xref: /dragonfly/sys/kern/uipc_syscalls.c (revision 6fb88001)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * sendfile(2) and related extensions:
6  * Copyright (c) 1998, David Greenman. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)uipc_syscalls.c	8.4 (Berkeley) 2/21/94
37  * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
38  * $DragonFly: src/sys/kern/uipc_syscalls.c,v 1.59 2005/12/01 18:40:56 dillon Exp $
39  */
40 
41 #include "opt_ktrace.h"
42 #include "opt_sctp.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/sysproto.h>
48 #include <sys/malloc.h>
49 #include <sys/filedesc.h>
50 #include <sys/event.h>
51 #include <sys/proc.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/filio.h>
55 #include <sys/kern_syscall.h>
56 #include <sys/mbuf.h>
57 #include <sys/protosw.h>
58 #include <sys/sfbuf.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/socketops.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 #include <sys/lock.h>
65 #include <sys/mount.h>
66 #ifdef KTRACE
67 #include <sys/ktrace.h>
68 #endif
69 #include <vm/vm.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_pageout.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_extern.h>
75 #include <sys/file2.h>
76 #include <sys/signalvar.h>
77 #include <sys/serialize.h>
78 
79 #include <sys/thread2.h>
80 #include <sys/msgport2.h>
81 
82 #ifdef SCTP
83 #include <netinet/sctp_peeloff.h>
84 #endif /* SCTP */
85 
86 struct sfbuf_mref {
87 	struct sf_buf	*sf;
88 	int		mref_count;
89 	struct lwkt_serialize serializer;
90 };
91 
92 static MALLOC_DEFINE(M_SENDFILE, "sendfile", "sendfile sfbuf ref structures");
93 
94 /*
95  * System call interface to the socket abstraction.
96  */
97 
98 extern	struct fileops socketops;
99 
100 /*
101  * socket_args(int domain, int type, int protocol)
102  */
103 int
104 kern_socket(int domain, int type, int protocol, int *res)
105 {
106 	struct thread *td = curthread;
107 	struct proc *p = td->td_proc;
108 	struct filedesc *fdp;
109 	struct socket *so;
110 	struct file *fp;
111 	int fd, error;
112 
113 	KKASSERT(p);
114 	fdp = p->p_fd;
115 
116 	error = falloc(p, &fp, &fd);
117 	if (error)
118 		return (error);
119 	error = socreate(domain, &so, type, protocol, td);
120 	if (error) {
121 		if (fdp->fd_files[fd].fp == fp) {
122 			funsetfd(fdp, fd);
123 			fdrop(fp, td);
124 		}
125 	} else {
126 		fp->f_type = DTYPE_SOCKET;
127 		fp->f_flag = FREAD | FWRITE;
128 		fp->f_ops = &socketops;
129 		fp->f_data = so;
130 		*res = fd;
131 	}
132 	fdrop(fp, td);
133 	return (error);
134 }
135 
136 int
137 socket(struct socket_args *uap)
138 {
139 	int error;
140 
141 	error = kern_socket(uap->domain, uap->type, uap->protocol,
142 	    &uap->sysmsg_result);
143 
144 	return (error);
145 }
146 
147 int
148 kern_bind(int s, struct sockaddr *sa)
149 {
150 	struct thread *td = curthread;
151 	struct proc *p = td->td_proc;
152 	struct file *fp;
153 	int error;
154 
155 	KKASSERT(p);
156 	error = holdsock(p->p_fd, s, &fp);
157 	if (error)
158 		return (error);
159 	error = sobind((struct socket *)fp->f_data, sa, td);
160 	fdrop(fp, td);
161 	return (error);
162 }
163 
164 /*
165  * bind_args(int s, caddr_t name, int namelen)
166  */
167 int
168 bind(struct bind_args *uap)
169 {
170 	struct sockaddr *sa;
171 	int error;
172 
173 	error = getsockaddr(&sa, uap->name, uap->namelen);
174 	if (error)
175 		return (error);
176 	error = kern_bind(uap->s, sa);
177 	FREE(sa, M_SONAME);
178 
179 	return (error);
180 }
181 
182 int
183 kern_listen(int s, int backlog)
184 {
185 	struct thread *td = curthread;
186 	struct proc *p = td->td_proc;
187 	struct file *fp;
188 	int error;
189 
190 	KKASSERT(p);
191 	error = holdsock(p->p_fd, s, &fp);
192 	if (error)
193 		return (error);
194 	error = solisten((struct socket *)fp->f_data, backlog, td);
195 	fdrop(fp, td);
196 	return(error);
197 }
198 
199 /*
200  * listen_args(int s, int backlog)
201  */
202 int
203 listen(struct listen_args *uap)
204 {
205 	int error;
206 
207 	error = kern_listen(uap->s, uap->backlog);
208 	return (error);
209 }
210 
211 /*
212  * Returns the accepted socket as well.
213  */
214 static boolean_t
215 soaccept_predicate(struct netmsg *msg0)
216 {
217 	struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
218 	struct socket *head = msg->nm_so;
219 
220 	if (head->so_error != 0) {
221 		msg->nm_lmsg.ms_error = head->so_error;
222 		return (TRUE);
223 	}
224 	if (!TAILQ_EMPTY(&head->so_comp)) {
225 		/* Abuse nm_so field as copy in/copy out parameter. XXX JH */
226 		msg->nm_so = TAILQ_FIRST(&head->so_comp);
227 		TAILQ_REMOVE(&head->so_comp, msg->nm_so, so_list);
228 		head->so_qlen--;
229 
230 		msg->nm_lmsg.ms_error = 0;
231 		return (TRUE);
232 	}
233 	if (head->so_state & SS_CANTRCVMORE) {
234 		msg->nm_lmsg.ms_error = ECONNABORTED;
235 		return (TRUE);
236 	}
237 	if (head->so_state & SS_NBIO) {
238 		msg->nm_lmsg.ms_error = EWOULDBLOCK;
239 		return (TRUE);
240 	}
241 
242 	return (FALSE);
243 }
244 
245 /*
246  * The second argument to kern_accept() is a handle to a struct sockaddr.
247  * This allows kern_accept() to return a pointer to an allocated struct
248  * sockaddr which must be freed later with FREE().  The caller must
249  * initialize *name to NULL.
