1 /* 2 * Copyright (c) 1982, 1986, 1989, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * sendfile(2) and related extensions: 6 * Copyright (c) 1998, David Greenman. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94 37 * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $ 38 * $DragonFly: src/sys/kern/uipc_syscalls.c,v 1.85 2008/04/14 12:01:50 dillon Exp $ 39 */ 40 41 #include "opt_ktrace.h" 42 #include "opt_sctp.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/sysproto.h> 48 #include <sys/malloc.h> 49 #include <sys/filedesc.h> 50 #include <sys/event.h> 51 #include <sys/proc.h> 52 #include <sys/fcntl.h> 53 #include <sys/file.h> 54 #include <sys/filio.h> 55 #include <sys/kern_syscall.h> 56 #include <sys/mbuf.h> 57 #include <sys/protosw.h> 58 #include <sys/sfbuf.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/socketops.h> 62 #include <sys/uio.h> 63 #include <sys/vnode.h> 64 #include <sys/lock.h> 65 #include <sys/mount.h> 66 #ifdef KTRACE 67 #include <sys/ktrace.h> 68 #endif 69 #include <vm/vm.h> 70 #include <vm/vm_object.h> 71 #include <vm/vm_page.h> 72 #include <vm/vm_pageout.h> 73 #include <vm/vm_kern.h> 74 #include <vm/vm_extern.h> 75 #include <sys/file2.h> 76 #include <sys/signalvar.h> 77 #include <sys/serialize.h> 78 79 #include <sys/thread2.h> 80 #include <sys/msgport2.h> 81 #include <sys/socketvar2.h> 82 #include <net/netmsg2.h> 83 84 #ifdef SCTP 85 #include <netinet/sctp_peeloff.h> 86 #endif /* SCTP */ 87 88 struct sfbuf_mref { 89 struct sf_buf *sf; 90 int mref_count; 91 struct lwkt_serialize serializer; 92 }; 93 94 static MALLOC_DEFINE(M_SENDFILE, "sendfile", "sendfile sfbuf ref structures"); 95 96 /* 97 * System call interface to the socket abstraction. 98 */ 99 100 extern struct fileops socketops; 101 102 /* 103 * socket_args(int domain, int type, int protocol) 104 */ 105 int 106 kern_socket(int domain, int type, int protocol, int *res) 107 { 108 struct thread *td = curthread; 109 struct proc *p = td->td_proc; 110 struct socket *so; 111 struct file *fp; 112 int fd, error; 113 114 KKASSERT(p); 115 116 error = falloc(p, &fp, &fd); 117 if (error) 118 return (error); 119 error = socreate(domain, &so, type, protocol, td); 120 if (error) { 121 fsetfd(p, NULL, fd); 122 } else { 123 fp->f_type = DTYPE_SOCKET; 124 fp->f_flag = FREAD | FWRITE; 125 fp->f_ops = &socketops; 126 fp->f_data = so; 127 *res = fd; 128 fsetfd(p, fp, fd); 129 } 130 fdrop(fp); 131 return (error); 132 } 133 134 int 135 sys_socket(struct socket_args *uap) 136 { 137 int error; 138 139 error = kern_socket(uap->domain, uap->type, uap->protocol, 140 &uap->sysmsg_result); 141 142 return (error); 143 } 144 145 int 146 kern_bind(int s, struct sockaddr *sa) 147 { 148 struct thread *td = curthread; 149 struct proc *p = td->td_proc; 150 struct file *fp; 151 int error; 152 153 KKASSERT(p); 154 error = holdsock(p->p_fd, s, &fp); 155 if (error) 156 return (error); 157 error = sobind((struct socket *)fp->f_data, sa, td); 158 fdrop(fp); 159 return (error); 160 } 161 162 /* 163 * bind_args(int s, caddr_t name, int namelen) 164 */ 165 int 166 sys_bind(struct bind_args *uap) 167 { 168 struct sockaddr *sa; 169 int error; 170 171 error = getsockaddr(&sa, uap->name, uap->namelen); 172 if (error) 173 return (error); 174 error = kern_bind(uap->s, sa); 175 FREE(sa, M_SONAME); 176 177 return (error); 178 } 179 180 int 181 kern_listen(int s, int backlog) 182 { 183 struct thread *td = curthread; 184 struct proc *p = td->td_proc; 185 struct file *fp; 186 int error; 187 188 KKASSERT(p); 189 error = holdsock(p->p_fd, s, &fp); 190 if (error) 191 return (error); 192 error = solisten((struct socket *)fp->f_data, backlog, td); 193 fdrop(fp); 194 return(error); 195 } 196 197 /* 198 * listen_args(int s, int backlog) 199 */ 200 int 201 sys_listen(struct listen_args *uap) 202 { 203 int error; 204 205 error = kern_listen(uap->s, uap->backlog); 206 return (error); 207 } 208 209 /* 210 * Returns the accepted socket as well. 211 */ 212 static boolean_t 213 soaccept_predicate(struct netmsg *msg0) 214 { 215 struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0; 216 struct socket *head = msg->nm_so; 217 218 if (head->so_error != 0) { 219 msg->nm_netmsg.nm_lmsg.ms_error = head->so_error; 220 return (TRUE); 221 } 222 if (!TAILQ_EMPTY(&head->so_comp)) { 223 /* Abuse nm_so field as copy in/copy out parameter. XXX JH */ 224 msg->nm_so = TAILQ_FIRST(&head->so_comp); 225 TAILQ_REMOVE(&head->so_comp, msg->nm_so, so_list); 226 head->so_qlen--; 227 228 msg->nm_netmsg.nm_lmsg.ms_error = 0; 229 return (TRUE); 230 } 231 if (head->so_state & SS_CANTRCVMORE) { 232 msg->nm_netmsg.nm_lmsg.ms_error = ECONNABORTED; 233 return (TRUE); 234 } 235 if (msg->nm_fflags & FNONBLOCK) { 236 msg->nm_netmsg.nm_lmsg.ms_error = EWOULDBLOCK; 237 return (TRUE); 238 } 239 240 return (FALSE); 241 } 242 243 /* 244 * The second argument to kern_accept() is a handle to a struct sockaddr. 