472 		do {
473 			if (n->m_flags & M_EOR) {
474 				sbappendrecord(sb, m); /* XXXXXX!!!! */
475 				return;
476 			}
477 		} while (n->m_next && (n = n->m_next));
478 	}
479 	sbcompress(sb, m, n);
480 }
481 
482 #ifdef SOCKBUF_DEBUG
483 void
484 sbcheck(sb)
485 	struct sockbuf *sb;
486 {
487 	struct mbuf *m;
488 	struct mbuf *n = 0;
489 	u_long len = 0, mbcnt = 0;
490 
491 	for (m = sb->sb_mb; m; m = n) {
492 	    n = m->m_nextpkt;
493 	    for (; m; m = m->m_next) {
494 		len += m->m_len;
495 		mbcnt += MSIZE;
496 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
497 			mbcnt += m->m_ext.ext_size;
498 	    }
499 	}
500 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
501 		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
502 		    mbcnt, sb->sb_mbcnt);
503 		panic("sbcheck");
504 	}
505 }
506 #endif
507 
508 /*
509  * As above, except the mbuf chain
510  * begins a new record.
511  */
512 void
513 sbappendrecord(sb, m0)
514 	struct sockbuf *sb;
515 	struct mbuf *m0;
516 {
517 	struct mbuf *m;
518 
519 	if (m0 == 0)
520 		return;
521 	m = sb->sb_mb;
522 	if (m)
523 		while (m->m_nextpkt)
524 			m = m->m_nextpkt;
525 	/*
526 	 * Put the first mbuf on the queue.
527 	 * Note this permits zero length records.
528 	 */
529 	sballoc(sb, m0);
530 	if (m)
531 		m->m_nextpkt = m0;
532 	else
533 		sb->sb_mb = m0;
534 	m = m0->m_next;
535 	m0->m_next = 0;
536 	if (m && (m0->m_flags & M_EOR)) {
537 		m0->m_flags &= ~M_EOR;
538 		m->m_flags |= M_EOR;
539 	}
540 	sbcompress(sb, m, m0);
541 }
542 
543 /*
544  * As above except that OOB data
545  * is inserted at the beginning of the sockbuf,
546  * but after any other OOB data.
547  */
548 void
549 sbinsertoob(sb, m0)
550 	struct sockbuf *sb;
551 	struct mbuf *m0;
552 {
553 	struct mbuf *m;
554 	struct mbuf **mp;
555 
556 	if (m0 == 0)
557 		return;
558 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
559 	    m = *mp;
560 	    again:
561 		switch (m->m_type) {
562 
563 		case MT_OOBDATA:
564 			continue;		/* WANT next train */
565 
566 		case MT_CONTROL:
567 			m = m->m_next;
568 			if (m)
569 				goto again;	/* inspect THIS train further */
570 		}
571 		break;
572 	}
573 	/*
574 	 * Put the first mbuf on the queue.
575 	 * Note this permits zero length records.
576 	 */
577 	sballoc(sb, m0);
578 	m0->m_nextpkt = *mp;
579 	*mp = m0;
580 	m = m0->m_next;
581 	m0->m_next = 0;
582 	if (m && (m0->m_flags & M_EOR)) {
583 		m0->m_flags &= ~M_EOR;
584 		m->m_flags |= M_EOR;
585 	}
586 	sbcompress(sb, m, m0);
587 }
588 
589 /*
590  * Append address and data, and optionally, control (ancillary) data
591  * to the receive queue of a socket.  If present,
592  * m0 must include a packet header with total length.
593  * Returns 0 if no space in sockbuf or insufficient mbufs.
594  */
595 int
596 sbappendaddr(sb, asa, m0, control)
597 	struct sockbuf *sb;
598 	struct sockaddr *asa;
599 	struct mbuf *m0, *control;
600 {
601 	struct mbuf *m, *n;
602 	int space = asa->sa_len;
603 
604 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
605 		panic("sbappendaddr");
606 
607 	if (m0)
608 		space += m0->m_pkthdr.len;
609 	for (n = control; n; n = n->m_next) {
610 		space += n->m_len;
611 		if (n->m_next == 0)	/* keep pointer to last control buf */
612 			break;
613 	}
614 	if (space > sbspace(sb))
615 		return (0);
616 	if (asa->sa_len > MLEN)
617 		return (0);
618 	MGET(m, M_DONTWAIT, MT_SONAME);
619 	if (m == 0)
620 		return (0);
621 	m->m_len = asa->sa_len;
622 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
623 	if (n)
624 		n->m_next = m0;		/* concatenate data to control */
625 	else
626 		control = m0;
627 	m->m_next = control;
628 	for (n = m; n; n = n->m_next)
629 		sballoc(sb, n);
630 	n = sb->sb_mb;
631 	if (n) {
632 		while (n->m_nextpkt)
633 			n = n->m_nextpkt;
634 		n->m_nextpkt = m;
635 	} else
636 		sb->sb_mb = m;
637 	return (1);
638 }
639 
640 int
641 sbappendcontrol(sb, m0, control)
642 	struct sockbuf *sb;
643 	struct mbuf *control, *m0;
644 {
645 	struct mbuf *m, *n;
646 	int space = 0;
647 
648 	if (control == 0)
649 		panic("sbappendcontrol");
650 	for (m = control; ; m = m->m_next) {
651 		space += m->m_len;
652 		if (m->m_next == 0)
653 			break;
654 	}
655 	n = m;			/* save pointer to last control buffer */
656 	for (m = m0; m; m = m->m_next)
657 		space += m->m_len;
658 	if (space > sbspace(sb))
659 		return (0);
660 	n->m_next = m0;			/* concatenate data to control */
661 	for (m = control; m; m = m->m_next)
662 		sballoc(sb, m);
663 	n = sb->sb_mb;
664 	if (n) {
665 		while (n->m_nextpkt)
666 			n = n->m_nextpkt;
667 		n->m_nextpkt = control;
668 	} else
669 		sb->sb_mb = control;
670 	return (1);
671 }
672 
673 /*
674  * Compress mbuf chain m into the socket
675  * buffer sb following mbuf n.  If n
676  * is null, the buffer is presumed empty.