250  */
251 int
252 kern_accept(int s, struct sockaddr **name, int *namelen, int *res)
253 {
254 	struct thread *td = curthread;
255 	struct proc *p = td->td_proc;
256 	struct filedesc *fdp = p->p_fd;
257 	struct file *lfp = NULL;
258 	struct file *nfp = NULL;
259 	struct sockaddr *sa;
260 	struct socket *head, *so;
261 	struct netmsg_so_notify msg;
262 	lwkt_port_t port;
263 	int fd;
264 	u_int fflag;		/* type must match fp->f_flag */
265 	int error, tmp;
266 
267 	if (name && namelen && *namelen < 0)
268 		return (EINVAL);
269 
270 	error = holdsock(fdp, s, &lfp);
271 	if (error)
272 		return (error);
273 
274 	error = falloc(p, &nfp, &fd);
275 	if (error) {		/* Probably ran out of file descriptors. */
276 		*res = -1;
277 		fdrop(lfp, td);
278 		return (error);
279 	}
280 	*res = fd;
281 
282 	head = (struct socket *)lfp->f_data;
283 	if ((head->so_options & SO_ACCEPTCONN) == 0) {
284 		error = EINVAL;
285 		goto done;
286 	}
287 
288 	/* optimize for uniprocessor case later XXX JH */
289 	port = head->so_proto->pr_mport(head, NULL, PRU_PRED);
290 	lwkt_initmsg(&msg.nm_lmsg, &curthread->td_msgport,
291 		     MSGF_PCATCH | MSGF_ABORTABLE,
292 		     lwkt_cmd_func(netmsg_so_notify),
293 		     lwkt_cmd_func(netmsg_so_notify_abort));
294 	msg.nm_predicate = soaccept_predicate;
295 	msg.nm_so = head;
296 	msg.nm_etype = NM_REVENT;
297 	error = lwkt_domsg(port, &msg.nm_lmsg);
298 	if (error)
299 		goto done;
300 
301 	/*
302 	 * At this point we have the connection that's ready to be accepted.
303 	 */
304 	so = msg.nm_so;
305 
306 	fflag = lfp->f_flag;
307 
308 	/* connection has been removed from the listen queue */
309 	KNOTE(&head->so_rcv.sb_sel.si_note, 0);
310 
311 	so->so_state &= ~SS_COMP;
312 	so->so_head = NULL;
313 	if (head->so_sigio != NULL)
314 		fsetown(fgetown(head->so_sigio), &so->so_sigio);
315 
316 	nfp->f_type = DTYPE_SOCKET;
317 	nfp->f_flag = fflag;
318 	nfp->f_ops = &socketops;
319 	nfp->f_data = so;
320 	/* Sync socket nonblocking/async state with file flags */
321 	tmp = fflag & FNONBLOCK;
322 	(void) fo_ioctl(nfp, FIONBIO, (caddr_t)&tmp, td);
323 	tmp = fflag & FASYNC;
324 	(void) fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, td);
325 
326 	sa = NULL;
327 	error = soaccept(so, &sa);
328 
329 	/*
330 	 * Set the returned name and namelen as applicable.  Set the returned
331 	 * namelen to 0 for older code which might ignore the return value
332 	 * from accept.
333 	 */
334 	if (error == 0) {
335 		if (sa && name && namelen) {
336 			if (*namelen > sa->sa_len)
337 				*namelen = sa->sa_len;
338 			*name = sa;
339 		} else {
340 			if (sa)
341 				FREE(sa, M_SONAME);
342 		}
343 	}
344 
345 done:
346 	/*
347 	 * close the new descriptor, assuming someone hasn't ripped it
348 	 * out from under us.  Note that *res is normally ignored if an
349 	 * error is returned but a syscall message will still have access
350 	 * to the result code.
351 	 */
352 	if (error) {
353 		*res = -1;
354 		if (fdp->fd_files[fd].fp == nfp) {
355 			funsetfd(fdp, fd);
356 			fdrop(nfp, td);
357 		}
358 	}
359 
360 	/*
361 	 * Release explicitly held references before returning.
362 	 */
363 	if (nfp)
364 		fdrop(nfp, td);
365 	fdrop(lfp, td);
366 	return (error);
367 }
368 
369 /*
370  * accept_args(int s, caddr_t name, int *anamelen)
371  */
372 int
373 accept(struct accept_args *uap)
374 {
375 	struct sockaddr *sa = NULL;
376 	int sa_len;
377 	int error;
378 
379 	if (uap->name) {
380 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
381 		if (error)
382 			return (error);
383 
384 		error = kern_accept(uap->s, &sa, &sa_len, &uap->sysmsg_result);
385 
386 		if (error == 0)
387 			error = copyout(sa, uap->name, sa_len);
388 		if (error == 0) {
389 			error = copyout(&sa_len, uap->anamelen,
390 			    sizeof(*uap->anamelen));
391 		}
392 		if (sa)
393 			FREE(sa, M_SONAME);
394 	} else {
395 		error = kern_accept(uap->s, NULL, 0, &uap->sysmsg_result);
396 	}
397 	return (error);
398 }
399 
400 /*
401  * Returns TRUE if predicate satisfied.
402  */
403 static boolean_t
404 soconnected_predicate(struct netmsg *msg0)
405 {
406 	struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
407 	struct socket *so = msg->nm_so;
408 
409 	/* check predicate */
410 	if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) {
411 		msg->nm_lmsg.ms_error = so->so_error;
412 		return (TRUE);
413 	}
414 
415 	return (FALSE);
416 }
417 
418 int
419 kern_connect(int s, struct sockaddr *sa)
420 {
421 	struct thread *td = curthread;
422 	struct proc *p = td->td_proc;
423 	struct file *fp;
424 	struct socket *so;
425 	int error;
426 
427 	error = holdsock(p->p_fd, s, &fp);
428 	if (error)
429 		return (error);
430 	so = (struct socket *)fp->f_data;
431 	if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
432 		error = EALREADY;
433 		goto done;
434 	}
435 	error = soconnect(so, sa, td);
436 	if (error)
437 		goto bad;
438 	if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
439 		error = EINPROGRESS;
440 		goto done;
441 	}
442 	if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
443 		struct netmsg_so_notify msg;
444 		lwkt_port_t port;
445 
446 		port = so->so_proto->pr_mport(so, sa, PRU_PRED);
447 		lwkt_initmsg(&msg.nm_lmsg,
448 			    &curthread->td_msgport,
449 			    MSGF_PCATCH | MSGF_ABORTABLE,
450 			    lwkt_cmd_func(netmsg_so_notify),
451 			    lwkt_cmd_func(netmsg_so_notify_abort));
452 		msg.nm_predicate = soconnected_predicate;
453 		msg.nm_so = so;
454 		msg.nm_etype = NM_REVENT;
455 		error = lwkt_domsg(port, &msg.nm_lmsg);
456 	}
457 	if (error == 0) {
458 		error = so->so_error;
459 		so->so_error = 0;
460 	}
461 bad:
462 	so->so_state &= ~SS_ISCONNECTING;
463 	if (error == ERESTART)
464 		error = EINTR;
465 done:
466 	fdrop(fp, td);
467 	return (error);
468 }
469 
470 /*
471  * connect_args(int s, caddr_t name, int namelen)
472  */
473 int
474 connect(struct connect_args *uap)
475 {
476 	struct sockaddr *sa;
477 	int error;
478 
479 	error = getsockaddr(&sa, uap->name, uap->namelen);
480 	if (error)
481 		return (error);
482 	error = kern_connect(uap->s, sa);
483 	FREE(sa, M_SONAME);
484 
485 	return (error);
486 }
487 
488 int
489 kern_socketpair(int domain, int type, int protocol, int *sv)
490 {
491 	struct thread *td = curthread;
492 	struct proc *p = td->td_proc;
493 	struct filedesc *fdp;
494 	struct file *fp1, *fp2;
495 	struct socket *so1, *so2;
496 	int fd, error;
497 
498 	KKASSERT(p);
499 	fdp = p->p_fd;
500 	error = socreate(domain, &so1, type, protocol, td);
501 	if (error)
502 		return (error);
503 	error = socreate(domain, &so2, type, protocol, td);
504 	if (error)
505 		goto free1;
506 	error = falloc(p, &fp1, &fd);
507 	if (error)
508 		goto free2;
509 	sv[0] = fd;
510 	fp1->f_data = so1;
511 	error = falloc(p, &fp2, &fd);
512 	if (error)
513 		goto free3;
514 	fp2->f_data = so2;
515 	sv[1] = fd;
516 	error = soconnect2(so1, so2);
517 	if (error)
518 		goto free4;
519 	if (type == SOCK_DGRAM) {
520 		/*
521 		 * Datagram socket connection is asymmetric.