245 * This allows kern_accept() to return a pointer to an allocated struct 246 * sockaddr which must be freed later with FREE(). The caller must 247 * initialize *name to NULL. 248 */ 249 int 250 kern_accept(int s, int fflags, struct sockaddr **name, int *namelen, int *res) 251 { 252 struct thread *td = curthread; 253 struct proc *p = td->td_proc; 254 struct file *lfp = NULL; 255 struct file *nfp = NULL; 256 struct sockaddr *sa; 257 struct socket *head, *so; 258 struct netmsg_so_notify msg; 259 lwkt_port_t port; 260 int fd; 261 u_int fflag; /* type must match fp->f_flag */ 262 int error, tmp; 263 264 *res = -1; 265 if (name && namelen && *namelen < 0) 266 return (EINVAL); 267 268 error = holdsock(p->p_fd, s, &lfp); 269 if (error) 270 return (error); 271 272 error = falloc(p, &nfp, &fd); 273 if (error) { /* Probably ran out of file descriptors. */ 274 fdrop(lfp); 275 return (error); 276 } 277 head = (struct socket *)lfp->f_data; 278 if ((head->so_options & SO_ACCEPTCONN) == 0) { 279 error = EINVAL; 280 goto done; 281 } 282 283 if (fflags & O_FBLOCKING) 284 fflags |= lfp->f_flag & ~FNONBLOCK; 285 else if (fflags & O_FNONBLOCKING) 286 fflags |= lfp->f_flag | FNONBLOCK; 287 else 288 fflags = lfp->f_flag; 289 290 /* optimize for uniprocessor case later XXX JH */ 291 port = head->so_proto->pr_mport(head, NULL, NULL, PRU_PRED); 292 netmsg_init_abortable(&msg.nm_netmsg, &curthread->td_msgport, 293 0, 294 netmsg_so_notify, 295 netmsg_so_notify_doabort); 296 msg.nm_predicate = soaccept_predicate; 297 msg.nm_fflags = fflags; 298 msg.nm_so = head; 299 msg.nm_etype = NM_REVENT; 300 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg, PCATCH); 301 if (error) 302 goto done; 303 304 /* 305 * At this point we have the connection that's ready to be accepted. 306 */ 307 so = msg.nm_so; 308 309 fflag = lfp->f_flag; 310 311 /* connection has been removed from the listen queue */ 312 KNOTE(&head->so_rcv.ssb_sel.si_note, 0); 313 314 so->so_state &= ~SS_COMP; 315 so->so_head = NULL; 316 if (head->so_sigio != NULL) 317 fsetown(fgetown(head->so_sigio), &so->so_sigio); 318 319 nfp->f_type = DTYPE_SOCKET; 320 nfp->f_flag = fflag; 321 nfp->f_ops = &socketops; 322 nfp->f_data = so; 323 /* Sync socket nonblocking/async state with file flags */ 324 tmp = fflag & FNONBLOCK; 325 (void) fo_ioctl(nfp, FIONBIO, (caddr_t)&tmp, p->p_ucred); 326 tmp = fflag & FASYNC; 327 (void) fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, p->p_ucred); 328 329 sa = NULL; 330 error = soaccept(so, &sa); 331 332 /* 333 * Set the returned name and namelen as applicable. Set the returned 334 * namelen to 0 for older code which might ignore the return value 335 * from accept. 336 */ 337 if (error == 0) { 338 if (sa && name && namelen) { 339 if (*namelen > sa->sa_len) 340 *namelen = sa->sa_len; 341 *name = sa; 342 } else { 343 if (sa) 344 FREE(sa, M_SONAME); 345 } 346 } 347 348 done: 349 /* 350 * If an error occured clear the reserved descriptor, else associate 351 * nfp with it. 352 * 353 * Note that *res is normally ignored if an error is returned but 354 * a syscall message will still have access to the result code. 355 */ 356 if (error) { 357 fsetfd(p, NULL, fd); 358 } else { 359 *res = fd; 360 fsetfd(p, nfp, fd); 361 } 362 fdrop(nfp); 363 fdrop(lfp); 364 return (error); 365 } 366 367 /* 368 * accept(int s, caddr_t name, int *anamelen) 369 */ 370 int 371 sys_accept(struct accept_args *uap) 372 { 373 struct sockaddr *sa = NULL; 374 int sa_len; 375 int error; 376 377 if (uap->name) { 378 error = copyin(uap->anamelen, &sa_len, sizeof(sa_len)); 379 if (error) 380 return (error); 381 382 error = kern_accept(uap->s, 0, &sa, &sa_len, &uap->sysmsg_result); 383 384 if (error == 0) 385 error = copyout(sa, uap->name, sa_len); 386 if (error == 0) { 387 error = copyout(&sa_len, uap->anamelen, 388 sizeof(*uap->anamelen)); 389 } 390 if (sa) 391 FREE(sa, M_SONAME); 392 } else { 393 error = kern_accept(uap->s, 0, NULL, 0, &uap->sysmsg_result); 394 } 395 return (error); 396 } 397 398 /* 399 * extaccept(int s, int fflags, caddr_t name, int *anamelen) 400 */ 401 int 402 sys_extaccept(struct extaccept_args *uap) 403 { 404 struct sockaddr *sa = NULL; 405 int sa_len; 406 int error; 407 int fflags = uap->flags & O_FMASK; 408 409 if (uap->name) { 410 error = copyin(uap->anamelen, &sa_len, sizeof(sa_len)); 411 if (error) 412 return (error); 413 414 error = kern_accept(uap->s, fflags, &sa, &sa_len, &uap->sysmsg_result); 415 416 if (error == 0) 417 error = copyout(sa, uap->name, sa_len); 418 if (error == 0) { 419 error = copyout(&sa_len, uap->anamelen, 420 sizeof(*uap->anamelen)); 421 } 422 if (sa) 423 FREE(sa, M_SONAME); 424 } else { 425 error = kern_accept(uap->s, fflags, NULL, 0, &uap->sysmsg_result); 426 } 427 return (error); 428 } 429 430 431 /* 432 * Returns TRUE if predicate satisfied. 433 */ 434 static boolean_t 435 soconnected_predicate(struct netmsg *msg0) 436 { 437 struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0; 438 struct socket *so = msg->nm_so; 439 440 /* check predicate */ 441 if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) { 442 msg->nm_netmsg.nm_lmsg.ms_error = so->so_error; 443 return (TRUE); 444 } 445 446 return (FALSE); 447 } 448 449 int 450 kern_connect(int s, int fflags, struct sockaddr *sa) 451 { 452 struct thread *td = curthread; 453 struct proc *p = td->td_proc; 454 struct file *fp; 455 struct socket *so; 456 int error; 457 458 error = holdsock(p->p_fd, s, &fp); 459 if (error) 460 return (error); 461 so = (struct socket *)fp->f_data; 462 463 if (fflags & O_FBLOCKING) 464 /* fflags &= ~FNONBLOCK; */; 465 else if (fflags & O_FNONBLOCKING) 466 fflags |= FNONBLOCK; 467 else 468 fflags = fp->f_flag; 469 470 if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) { 471 error = EALREADY; 472 goto done; 473 } 474 error = soconnect(so, sa, td); 475 if (error) 476 goto bad; 477 if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) { 478 error = EINPROGRESS; 479 goto done; 480 } 481 if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 482 struct netmsg_so_notify msg; 483 lwkt_port_t port; 484 485 port = so->so_proto->pr_mport(so, sa, NULL, PRU_PRED); 486 netmsg_init_abortable(&msg.nm_netmsg, 487 &curthread->td_msgport, 488 0, 489 netmsg_so_notify, 490 netmsg_so_notify_doabort); 491 msg.nm_predicate = soconnected_predicate; 492 msg.nm_so = so; 493 msg.nm_etype = NM_REVENT; 494 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg, PCATCH); 495 } 496 if (error == 0) { 497 error = so->so_error; 498 so->so_error = 0; 499 } 500 bad: 501 so->so_state &= ~SS_ISCONNECTING; 502 if (error == ERESTART) 503 error = EINTR; 504 done: 505 fdrop(fp); 506 return (error); 507 } 508 509 /* 510 * connect_args(int s, caddr_t name, int namelen) 511 */ 512 int 513 sys_connect(struct connect_args *uap) 514 { 515 struct sockaddr *sa; 516 int error; 517 518 error = getsockaddr(&sa, uap->name, uap->namelen); 519 if (error) 520 return (error); 521 error = kern_connect(uap->s, 0, sa); 522 FREE(sa, M_SONAME); 523 524 return (error); 525 } 526 527 /* 528 * connect_args(int s, int fflags, caddr_t name, int namelen) 529 */ 530 int 531 sys_extconnect(struct extconnect_args *uap) 532 { 533 struct sockaddr *sa; 534 int error; 535 int fflags = uap->flags & O_FMASK; 536 537 error = getsockaddr(&sa, uap->name, uap->namelen); 538 if (error) 539 return (error); 540 error = kern_connect(uap->s, fflags, sa); 541 FREE(sa, M_SONAME); 542 543 return (error); 544 } 545 546 int 547 kern_socketpair(int domain, int type, int protocol, int *sv) 548 { 549 struct thread *td = curthread; 550 struct proc *p = td->td_proc; 551 struct file *fp1, *fp2; 552 struct socket *so1, *so2; 553 int fd1, fd2, error; 554 555 KKASSERT(p); 556 error = socreate(domain, &so1, type, protocol, td); 557 if (error) 558 return (error); 559 error = socreate(domain, &so2, type, protocol, td); 560 if (error) 561 goto free1; 562 error = falloc(p, &fp1, &fd1); 563 if (error) 564 goto free2; 565 sv[0] = fd1; 566 fp1->f_data = so1; 567 error = falloc(p, &fp2, &fd2); 568 if (error) 569 goto free3; 570 fp2->f_data = so2; 571 sv[1] = fd2; 572 error = soconnect2(so1, so2); 573 if (error) 574 goto free4; 575 if (type == SOCK_DGRAM) { 576 /* 577 * Datagram socket connection is asymmetric. 578 */ 579 error = soconnect2(so2, so1); 580 if (error) 581 goto free4; 582 } 583 fp1->f_type = fp2->f_type = DTYPE_SOCKET; 584 fp1->f_flag = fp2->f_flag = FREAD|FWRITE; 585 fp1->f_ops = fp2->f_ops = &socketops; 586 fsetfd(p, fp1, fd1); 587 fsetfd(p, fp2, fd2); 588 fdrop(fp1); 589 fdrop(fp2); 590 return (error); 591 free4: 592 fsetfd(p, NULL, fd2); 593 fdrop(fp2); 594 free3: 595 fsetfd(p, NULL, fd1); 596 fdrop(fp1); 597 free2: 598 (void)soclose(so2, 0); 599 free1: 600 (void)soclose(so1, 0); 601 return (error); 602 } 603 604 /* 605 * socketpair(int domain, int type, int protocol, int *rsv) 606 */ 607 int 608 sys_socketpair(struct socketpair_args *uap) 609 { 610 int error, sockv[2]; 611 612 error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv); 613 614 if (error == 0) 615 error = copyout(sockv, uap->rsv, sizeof(sockv)); 616 return (error); 617 } 618 619 int 620 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio, 621 struct mbuf *control, int flags, int *res) 622 { 623 struct thread *td = curthread; 624 struct lwp *lp = td->td_lwp; 625 struct proc *p = td->td_proc; 626 struct file *fp; 627 int len, error; 628 struct socket *so; 629 #ifdef KTRACE 630 struct iovec *ktriov = NULL; 631 struct uio ktruio; 632 #endif 633 634 error = holdsock(p->p_fd, s, &fp); 635 if (error) 636 return (error); 637 if (auio->uio_resid < 0) { 638 error = EINVAL; 639 goto done; 640 } 641 #ifdef KTRACE 642 if (KTRPOINT(td, KTR_GENIO)) { 643 int iovlen = auio->uio_iovcnt * sizeof (struct iovec); 644 645 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK); 646 bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen); 647 ktruio = *auio; 648 } 649 #endif 650 len = auio->uio_resid; 651 so = (struct socket *)fp->f_data; 652 if ((flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) { 653 if (fp->f_flag & FNONBLOCK) 654 flags |= MSG_FNONBLOCKING; 655 } 656 error = so_pru_sosend(so, sa, auio, NULL, control, flags, td); 657 if (error) { 658 if (auio->uio_resid != len && (error == ERESTART || 659 error == EINTR || error == EWOULDBLOCK)) 660 error = 0; 661 if (error == EPIPE) 662 lwpsignal(p, lp, SIGPIPE); 663 } 664 #ifdef KTRACE 665 if (ktriov != NULL) { 666 if (error == 0) { 667 ktruio.uio_iov = ktriov; 668 ktruio.uio_resid = len - auio->uio_resid; 669 ktrgenio(lp, s, UIO_WRITE, &ktruio, error); 670 } 671 FREE(ktriov, M_TEMP); 672 } 673 #endif 674 if (error == 0) 675 *res = len - auio->uio_resid; 676 done: 677 fdrop(fp); 678 return (error); 679 } 680 681 /* 682 * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen) 683 */ 684 int 685 sys_sendto(struct sendto_args *uap) 686 { 687 struct thread *td = curthread; 688 struct uio auio; 689 struct iovec aiov; 690 struct sockaddr *sa = NULL; 691 int error; 692 693 if (uap->to) { 694 error = getsockaddr(&sa, uap->to, uap->tolen); 695 if (error) 696 return (error); 697 } 698 aiov.iov_base = uap->buf; 699 aiov.iov_len = uap->len; 700 auio.uio_iov = &aiov; 701 auio.uio_iovcnt = 1; 702 auio.uio_offset = 0; 703 auio.uio_resid = uap->len; 704 auio.uio_segflg = UIO_USERSPACE; 705 auio.uio_rw = UIO_WRITE; 706 auio.uio_td = td; 707 708 error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags, 709 &uap->sysmsg_result); 710 711 if (sa) 712 FREE(sa, M_SONAME); 713 return (error); 714 } 715 716 /* 717 * sendmsg_args(int s, caddr_t msg, int flags) 718 */ 719 int 720 sys_sendmsg(struct sendmsg_args *uap) 721 { 722 struct thread *td = curthread; 723 struct msghdr msg; 724 struct uio auio; 725 struct iovec aiov[UIO_SMALLIOV], *iov = NULL; 726 struct sockaddr *sa = NULL; 727 struct mbuf *control = NULL; 728 int error; 729 730 error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg)); 731 if (error) 732 return (error); 733 734 /* 735 * Conditionally copyin msg.msg_name. 736 */ 737 if (msg.msg_name) { 738 error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen); 739 if (error) 740 return (error); 741 } 742 743 /* 744 * Populate auio. 745 */ 746 error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen, 747 &auio.uio_resid); 748 if (error) 749 goto cleanup2; 750 auio.uio_iov = iov; 751 auio.uio_iovcnt = msg.msg_iovlen; 752 auio.uio_offset = 0; 753 auio.uio_segflg = UIO_USERSPACE; 754 auio.uio_rw = UIO_WRITE; 755 auio.uio_td = td; 756 757 /* 758 * Conditionally copyin msg.msg_control. 