677  */
678 void
679 sbcompress(sb, m, n)
680 	struct sockbuf *sb;
681 	struct mbuf *m, *n;
682 {
683 	int eor = 0;
684 	struct mbuf *o;
685 
686 	while (m) {
687 		eor |= m->m_flags & M_EOR;
688 		if (m->m_len == 0 &&
689 		    (eor == 0 ||
690 		     (((o = m->m_next) || (o = n)) &&
691 		      o->m_type == m->m_type))) {
692 			m = m_free(m);
693 			continue;
694 		}
695 		if (n && (n->m_flags & M_EOR) == 0 &&
696 		    M_WRITABLE(n) &&
697 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
698 		    m->m_len <= M_TRAILINGSPACE(n) &&
699 		    n->m_type == m->m_type) {
700 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
701 			    (unsigned)m->m_len);
702 			n->m_len += m->m_len;
703 			sb->sb_cc += m->m_len;
704 			m = m_free(m);
705 			continue;
706 		}
707 		if (n)
708 			n->m_next = m;
709 		else
710 			sb->sb_mb = m;
711 		sballoc(sb, m);
712 		n = m;
713 		m->m_flags &= ~M_EOR;
714 		m = m->m_next;
715 		n->m_next = 0;
716 	}
717 	if (eor) {
718 		if (n)
719 			n->m_flags |= eor;
720 		else
721 			printf("semi-panic: sbcompress\n");
722 	}
723 }
724 
725 /*
726  * Free all mbufs in a sockbuf.
727  * Check that all resources are reclaimed.
728  */
729 void
730 sbflush(sb)
731 	struct sockbuf *sb;
732 {
733 
734 	if (sb->sb_flags & SB_LOCK)
735 		panic("sbflush: locked");
736 	while (sb->sb_mbcnt) {
737 		/*
738 		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
739 		 * we would loop forever. Panic instead.
740 		 */
741 		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
742 			break;
743 		sbdrop(sb, (int)sb->sb_cc);
744 	}
745 	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
746 		panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
747 }
748 
749 /*
750  * Drop data from (the front of) a sockbuf.
751  */
752 void
753 sbdrop(sb, len)
754 	struct sockbuf *sb;
755 	int len;
756 {
757 	struct mbuf *m;
758 	struct mbuf *next;
759 
760 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
761 	while (len > 0) {
762 		if (m == 0) {
763 			if (next == 0)
764 				panic("sbdrop");
765 			m = next;
766 			next = m->m_nextpkt;
767 			continue;
768 		}
769 		if (m->m_len > len) {
770 			m->m_len -= len;
771 			m->m_data += len;
772 			sb->sb_cc -= len;
773 			break;
774 		}
775 		len -= m->m_len;
776 		sbfree(sb, m);
777 		m = m_free(m);
778 	}
779 	while (m && m->m_len == 0) {
780 		sbfree(sb, m);
781 		m = m_free(m);
782 	}
783 	if (m) {
784 		sb->sb_mb = m;
785 		m->m_nextpkt = next;
786 	} else
787 		sb->sb_mb = next;
788 }
789 
790 /*
791  * Drop a record off the front of a sockbuf
792  * and move the next record to the front.
793  */
794 void
795 sbdroprecord(sb)
796 	struct sockbuf *sb;
797 {
798 	struct mbuf *m;
799 
800 	m = sb->sb_mb;
801 	if (m) {
802 		sb->sb_mb = m->m_nextpkt;
803 		do {
804 			sbfree(sb, m);
805 			m = m_free(m);
806 		} while (m);
807 	}
808 }
809 
810 /*
811  * Create a "control" mbuf containing the specified data
812  * with the specified type for presentation on a socket buffer.