522 		 */
523 		 error = soconnect2(so2, so1);
524 		 if (error)
525 			goto free4;
526 	}
527 	fp1->f_type = fp2->f_type = DTYPE_SOCKET;
528 	fp1->f_flag = fp2->f_flag = FREAD|FWRITE;
529 	fp1->f_ops = fp2->f_ops = &socketops;
530 	fdrop(fp1, td);
531 	fdrop(fp2, td);
532 	return (error);
533 free4:
534 	if (fdp->fd_files[sv[1]].fp == fp2) {
535 		funsetfd(fdp, sv[1]);
536 		fdrop(fp2, td);
537 	}
538 	fdrop(fp2, td);
539 free3:
540 	if (fdp->fd_files[sv[0]].fp == fp1) {
541 		funsetfd(fdp, sv[0]);
542 		fdrop(fp1, td);
543 	}
544 	fdrop(fp1, td);
545 free2:
546 	(void)soclose(so2);
547 free1:
548 	(void)soclose(so1);
549 	return (error);
550 }
551 
552 /*
553  * socketpair(int domain, int type, int protocol, int *rsv)
554  */
555 int
556 socketpair(struct socketpair_args *uap)
557 {
558 	int error, sockv[2];
559 
560 	error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
561 
562 	if (error == 0)
563 		error = copyout(sockv, uap->rsv, sizeof(sockv));
564 	return (error);
565 }
566 
567 int
568 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
569     struct mbuf *control, int flags, int *res)
570 {
571 	struct thread *td = curthread;
572 	struct proc *p = td->td_proc;
573 	struct file *fp;
574 	int len, error;
575 	struct socket *so;
576 #ifdef KTRACE
577 	struct iovec *ktriov = NULL;
578 	struct uio ktruio;
579 #endif
580 
581 	error = holdsock(p->p_fd, s, &fp);
582 	if (error)
583 		return (error);
584 	if (auio->uio_resid < 0) {
585 		error = EINVAL;
586 		goto done;
587 	}
588 #ifdef KTRACE
589 	if (KTRPOINT(td, KTR_GENIO)) {
590 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
591 
592 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
593 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
594 		ktruio = *auio;
595 	}
596 #endif
597 	len = auio->uio_resid;
598 	so = (struct socket *)fp->f_data;
599 	error = so_pru_sosend(so, sa, auio, NULL, control, flags, td);
600 	if (error) {
601 		if (auio->uio_resid != len && (error == ERESTART ||
602 		    error == EINTR || error == EWOULDBLOCK))
603 			error = 0;
604 		if (error == EPIPE)
605 			psignal(p, SIGPIPE);
606 	}
607 #ifdef KTRACE
608 	if (ktriov != NULL) {
609 		if (error == 0) {
610 			ktruio.uio_iov = ktriov;
611 			ktruio.uio_resid = len - auio->uio_resid;
612 			ktrgenio(p->p_tracep, s, UIO_WRITE, &ktruio, error);
613 		}
614 		FREE(ktriov, M_TEMP);
615 	}
616 #endif
617 	if (error == 0)
618 		*res  = len - auio->uio_resid;
619 done:
620 	fdrop(fp, td);
621 	return (error);
622 }
623 
624 /*
625  * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
626  */
627 int
628 sendto(struct sendto_args *uap)
629 {
630 	struct thread *td = curthread;
631 	struct uio auio;
632 	struct iovec aiov;
633 	struct sockaddr *sa = NULL;
634 	int error;
635 
636 	if (uap->to) {
637 		error = getsockaddr(&sa, uap->to, uap->tolen);
638 		if (error)
639 			return (error);
640 	}
641 	aiov.iov_base = uap->buf;
642 	aiov.iov_len = uap->len;
643 	auio.uio_iov = &aiov;
644 	auio.uio_iovcnt = 1;
645 	auio.uio_offset = 0;
646 	auio.uio_resid = uap->len;
647 	auio.uio_segflg = UIO_USERSPACE;
648 	auio.uio_rw = UIO_WRITE;
649 	auio.uio_td = td;
650 
651 	error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
652 	    &uap->sysmsg_result);
653 
654 	if (sa)
655 		FREE(sa, M_SONAME);
656 	return (error);
657 }
658 
659 /*
660  * sendmsg_args(int s, caddr_t msg, int flags)
661  */
662 int
663 sendmsg(struct sendmsg_args *uap)
664 {
665 	struct thread *td = curthread;
666 	struct msghdr msg;
667 	struct uio auio;
668 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
669 	struct sockaddr *sa = NULL;
670 	struct mbuf *control = NULL;
671 	int error;
672 
673 	error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
674 	if (error)
675 		return (error);
676 
677 	/*
678 	 * Conditionally copyin msg.msg_name.
679 	 */
680 	if (msg.msg_name) {
681 		error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
682 		if (error)
683 			return (error);
684 	}
685 
686 	/*
687 	 * Populate auio.
688 	 */
689 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
690 	    &auio.uio_resid);
691 	if (error)
692 		goto cleanup;
693 	auio.uio_iov = iov;
694 	auio.uio_iovcnt = msg.msg_iovlen;
695 	auio.uio_offset = 0;
696 	auio.uio_segflg = UIO_USERSPACE;
697 	auio.uio_rw = UIO_WRITE;
698 	auio.uio_td = td;
699 
700 	/*
701 	 * Conditionally copyin msg.msg_control.
702 	 */
703 	if (msg.msg_control) {
704 		if (msg.msg_controllen < sizeof(struct cmsghdr) ||
705 		    msg.msg_controllen > MLEN) {
706 			error = EINVAL;
707 			goto cleanup;
708 		}
709 		control = m_get(MB_WAIT, MT_CONTROL);
710 		if (control == NULL) {
711 			error = ENOBUFS;
712 			goto cleanup;
713 		}
714 		control->m_len = msg.msg_controllen;
715 		error = copyin(msg.msg_control, mtod(control, caddr_t),
716 		    msg.msg_controllen);
717 		if (error) {
718 			m_free(control);
719 			goto cleanup;
720 		}
721 	}
722 
723 	error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
724 	    &uap->sysmsg_result);
725 
726 cleanup:
727 	if (sa)
728 		FREE(sa, M_SONAME);
729 	iovec_free(&iov, aiov);
730 	return (error);
731 }
732 
733 /*
734  * kern_recvmsg() takes a handle to sa and control.  If the handle is non-
735  * null, it returns a dynamically allocated struct sockaddr and an mbuf.
736  * Don't forget to FREE() and m_free() these if they are returned.