759 */ 760 if (msg.msg_control) { 761 if (msg.msg_controllen < sizeof(struct cmsghdr) || 762 msg.msg_controllen > MLEN) { 763 error = EINVAL; 764 goto cleanup; 765 } 766 control = m_get(MB_WAIT, MT_CONTROL); 767 if (control == NULL) { 768 error = ENOBUFS; 769 goto cleanup; 770 } 771 control->m_len = msg.msg_controllen; 772 error = copyin(msg.msg_control, mtod(control, caddr_t), 773 msg.msg_controllen); 774 if (error) { 775 m_free(control); 776 goto cleanup; 777 } 778 } 779 780 error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags, 781 &uap->sysmsg_result); 782 783 cleanup: 784 iovec_free(&iov, aiov); 785 cleanup2: 786 if (sa) 787 FREE(sa, M_SONAME); 788 return (error); 789 } 790 791 /* 792 * kern_recvmsg() takes a handle to sa and control. If the handle is non- 793 * null, it returns a dynamically allocated struct sockaddr and an mbuf. 794 * Don't forget to FREE() and m_free() these if they are returned. 795 */ 796 int 797 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio, 798 struct mbuf **control, int *flags, int *res) 799 { 800 struct thread *td = curthread; 801 struct proc *p = td->td_proc; 802 struct file *fp; 803 int len, error; 804 int lflags; 805 struct socket *so; 806 #ifdef KTRACE 807 struct iovec *ktriov = NULL; 808 struct uio ktruio; 809 #endif 810 811 error = holdsock(p->p_fd, s, &fp); 812 if (error) 813 return (error); 814 if (auio->uio_resid < 0) { 815 error = EINVAL; 816 goto done; 817 } 818 #ifdef KTRACE 819 if (KTRPOINT(td, KTR_GENIO)) { 820 int iovlen = auio->uio_iovcnt * sizeof (struct iovec); 821 822 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK); 823 bcopy(auio->uio_iov, ktriov, iovlen); 824 ktruio = *auio; 825 } 826 #endif 827 len = auio->uio_resid; 828 so = (struct socket *)fp->f_data; 829 830 if (flags == NULL || (*flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) { 831 if (fp->f_flag & FNONBLOCK) { 832 if (flags) { 833 *flags |= MSG_FNONBLOCKING; 834 } else { 835 lflags = MSG_FNONBLOCKING; 836 flags = &lflags; 837 } 838 } 839 } 840 841 error = so_pru_soreceive(so, sa, auio, NULL, control, flags); 842 if (error) { 843 if (auio->uio_resid != len && (error == ERESTART || 844 error == EINTR || error == EWOULDBLOCK)) 845 error = 0; 846 } 847 #ifdef KTRACE 848 if (ktriov != NULL) { 849 if (error == 0) { 850 ktruio.uio_iov = ktriov; 851 ktruio.uio_resid = len - auio->uio_resid; 852 ktrgenio(td->td_lwp, s, UIO_READ, &ktruio, error); 853 } 854 FREE(ktriov, M_TEMP); 855 } 856 #endif 857 if (error == 0) 858 *res = len - auio->uio_resid; 859 done: 860 fdrop(fp); 861 return (error); 862 } 863 864 /* 865 * recvfrom_args(int s, caddr_t buf, size_t len, int flags, 866 * caddr_t from, int *fromlenaddr) 867 */ 868 int 869 sys_recvfrom(struct recvfrom_args *uap) 870 { 871 struct thread *td = curthread; 872 struct uio auio; 873 struct iovec aiov; 874 struct sockaddr *sa = NULL; 875 int error, fromlen; 876 877 if (uap->from && uap->fromlenaddr) { 878 error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen)); 879 if (error) 880 return (error); 881 if (fromlen < 0) 882 return (EINVAL); 883 } else { 884 fromlen = 0; 885 } 886 aiov.iov_base = uap->buf; 887 aiov.iov_len = uap->len; 888 auio.uio_iov = &aiov; 889 auio.uio_iovcnt = 1; 890 auio.uio_offset = 0; 891 auio.uio_resid = uap->len; 892 auio.uio_segflg = UIO_USERSPACE; 893 auio.uio_rw = UIO_READ; 894 auio.uio_td = td; 895 896 error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL, 897 &uap->flags, &uap->sysmsg_result); 898 899 if (error == 0 && uap->from) { 900 /* note: sa may still be NULL */ 901 if (sa) { 902 fromlen = MIN(fromlen, sa->sa_len); 903 error = copyout(sa, uap->from, fromlen); 904 } else { 905 fromlen = 0; 906 } 907 if (error == 0) { 908 error = copyout(&fromlen, uap->fromlenaddr, 909 sizeof(fromlen)); 910 } 911 } 912 if (sa) 913 FREE(sa, M_SONAME); 914 915 return (error); 916 } 917 918 /* 919 * recvmsg_args(int s, struct msghdr *msg, int flags) 920 */ 921 int 922 sys_recvmsg(struct recvmsg_args *uap) 923 { 924 struct thread *td = curthread; 925 struct msghdr msg; 926 struct uio auio; 927 struct iovec aiov[UIO_SMALLIOV], *iov = NULL; 928 struct mbuf *m, *control = NULL; 929 struct sockaddr *sa = NULL; 930 caddr_t ctlbuf; 931 socklen_t *ufromlenp, *ucontrollenp; 932 int error, fromlen, controllen, len, flags, *uflagsp; 933 934 /* 935 * This copyin handles everything except the iovec. 936 */ 937 error = copyin(uap->msg, &msg, sizeof(msg)); 938 if (error) 939 return (error); 940 941 if (msg.msg_name && msg.msg_namelen < 0) 942 return (EINVAL); 943 if (msg.msg_control && msg.msg_controllen < 0) 944 return (EINVAL); 945 946 ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr, 947 msg_namelen)); 948 ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr, 949 msg_controllen)); 950 uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr, 951 msg_flags)); 952 953 /* 954 * Populate auio. 955 */ 956 error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen, 957 &auio.uio_resid); 958 if (error) 959 return (error); 960 auio.uio_iov = iov; 961 auio.uio_iovcnt = msg.msg_iovlen; 962 auio.uio_offset = 0; 963 auio.uio_segflg = UIO_USERSPACE; 964 auio.uio_rw = UIO_READ; 965 auio.uio_td = td; 966 967 flags = uap->flags; 968 969 error = kern_recvmsg(uap->s, msg.msg_name ? &sa : NULL, &auio, 970 msg.msg_control ? &control : NULL, &flags, &uap->sysmsg_result); 971 972 /* 973 * Conditionally copyout the name and populate the namelen field. 