xref: /dragonfly/sys/kern/uipc_syscalls.c (revision 1d1731fa)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * sendfile(2) and related extensions:
6  * Copyright (c) 1998, David Greenman. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)uipc_syscalls.c	8.4 (Berkeley) 2/21/94
37  * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
38  * $DragonFly: src/sys/kern/uipc_syscalls.c,v 1.17 2003/10/03 00:04:04 daver Exp $
39  */
40 
41 #include "opt_compat.h"
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/sysproto.h>
48 #include <sys/malloc.h>
49 #include <sys/filedesc.h>
50 #include <sys/event.h>
51 #include <sys/proc.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/filio.h>
55 #include <sys/kern_syscall.h>
56 #include <sys/mbuf.h>
57 #include <sys/protosw.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/signalvar.h>
61 #include <sys/uio.h>
62 #include <sys/vnode.h>
63 #include <sys/lock.h>
64 #include <sys/mount.h>
65 #ifdef KTRACE
66 #include <sys/ktrace.h>
67 #endif
68 #include <vm/vm.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_page.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_kern.h>
73 #include <vm/vm_extern.h>
74 #include <sys/file2.h>
75 
76 #if defined(COMPAT_43)
77 #include <emulation/43bsd/43bsd_socket.h>
78 #endif /* COMPAT_43 */
79 
80 static void sf_buf_init(void *arg);
81 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL)
82 
83 static int do_sendfile(struct sendfile_args *uap, int compat);
84 
85 static SLIST_HEAD(, sf_buf) sf_freelist;
86 static vm_offset_t sf_base;
87 static struct sf_buf *sf_bufs;
88 static int sf_buf_alloc_want;
89 
90 /*
91  * System call interface to the socket abstraction.
92  */
93 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
94 #define COMPAT_OLDSOCK
95 #endif
96 
97 extern	struct fileops socketops;
98 
99 /*
100  * socket_args(int domain, int type, int protocol)
101  */
102 int
103 socket(struct socket_args *uap)
104 {
105 	struct thread *td = curthread;
106 	struct proc *p = td->td_proc;
107 	struct filedesc *fdp;
108 	struct socket *so;
109 	struct file *fp;
110 	int fd, error;
111 
112 	KKASSERT(p);
113 	fdp = p->p_fd;
114 
115 	error = falloc(p, &fp, &fd);
116 	if (error)
117 		return (error);
118 	fhold(fp);
119 	error = socreate(uap->domain, &so, uap->type, uap->protocol, td);
120 	if (error) {
121 		if (fdp->fd_ofiles[fd] == fp) {
122 			fdp->fd_ofiles[fd] = NULL;
123 			fdrop(fp, td);
124 		}
125 	} else {
126 		fp->f_data = (caddr_t)so;
127 		fp->f_flag = FREAD|FWRITE;
128 		fp->f_ops = &socketops;
129 		fp->f_type = DTYPE_SOCKET;
130 		uap->sysmsg_result = fd;
131 	}
132 	fdrop(fp, td);
133 	return (error);
134 }
135 
136 int
137 kern_bind(int s, struct sockaddr *sa)
138 {
139 	struct thread *td = curthread;
140 	struct proc *p = td->td_proc;
141 	struct file *fp;
142 	int error;
143 
144 	KKASSERT(p);
145 	error = holdsock(p->p_fd, s, &fp);
146 	if (error)
147 		return (error);
148 	error = sobind((struct socket *)fp->f_data, sa, td);
149 	fdrop(fp, td);
150 	return (error);
151 }
152 
153 /*
154  * bind_args(int s, caddr_t name, int namelen)
155  */
156 int
157 bind(struct bind_args *uap)
158 {
159 	struct sockaddr *sa;
160 	int error;
161 
162 	error = getsockaddr(&sa, uap->name, uap->namelen);
163 	if (error)
164 		return (error);
165 	error = kern_bind(uap->s, sa);
166 	FREE(sa, M_SONAME);
167 
168 	return (error);
169 }
170 
171 int
172 kern_listen(int s, int backlog)
173 {
174 	struct thread *td = curthread;
175 	struct proc *p = td->td_proc;
176 	struct file *fp;
177 	int error;
178 
179 	KKASSERT(p);
180 	error = holdsock(p->p_fd, s, &fp);
181 	if (error)
182 		return (error);
183 	error = solisten((struct socket *)fp->f_data, backlog, td);
184 	fdrop(fp, td);
185 	return(error);
186 }
187 
188 /*
189  * listen_args(int s, int backlog)
190  */
191 int
192 listen(struct listen_args *uap)
193 {
194 	int error;
195 
196 	error = kern_listen(uap->s, uap->backlog);
197 	return (error);
198 }
199 
200 /*
201  * The second argument to kern_accept() is a handle to a struct sockaddr.
202  * This allows kern_accept() to return a pointer to an allocated struct
203  * sockaddr which must be freed later with FREE().  The caller must
204  * initialize *name to NULL.
205  */
206 int
207 kern_accept(int s, struct sockaddr **name, int *namelen, int *res)
208 {
209 	struct thread *td = curthread;
210 	struct proc *p = td->td_proc;
211 	struct filedesc *fdp = p->p_fd;
212 	struct file *lfp = NULL;
213 	struct file *nfp = NULL;
214 	struct sockaddr *sa;
215 	int error, s1;
216 	struct socket *head, *so;
217 	int fd;
218 	u_int fflag;		/* type must match fp->f_flag */
219 	int tmp;
220 
221 	if (name && namelen && *namelen < 0)
222 		return (EINVAL);
223 
224 	error = holdsock(fdp, s, &lfp);
225 	if (error)
226 		return (error);
227 	s1 = splnet();
228 	head = (struct socket *)lfp->f_data;
229 	if ((head->so_options & SO_ACCEPTCONN) == 0) {
230 		splx(s1);
231 		error = EINVAL;
232 		goto done;
233 	}
234 	while (TAILQ_EMPTY(&head->so_comp) && head->so_error == 0) {
235 		if (head->so_state & SS_CANTRCVMORE) {
236 			head->so_error = ECONNABORTED;
237 			break;
238 		}
239 		if ((head->so_state & SS_NBIO) != 0) {
240 			head->so_error = EWOULDBLOCK;
241 			break;
242 		}
243 		error = tsleep((caddr_t)&head->so_timeo, PCATCH, "accept", 0);
244 		if (error) {
245 			splx(s1);
246 			goto done;
247 		}
248 	}
249 	if (head->so_error) {
250 		error = head->so_error;
251 		head->so_error = 0;
252 		splx(s1);
253 		goto done;
254 	}
255 
256 	/*
257 	 * At this point we know that there is at least one connection
258 	 * ready to be accepted. Remove it from the queue prior to
259 	 * allocating the file descriptor for it since falloc() may
260 	 * block allowing another process to accept the connection
261 	 * instead.