737  */
738 int
739 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
740     struct mbuf **control, int *flags, int *res)
741 {
742 	struct thread *td = curthread;
743 	struct proc *p = td->td_proc;
744 	struct file *fp;
745 	int len, error;
746 	struct socket *so;
747 #ifdef KTRACE
748 	struct iovec *ktriov = NULL;
749 	struct uio ktruio;
750 #endif
751 
752 	error = holdsock(p->p_fd, s, &fp);
753 	if (error)
754 		return (error);
755 	if (auio->uio_resid < 0) {
756 		error = EINVAL;
757 		goto done;
758 	}
759 #ifdef KTRACE
760 	if (KTRPOINT(td, KTR_GENIO)) {
761 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
762 
763 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
764 		bcopy(auio->uio_iov, ktriov, iovlen);
765 		ktruio = *auio;
766 	}
767 #endif
768 	len = auio->uio_resid;
769 	so = (struct socket *)fp->f_data;
770 	error = so_pru_soreceive(so, sa, auio, NULL, control, flags);
771 	if (error) {
772 		if (auio->uio_resid != len && (error == ERESTART ||
773 		    error == EINTR || error == EWOULDBLOCK))
774 			error = 0;
775 	}
776 #ifdef KTRACE
777 	if (ktriov != NULL) {
778 		if (error == 0) {
779 			ktruio.uio_iov = ktriov;
780 			ktruio.uio_resid = len - auio->uio_resid;
781 			ktrgenio(p->p_tracep, s, UIO_READ, &ktruio, error);
782 		}
783 		FREE(ktriov, M_TEMP);
784 	}
785 #endif
786 	if (error == 0)
787 		*res = len - auio->uio_resid;
788 done:
789 	fdrop(fp, td);
790 	return (error);
791 }
792 
793 /*
794  * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
795  *			caddr_t from, int *fromlenaddr)
796  */
797 int
798 recvfrom(struct recvfrom_args *uap)
799 {
800 	struct thread *td = curthread;
801 	struct uio auio;
802 	struct iovec aiov;
803 	struct sockaddr *sa = NULL;
804 	int error, fromlen;
805 
806 	if (uap->from && uap->fromlenaddr) {
807 		error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
808 		if (error)
809 			return (error);
810 		if (fromlen < 0)
811 			return (EINVAL);
812 	} else {
813 		fromlen = 0;
814 	}
815 	aiov.iov_base = uap->buf;
816 	aiov.iov_len = uap->len;
817 	auio.uio_iov = &aiov;
818 	auio.uio_iovcnt = 1;
819 	auio.uio_offset = 0;
820 	auio.uio_resid = uap->len;
821 	auio.uio_segflg = UIO_USERSPACE;
822 	auio.uio_rw = UIO_READ;
823 	auio.uio_td = td;
824 
825 	error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
826 	    &uap->flags, &uap->sysmsg_result);
827 
828 	if (error == 0 && uap->from) {
829 		/* note: sa may still be NULL */
830 		if (sa) {
831 			fromlen = MIN(fromlen, sa->sa_len);
832 			error = copyout(sa, uap->from, fromlen);
833 		} else {
834 			fromlen = 0;
835 		}
836 		if (error == 0) {
837 			error = copyout(&fromlen, uap->fromlenaddr,
838 					sizeof(fromlen));
839 		}
840 	}
841 	if (sa)
842 		FREE(sa, M_SONAME);
843 
844 	return (error);
845 }
846 
847 /*
848  * recvmsg_args(int s, struct msghdr *msg, int flags)
849  */
850 int
851 recvmsg(struct recvmsg_args *uap)
852 {
853 	struct thread *td = curthread;
854 	struct msghdr msg;
855 	struct uio auio;
856 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
857 	struct mbuf *m, *control = NULL;
858 	struct sockaddr *sa = NULL;
859 	caddr_t ctlbuf;
860 	socklen_t *ufromlenp, *ucontrollenp;
861 	int error, fromlen, controllen, len, flags, *uflagsp;
862 
863 	/*
864 	 * This copyin handles everything except the iovec.
865 	 */
866 	error = copyin(uap->msg, &msg, sizeof(msg));
867 	if (error)
868 		return (error);
869 
870 	if (msg.msg_name && msg.msg_namelen < 0)
871 		return (EINVAL);
872 	if (msg.msg_control && msg.msg_controllen < 0)
873 		return (EINVAL);
874 
875 	ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
876 	    msg_namelen));
877 	ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
878 	    msg_controllen));
879 	uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
880 	    msg_flags));
881 
882 	/*
883 	 * Populate auio.
884 	 */
885 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
886 	    &auio.uio_resid);
887 	if (error)
888 		return (error);
889 	auio.uio_iov = iov;
890 	auio.uio_iovcnt = msg.msg_iovlen;
891 	auio.uio_offset = 0;
892 	auio.uio_segflg = UIO_USERSPACE;
893 	auio.uio_rw = UIO_READ;
894 	auio.uio_td = td;
895 
896 	flags = uap->flags;
897 
898 	error = kern_recvmsg(uap->s, msg.msg_name ? &sa : NULL, &auio,
899 	    msg.msg_control ? &control : NULL, &flags, &uap->sysmsg_result);
900 
901 	/*
902 	 * Conditionally copyout the name and populate the namelen field.
903 	 */
904 	if (error == 0 && msg.msg_name) {
905 		fromlen = MIN(msg.msg_namelen, sa->sa_len);
906 		error = copyout(sa, msg.msg_name, fromlen);
907 		if (error == 0)
908 			error = copyout(&fromlen, ufromlenp,
909 			    sizeof(*ufromlenp));
910 	}
911 
912 	/*
913 	 * Copyout msg.msg_control and msg.msg_controllen.
914 	 */
915 	if (error == 0 && msg.msg_control) {
916 		len = msg.msg_controllen;
917 		m = control;
918 		ctlbuf = (caddr_t)msg.msg_control;
919 
920 		while(m && len > 0) {
921 			unsigned int tocopy;
922 
923 			if (len >= m->m_len) {
924 				tocopy = m->m_len;
925 			} else {
926 				msg.msg_flags |= MSG_CTRUNC;
927 				tocopy = len;
928 			}
929 
930 			error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
931 			if (error)
932 				goto cleanup;
933 
934 			ctlbuf += tocopy;
935 			len -= tocopy;
936 			m = m->m_next;
937 		}
938 		controllen = ctlbuf - (caddr_t)msg.msg_control;
939 		error = copyout(&controllen, ucontrollenp,
940 		    sizeof(*ucontrollenp));
941 	}
942 
943 	if (error == 0)
944 		error = copyout(&flags, uflagsp, sizeof(*uflagsp));
945 
946 cleanup:
947 	if (sa)
948 		FREE(sa, M_SONAME);
949 	iovec_free(&iov, aiov);
950 	if (control)
951 		m_freem(control);
952 	return (error);
953 }
954 
955 /*
956  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
957  * in kernel pointer instead of a userland pointer.  This allows us
958  * to manipulate socket options in the emulation code.