974 */ 975 if (error == 0 && msg.msg_name) { 976 /* note: sa may still be NULL */ 977 if (sa != NULL) { 978 fromlen = MIN(msg.msg_namelen, sa->sa_len); 979 error = copyout(sa, msg.msg_name, fromlen); 980 } else 981 fromlen = 0; 982 if (error == 0) 983 error = copyout(&fromlen, ufromlenp, 984 sizeof(*ufromlenp)); 985 } 986 987 /* 988 * Copyout msg.msg_control and msg.msg_controllen. 989 */ 990 if (error == 0 && msg.msg_control) { 991 len = msg.msg_controllen; 992 m = control; 993 ctlbuf = (caddr_t)msg.msg_control; 994 995 while(m && len > 0) { 996 unsigned int tocopy; 997 998 if (len >= m->m_len) { 999 tocopy = m->m_len; 1000 } else { 1001 msg.msg_flags |= MSG_CTRUNC; 1002 tocopy = len; 1003 } 1004 1005 error = copyout(mtod(m, caddr_t), ctlbuf, tocopy); 1006 if (error) 1007 goto cleanup; 1008 1009 ctlbuf += tocopy; 1010 len -= tocopy; 1011 m = m->m_next; 1012 } 1013 controllen = ctlbuf - (caddr_t)msg.msg_control; 1014 error = copyout(&controllen, ucontrollenp, 1015 sizeof(*ucontrollenp)); 1016 } 1017 1018 if (error == 0) 1019 error = copyout(&flags, uflagsp, sizeof(*uflagsp)); 1020 1021 cleanup: 1022 if (sa) 1023 FREE(sa, M_SONAME); 1024 iovec_free(&iov, aiov); 1025 if (control) 1026 m_freem(control); 1027 return (error); 1028 } 1029 1030 /* 1031 * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an 1032 * in kernel pointer instead of a userland pointer. This allows us 1033 * to manipulate socket options in the emulation code. 1034 */ 1035 int 1036 kern_setsockopt(int s, struct sockopt *sopt) 1037 { 1038 struct thread *td = curthread; 1039 struct proc *p = td->td_proc; 1040 struct file *fp; 1041 int error; 1042 1043 if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0) 1044 return (EFAULT); 1045 if (sopt->sopt_valsize < 0) 1046 return (EINVAL); 1047 1048 error = holdsock(p->p_fd, s, &fp); 1049 if (error) 1050 return (error); 1051 1052 error = sosetopt((struct socket *)fp->f_data, sopt); 1053 fdrop(fp); 1054 return (error); 1055 } 1056 1057 /* 1058 * setsockopt_args(int s, int level, int name, caddr_t val, int valsize) 1059 */ 1060 int 1061 sys_setsockopt(struct setsockopt_args *uap) 1062 { 1063 struct thread *td = curthread; 1064 struct sockopt sopt; 1065 int error; 1066 1067 sopt.sopt_level = uap->level; 1068 sopt.sopt_name = uap->name; 1069 sopt.sopt_val = uap->val; 1070 sopt.sopt_valsize = uap->valsize; 1071 sopt.sopt_td = td; 1072 1073 error = kern_setsockopt(uap->s, &sopt); 1074 return(error); 1075 } 1076 1077 /* 1078 * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an 1079 * in kernel pointer instead of a userland pointer. This allows us 1080 * to manipulate socket options in the emulation code. 1081 */ 1082 int 1083 kern_getsockopt(int s, struct sockopt *sopt) 1084 { 1085 struct thread *td = curthread; 1086 struct proc *p = td->td_proc; 1087 struct file *fp; 1088 int error; 1089 1090 if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0) 1091 return (EFAULT); 1092 if (sopt->sopt_valsize < 0) 1093 return (EINVAL); 1094 1095 error = holdsock(p->p_fd, s, &fp); 1096 if (error) 1097 return (error); 1098 1099 error = sogetopt((struct socket *)fp->f_data, sopt); 1100 fdrop(fp); 1101 return (error); 1102 } 1103 1104 /* 1105 * getsockopt_Args(int s, int level, int name, caddr_t val, int *avalsize) 1106 */ 1107 int 1108 sys_getsockopt(struct getsockopt_args *uap) 1109 { 1110 struct thread *td = curthread; 1111 struct sockopt sopt; 1112 int error, valsize; 1113 1114 if (uap->val) { 1115 error = copyin(uap->avalsize, &valsize, sizeof(valsize)); 1116 if (error) 1117 return (error); 1118 if (valsize < 0) 1119 return (EINVAL); 1120 } else { 1121 valsize = 0; 1122 } 1123 1124 sopt.sopt_level = uap->level; 1125 sopt.sopt_name = uap->name; 1126 sopt.sopt_val = uap->val; 1127 sopt.sopt_valsize = valsize; 1128 sopt.sopt_td = td; 1129 1130 error = kern_getsockopt(uap->s, &sopt); 1131 if (error == 0) { 1132 valsize = sopt.sopt_valsize; 1133 error = copyout(&valsize, uap->avalsize, sizeof(valsize)); 1134 } 1135 return (error); 1136 } 1137 1138 /* 1139 * The second argument to kern_getsockname() is a handle to a struct sockaddr. 1140 * This allows kern_getsockname() to return a pointer to an allocated struct 1141 * sockaddr which must be freed later with FREE(). The caller must 1142 * initialize *name to NULL. 1143 */ 1144 int 1145 kern_getsockname(int s, struct sockaddr **name, int *namelen) 1146 { 1147 struct thread *td = curthread; 1148 struct proc *p = td->td_proc; 1149 struct file *fp; 1150 struct socket *so; 1151 struct sockaddr *sa = NULL; 1152 int error; 1153 1154 error = holdsock(p->p_fd, s, &fp); 1155 if (error) 1156 return (error); 1157 if (*namelen < 0) { 1158 fdrop(fp); 1159 return (EINVAL); 1160 } 1161 so = (struct socket *)fp->f_data; 1162 error = so_pru_sockaddr(so, &sa); 1163 if (error == 0) { 1164 if (sa == 0) { 1165 *namelen = 0; 1166 } else { 1167 *namelen = MIN(*namelen, sa->sa_len); 1168 *name = sa; 1169 } 1170 } 1171 1172 fdrop(fp); 1173 return (error); 1174 } 1175 1176 /* 1177 * getsockname_args(int fdes, caddr_t asa, int *alen) 1178 * 1179 * Get socket name. 1180 */ 1181 int 1182 sys_getsockname(struct getsockname_args *uap) 1183 { 1184 struct sockaddr *sa = NULL; 1185 int error, sa_len; 1186 1187 error = copyin(uap->alen, &sa_len, sizeof(sa_len)); 1188 if (error) 1189 return (error); 1190 1191 error = kern_getsockname(uap->fdes, &sa, &sa_len); 1192 1193 if (error == 0) 1194 error = copyout(sa, uap->asa, sa_len); 1195 if (error == 0) 1196 error = copyout(&sa_len, uap->alen, sizeof(*uap->alen)); 1197 if (sa) 1198 FREE(sa, M_SONAME); 1199 return (error); 1200 } 1201 1202 /* 1203 * The second argument to kern_getpeername() is a handle to a struct sockaddr. 