262 	 */
263 	so = TAILQ_FIRST(&head->so_comp);
264 	TAILQ_REMOVE(&head->so_comp, so, so_list);
265 	head->so_qlen--;
266 
267 	fflag = lfp->f_flag;
268 	error = falloc(p, &nfp, &fd);
269 	if (error) {
270 		/*
271 		 * Probably ran out of file descriptors. Put the
272 		 * unaccepted connection back onto the queue and
273 		 * do another wakeup so some other process might
274 		 * have a chance at it.
275 		 */
276 		TAILQ_INSERT_HEAD(&head->so_comp, so, so_list);
277 		head->so_qlen++;
278 		wakeup_one(&head->so_timeo);
279 		splx(s1);
280 		goto done;
281 	}
282 	fhold(nfp);
283 	*res = fd;
284 
285 	/* connection has been removed from the listen queue */
286 	KNOTE(&head->so_rcv.sb_sel.si_note, 0);
287 
288 	so->so_state &= ~SS_COMP;
289 	so->so_head = NULL;
290 	if (head->so_sigio != NULL)
291 		fsetown(fgetown(head->so_sigio), &so->so_sigio);
292 
293 	nfp->f_data = (caddr_t)so;
294 	nfp->f_flag = fflag;
295 	nfp->f_ops = &socketops;
296 	nfp->f_type = DTYPE_SOCKET;
297 	/* Sync socket nonblocking/async state with file flags */
298 	tmp = fflag & FNONBLOCK;
299 	(void) fo_ioctl(nfp, FIONBIO, (caddr_t)&tmp, td);
300 	tmp = fflag & FASYNC;
301 	(void) fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, td);
302 
303 	sa = NULL;
304 	error = soaccept(so, &sa);
305 
306 	/*
307 	 * Set the returned name and namelen as applicable.  Set the returned
308 	 * namelen to 0 for older code which might ignore the return value
309 	 * from accept.
310 	 */
311 	if (error == 0) {
312 		if (sa && name && namelen) {
313 			if (*namelen > sa->sa_len)
314 				*namelen = sa->sa_len;
315 			*name = sa;
316 		} else {
317 			if (sa)
318 				FREE(sa, M_SONAME);
319 		}
320 	}
321 
322 	/*
323 	 * close the new descriptor, assuming someone hasn't ripped it
324 	 * out from under us.  Note that *res is normally ignored if an
325 	 * error is returned but a syscall message will still have access
326 	 * to the result code.
327 	 */
328 	if (error) {
329 		*res = -1;
330 		if (fdp->fd_ofiles[fd] == nfp) {
331 			fdp->fd_ofiles[fd] = NULL;
332 			fdrop(nfp, td);
333 		}
334 	}
335 	splx(s1);
336 
337 	/*
338 	 * Release explicitly held references before returning.
339 	 */
340 done:
341 	if (nfp != NULL)
342 		fdrop(nfp, td);
343 	fdrop(lfp, td);
344 	return (error);
345 }
346 
347 /*
348  * accept_args(int s, caddr_t name, int *anamelen)
349  */
350 int
351 accept(struct accept_args *uap)
352 {
353 	struct sockaddr *sa = NULL;
354 	int sa_len;
355 	int error;
356 
357 	if (uap->name) {
358 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
359 		if (error)
360 			return (error);
361 
362 		error = kern_accept(uap->s, &sa, &sa_len, &uap->sysmsg_result);
363 
364 		if (error == 0)
365 			error = copyout(sa, uap->name, sa_len);
366 		if (error == 0) {
367 			error = copyout(&sa_len, uap->anamelen,
368 			    sizeof(*uap->anamelen));
369 		}
370 		if (sa)
371 			FREE(sa, M_SONAME);
372 	} else {
373 		error = kern_accept(uap->s, NULL, 0, &uap->sysmsg_result);
374 	}
375 	return (error);
376 }
377 
378 int
379 kern_connect(int s, struct sockaddr *sa)
380 {
381 	struct thread *td = curthread;
382 	struct proc *p = td->td_proc;
383 	struct file *fp;
384 	struct socket *so;
385 	int error;
386 
387 	error = holdsock(p->p_fd, s, &fp);
388 	if (error)
389 		return (error);
390 	so = (struct socket *)fp->f_data;
391 	if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
392 		error = EALREADY;
393 		goto done;
394 	}
395 	error = soconnect(so, sa, td);
396 	if (error)
397 		goto bad;
398 	if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
399 		error = EINPROGRESS;
400 		goto done;
401 	}
402 	s = splnet();
403 	while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
404 		error = tsleep((caddr_t)&so->so_timeo, PCATCH, "connec", 0);
405 		if (error)
406 			break;
407 	}
408 	if (error == 0) {
409 		error = so->so_error;
410 		so->so_error = 0;
411 	}
412 	splx(s);
413 bad:
414 	so->so_state &= ~SS_ISCONNECTING;
415 	if (error == ERESTART)
416 		error = EINTR;
417 done:
418 	fdrop(fp, td);
419 	return (error);
420 }
421 
422 /*
423  * connect_args(int s, caddr_t name, int namelen)
424  */
425 int
426 connect(struct connect_args *uap)
427 {
428 	struct sockaddr *sa;
429 	int error;
430 
431 	error = getsockaddr(&sa, uap->name, uap->namelen);
432 	if (error)
433 		return (error);
434 	error = kern_connect(uap->s, sa);
435 	FREE(sa, M_SONAME);
436 
437 	return (error);
438 }
439 
440 int
441 kern_socketpair(int domain, int type, int protocol, int *sv)
442 {
443 	struct thread *td = curthread;
444 	struct proc *p = td->td_proc;
445 	struct filedesc *fdp;
446 	struct file *fp1, *fp2;
447 	struct socket *so1, *so2;
448 	int fd, error;
449 
450 	KKASSERT(p);
451 	fdp = p->p_fd;
452 	error = socreate(domain, &so1, type, protocol, td);
453 	if (error)
454 		return (error);
455 	error = socreate(domain, &so2, type, protocol, td);
456 	if (error)
457 		goto free1;
458 	error = falloc(p, &fp1, &fd);
459 	if (error)
460 		goto free2;
461 	fhold(fp1);
462 	sv[0] = fd;
463 	fp1->f_data = (caddr_t)so1;
464 	error = falloc(p, &fp2, &fd);
465 	if (error)
466 		goto free3;
467 	fhold(fp2);
468 	fp2->f_data = (caddr_t)so2;
469 	sv[1] = fd;
470 	error = soconnect2(so1, so2);
471 	if (error)
472 		goto free4;
473 	if (type == SOCK_DGRAM) {
474 		/*
475 		 * Datagram socket connection is asymmetric.