959  */
960 int
961 kern_setsockopt(int s, struct sockopt *sopt)
962 {
963 	struct thread *td = curthread;
964 	struct proc *p = td->td_proc;
965 	struct file *fp;
966 	int error;
967 
968 	if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
969 		return (EFAULT);
970 	if (sopt->sopt_valsize < 0)
971 		return (EINVAL);
972 
973 	error = holdsock(p->p_fd, s, &fp);
974 	if (error)
975 		return (error);
976 
977 	error = sosetopt((struct socket *)fp->f_data, sopt);
978 	fdrop(fp, td);
979 	return (error);
980 }
981 
982 /*
983  * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
984  */
985 int
986 setsockopt(struct setsockopt_args *uap)
987 {
988 	struct thread *td = curthread;
989 	struct sockopt sopt;
990 	int error;
991 
992 	sopt.sopt_level = uap->level;
993 	sopt.sopt_name = uap->name;
994 	sopt.sopt_val = uap->val;
995 	sopt.sopt_valsize = uap->valsize;
996 	sopt.sopt_td = td;
997 
998 	error = kern_setsockopt(uap->s, &sopt);
999 	return(error);
1000 }
1001 
1002 /*
1003  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1004  * in kernel pointer instead of a userland pointer.  This allows us
1005  * to manipulate socket options in the emulation code.
1006  */
1007 int
1008 kern_getsockopt(int s, struct sockopt *sopt)
1009 {
1010 	struct thread *td = curthread;
1011 	struct proc *p = td->td_proc;
1012 	struct file *fp;
1013 	int error;
1014 
1015 	if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
1016 		return (EFAULT);
1017 	if (sopt->sopt_valsize < 0)
1018 		return (EINVAL);
1019 
1020 	error = holdsock(p->p_fd, s, &fp);
1021 	if (error)
1022 		return (error);
1023 
1024 	error = sogetopt((struct socket *)fp->f_data, sopt);
1025 	fdrop(fp, td);
1026 	return (error);
1027 }
1028 
1029 /*
1030  * getsockopt_Args(int s, int level, int name, caddr_t val, int *avalsize)
1031  */
1032 int
1033 getsockopt(struct getsockopt_args *uap)
1034 {
1035 	struct thread *td = curthread;
1036 	struct	sockopt sopt;
1037 	int	error, valsize;
1038 
1039 	if (uap->val) {
1040 		error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1041 		if (error)
1042 			return (error);
1043 		if (valsize < 0)
1044 			return (EINVAL);
1045 	} else {
1046 		valsize = 0;
1047 	}
1048 
1049 	sopt.sopt_level = uap->level;
1050 	sopt.sopt_name = uap->name;
1051 	sopt.sopt_val = uap->val;
1052 	sopt.sopt_valsize = valsize;
1053 	sopt.sopt_td = td;
1054 
1055 	error = kern_getsockopt(uap->s, &sopt);
1056 	if (error == 0) {
1057 		valsize = sopt.sopt_valsize;
1058 		error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1059 	}
1060 	return (error);
1061 }
1062 
1063 /*
1064  * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1065  * This allows kern_getsockname() to return a pointer to an allocated struct
1066  * sockaddr which must be freed later with FREE().  The caller must
1067  * initialize *name to NULL.
1068  */
1069 int
1070 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1071 {
1072 	struct thread *td = curthread;
1073 	struct proc *p = td->td_proc;
1074 	struct file *fp;
1075 	struct socket *so;
1076 	struct sockaddr *sa = NULL;
1077 	int error;
1078 
1079 	error = holdsock(p->p_fd, s, &fp);
1080 	if (error)
1081 		return (error);
1082 	if (*namelen < 0) {
1083 		fdrop(fp, td);
1084 		return (EINVAL);
1085 	}
1086 	so = (struct socket *)fp->f_data;
1087 	error = so_pru_sockaddr(so, &sa);
1088 	if (error == 0) {
1089 		if (sa == 0) {
1090 			*namelen = 0;
1091 		} else {
1092 			*namelen = MIN(*namelen, sa->sa_len);
1093 			*name = sa;
1094 		}
1095 	}
1096 
1097 	fdrop(fp, td);
1098 	return (error);
1099 }
1100 
1101 /*
1102  * getsockname_args(int fdes, caddr_t asa, int *alen)
1103  *
1104  * Get socket name.
1105  */
1106 int
1107 getsockname(struct getsockname_args *uap)
1108 {
1109 	struct sockaddr *sa = NULL;
1110 	int error, sa_len;
1111 
1112 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1113 	if (error)
1114 		return (error);
1115 
1116 	error = kern_getsockname(uap->fdes, &sa, &sa_len);
1117 
1118 	if (error == 0)
1119 		error = copyout(sa, uap->asa, sa_len);
1120 	if (error == 0)
1121 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1122 	if (sa)
1123 		FREE(sa, M_SONAME);
1124 	return (error);
1125 }
1126 
1127 /*
1128  * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1129  * This allows kern_getpeername() to return a pointer to an allocated struct
1130  * sockaddr which must be freed later with FREE().  The caller must
1131  * initialize *name to NULL.
1132  */
1133 int
1134 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1135 {
1136 	struct thread *td = curthread;
1137 	struct proc *p = td->td_proc;
1138 	struct file *fp;
1139 	struct socket *so;
1140 	struct sockaddr *sa = NULL;
1141 	int error;
1142 
1143 	error = holdsock(p->p_fd, s, &fp);
1144 	if (error)
1145 		return (error);
1146 	if (*namelen < 0) {
1147 		fdrop(fp, td);
1148 		return (EINVAL);
1149 	}
1150 	so = (struct socket *)fp->f_data;
1151 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1152 		fdrop(fp, td);
1153 		return (ENOTCONN);
1154 	}
1155 	error = so_pru_peeraddr(so, &sa);
1156 	if (error == 0) {
1157 		if (sa == 0) {
1158 			*namelen = 0;
1159 		} else {
1160 			*namelen = MIN(*namelen, sa->sa_len);
1161 			*name = sa;
1162 		}
1163 	}
1164 
1165 	fdrop(fp, td);
1166 	return (error);
1167 }
1168 
1169 /*
1170  * getpeername_args(int fdes, caddr_t asa, int *alen)
1171  *
1172  * Get name of peer for connected socket.
1173  */
1174 int
1175 getpeername(struct getpeername_args *uap)
1176 {
1177 	struct sockaddr *sa = NULL;
1178 	int error, sa_len;
1179 
1180 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1181 	if (error)
1182 		return (error);
1183 
1184 	error = kern_getpeername(uap->fdes, &sa, &sa_len);
1185 
1186 	if (error == 0)
1187 		error = copyout(sa, uap->asa, sa_len);
1188 	if (error == 0)
1189 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1190 	if (sa)
1191 		FREE(sa, M_SONAME);
1192 	return (error);
1193 }
1194 
1195 int
1196 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1197 {
1198 	struct sockaddr *sa;
1199 	int error;
1200 
1201 	*namp = NULL;
1202 	if (len > SOCK_MAXADDRLEN)
1203 		return ENAMETOOLONG;
1204 	if (len < offsetof(struct sockaddr, sa_data[0]))
1205 		return EDOM;
1206 	MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK);
1207 	error = copyin(uaddr, sa, len);
1208 	if (error) {
1209 		FREE(sa, M_SONAME);
1210 	} else {
1211 #if BYTE_ORDER != BIG_ENDIAN
1212 		/*
1213 		 * The bind(), connect(), and sendto() syscalls were not
1214 		 * versioned for COMPAT_43.  Thus, this check must stay.