1204 * This allows kern_getpeername() to return a pointer to an allocated struct 1205 * sockaddr which must be freed later with FREE(). The caller must 1206 * initialize *name to NULL. 1207 */ 1208 int 1209 kern_getpeername(int s, struct sockaddr **name, int *namelen) 1210 { 1211 struct thread *td = curthread; 1212 struct proc *p = td->td_proc; 1213 struct file *fp; 1214 struct socket *so; 1215 struct sockaddr *sa = NULL; 1216 int error; 1217 1218 error = holdsock(p->p_fd, s, &fp); 1219 if (error) 1220 return (error); 1221 if (*namelen < 0) { 1222 fdrop(fp); 1223 return (EINVAL); 1224 } 1225 so = (struct socket *)fp->f_data; 1226 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) { 1227 fdrop(fp); 1228 return (ENOTCONN); 1229 } 1230 error = so_pru_peeraddr(so, &sa); 1231 if (error == 0) { 1232 if (sa == 0) { 1233 *namelen = 0; 1234 } else { 1235 *namelen = MIN(*namelen, sa->sa_len); 1236 *name = sa; 1237 } 1238 } 1239 1240 fdrop(fp); 1241 return (error); 1242 } 1243 1244 /* 1245 * getpeername_args(int fdes, caddr_t asa, int *alen) 1246 * 1247 * Get name of peer for connected socket. 1248 */ 1249 int 1250 sys_getpeername(struct getpeername_args *uap) 1251 { 1252 struct sockaddr *sa = NULL; 1253 int error, sa_len; 1254 1255 error = copyin(uap->alen, &sa_len, sizeof(sa_len)); 1256 if (error) 1257 return (error); 1258 1259 error = kern_getpeername(uap->fdes, &sa, &sa_len); 1260 1261 if (error == 0) 1262 error = copyout(sa, uap->asa, sa_len); 1263 if (error == 0) 1264 error = copyout(&sa_len, uap->alen, sizeof(*uap->alen)); 1265 if (sa) 1266 FREE(sa, M_SONAME); 1267 return (error); 1268 } 1269 1270 int 1271 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len) 1272 { 1273 struct sockaddr *sa; 1274 int error; 1275 1276 *namp = NULL; 1277 if (len > SOCK_MAXADDRLEN) 1278 return ENAMETOOLONG; 1279 if (len < offsetof(struct sockaddr, sa_data[0])) 1280 return EDOM; 1281 MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK); 1282 error = copyin(uaddr, sa, len); 1283 if (error) { 1284 FREE(sa, M_SONAME); 1285 } else { 1286 #if BYTE_ORDER != BIG_ENDIAN 1287 /* 1288 * The bind(), connect(), and sendto() syscalls were not 1289 * versioned for COMPAT_43. Thus, this check must stay. 1290 */ 1291 if (sa->sa_family == 0 && sa->sa_len < AF_MAX) 1292 sa->sa_family = sa->sa_len; 1293 #endif 1294 sa->sa_len = len; 1295 *namp = sa; 1296 } 1297 return error; 1298 } 1299 1300 /* 1301 * Detach a mapped page and release resources back to the system. 1302 * We must release our wiring and if the object is ripped out 1303 * from under the vm_page we become responsible for freeing the 1304 * page. These routines must be MPSAFE. 1305 * 1306 * XXX HACK XXX TEMPORARY UNTIL WE IMPLEMENT EXT MBUF REFERENCE COUNTING 1307 * 1308 * XXX vm_page_*() routines are not MPSAFE yet, the MP lock is required. 1309 */ 1310 static void 1311 sf_buf_mref(void *arg) 1312 { 1313 struct sfbuf_mref *sfm = arg; 1314 1315 /* 1316 * We must already hold a ref so there is no race to 0, just 1317 * atomically increment the count. 1318 */ 1319 atomic_add_int(&sfm->mref_count, 1); 1320 } 1321 1322 static void 1323 sf_buf_mfree(void *arg) 1324 { 1325 struct sfbuf_mref *sfm = arg; 1326 vm_page_t m; 1327 1328 KKASSERT(sfm->mref_count > 0); 1329 if (sfm->mref_count == 1) { 1330 /* 1331 * We are the only holder so no further locking is required, 1332 * the sfbuf can simply be freed. 1333 */ 1334 sfm->mref_count = 0; 1335 goto freeit; 1336 } else { 1337 /* 1338 * There may be other holders, we must obtain the serializer 1339 * to protect against a sf_buf_mfree() race to 0. An atomic 1340 * operation is still required for races against 1341 * sf_buf_mref(). 1342 * 1343 * XXX vm_page_*() and SFBUF routines not MPSAFE yet. 1344 */ 1345 lwkt_serialize_enter(&sfm->serializer); 1346 atomic_subtract_int(&sfm->mref_count, 1); 1347 if (sfm->mref_count == 0) { 1348 lwkt_serialize_exit(&sfm->serializer); 1349 freeit: 1350 get_mplock(); 1351 crit_enter(); 1352 m = sf_buf_page(sfm->sf); 1353 sf_buf_free(sfm->sf); 1354 vm_page_unwire(m, 0); 1355 if (m->wire_count == 0 && m->object == NULL) 1356 vm_page_try_to_free(m); 1357 crit_exit(); 1358 rel_mplock(); 1359 kfree(sfm, M_SENDFILE); 1360 } else { 1361 lwkt_serialize_exit(&sfm->serializer); 1362 } 1363 } 1364 } 1365 1366 /* 1367 * sendfile(2). 1368 * int sendfile(int fd, int s, off_t offset, size_t nbytes, 1369 * struct sf_hdtr *hdtr, off_t *sbytes, int flags) 1370 * 1371 * Send a file specified by 'fd' and starting at 'offset' to a socket 1372 * specified by 's'. Send only 'nbytes' of the file or until EOF if 1373 * nbytes == 0. Optionally add a header and/or trailer to the socket 1374 * output. If specified, write the total number of bytes sent into *sbytes. 1375 * 1376 * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused 1377 * the headers to count against the remaining bytes to be sent from 1378 * the file descriptor. We may wish to implement a compatibility syscall 1379 * in the future. 1380 */ 1381 int 1382 sys_sendfile(struct sendfile_args *uap) 1383 { 1384 struct thread *td = curthread; 1385 struct proc *p = td->td_proc; 1386 struct file *fp; 1387 struct vnode *vp = NULL; 1388 struct sf_hdtr hdtr; 1389 struct iovec aiov[UIO_SMALLIOV], *iov = NULL; 1390 struct uio auio; 1391 struct mbuf *mheader = NULL; 1392 off_t hdtr_size = 0, sbytes; 1393 int error, hbytes = 0, tbytes; 1394 1395 KKASSERT(p); 1396 1397 /* 1398 * Do argument checking. Must be a regular file in, stream 1399 * type and connected socket out, positive offset. 1400 */ 1401 fp = holdfp(p->p_fd, uap->fd, FREAD); 1402 if (fp == NULL) { 1403 return (EBADF); 1404 } 1405 if (fp->f_type != DTYPE_VNODE) { 1406 fdrop(fp); 1407 return (EINVAL); 1408 } 1409 vp = (struct vnode *)fp->f_data; 1410 vref(vp); 1411 fdrop(fp); 1412 1413 /* 1414 * If specified, get the pointer to the sf_hdtr struct for 1415 * any headers/trailers. 