476 		 */
477 		 error = soconnect2(so2, so1);
478 		 if (error)
479 			goto free4;
480 	}
481 	fp1->f_flag = fp2->f_flag = FREAD|FWRITE;
482 	fp1->f_ops = fp2->f_ops = &socketops;
483 	fp1->f_type = fp2->f_type = DTYPE_SOCKET;
484 	fdrop(fp1, td);
485 	fdrop(fp2, td);
486 	return (error);
487 free4:
488 	if (fdp->fd_ofiles[sv[1]] == fp2) {
489 		fdp->fd_ofiles[sv[1]] = NULL;
490 		fdrop(fp2, td);
491 	}
492 	fdrop(fp2, td);
493 free3:
494 	if (fdp->fd_ofiles[sv[0]] == fp1) {
495 		fdp->fd_ofiles[sv[0]] = NULL;
496 		fdrop(fp1, td);
497 	}
498 	fdrop(fp1, td);
499 free2:
500 	(void)soclose(so2);
501 free1:
502 	(void)soclose(so1);
503 	return (error);
504 }
505 
506 /*
507  * socketpair(int domain, int type, int protocol, int *rsv)
508  */
509 int
510 socketpair(struct socketpair_args *uap)
511 {
512 	int error, sockv[2];
513 
514 	error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
515 
516 	if (error == 0)
517 		error = copyout(sockv, uap->rsv, sizeof(sockv));
518 	return (error);
519 }
520 
521 int
522 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
523     struct mbuf *control, int flags, int *res)
524 {
525 	struct thread *td = curthread;
526 	struct proc *p = td->td_proc;
527 	struct file *fp;
528 	int len, error;
529 	struct socket *so;
530 #ifdef KTRACE
531 	struct iovec *ktriov = NULL;
532 	struct uio ktruio;
533 #endif
534 
535 	error = holdsock(p->p_fd, s, &fp);
536 	if (error)
537 		return (error);
538 #ifdef KTRACE
539 	if (KTRPOINT(td, KTR_GENIO)) {
540 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
541 
542 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
543 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
544 		ktruio = *auio;
545 	}
546 #endif
547 	len = auio->uio_resid;
548 	so = (struct socket *)fp->f_data;
549 	error = so->so_proto->pr_usrreqs->pru_sosend(so, sa, auio, NULL,
550 	    control, flags, td);
551 	if (error) {
552 		if (auio->uio_resid != len && (error == ERESTART ||
553 		    error == EINTR || error == EWOULDBLOCK))
554 			error = 0;
555 		if (error == EPIPE)
556 			psignal(p, SIGPIPE);
557 	}
558 #ifdef KTRACE
559 	if (ktriov != NULL) {
560 		if (error == 0) {
561 			ktruio.uio_iov = ktriov;
562 			ktruio.uio_resid = len - auio->uio_resid;
563 			ktrgenio(p->p_tracep, s, UIO_WRITE, &ktruio, error);
564 		}
565 		FREE(ktriov, M_TEMP);
566 	}
567 #endif
568 	if (error == 0)
569 		*res  = len - auio->uio_resid;
570 	fdrop(fp, td);
571 	return (error);
572 }
573 
574 /*
575  * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
576  */
577 int
578 sendto(struct sendto_args *uap)
579 {
580 	struct thread *td = curthread;
581 	struct uio auio;
582 	struct iovec aiov;
583 	struct sockaddr *sa = NULL;
584 	int error;
585 
586 	if (uap->to) {
587 		error = getsockaddr(&sa, uap->to, uap->tolen);
588 		if (error)
589 			return (error);
590 	}
591 	aiov.iov_base = uap->buf;
592 	aiov.iov_len = uap->len;
593 	auio.uio_iov = &aiov;
594 	auio.uio_iovcnt = 1;
595 	auio.uio_offset = 0;
596 	auio.uio_resid = uap->len;
597 	auio.uio_segflg = UIO_USERSPACE;
598 	auio.uio_rw = UIO_WRITE;
599 	auio.uio_td = td;
600 
601 	error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
602 	    &uap->sysmsg_result);
603 
604 	if (sa)
605 		FREE(sa, M_SONAME);
606 	return (error);
607 }
608 
609 /*
610  * sendmsg_args(int s, caddr_t msg, int flags)
611  */
612 int
613 sendmsg(struct sendmsg_args *uap)
614 {
615 	struct thread *td = curthread;
616 	struct msghdr msg;
617 	struct uio auio;
618 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL, *iovp;
619 	struct sockaddr *sa = NULL;
620 	struct mbuf *control = NULL;
621 	int error, i;
622 
623 	error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
624 	if (error)
625 		return (error);
626 
627 	/*
628 	 * Conditionally copyin msg.msg_name.
629 	 */
630 	if (msg.msg_name) {
631 		error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
632 		if (error)
633 			return (error);
634 	}
635 
636 	/*
637 	 * Populate auio.
638 	 */
639 	if (msg.msg_iovlen >= UIO_MAXIOV) {
640 		error =  EMSGSIZE;
641 		goto cleanup;
642 	}
643 	if (msg.msg_iovlen >= UIO_SMALLIOV) {
644 		MALLOC(iov, struct iovec *,
645 		    sizeof(struct iovec) * msg.msg_iovlen, M_IOV, M_WAITOK);
646 	} else {
647 		iov = aiov;
648 	}
649 	error = copyin(msg.msg_iov, iov, msg.msg_iovlen * sizeof(struct iovec));
650 	if (error)
651 		goto cleanup;
652 	auio.uio_iov = iov;
653 	auio.uio_iovcnt = msg.msg_iovlen;
654 	auio.uio_offset = 0;
655 	auio.uio_resid = 0;
656 	for (i = 0, iovp = auio.uio_iov; i < msg.msg_iovlen; i++, iovp++) {
657 		auio.uio_resid += iovp->iov_len;
658 		if (auio.uio_resid < 0) {
659 			error = EINVAL;
660 			goto cleanup;
661 		}
662 	}
663 	auio.uio_segflg = UIO_USERSPACE;
664 	auio.uio_rw = UIO_WRITE;
665 	auio.uio_td = td;
666 
667 	/*
668 	 * Conditionally copyin msg.msg_control.
669 	 */
670 	if (msg.msg_control) {
671 		if (msg.msg_controllen < sizeof(struct cmsghdr) ||
672 		    msg.msg_controllen > MLEN) {
673 			error = EINVAL;
674 			goto cleanup;
675 		}
676 		control = m_get(M_WAIT, MT_CONTROL);
677 		if (control == NULL) {
678 			error = ENOBUFS;
679 			goto cleanup;
680 		}
681 		control->m_len = msg.msg_controllen;
682 		error = copyin(msg.msg_control, mtod(control, caddr_t),
683 		    msg.msg_controllen);
684 		if (error) {
685 			m_free(control);
686 			goto cleanup;
687 		}
688 	}
689 
690 	error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
691 	    &uap->sysmsg_result);
692 
693 cleanup:
694 	if (sa)
695 		FREE(sa, M_SONAME);
696 	if (iov != aiov)
697 		FREE(iov, M_IOV);
698 	return (error);
699 }
700 
701 /*
702  * kern_recvmsg() takes a handle to sa and control.  If the handle is non-
703  * null, it returns a dynamically allocated struct sockaddr and an mbuf.
704  * Don't forget to FREE() and m_free() these if they are returned.