1215 		 */
1216 		if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1217 			sa->sa_family = sa->sa_len;
1218 #endif
1219 		sa->sa_len = len;
1220 		*namp = sa;
1221 	}
1222 	return error;
1223 }
1224 
1225 /*
1226  * holdsock() - load the struct file pointer associated
1227  * with a socket into *fpp.  If an error occurs, non-zero
1228  * will be returned and *fpp will be set to NULL.
1229  */
1230 int
1231 holdsock(struct filedesc *fdp, int fdes, struct file **fpp)
1232 {
1233 	struct file *fp;
1234 	int error = 0;
1235 
1236 	*fpp = NULL;
1237 	if ((unsigned)fdes >= fdp->fd_nfiles)
1238 		return EBADF;
1239 	if ((fp = fdp->fd_files[fdes].fp) == NULL)
1240 		return EBADF;
1241 	if (fp->f_type != DTYPE_SOCKET)
1242 		return ENOTSOCK;
1243 	fhold(fp);
1244 	*fpp = fp;
1245 	return (error);
1246 }
1247 
1248 /*
1249  * Detach a mapped page and release resources back to the system.
1250  * We must release our wiring and if the object is ripped out
1251  * from under the vm_page we become responsible for freeing the
1252  * page.  These routines must be MPSAFE.
1253  *
1254  * XXX HACK XXX TEMPORARY UNTIL WE IMPLEMENT EXT MBUF REFERENCE COUNTING
1255  *
1256  * XXX vm_page_*() routines are not MPSAFE yet, the MP lock is required.
1257  */
1258 static void
1259 sf_buf_mref(void *arg)
1260 {
1261 	struct sfbuf_mref *sfm = arg;
1262 
1263 	/*
1264 	 * We must already hold a ref so there is no race to 0, just
1265 	 * atomically increment the count.
1266 	 */
1267 	atomic_add_int(&sfm->mref_count, 1);
1268 }
1269 
1270 static void
1271 sf_buf_mfree(void *arg)
1272 {
1273 	struct sfbuf_mref *sfm = arg;
1274 	vm_page_t m;
1275 
1276 	KKASSERT(sfm->mref_count > 0);
1277 	if (sfm->mref_count == 1) {
1278 		/*
1279 		 * We are the only holder so no further locking is required,
1280 		 * the sfbuf can simply be freed.
1281 		 */
1282 		sfm->mref_count = 0;
1283 		goto freeit;
1284 	} else {
1285 		/*
1286 		 * There may be other holders, we must obtain the serializer
1287 		 * to protect against a sf_buf_mfree() race to 0.  An atomic
1288 		 * operation is still required for races against
1289 		 * sf_buf_mref().
1290 		 *
1291 		 * XXX vm_page_*() and SFBUF routines not MPSAFE yet.
1292 		 */
1293 		lwkt_serialize_enter(&sfm->serializer);
1294 		atomic_subtract_int(&sfm->mref_count, 1);
1295 		if (sfm->mref_count == 0) {
1296 			lwkt_serialize_exit(&sfm->serializer);
1297 freeit:
1298 			get_mplock();
1299 			crit_enter();
1300 			m = sf_buf_page(sfm->sf);
1301 			sf_buf_free(sfm->sf);
1302 			vm_page_unwire(m, 0);
1303 			if (m->wire_count == 0 && m->object == NULL)
1304 				vm_page_try_to_free(m);
1305 			crit_exit();
1306 			rel_mplock();
1307 			free(sfm, M_SENDFILE);
1308 		} else {
1309 			lwkt_serialize_exit(&sfm->serializer);
1310 		}
1311 	}
1312 }
1313 
1314 /*
1315  * sendfile(2).
1316  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1317  *	 struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1318  *
1319  * Send a file specified by 'fd' and starting at 'offset' to a socket
1320  * specified by 's'. Send only 'nbytes' of the file or until EOF if
1321  * nbytes == 0. Optionally add a header and/or trailer to the socket
1322  * output. If specified, write the total number of bytes sent into *sbytes.
1323  *
1324  * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused
1325  * the headers to count against the remaining bytes to be sent from
1326  * the file descriptor.  We may wish to implement a compatibility syscall
1327  * in the future.
1328  */
1329 int
1330 sendfile(struct sendfile_args *uap)
1331 {
1332 	struct thread *td = curthread;
1333 	struct proc *p = td->td_proc;
1334 	struct file *fp;
1335 	struct filedesc *fdp;
1336 	struct vnode *vp = NULL;
1337 	struct sf_hdtr hdtr;
1338 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1339 	struct uio auio;
1340 	struct mbuf *mheader = NULL;
1341 	off_t hdtr_size = 0, sbytes;
1342 	int error, hbytes = 0, tbytes;
1343 
1344 	KKASSERT(p);
1345 	fdp = p->p_fd;
1346 
1347 	/*
1348 	 * Do argument checking. Must be a regular file in, stream
1349 	 * type and connected socket out, positive offset.
1350 	 */
1351 	fp = holdfp(fdp, uap->fd, FREAD);
1352 	if (fp == NULL) {
1353 		return (EBADF);
1354 	}
1355 	if (fp->f_type != DTYPE_VNODE) {
1356 		fdrop(fp, td);
1357 		return (EINVAL);
1358 	}
1359 	vp = (struct vnode *)fp->f_data;
1360 	vref(vp);
1361 	fdrop(fp, td);
1362 
1363 	/*
1364 	 * If specified, get the pointer to the sf_hdtr struct for
1365 	 * any headers/trailers.
1366 	 */
1367 	if (uap->hdtr) {
1368 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1369 		if (error)
1370 			goto done;
1371 		/*
1372 		 * Send any headers.
1373 		 */
1374 		if (hdtr.headers) {
1375 			error = iovec_copyin(hdtr.headers, &iov, aiov,
1376 			    hdtr.hdr_cnt, &hbytes);
1377 			if (error)
1378 				goto done;
1379 			auio.uio_iov = iov;
1380 			auio.uio_iovcnt = hdtr.hdr_cnt;
1381 			auio.uio_offset = 0;
1382 			auio.uio_segflg = UIO_USERSPACE;
1383 			auio.uio_rw = UIO_WRITE;
1384 			auio.uio_td = td;
1385 			auio.uio_resid = hbytes;
1386 
1387 			mheader = m_uiomove(&auio);
1388 
1389 			iovec_free(&iov, aiov);
1390 			if (mheader == NULL)
1391 				goto done;
1392 		}
1393 	}
1394 
1395 	error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader,
1396 	    &sbytes, uap->flags);
1397 	if (error)
1398 		goto done;
1399 
1400 	/*
1401 	 * Send trailers. Wimp out and use writev(2).