1416 */ 1417 if (uap->hdtr) { 1418 error = copyin(uap->hdtr, &hdtr, sizeof(hdtr)); 1419 if (error) 1420 goto done; 1421 /* 1422 * Send any headers. 1423 */ 1424 if (hdtr.headers) { 1425 error = iovec_copyin(hdtr.headers, &iov, aiov, 1426 hdtr.hdr_cnt, &hbytes); 1427 if (error) 1428 goto done; 1429 auio.uio_iov = iov; 1430 auio.uio_iovcnt = hdtr.hdr_cnt; 1431 auio.uio_offset = 0; 1432 auio.uio_segflg = UIO_USERSPACE; 1433 auio.uio_rw = UIO_WRITE; 1434 auio.uio_td = td; 1435 auio.uio_resid = hbytes; 1436 1437 mheader = m_uiomove(&auio); 1438 1439 iovec_free(&iov, aiov); 1440 if (mheader == NULL) 1441 goto done; 1442 } 1443 } 1444 1445 error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader, 1446 &sbytes, uap->flags); 1447 if (error) 1448 goto done; 1449 1450 /* 1451 * Send trailers. Wimp out and use writev(2). 1452 */ 1453 if (uap->hdtr != NULL && hdtr.trailers != NULL) { 1454 error = iovec_copyin(hdtr.trailers, &iov, aiov, 1455 hdtr.trl_cnt, &auio.uio_resid); 1456 if (error) 1457 goto done; 1458 auio.uio_iov = iov; 1459 auio.uio_iovcnt = hdtr.trl_cnt; 1460 auio.uio_offset = 0; 1461 auio.uio_segflg = UIO_USERSPACE; 1462 auio.uio_rw = UIO_WRITE; 1463 auio.uio_td = td; 1464 1465 error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes); 1466 1467 iovec_free(&iov, aiov); 1468 if (error) 1469 goto done; 1470 hdtr_size += tbytes; /* trailer bytes successfully sent */ 1471 } 1472 1473 done: 1474 if (uap->sbytes != NULL) { 1475 sbytes += hdtr_size; 1476 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 1477 } 1478 if (vp) 1479 vrele(vp); 1480 return (error); 1481 } 1482 1483 int 1484 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes, 1485 struct mbuf *mheader, off_t *sbytes, int flags) 1486 { 1487 struct thread *td = curthread; 1488 struct proc *p = td->td_proc; 1489 struct vm_object *obj; 1490 struct socket *so; 1491 struct file *fp; 1492 struct mbuf *m; 1493 struct sf_buf *sf; 1494 struct sfbuf_mref *sfm; 1495 struct vm_page *pg; 1496 off_t off, xfsize; 1497 off_t hbytes = 0; 1498 int error = 0; 1499 1500 if (vp->v_type != VREG) { 1501 error = EINVAL; 1502 goto done0; 1503 } 1504 if ((obj = vp->v_object) == NULL) { 1505 error = EINVAL; 1506 goto done0; 1507 } 1508 error = holdsock(p->p_fd, sfd, &fp); 1509 if (error) 1510 goto done0; 1511 so = (struct socket *)fp->f_data; 1512 if (so->so_type != SOCK_STREAM) { 1513 error = EINVAL; 1514 goto done; 1515 } 1516 if ((so->so_state & SS_ISCONNECTED) == 0) { 1517 error = ENOTCONN; 1518 goto done; 1519 } 1520 if (offset < 0) { 1521 error = EINVAL; 1522 goto done; 1523 } 1524 1525 *sbytes = 0; 1526 /* 1527 * Protect against multiple writers to the socket. 1528 */ 1529 ssb_lock(&so->so_snd, M_WAITOK); 1530 1531 /* 1532 * Loop through the pages in the file, starting with the requested 1533 * offset. Get a file page (do I/O if necessary), map the file page 1534 * into an sf_buf, attach an mbuf header to the sf_buf, and queue 1535 * it on the socket. 1536 */ 1537 for (off = offset; ; off += xfsize, *sbytes += xfsize + hbytes) { 1538 vm_pindex_t pindex; 1539 vm_offset_t pgoff; 1540 1541 pindex = OFF_TO_IDX(off); 1542 retry_lookup: 1543 /* 1544 * Calculate the amount to transfer. Not to exceed a page, 1545 * the EOF, or the passed in nbytes. 1546 */ 1547 xfsize = vp->v_filesize - off; 1548 if (xfsize > PAGE_SIZE) 1549 xfsize = PAGE_SIZE; 1550 pgoff = (vm_offset_t)(off & PAGE_MASK); 1551 if (PAGE_SIZE - pgoff < xfsize) 1552 xfsize = PAGE_SIZE - pgoff; 1553 if (nbytes && xfsize > (nbytes - *sbytes)) 1554 xfsize = nbytes - *sbytes; 1555 if (xfsize <= 0) 1556 break; 1557 /* 1558 * Optimize the non-blocking case by looking at the socket space 1559 * before going to the extra work of constituting the sf_buf. 1560 */ 1561 if ((fp->f_flag & FNONBLOCK) && ssb_space(&so->so_snd) <= 0) { 1562 if (so->so_state & SS_CANTSENDMORE) 1563 error = EPIPE; 1564 else 1565 error = EAGAIN; 1566 ssb_unlock(&so->so_snd); 1567 goto done; 1568 } 1569 /* 1570 * Attempt to look up the page. 1571 * 1572 * Allocate if not found, wait and loop if busy, then 1573 * wire the page. critical section protection is 1574 * required to maintain the object association (an 1575 * interrupt can free the page) through to the 1576 * vm_page_wire() call. 1577 */ 1578 crit_enter(); 1579 pg = vm_page_lookup(obj, pindex); 1580 if (pg == NULL) { 1581 pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL); 1582 if (pg == NULL) { 1583 vm_wait(); 1584 crit_exit(); 1585 goto retry_lookup; 1586 } 1587 vm_page_wakeup(pg); 1588 } else if (vm_page_sleep_busy(pg, TRUE, "sfpbsy")) { 1589 crit_exit(); 1590 goto retry_lookup; 1591 } 1592 vm_page_wire(pg); 1593 crit_exit(); 1594 1595 /* 1596 * If page is not valid for what we need, initiate I/O 1597 */ 1598 1599 if (!pg->valid || !vm_page_is_valid(pg, pgoff, xfsize)) { 1600 struct uio auio; 1601 struct iovec aiov; 1602 int bsize; 1603 1604 /* 1605 * Ensure that our page is still around when the I/O 1606 * completes. 1607 */ 1608 vm_page_io_start(pg); 1609 1610 /* 1611 * Get the page from backing store. 1612 */ 1613 bsize = vp->v_mount->mnt_stat.f_iosize; 1614 auio.uio_iov = &aiov; 1615 auio.uio_iovcnt = 1; 1616 aiov.iov_base = 0; 1617 aiov.iov_len = MAXBSIZE; 1618 auio.uio_resid = MAXBSIZE; 1619 auio.uio_offset = trunc_page(off); 1620 auio.uio_segflg = UIO_NOCOPY; 1621 auio.uio_rw = UIO_READ; 1622 auio.uio_td = td; 1623 vn_lock(vp, LK_SHARED | LK_RETRY); 1624 error = VOP_READ(vp, &auio, 1625 IO_VMIO | ((MAXBSIZE / bsize) << 16), 1626 p->p_ucred); 1627 vn_unlock(vp); 1628 vm_page_flag_clear(pg, PG_ZERO); 1629 vm_page_io_finish(pg); 1630 if (error) { 1631 crit_enter(); 1632 vm_page_unwire(pg, 0); 1633 vm_page_try_to_free(pg); 1634 crit_exit(); 1635 ssb_unlock(&so->so_snd); 1636 goto done; 1637 } 1638 } 1639 1640 1641 /* 1642 * Get a sendfile buf. We usually wait as long as necessary, 1643 * but this wait can be interrupted. 