705  */
706 int
707 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
708     struct mbuf **control, int *flags, int *res)
709 {
710 	struct thread *td = curthread;
711 	struct proc *p = td->td_proc;
712 	struct file *fp;
713 	int len, error;
714 	struct socket *so;
715 #ifdef KTRACE
716 	struct iovec *ktriov = NULL;
717 	struct uio ktruio;
718 #endif
719 
720 	error = holdsock(p->p_fd, s, &fp);
721 	if (error)
722 		return (error);
723 #ifdef KTRACE
724 	if (KTRPOINT(td, KTR_GENIO)) {
725 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
726 
727 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
728 		bcopy(auio->uio_iov, ktriov, iovlen);
729 		ktruio = *auio;
730 	}
731 #endif
732 	len = auio->uio_resid;
733 	so = (struct socket *)fp->f_data;
734 	error = so->so_proto->pr_usrreqs->pru_soreceive(so, sa, auio, NULL,
735 	    control, flags);
736 	if (error) {
737 		if (auio->uio_resid != len && (error == ERESTART ||
738 		    error == EINTR || error == EWOULDBLOCK))
739 			error = 0;
740 	}
741 #ifdef KTRACE
742 	if (ktriov != NULL) {
743 		if (error == 0) {
744 			ktruio.uio_iov = ktriov;
745 			ktruio.uio_resid = len - auio->uio_resid;
746 			ktrgenio(p->p_tracep, s, UIO_READ, &ktruio, error);
747 		}
748 		FREE(ktriov, M_TEMP);
749 	}
750 #endif
751 	if (error == 0)
752 		*res = len - auio->uio_resid;
753 	fdrop(fp, td);
754 	return (error);
755 }
756 
757 /*
758  * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
759  *			caddr_t from, int *fromlenaddr)
760  */
761 int
762 recvfrom(struct recvfrom_args *uap)
763 {
764 	struct thread *td = curthread;
765 	struct uio auio;
766 	struct iovec aiov;
767 	struct sockaddr *sa = NULL;
768 	int error, fromlen;
769 
770 	if (uap->from && uap->fromlenaddr) {
771 		error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
772 		if (error)
773 			return (error);
774 		if (fromlen < 0)
775 			return (EINVAL);
776 	} else {
777 		fromlen = 0;
778 	}
779 	aiov.iov_base = uap->buf;
780 	aiov.iov_len = uap->len;
781 	auio.uio_iov = &aiov;
782 	auio.uio_iovcnt = 1;
783 	auio.uio_offset = 0;
784 	auio.uio_resid = uap->len;
785 	auio.uio_segflg = UIO_USERSPACE;
786 	auio.uio_rw = UIO_READ;
787 	auio.uio_td = td;
788 
789 	error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
790 	    &uap->flags, &uap->sysmsg_result);
791 
792 	if (error == 0 && uap->from) {
793 		fromlen = MIN(fromlen, sa->sa_len);
794 		error = copyout(sa, uap->from, fromlen);
795 		if (error == 0)
796 			error = copyout(&fromlen, uap->fromlenaddr,
797 			    sizeof(fromlen));
798 	}
799 	if (sa)
800 		FREE(sa, M_SONAME);
801 
802 	return (error);
803 }
804 
805 /*
806  * recvmsg_args(int s, struct msghdr *msg, int flags)
807  */
808 int
809 recvmsg(struct recvmsg_args *uap)
810 {
811 	struct thread *td = curthread;
812 	struct msghdr msg;
813 	struct uio auio;
814 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL, *iovp;
815 	struct mbuf *m, *control;
816 	struct sockaddr *sa = NULL;
817 	caddr_t ctlbuf;
818 	socklen_t *ufromlenp, *ucontrollenp;
819 	int error, fromlen, controllen, len, i, flags, *uflagsp;
820 
821 	/*
822 	 * This copyin handles everything except the iovec.
823 	 */
824 	error = copyin(uap->msg, &msg, sizeof(msg));
825 	if (error)
826 		return (error);
827 
828 	if (msg.msg_name && msg.msg_namelen < 0)
829 		return (EINVAL);
830 	if (msg.msg_control && msg.msg_controllen < 0)
831 		return (EINVAL);
832 
833 	ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
834 	    msg_namelen));
835 	ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
836 	    msg_controllen));
837 	uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
838 	    msg_flags));
839 
840 	/*
841 	 * Populate auio.
842 	 */
843 	if (msg.msg_iovlen >= UIO_MAXIOV)
844 		return (EMSGSIZE);
845 	if (msg.msg_iovlen >= UIO_SMALLIOV) {
846 		MALLOC(iov, struct iovec *,
847 		    sizeof(struct iovec) * msg.msg_iovlen, M_IOV, M_WAITOK);
848 	} else {
849 		iov = aiov;
850 	}
851 	error = copyin(msg.msg_iov, iov, msg.msg_iovlen * sizeof(struct iovec));
852 	if (error)
853 		goto cleanup;
854 	auio.uio_iov = iov;
855 	auio.uio_iovcnt = msg.msg_iovlen;
856 	auio.uio_offset = 0;
857 	auio.uio_resid = 0;
858 	for (i = 0, iovp = auio.uio_iov; i < msg.msg_iovlen; i++, iovp++) {
859 		auio.uio_resid += iovp->iov_len;
860 		if (auio.uio_resid < 0) {
861 			error = EINVAL;
862 			goto cleanup;
863 		}
864 	}
865 	auio.uio_segflg = UIO_USERSPACE;
866 	auio.uio_rw = UIO_READ;
867 	auio.uio_td = td;
868 
869 	flags = msg.msg_flags;
870 
871 	error = kern_recvmsg(uap->s, msg.msg_name ? &sa : NULL, &auio,
872 	    msg.msg_control ? &control : NULL, &flags, &uap->sysmsg_result);
873 
874 	/*
875 	 * Conditionally copyout the name and populate the namelen field.
876 	 */
877 	if (error == 0 && msg.msg_name) {
878 		fromlen = MIN(msg.msg_namelen, sa->sa_len);
879 		error = copyout(sa, msg.msg_name, fromlen);
880 		if (error == 0)
881 			error = copyout(&fromlen, ufromlenp,
882 			    sizeof(*ufromlenp));
883 	}
884 
885 	/*
886 	 * Copyout msg.msg_control and msg.msg_controllen.