1402 	 */
1403 	if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1404 		error = iovec_copyin(hdtr.trailers, &iov, aiov,
1405 		    hdtr.trl_cnt, &auio.uio_resid);
1406 		if (error)
1407 			goto done;
1408 		auio.uio_iov = iov;
1409 		auio.uio_iovcnt = hdtr.trl_cnt;
1410 		auio.uio_offset = 0;
1411 		auio.uio_segflg = UIO_USERSPACE;
1412 		auio.uio_rw = UIO_WRITE;
1413 		auio.uio_td = td;
1414 
1415 		error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes);
1416 
1417 		iovec_free(&iov, aiov);
1418 		if (error)
1419 			goto done;
1420 		hdtr_size += tbytes;	/* trailer bytes successfully sent */
1421 	}
1422 
1423 done:
1424 	if (uap->sbytes != NULL) {
1425 		sbytes += hdtr_size;
1426 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1427 	}
1428 	if (vp)
1429 		vrele(vp);
1430 	return (error);
1431 }
1432 
1433 int
1434 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes,
1435     struct mbuf *mheader, off_t *sbytes, int flags)
1436 {
1437 	struct thread *td = curthread;
1438 	struct proc *p = td->td_proc;
1439 	struct vm_object *obj;
1440 	struct socket *so;
1441 	struct file *fp;
1442 	struct mbuf *m;
1443 	struct sf_buf *sf;
1444 	struct sfbuf_mref *sfm;
1445 	struct vm_page *pg;
1446 	off_t off, xfsize;
1447 	off_t hbytes = 0;
1448 	int error = 0;
1449 
1450 	if (vp->v_type != VREG || VOP_GETVOBJECT(vp, &obj) != 0) {
1451 		error = EINVAL;
1452 		goto done0;
1453 	}
1454 	error = holdsock(p->p_fd, sfd, &fp);
1455 	if (error)
1456 		goto done0;
1457 	so = (struct socket *)fp->f_data;
1458 	if (so->so_type != SOCK_STREAM) {
1459 		error = EINVAL;
1460 		goto done;
1461 	}
1462 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1463 		error = ENOTCONN;
1464 		goto done;
1465 	}
1466 	if (offset < 0) {
1467 		error = EINVAL;
1468 		goto done;
1469 	}
1470 
1471 	*sbytes = 0;
1472 	/*
1473 	 * Protect against multiple writers to the socket.
1474 	 */
1475 	(void) sblock(&so->so_snd, M_WAITOK);
1476 
1477 	/*
1478 	 * Loop through the pages in the file, starting with the requested
1479 	 * offset. Get a file page (do I/O if necessary), map the file page
1480 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1481 	 * it on the socket.
1482 	 */
1483 	for (off = offset; ; off += xfsize, *sbytes += xfsize + hbytes) {
1484 		vm_pindex_t pindex;
1485 		vm_offset_t pgoff;
1486 
1487 		pindex = OFF_TO_IDX(off);
1488 retry_lookup:
1489 		/*
1490 		 * Calculate the amount to transfer. Not to exceed a page,
1491 		 * the EOF, or the passed in nbytes.
1492 		 */
1493 		xfsize = obj->un_pager.vnp.vnp_size - off;
1494 		if (xfsize > PAGE_SIZE)
1495 			xfsize = PAGE_SIZE;
1496 		pgoff = (vm_offset_t)(off & PAGE_MASK);
1497 		if (PAGE_SIZE - pgoff < xfsize)
1498 			xfsize = PAGE_SIZE - pgoff;
1499 		if (nbytes && xfsize > (nbytes - *sbytes))
1500 			xfsize = nbytes - *sbytes;
1501 		if (xfsize <= 0)
1502 			break;
1503 		/*
1504 		 * Optimize the non-blocking case by looking at the socket space
1505 		 * before going to the extra work of constituting the sf_buf.
1506 		 */
1507 		if ((so->so_state & SS_NBIO) && sbspace(&so->so_snd) <= 0) {
1508 			if (so->so_state & SS_CANTSENDMORE)
1509 				error = EPIPE;
1510 			else
1511 				error = EAGAIN;
1512 			sbunlock(&so->so_snd);
1513 			goto done;
1514 		}
1515 		/*
1516 		 * Attempt to look up the page.
1517 		 *
1518 		 *	Allocate if not found, wait and loop if busy, then
1519 		 *	wire the page.  critical section protection is
1520 		 * 	required to maintain the object association (an
1521 		 *	interrupt can free the page) through to the
1522 		 *	vm_page_wire() call.
1523 		 */
1524 		crit_enter();
1525 		pg = vm_page_lookup(obj, pindex);
1526 		if (pg == NULL) {
1527 			pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL);
1528 			if (pg == NULL) {
1529 				vm_wait();
1530 				crit_exit();
1531 				goto retry_lookup;
1532 			}
1533 			vm_page_wakeup(pg);
1534 		} else if (vm_page_sleep_busy(pg, TRUE, "sfpbsy")) {
1535 			crit_exit();
1536 			goto retry_lookup;
1537 		}
1538 		vm_page_wire(pg);
1539 		crit_exit();
1540 
1541 		/*
1542 		 * If page is not valid for what we need, initiate I/O
1543 		 */
1544 
1545 		if (!pg->valid || !vm_page_is_valid(pg, pgoff, xfsize)) {
1546 			struct uio auio;
1547 			struct iovec aiov;
1548 			int bsize;
1549 
1550 			/*
1551 			 * Ensure that our page is still around when the I/O
1552 			 * completes.
1553 			 */
1554 			vm_page_io_start(pg);
1555 
1556 			/*
1557 			 * Get the page from backing store.
1558 			 */
1559 			bsize = vp->v_mount->mnt_stat.f_iosize;
1560 			auio.uio_iov = &aiov;
1561 			auio.uio_iovcnt = 1;
1562 			aiov.iov_base = 0;
1563 			aiov.iov_len = MAXBSIZE;
1564 			auio.uio_resid = MAXBSIZE;
1565 			auio.uio_offset = trunc_page(off);
1566 			auio.uio_segflg = UIO_NOCOPY;
1567 			auio.uio_rw = UIO_READ;
1568 			auio.uio_td = td;
1569 			vn_lock(vp, LK_SHARED | LK_NOPAUSE | LK_RETRY, td);
1570 			error = VOP_READ(vp, &auio,
1571 				    IO_VMIO | ((MAXBSIZE / bsize) << 16),
1572 				    p->p_ucred);
1573 			VOP_UNLOCK(vp, 0, td);
1574 			vm_page_flag_clear(pg, PG_ZERO);
1575 			vm_page_io_finish(pg);
1576 			if (error) {
1577 				crit_enter();
1578 				vm_page_unwire(pg, 0);
1579 				vm_page_try_to_free(pg);
1580 				crit_exit();
1581 				sbunlock(&so->so_snd);
1582 				goto done;
1583 			}
1584 		}
1585 
1586 
1587 		/*
1588 		 * Get a sendfile buf. We usually wait as long as necessary,
1589 		 * but this wait can be interrupted.
1590 		 */
1591 		if ((sf = sf_buf_alloc(pg, SFB_CATCH)) == NULL) {
1592 			crit_enter();
1593 			vm_page_unwire(pg, 0);
1594 			vm_page_try_to_free(pg);
1595 			crit_exit();
1596 			sbunlock(&so->so_snd);
1597 			error = EINTR;
1598 			goto done;
1599 		}
1600 
1601 		/*
1602 		 * Get an mbuf header and set it up as having external storage.