1644 */ 1645 if ((sf = sf_buf_alloc(pg, SFB_CATCH)) == NULL) { 1646 crit_enter(); 1647 vm_page_unwire(pg, 0); 1648 vm_page_try_to_free(pg); 1649 crit_exit(); 1650 ssb_unlock(&so->so_snd); 1651 error = EINTR; 1652 goto done; 1653 } 1654 1655 /* 1656 * Get an mbuf header and set it up as having external storage. 1657 */ 1658 MGETHDR(m, MB_WAIT, MT_DATA); 1659 if (m == NULL) { 1660 error = ENOBUFS; 1661 sf_buf_free(sf); 1662 ssb_unlock(&so->so_snd); 1663 goto done; 1664 } 1665 1666 /* 1667 * sfm is a temporary hack, use a per-cpu cache for this. 1668 */ 1669 sfm = kmalloc(sizeof(struct sfbuf_mref), M_SENDFILE, M_WAITOK); 1670 sfm->sf = sf; 1671 sfm->mref_count = 1; 1672 lwkt_serialize_init(&sfm->serializer); 1673 1674 m->m_ext.ext_free = sf_buf_mfree; 1675 m->m_ext.ext_ref = sf_buf_mref; 1676 m->m_ext.ext_arg = sfm; 1677 m->m_ext.ext_buf = (void *)sf->kva; 1678 m->m_ext.ext_size = PAGE_SIZE; 1679 m->m_data = (char *) sf->kva + pgoff; 1680 m->m_flags |= M_EXT; 1681 m->m_pkthdr.len = m->m_len = xfsize; 1682 KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0); 1683 1684 if (mheader != NULL) { 1685 hbytes = mheader->m_pkthdr.len; 1686 mheader->m_pkthdr.len += m->m_pkthdr.len; 1687 m_cat(mheader, m); 1688 m = mheader; 1689 mheader = NULL; 1690 } else 1691 hbytes = 0; 1692 1693 /* 1694 * Add the buffer to the socket buffer chain. 1695 */ 1696 crit_enter(); 1697 retry_space: 1698 /* 1699 * Make sure that the socket is still able to take more data. 1700 * CANTSENDMORE being true usually means that the connection 1701 * was closed. so_error is true when an error was sensed after 1702 * a previous send. 1703 * The state is checked after the page mapping and buffer 1704 * allocation above since those operations may block and make 1705 * any socket checks stale. From this point forward, nothing 1706 * blocks before the pru_send (or more accurately, any blocking 1707 * results in a loop back to here to re-check). 1708 */ 1709 if ((so->so_state & SS_CANTSENDMORE) || so->so_error) { 1710 if (so->so_state & SS_CANTSENDMORE) { 1711 error = EPIPE; 1712 } else { 1713 error = so->so_error; 1714 so->so_error = 0; 1715 } 1716 m_freem(m); 1717 ssb_unlock(&so->so_snd); 1718 crit_exit(); 1719 goto done; 1720 } 1721 /* 1722 * Wait for socket space to become available. We do this just 1723 * after checking the connection state above in order to avoid 1724 * a race condition with ssb_wait(). 1725 */ 1726 if (ssb_space(&so->so_snd) < so->so_snd.ssb_lowat) { 1727 if (fp->f_flag & FNONBLOCK) { 1728 m_freem(m); 1729 ssb_unlock(&so->so_snd); 1730 crit_exit(); 1731 error = EAGAIN; 1732 goto done; 1733 } 1734 error = ssb_wait(&so->so_snd); 1735 /* 1736 * An error from ssb_wait usually indicates that we've 1737 * been interrupted by a signal. If we've sent anything 1738 * then return bytes sent, otherwise return the error. 1739 */ 1740 if (error) { 1741 m_freem(m); 1742 ssb_unlock(&so->so_snd); 1743 crit_exit(); 1744 goto done; 1745 } 1746 goto retry_space; 1747 } 1748 error = so_pru_send(so, 0, m, NULL, NULL, td); 1749 crit_exit(); 1750 if (error) { 1751 ssb_unlock(&so->so_snd); 1752 goto done; 1753 } 1754 } 1755 if (mheader != NULL) { 1756 *sbytes += mheader->m_pkthdr.len; 1757 error = so_pru_send(so, 0, mheader, NULL, NULL, td); 1758 mheader = NULL; 1759 } 1760 ssb_unlock(&so->so_snd); 1761 1762 done: 1763 fdrop(fp); 1764 done0: 1765 if (mheader != NULL) 1766 m_freem(mheader); 1767 return (error); 1768 } 1769 1770 int 1771 sys_sctp_peeloff(struct sctp_peeloff_args *uap) 1772 { 1773 #ifdef SCTP 1774 struct thread *td = curthread; 1775 struct proc *p = td->td_proc; 1776 struct file *lfp = NULL; 1777 struct file *nfp = NULL; 1778 int error; 1779 struct socket *head, *so; 1780 caddr_t assoc_id; 1781 int fd; 1782 short fflag; /* type must match fp->f_flag */ 1783 1784 assoc_id = uap->name; 1785 error = holdsock(p->p_fd, uap->sd, &lfp); 1786 if (error) { 1787 return (error); 1788 } 1789 crit_enter(); 1790 head = (struct socket *)lfp->f_data; 1791 error = sctp_can_peel_off(head, assoc_id); 1792 if (error) { 1793 crit_exit(); 1794 goto done; 1795 } 1796 /* 1797 * At this point we know we do have a assoc to pull 1798 * we proceed to get the fd setup. This may block 1799 * but that is ok. 1800 */ 1801 1802 fflag = lfp->f_flag; 1803 error = falloc(p, &nfp, &fd); 1804 if (error) { 1805 /* 1806 * Probably ran out of file descriptors. Put the 1807 * unaccepted connection back onto the queue and 1808 * do another wakeup so some other process might 1809 * have a chance at it. 1810 */ 1811 crit_exit(); 1812 goto done; 1813 } 1814 uap->sysmsg_result = fd; 1815 1816 so = sctp_get_peeloff(head, assoc_id, &error); 1817 if (so == NULL) { 1818 /* 1819 * Either someone else peeled it off OR 1820 * we can't get a socket. 1821 */ 1822 goto noconnection; 1823 } 1824 so->so_state &= ~SS_COMP; 1825 so->so_state &= ~SS_NOFDREF; 1826 so->so_head = NULL; 1827 if (head->so_sigio != NULL) 1828 fsetown(fgetown(head->so_sigio), &so->so_sigio); 1829 1830 nfp->f_type = DTYPE_SOCKET; 1831 nfp->f_flag = fflag; 1832 nfp->f_ops = &socketops; 1833 nfp->f_data = so; 1834 1835 noconnection: 1836 /* 1837 * Assign the file pointer to the reserved descriptor, or clear 1838 * the reserved descriptor if an error occured. 1839 */ 1840 if (error) 1841 fsetfd(p, NULL, fd); 1842 else 1843 fsetfd(p, nfp, fd); 1844 crit_exit(); 1845 /* 1846 * Release explicitly held references before returning. 1847 */ 1848 done: 1849 if (nfp != NULL) 1850 fdrop(nfp); 1851 fdrop(lfp); 1852 return (error); 1853 #else /* SCTP */ 1854 return(EOPNOTSUPP); 1855 #endif /* SCTP */ 1856 } 1857