887 	 */
888 	if (error == 0 && msg.msg_control) {
889 		len = msg.msg_controllen;
890 		m = control;
891 		ctlbuf = (caddr_t)msg.msg_control;
892 
893 		while(m && len > 0) {
894 			unsigned int tocopy;
895 
896 			if (len >= m->m_len) {
897 				tocopy = m->m_len;
898 			} else {
899 				msg.msg_flags |= MSG_CTRUNC;
900 				tocopy = len;
901 			}
902 
903 			error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
904 			if (error)
905 				goto cleanup;
906 
907 			ctlbuf += tocopy;
908 			len -= tocopy;
909 			m = m->m_next;
910 		}
911 		controllen = ctlbuf - (caddr_t)msg.msg_control;
912 		error = copyout(&controllen, ucontrollenp,
913 		    sizeof(*ucontrollenp));
914 	}
915 
916 	if (error == 0)
917 		error = copyout(&flags, uflagsp, sizeof(*uflagsp));
918 
919 cleanup:
920 	if (sa)
921 		FREE(sa, M_SONAME);
922 	if (iov != aiov)
923 		FREE(iov, M_IOV);
924 	if (control)
925 		m_freem(control);
926 	return (error);
927 }
928 
929 /*
930  * shutdown_args(int s, int how)
931  */
932 /* ARGSUSED */
933 int
934 shutdown(struct shutdown_args *uap)
935 {
936 	struct thread *td = curthread;
937 	struct proc *p = td->td_proc;
938 	struct file *fp;
939 	int error;
940 
941 	KKASSERT(p);
942 	error = holdsock(p->p_fd, uap->s, &fp);
943 	if (error)
944 		return (error);
945 	error = soshutdown((struct socket *)fp->f_data, uap->how);
946 	fdrop(fp, td);
947 	return(error);
948 }
949 
950 /*
951  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
952  * in kernel pointer instead of a userland pointer.  This allows us
953  * to manipulate socket options in the emulation code.
954  */
955 int
956 kern_setsockopt(int s, struct sockopt *sopt)
957 {
958 	struct thread *td = curthread;
959 	struct proc *p = td->td_proc;
960 	struct file *fp;
961 	int error;
962 
963 	if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
964 		return (EFAULT);
965 	if (sopt->sopt_valsize < 0)
966 		return (EINVAL);
967 
968 	error = holdsock(p->p_fd, s, &fp);
969 	if (error)
970 		return (error);
971 
972 	error = sosetopt((struct socket *)fp->f_data, sopt);
973 	fdrop(fp, td);
974 	return (error);
975 }
976 
977 /*
978  * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
979  */
980 int
981 setsockopt(struct setsockopt_args *uap)
982 {
983 	struct thread *td = curthread;
984 	struct sockopt sopt;
985 	int error;
986 
987 	sopt.sopt_dir = SOPT_SET;
988 	sopt.sopt_level = uap->level;
989 	sopt.sopt_name = uap->name;
990 	sopt.sopt_val = uap->val;
991 	sopt.sopt_valsize = uap->valsize;
992 	sopt.sopt_td = td;
993 
994 	error = kern_setsockopt(uap->s, &sopt);
995 	return(error);
996 }
997 
998 /*
999  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1000  * in kernel pointer instead of a userland pointer.  This allows us
1001  * to manipulate socket options in the emulation code.
1002  */
1003 int
1004 kern_getsockopt(int s, struct sockopt *sopt)
1005 {
1006 	struct thread *td = curthread;
1007 	struct proc *p = td->td_proc;
1008 	struct file *fp;
1009 	int error;
1010 
1011 	if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
1012 		return (EFAULT);
1013 	if (sopt->sopt_valsize < 0)
1014 		return (EINVAL);
1015 
1016 	error = holdsock(p->p_fd, s, &fp);
1017 	if (error)
1018 		return (error);
1019 
1020 	error = sogetopt((struct socket *)fp->f_data, sopt);
1021 	fdrop(fp, td);
1022 	return (error);
1023 }
1024 
1025 /*
1026  * getsockopt_Args(int s, int level, int name, caddr_t val, int *avalsize)
1027  */
1028 int
1029 getsockopt(struct getsockopt_args *uap)
1030 {
1031 	struct thread *td = curthread;
1032 	struct	sockopt sopt;
1033 	int	error, valsize;
1034 
1035 	if (uap->val) {
1036 		error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1037 		if (error)
1038 			return (error);
1039 		if (valsize < 0)
1040 			return (EINVAL);
1041 	} else {
1042 		valsize = 0;
1043 	}
1044 
1045 	sopt.sopt_dir = SOPT_GET;
1046 	sopt.sopt_level = uap->level;
1047 	sopt.sopt_name = uap->name;
1048 	sopt.sopt_val = uap->val;
1049 	sopt.sopt_valsize = valsize;
1050 	sopt.sopt_td = td;
1051 
1052 	error = kern_getsockopt(uap->s, &sopt);
1053 	if (error == 0) {
1054 		valsize = sopt.sopt_valsize;
1055 		error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1056 	}
1057 	return (error);
1058 }
1059 
1060 /*
1061  * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1062  * This allows kern_getsockname() to return a pointer to an allocated struct
1063  * sockaddr which must be freed later with FREE().  The caller must
1064  * initialize *name to NULL.
1065  */
1066 int
1067 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1068 {
1069 	struct thread *td = curthread;
1070 	struct proc *p = td->td_proc;
1071 	struct file *fp;
1072 	struct socket *so;
1073 	struct sockaddr *sa = NULL;
1074 	int error;
1075 
1076 	error = holdsock(p->p_fd, s, &fp);
1077 	if (error)
1078 		return (error);
1079 	if (*namelen < 0) {
1080 		fdrop(fp, td);
1081 		return (EINVAL);
1082 	}
1083 	so = (struct socket *)fp->f_data;
1084 	error = (*so->so_proto->pr_usrreqs->pru_sockaddr)(so, &sa);
1085 	if (error == 0) {
1086 		if (sa == 0) {
1087 			*namelen = 0;
1088 		} else {
1089 			*namelen = MIN(*namelen, sa->sa_len);
1090 			*name = sa;
1091 		}
1092 	}
1093 
1094 	fdrop(fp, td);
1095 	return (error);
1096 }
1097 
1098 /*
1099  * getsockname_args(int fdes, caddr_t asa, int *alen)
1100  *
1101  * Get socket name.
1102  */
1103 int
1104 getsockname(struct getsockname_args *uap)
1105 {
1106 	struct sockaddr *sa = NULL;
1107 	int error, sa_len;
1108 
1109 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1110 	if (error)
1111 		return (error);
1112 
1113 	error = kern_getsockname(uap->fdes, &sa, &sa_len);
1114 
1115 	if (error == 0)
1116 		error = copyout(sa, uap->asa, sa_len);
1117 	if (error == 0)
1118 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1119 	if (sa)
1120 		FREE(sa, M_SONAME);
1121 	return (error);
1122 }
1123 
1124 /*
1125  * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1126  * This allows kern_getpeername() to return a pointer to an allocated struct
1127  * sockaddr which must be freed later with FREE().  The caller must
1128  * initialize *name to NULL.
1129  */
1130 int
1131 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1132 {
1133 	struct thread *td = curthread;
1134 	struct proc *p = td->td_proc;
1135 	struct file *fp;
1136 	struct socket *so;
1137 	struct sockaddr *sa = NULL;
1138 	int error;
1139 
1140 	error = holdsock(p->p_fd, s, &fp);
1141 	if (error)
1142 		return (error);
1143 	if (*namelen < 0) {
1144 		fdrop(fp, td);
1145 		return (EINVAL);
1146 	}
1147 	so = (struct socket *)fp->f_data;
1148 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1149 		fdrop(fp, td);
1150 		return (ENOTCONN);
1151 	}
1152 	error = (*so->so_proto->pr_usrreqs->pru_peeraddr)(so, &sa);
1153 	if (error == 0) {
1154 		if (sa == 0) {
1155 			*namelen = 0;
1156 		} else {
1157 			*namelen = MIN(*namelen, sa->sa_len);
1158 			*name = sa;
1159 		}
1160 	}
1161 
1162 	fdrop(fp, td);
1163 	return (error);
1164 }
1165 
1166 /*
1167  * getpeername_args(int fdes, caddr_t asa, int *alen)
1168  *
1169  * Get name of peer for connected socket.