1603 		 */
1604 		MGETHDR(m, MB_WAIT, MT_DATA);
1605 		if (m == NULL) {
1606 			error = ENOBUFS;
1607 			sf_buf_free(sf);
1608 			sbunlock(&so->so_snd);
1609 			goto done;
1610 		}
1611 
1612 		/*
1613 		 * sfm is a temporary hack, use a per-cpu cache for this.
1614 		 */
1615 		sfm = malloc(sizeof(struct sfbuf_mref), M_SENDFILE, M_WAITOK);
1616 		sfm->sf = sf;
1617 		sfm->mref_count = 1;
1618 		lwkt_serialize_init(&sfm->serializer);
1619 
1620 		m->m_ext.ext_free = sf_buf_mfree;
1621 		m->m_ext.ext_ref = sf_buf_mref;
1622 		m->m_ext.ext_arg = sfm;
1623 		m->m_ext.ext_buf = (void *)sf->kva;
1624 		m->m_ext.ext_size = PAGE_SIZE;
1625 		m->m_data = (char *) sf->kva + pgoff;
1626 		m->m_flags |= M_EXT;
1627 		m->m_pkthdr.len = m->m_len = xfsize;
1628 		KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0);
1629 
1630 		if (mheader != NULL) {
1631 			hbytes = mheader->m_pkthdr.len;
1632 			mheader->m_pkthdr.len += m->m_pkthdr.len;
1633 			m_cat(mheader, m);
1634 			m = mheader;
1635 			mheader = NULL;
1636 		} else
1637 			hbytes = 0;
1638 
1639 		/*
1640 		 * Add the buffer to the socket buffer chain.
1641 		 */
1642 		crit_enter();
1643 retry_space:
1644 		/*
1645 		 * Make sure that the socket is still able to take more data.
1646 		 * CANTSENDMORE being true usually means that the connection
1647 		 * was closed. so_error is true when an error was sensed after
1648 		 * a previous send.
1649 		 * The state is checked after the page mapping and buffer
1650 		 * allocation above since those operations may block and make
1651 		 * any socket checks stale. From this point forward, nothing
1652 		 * blocks before the pru_send (or more accurately, any blocking
1653 		 * results in a loop back to here to re-check).
1654 		 */
1655 		if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1656 			if (so->so_state & SS_CANTSENDMORE) {
1657 				error = EPIPE;
1658 			} else {
1659 				error = so->so_error;
1660 				so->so_error = 0;
1661 			}
1662 			m_freem(m);
1663 			sbunlock(&so->so_snd);
1664 			crit_exit();
1665 			goto done;
1666 		}
1667 		/*
1668 		 * Wait for socket space to become available. We do this just
1669 		 * after checking the connection state above in order to avoid
1670 		 * a race condition with sbwait().
1671 		 */
1672 		if (sbspace(&so->so_snd) < so->so_snd.sb_lowat) {
1673 			if (so->so_state & SS_NBIO) {
1674 				m_freem(m);
1675 				sbunlock(&so->so_snd);
1676 				crit_exit();
1677 				error = EAGAIN;
1678 				goto done;
1679 			}
1680 			error = sbwait(&so->so_snd);
1681 			/*
1682 			 * An error from sbwait usually indicates that we've
1683 			 * been interrupted by a signal. If we've sent anything
1684 			 * then return bytes sent, otherwise return the error.
1685 			 */
1686 			if (error) {
1687 				m_freem(m);
1688 				sbunlock(&so->so_snd);
1689 				crit_exit();
1690 				goto done;
1691 			}
1692 			goto retry_space;
1693 		}
1694 		error = so_pru_send(so, 0, m, NULL, NULL, td);
1695 		crit_exit();
1696 		if (error) {
1697 			sbunlock(&so->so_snd);
1698 			goto done;
1699 		}
1700 	}
1701 	if (mheader != NULL) {
1702 		*sbytes += mheader->m_pkthdr.len;
1703 		error = so_pru_send(so, 0, mheader, NULL, NULL, td);
1704 		mheader = NULL;
1705 	}
1706 	sbunlock(&so->so_snd);
1707 
1708 done:
1709 	fdrop(fp, td);
1710 done0:
1711 	if (mheader != NULL)
1712 		m_freem(mheader);
1713 	return (error);
1714 }
1715 
1716 int
1717 sctp_peeloff(struct sctp_peeloff_args *uap)
1718 {
1719 #ifdef SCTP
1720 	struct thread *td = curthread;
1721 	struct proc *p = td->td_proc;
1722 	struct filedesc *fdp = p->p_fd;
1723 	struct file *lfp = NULL;
1724 	struct file *nfp = NULL;
1725 	int error;
1726 	struct socket *head, *so;
1727 	caddr_t assoc_id;
1728 	int fd;
1729 	short fflag;		/* type must match fp->f_flag */
1730 
1731 	assoc_id = uap->name;
1732 	error = holdsock(fdp, uap->sd, &lfp);
1733 	if (error) {
1734 		return (error);
1735 	}
1736 	crit_enter();
1737 	head = (struct socket *)lfp->f_data;
1738 	error = sctp_can_peel_off(head, assoc_id);
1739 	if (error) {
1740 		crit_exit();
1741 		goto done;
1742 	}
1743 	/*
1744 	 * At this point we know we do have a assoc to pull
1745 	 * we proceed to get the fd setup. This may block
1746 	 * but that is ok.
1747 	 */
1748 
1749 	fflag = lfp->f_flag;
1750 	error = falloc(p, &nfp, &fd);
1751 	if (error) {
1752 		/*
1753 		 * Probably ran out of file descriptors. Put the
1754 		 * unaccepted connection back onto the queue and
1755 		 * do another wakeup so some other process might
1756 		 * have a chance at it.
1757 		 */
1758 		crit_exit();
1759 		goto done;
1760 	}
1761 	fhold(nfp);
1762 	uap->sysmsg_result = fd;
1763 
1764 	so = sctp_get_peeloff(head, assoc_id, &error);
1765 	if (so == NULL) {
1766 		/*
1767 		 * Either someone else peeled it off OR
1768 		 * we can't get a socket.
1769 		 */
1770 		goto noconnection;
1771 	}
1772 	so->so_state &= ~SS_COMP;
1773 	so->so_state &= ~SS_NOFDREF;
1774 	so->so_head = NULL;
1775 	if (head->so_sigio != NULL)
1776 		fsetown(fgetown(head->so_sigio), &so->so_sigio);
1777 
1778 	nfp->f_type = DTYPE_SOCKET;
1779 	nfp->f_flag = fflag;
1780 	nfp->f_ops = &socketops;
1781 	nfp->f_data = so;
1782 
1783 noconnection:
1784 	/*
1785 	 * close the new descriptor, assuming someone hasn't ripped it
1786 	 * out from under us.
1787 	 */
1788 	if (error) {
1789 		if (fdp->fd_files[fd].fp == nfp) {
1790 			funsetfd(fdp, fd);
1791 			fdrop(nfp, td);
1792 		}
1793 	}
1794 	crit_exit();
1795 	/*
1796 	 * Release explicitly held references before returning.
1797 	 */
1798 done:
1799 	if (nfp != NULL)
1800 		fdrop(nfp, td);
1801 	fdrop(lfp, td);
1802 	return (error);
1803 #else /* SCTP */
1804 	return(EOPNOTSUPP);
1805 #endif /* SCTP */
1806 }
1807