813  */
814 struct mbuf *
815 sbcreatecontrol(p, size, type, level)
816 	caddr_t p;
817 	int size;
818 	int type, level;
819 {
820 	struct cmsghdr *cp;
821 	struct mbuf *m;
822 
823 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
824 		return ((struct mbuf *) NULL);
825 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
826 		return ((struct mbuf *) NULL);
827 	if (CMSG_SPACE((u_int)size) > MLEN) {
828 		MCLGET(m, M_DONTWAIT);
829 		if ((m->m_flags & M_EXT) == 0) {
830 			m_free(m);
831 			return ((struct mbuf *) NULL);
832 		}
833 	}
834 	cp = mtod(m, struct cmsghdr *);
835 	m->m_len = 0;
836 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
837 	    ("sbcreatecontrol: short mbuf"));
838 	if (p != NULL)
839 		(void)memcpy(CMSG_DATA(cp), p, size);
840 	m->m_len = CMSG_SPACE(size);
841 	cp->cmsg_len = CMSG_LEN(size);
842 	cp->cmsg_level = level;
843 	cp->cmsg_type = type;
844 	return (m);
845 }
846 
847 /*
848  * Some routines that return EOPNOTSUPP for entry points that are not
849  * supported by a protocol.  Fill in as needed.
850  */
851 int
852 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
853 {
854 	return EOPNOTSUPP;
855 }
856 
857 int
858 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
859 {
860 	return EOPNOTSUPP;
861 }
862 
863 int
864 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
865 {
866 	return EOPNOTSUPP;
867 }
868 
869 int
870 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
871 		    struct ifnet *ifp, struct thread *td)
872 {
873 	return EOPNOTSUPP;
874 }
875 
876 int
877 pru_listen_notsupp(struct socket *so, struct thread *td)
878 {
879 	return EOPNOTSUPP;
880 }
881 
882 int
883 pru_rcvd_notsupp(struct socket *so, int flags)
884 {
885 	return EOPNOTSUPP;
886 }
887 
888 int
889 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
890 {
891 	return EOPNOTSUPP;
892 }
893 
894 /*
895  * This isn't really a ``null'' operation, but it's the default one
896  * and doesn't do anything destructive.
897  */
898 int
899 pru_sense_null(struct socket *so, struct stat *sb)
900 {
901 	sb->st_blksize = so->so_snd.sb_hiwat;
902 	return 0;
903 }
904 
905 /*
906  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
907  */
908 struct sockaddr *
909 dup_sockaddr(sa, canwait)
910 	struct sockaddr *sa;
911 	int canwait;
912 {
913 	struct sockaddr *sa2;
914 
915 	MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
916 	       canwait ? M_WAITOK : M_NOWAIT);
917 	if (sa2)
918 		bcopy(sa, sa2, sa->sa_len);
919 	return sa2;
920 }
921 
922 /*
923  * Create an external-format (``xsocket'') structure using the information
924  * in the kernel-format socket structure pointed to by so.  This is done
925  * to reduce the spew of irrelevant information over this interface,
926  * to isolate user code from changes in the kernel structure, and
927  * potentially to provide information-hiding if we decide that
928  * some of this information should be hidden from users.
929  */
930 void
931 sotoxsocket(struct socket *so, struct xsocket *xso)
932 {
933 	xso->xso_len = sizeof *xso;
934 	xso->xso_so = so;
935 	xso->so_type = so->so_type;
936 	xso->so_options = so->so_options;
937 	xso->so_linger = so->so_linger;
938 	xso->so_state = so->so_state;
939 	xso->so_pcb = so->so_pcb;
940 	xso->xso_protocol = so->so_proto->pr_protocol;
941 	xso->xso_family = so->so_proto->pr_domain->dom_family;
942 	xso->so_qlen = so->so_qlen;
943 	xso->so_incqlen = so->so_incqlen;
944 	xso->so_qlimit = so->so_qlimit;
945 	xso->so_timeo = so->so_timeo;
946 	xso->so_error = so->so_error;
947 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
948 	xso->so_oobmark = so->so_oobmark;
949 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
950 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
951 	xso->so_uid = so->so_cred->cr_uid;
952 }
953 
954 /*
955  * This does the same for sockbufs.  Note that the xsockbuf structure,
956  * since it is always embedded in a socket, does not include a self
957  * pointer nor a length.  We make this entry point public in case
958  * some other mechanism needs it.
959  */
960 void
961 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
962 {
963 	xsb->sb_cc = sb->sb_cc;
964 	xsb->sb_hiwat = sb->sb_hiwat;
965 	xsb->sb_mbcnt = sb->sb_mbcnt;
966 	xsb->sb_mbmax = sb->sb_mbmax;
967 	xsb->sb_lowat = sb->sb_lowat;
968 	xsb->sb_flags = sb->sb_flags;
969 	xsb->sb_timeo = sb->sb_timeo;
970 }
971 
972 /*
973  * Here is the definition of some of the basic objects in the kern.ipc
974  * branch of the MIB.
975  */
976 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
977 
978 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
979 static int dummy;
980 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
981 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
982     &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
983 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
984     &maxsockets, 0, "Maximum number of sockets avaliable");
985 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
986     &sb_efficiency, 0, "");
987 
988 /*
989  * Initialise maxsockets
990  */
991 static void init_maxsockets(void *ignored)
992 {
993     TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
994     maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
995 }
996 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
997