1170  */
1171 int
1172 getpeername(struct getpeername_args *uap)
1173 {
1174 	struct sockaddr *sa = NULL;
1175 	int error, sa_len;
1176 
1177 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1178 	if (error)
1179 		return (error);
1180 
1181 	error = kern_getpeername(uap->fdes, &sa, &sa_len);
1182 
1183 	if (error == 0)
1184 		error = copyout(sa, uap->asa, sa_len);
1185 	if (error == 0)
1186 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1187 	if (sa)
1188 		FREE(sa, M_SONAME);
1189 	return (error);
1190 }
1191 
1192 /*
1193  * sockargs() will be removed soon.  It is currently only called from the
1194  * emulation code.
1195  */
1196 int
1197 sockargs(mp, buf, buflen, type)
1198 	struct mbuf **mp;
1199 	caddr_t buf;
1200 	int buflen, type;
1201 {
1202 	struct sockaddr *sa;
1203 	struct mbuf *m;
1204 	int error;
1205 
1206 	if ((u_int)buflen > MLEN) {
1207 #ifdef COMPAT_OLDSOCK
1208 		if (type == MT_SONAME && (u_int)buflen <= 112)
1209 			buflen = MLEN;		/* unix domain compat. hack */
1210 		else
1211 #endif
1212 		return (EINVAL);
1213 	}
1214 	m = m_get(M_WAIT, type);
1215 	if (m == NULL)
1216 		return (ENOBUFS);
1217 	m->m_len = buflen;
1218 	error = copyin(buf, mtod(m, caddr_t), (u_int)buflen);
1219 	if (error)
1220 		(void) m_free(m);
1221 	else {
1222 		*mp = m;
1223 		if (type == MT_SONAME) {
1224 			sa = mtod(m, struct sockaddr *);
1225 
1226 #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN
1227 			if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1228 				sa->sa_family = sa->sa_len;
1229 #endif
1230 			sa->sa_len = buflen;
1231 		}
1232 	}
1233 	return (error);
1234 }
1235 
1236 int
1237 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1238 {
1239 	struct sockaddr *sa;
1240 	int error;
1241 
1242 	*namp = NULL;
1243 	if (len > SOCK_MAXADDRLEN)
1244 		return ENAMETOOLONG;
1245 	if (len < offsetof(struct sockaddr, sa_data[0]))
1246 		return EDOM;
1247 	MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK);
1248 	error = copyin(uaddr, sa, len);
1249 	if (error) {
1250 		FREE(sa, M_SONAME);
1251 	} else {
1252 #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN
1253 		if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1254 			sa->sa_family = sa->sa_len;
1255 #endif
1256 		sa->sa_len = len;
1257 		*namp = sa;
1258 	}
1259 	return error;
1260 }
1261 
1262 /*
1263  * holdsock() - load the struct file pointer associated
1264  * with a socket into *fpp.  If an error occurs, non-zero
1265  * will be returned and *fpp will be set to NULL.
1266  */
1267 int
1268 holdsock(fdp, fdes, fpp)
1269 	struct filedesc *fdp;
1270 	int fdes;
1271 	struct file **fpp;
1272 {
1273 	struct file *fp = NULL;
1274 	int error = 0;
1275 
1276 	if ((unsigned)fdes >= fdp->fd_nfiles ||
1277 	    (fp = fdp->fd_ofiles[fdes]) == NULL) {
1278 		error = EBADF;
1279 	} else if (fp->f_type != DTYPE_SOCKET) {
1280 		error = ENOTSOCK;
1281 		fp = NULL;
1282 	} else {
1283 		fhold(fp);
1284 	}
1285 	*fpp = fp;
1286 	return(error);
1287 }
1288 
1289 /*
1290  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
1291  */
1292 static void
1293 sf_buf_init(void *arg)
1294 {
1295 	int i;
1296 
1297 	SLIST_INIT(&sf_freelist);
1298 	sf_base = kmem_alloc_pageable(kernel_map, nsfbufs * PAGE_SIZE);
1299 	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP, M_NOWAIT);
1300 	bzero(sf_bufs, nsfbufs * sizeof(struct sf_buf));
1301 	for (i = 0; i < nsfbufs; i++) {
1302 		sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
1303 		SLIST_INSERT_HEAD(&sf_freelist, &sf_bufs[i], free_list);
1304 	}
1305 }
1306 
1307 /*
1308  * Get an sf_buf from the freelist. Will block if none are available.
1309  */
1310 struct sf_buf *
1311 sf_buf_alloc()
1312 {
1313 	struct sf_buf *sf;
1314 	int s;
1315 	int error;
1316 
1317 	s = splimp();
1318 	while ((sf = SLIST_FIRST(&sf_freelist)) == NULL) {
1319 		sf_buf_alloc_want = 1;
1320 		error = tsleep(&sf_freelist, PCATCH, "sfbufa", 0);
1321 		if (error)
1322 			break;
1323 	}
1324 	if (sf != NULL) {
1325 		SLIST_REMOVE_HEAD(&sf_freelist, free_list);
1326 		sf->refcnt = 1;
1327 	}
1328 	splx(s);
1329 	return (sf);
1330 }
1331 
1332 #define dtosf(x)	(&sf_bufs[((uintptr_t)(x) - (uintptr_t)sf_base) >> PAGE_SHIFT])
1333 void
1334 sf_buf_ref(caddr_t addr, u_int size)
1335 {
1336 	struct sf_buf *sf;
1337 
1338 	sf = dtosf(addr);
1339 	if (sf->refcnt == 0)
1340 		panic("sf_buf_ref: referencing a free sf_buf");
1341 	sf->refcnt++;
1342 }
1343 
1344 /*
1345  * Lose a reference to an sf_buf. When none left, detach mapped page
1346  * and release resources back to the system.
1347  *
1348  * Must be called at splimp.
1349  */
1350 void
1351 sf_buf_free(caddr_t addr, u_int size)
1352 {
1353 	struct sf_buf *sf;
1354 	struct vm_page *m;
1355 	int s;
1356 
1357 	sf = dtosf(addr);
1358 	if (sf->refcnt == 0)
1359 		panic("sf_buf_free: freeing free sf_buf");
1360 	sf->refcnt--;
1361 	if (sf->refcnt == 0) {
1362 		pmap_qremove((vm_offset_t)addr, 1);
1363 		m = sf->m;
1364 		s = splvm();
1365 		vm_page_unwire(m, 0);
1366 		/*
1367 		 * Check for the object going away on us. This can
1368 		 * happen since we don't hold a reference to it.
1369 		 * If so, we're responsible for freeing the page.
1370 		 */
1371 		if (m->wire_count == 0 && m->object == NULL)
1372 			vm_page_free(m);
1373 		splx(s);
1374 		sf->m = NULL;
1375 		SLIST_INSERT_HEAD(&sf_freelist, sf, free_list);
1376 		if (sf_buf_alloc_want) {
1377 			sf_buf_alloc_want = 0;
1378 			wakeup(&sf_freelist);
1379 		}
1380 	}
1381 }
1382 
1383 /*
1384  * sendfile(2).
1385  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1386  *	 struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1387  *
1388  * Send a file specified by 'fd' and starting at 'offset' to a socket
1389  * specified by 's'. Send only 'nbytes' of the file or until EOF if
1390  * nbytes == 0. Optionally add a header and/or trailer to the socket
1391  * output. If specified, write the total number of bytes sent into *sbytes.
1392  */
1393 int
1394 sendfile(struct sendfile_args *uap)
1395 {
1396 	return (do_sendfile(uap, 0));
1397 }
1398 
1399 #ifdef COMPAT_43
1400 int
1401 osendfile(struct osendfile_args *uap)
1402 {
1403 	struct sendfile_args args;
1404 
1405 	args.fd = uap->fd;
1406 	args.s = uap->s;
1407 	args.offset = uap->offset;
1408 	args.nbytes = uap->nbytes;
1409 	args.hdtr = uap->hdtr;
1410 	args.sbytes = uap->sbytes;
1411 	args.flags = uap->flags;
1412 
1413 	return (do_sendfile(&args, 1));
1414 }
1415 #endif
1416 
1417 int
1418 do_sendfile(struct sendfile_args *uap, int compat)
1419 {
1420 	struct thread *td = curthread;
1421 	struct proc *p = td->td_proc;
1422 	struct file *fp;
1423 	struct filedesc *fdp;
1424 	struct vnode *vp;
1425 	struct vm_object *obj;
1426 	struct socket *so;
1427 	struct mbuf *m;
1428 	struct sf_buf *sf;
1429 	struct vm_page *pg;
1430 	struct writev_args nuap;
1431 	struct sf_hdtr hdtr;
1432 	off_t off, xfsize, hdtr_size, sbytes = 0;
1433 	int error = 0, s;
1434 
1435 	KKASSERT(p);
1436 	fdp = p->p_fd;
1437 
1438 	vp = NULL;
1439 	hdtr_size = 0;
1440 	/*
1441 	 * Do argument checking. Must be a regular file in, stream
1442 	 * type and connected socket out, positive offset.
1443 	 */
1444 	fp = holdfp(fdp, uap->fd, FREAD);
1445 	if (fp == NULL) {
1446 		error = EBADF;
1447 		goto done;
1448 	}
1449 	if (fp->f_type != DTYPE_VNODE) {
1450 		error = EINVAL;
1451 		goto done;
1452 	}
1453 	vp = (struct vnode *)fp->f_data;
1454 	vref(vp);
1455 	if (vp->v_type != VREG || VOP_GETVOBJECT(vp, &obj) != 0) {
1456 		error = EINVAL;
1457 		goto done;
1458 	}
1459 	fdrop(fp, td);
1460 	error = holdsock(p->p_fd, uap->s, &fp);
1461 	if (error)
1462 		goto done;
1463 	so = (struct socket *)fp->f_data;
1464 	if (so->so_type != SOCK_STREAM) {
1465 		error = EINVAL;
1466 		goto done;
1467 	}
1468 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1469 		error = ENOTCONN;
1470 		goto done;
1471 	}
1472 	if (uap->offset < 0) {
1473 		error = EINVAL;
1474 		goto done;
1475 	}
1476 
1477 	/*
1478 	 * If specified, get the pointer to the sf_hdtr struct for
1479 	 * any headers/trailers.
1480 	 */
1481 	if (uap->hdtr != NULL) {
1482 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1483 		if (error)
1484 			goto done;
1485 		/*
1486 		 * Send any headers. Wimp out and use writev(2).
1487 		 */
1488 		if (hdtr.headers != NULL) {
1489 			nuap.fd = uap->s;
1490 			nuap.iovp = hdtr.headers;
1491 			nuap.iovcnt = hdtr.hdr_cnt;
1492 			error = writev(&nuap);
1493 			if (error)
1494 				goto done;
1495 			if (compat)
1496 				sbytes += nuap.sysmsg_result;
1497 			else
1498 				hdtr_size += nuap.sysmsg_result;
1499 		}
1500 	}
1501 
1502 	/*
1503 	 * Protect against multiple writers to the socket.
1504 	 */
1505 	(void) sblock(&so->so_snd, M_WAITOK);
1506 
1507 	/*
1508 	 * Loop through the pages in the file, starting with the requested
1509 	 * offset. Get a file page (do I/O if necessary), map the file page
1510 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1511 	 * it on the socket.
1512 	 */
1513 	for (off = uap->offset; ; off += xfsize, sbytes += xfsize) {
1514 		vm_pindex_t pindex;
1515 		vm_offset_t pgoff;
1516 
1517 		pindex = OFF_TO_IDX(off);
1518 retry_lookup:
1519 		/*
1520 		 * Calculate the amount to transfer. Not to exceed a page,
1521 		 * the EOF, or the passed in nbytes.
1522 		 */
1523 		xfsize = obj->un_pager.vnp.vnp_size - off;
1524 		if (xfsize > PAGE_SIZE)
1525 			xfsize = PAGE_SIZE;
1526 		pgoff = (vm_offset_t)(off & PAGE_MASK);
1527 		if (PAGE_SIZE - pgoff < xfsize)
1528 			xfsize = PAGE_SIZE - pgoff;
1529 		if (uap->nbytes && xfsize > (uap->nbytes - sbytes))
1530 			xfsize = uap->nbytes - sbytes;
1531 		if (xfsize <= 0)
1532 			break;
1533 		/*
1534 		 * Optimize the non-blocking case by looking at the socket space
1535 		 * before going to the extra work of constituting the sf_buf.
1536 		 */
1537 		if ((so->so_state & SS_NBIO) && sbspace(&so->so_snd) <= 0) {
1538 			if (so->so_state & SS_CANTSENDMORE)
1539 				error = EPIPE;
1540 			else
1541 				error = EAGAIN;
1542 			sbunlock(&so->so_snd);
1543 			goto done;
1544 		}
1545 		/*
1546 		 * Attempt to look up the page.
1547 		 *
1548 		 *	Allocate if not found
1549 		 *
1550 		 *	Wait and loop if busy.
1551 		 */
1552 		pg = vm_page_lookup(obj, pindex);
1553 
1554 		if (pg == NULL) {
1555 			pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL);
1556 			if (pg == NULL) {
1557 				VM_WAIT;
1558 				goto retry_lookup;
1559 			}
1560 			vm_page_wakeup(pg);
1561 		} else if (vm_page_sleep_busy(pg, TRUE, "sfpbsy")) {
1562 			goto retry_lookup;
1563 		}
1564 
1565 		/*
1566 		 * Wire the page so it does not get ripped out from under
1567 		 * us.
1568 		 */
1569 
1570 		vm_page_wire(pg);
1571 
1572 		/*
1573 		 * If page is not valid for what we need, initiate I/O
1574 		 */
1575 
1576 		if (!pg->valid || !vm_page_is_valid(pg, pgoff, xfsize)) {
1577 			struct uio auio;
1578 			struct iovec aiov;
1579 			int bsize;
1580 
1581 			/*
1582 			 * Ensure that our page is still around when the I/O
1583 			 * completes.
1584 			 */
1585 			vm_page_io_start(pg);
1586 
1587 			/*
1588 			 * Get the page from backing store.
1589 			 */
1590 			bsize = vp->v_mount->mnt_stat.f_iosize;
1591 			auio.uio_iov = &aiov;
1592 			auio.uio_iovcnt = 1;
1593 			aiov.iov_base = 0;
1594 			aiov.iov_len = MAXBSIZE;
1595 			auio.uio_resid = MAXBSIZE;
1596 			auio.uio_offset = trunc_page(off);
1597 			auio.uio_segflg = UIO_NOCOPY;
1598 			auio.uio_rw = UIO_READ;
1599 			auio.uio_td = td;
1600 			vn_lock(vp, LK_SHARED | LK_NOPAUSE | LK_RETRY, td);
1601 			error = VOP_READ(vp, &auio,
1602 				    IO_VMIO | ((MAXBSIZE / bsize) << 16),
1603 				    p->p_ucred);
1604 			VOP_UNLOCK(vp, 0, td);
1605 			vm_page_flag_clear(pg, PG_ZERO);
1606 			vm_page_io_finish(pg);
1607 			if (error) {
1608 				vm_page_unwire(pg, 0);
1609 				/*
1610 				 * See if anyone else might know about this page.
1611 				 * If not and it is not valid, then free it.
1612 				 */
1613 				if (pg->wire_count == 0 && pg->valid == 0 &&
1614 				    pg->busy == 0 && !(pg->flags & PG_BUSY) &&
1615 				    pg->hold_count == 0) {
1616 					vm_page_busy(pg);
1617 					vm_page_free(pg);
1618 				}
1619 				sbunlock(&so->so_snd);
1620 				goto done;
1621 			}
1622 		}
1623 
1624 
1625 		/*
1626 		 * Get a sendfile buf. We usually wait as long as necessary,
1627 		 * but this wait can be interrupted.
1628 		 */
1629 		if ((sf = sf_buf_alloc()) == NULL) {
1630 			s = splvm();
1631 			vm_page_unwire(pg, 0);
1632 			if (pg->wire_count == 0 && pg->object == NULL)
1633 				vm_page_free(pg);
1634 			splx(s);
1635 			sbunlock(&so->so_snd);
1636 			error = EINTR;
1637 			goto done;
1638 		}
1639 
1640 
1641 		/*
1642 		 * Allocate a kernel virtual page and insert the physical page
1643 		 * into it.
1644 		 */
1645 
1646 		sf->m = pg;
1647 		pmap_qenter(sf->kva, &pg, 1);
1648 		/*
1649 		 * Get an mbuf header and set it up as having external storage.
1650 		 */
1651 		MGETHDR(m, M_WAIT, MT_DATA);
1652 		if (m == NULL) {
1653 			error = ENOBUFS;
1654 			sf_buf_free((void *)sf->kva, PAGE_SIZE);
1655 			sbunlock(&so->so_snd);
1656 			goto done;
1657 		}
1658 		m->m_ext.ext_free = sf_buf_free;
1659 		m->m_ext.ext_ref = sf_buf_ref;
1660 		m->m_ext.ext_buf = (void *)sf->kva;
1661 		m->m_ext.ext_size = PAGE_SIZE;
1662 		m->m_data = (char *) sf->kva + pgoff;
1663 		m->m_flags |= M_EXT;
1664 		m->m_pkthdr.len = m->m_len = xfsize;
1665 		/*
1666 		 * Add the buffer to the socket buffer chain.
1667 		 */
1668 		s = splnet();
1669 retry_space:
1670 		/*
1671 		 * Make sure that the socket is still able to take more data.
1672 		 * CANTSENDMORE being true usually means that the connection
1673 		 * was closed. so_error is true when an error was sensed after
1674 		 * a previous send.
1675 		 * The state is checked after the page mapping and buffer
1676 		 * allocation above since those operations may block and make
1677 		 * any socket checks stale. From this point forward, nothing
1678 		 * blocks before the pru_send (or more accurately, any blocking
1679 		 * results in a loop back to here to re-check).
1680 		 */
1681 		if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1682 			if (so->so_state & SS_CANTSENDMORE) {
1683 				error = EPIPE;
1684 			} else {
1685 				error = so->so_error;
1686 				so->so_error = 0;
1687 			}
1688 			m_freem(m);
1689 			sbunlock(&so->so_snd);
1690 			splx(s);
1691 			goto done;
1692 		}
1693 		/*
1694 		 * Wait for socket space to become available. We do this just
1695 		 * after checking the connection state above in order to avoid
1696 		 * a race condition with sbwait().
1697 		 */
1698 		if (sbspace(&so->so_snd) < so->so_snd.sb_lowat) {
1699 			if (so->so_state & SS_NBIO) {
1700 				m_freem(m);
1701 				sbunlock(&so->so_snd);
1702 				splx(s);
1703 				error = EAGAIN;
1704 				goto done;
1705 			}
1706 			error = sbwait(&so->so_snd);
1707 			/*
1708 			 * An error from sbwait usually indicates that we've
1709 			 * been interrupted by a signal. If we've sent anything
1710 			 * then return bytes sent, otherwise return the error.
1711 			 */
1712 			if (error) {
1713 				m_freem(m);
1714 				sbunlock(&so->so_snd);
1715 				splx(s);
1716 				goto done;
1717 			}
1718 			goto retry_space;
1719 		}
1720 		error =
1721 		    (*so->so_proto->pr_usrreqs->pru_send)(so, 0, m, 0, 0, td);
1722 		splx(s);
1723 		if (error) {
1724 			sbunlock(&so->so_snd);
1725 			goto done;
1726 		}
1727 	}
1728 	sbunlock(&so->so_snd);
1729 
1730 	/*
1731 	 * Send trailers. Wimp out and use writev(2).
1732 	 */
1733 	if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1734 			nuap.fd = uap->s;
1735 			nuap.iovp = hdtr.trailers;
1736 			nuap.iovcnt = hdtr.trl_cnt;
1737 			error = writev(&nuap);
1738 			if (error)
1739 				goto done;
1740 			if (compat)
1741 				sbytes += nuap.sysmsg_result;
1742 			else
1743 				hdtr_size += nuap.sysmsg_result;
1744 	}
1745 
1746 done:
1747 	if (uap->sbytes != NULL) {
1748 		if (compat == 0)
1749 			sbytes += hdtr_size;
1750 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1751 	}
1752 	if (vp)
1753 		vrele(vp);
1754 	if (fp)
1755 		fdrop(fp, td);
1756 	return (error);
1757 }
1758