xref: /dragonfly/sys/kern/uipc_syscalls.c (revision 9d626b29)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * sendfile(2) and related extensions:
6  * Copyright (c) 1998, David Greenman. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_syscalls.c	8.4 (Berkeley) 2/21/94
33  * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
34  */
35 
36 #include "opt_ktrace.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/sysproto.h>
42 #include <sys/malloc.h>
43 #include <sys/filedesc.h>
44 #include <sys/event.h>
45 #include <sys/proc.h>
46 #include <sys/fcntl.h>
47 #include <sys/file.h>
48 #include <sys/filio.h>
49 #include <sys/kern_syscall.h>
50 #include <sys/mbuf.h>
51 #include <sys/protosw.h>
52 #include <sys/sfbuf.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/socketops.h>
56 #include <sys/uio.h>
57 #include <sys/vnode.h>
58 #include <sys/lock.h>
59 #include <sys/mount.h>
60 #ifdef KTRACE
61 #include <sys/ktrace.h>
62 #endif
63 #include <vm/vm.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_pageout.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_extern.h>
69 #include <sys/file2.h>
70 #include <sys/signalvar.h>
71 #include <sys/serialize.h>
72 
73 #include <sys/thread2.h>
74 #include <sys/msgport2.h>
75 #include <sys/socketvar2.h>
76 #include <net/netmsg2.h>
77 #include <vm/vm_page2.h>
78 
79 extern int use_soaccept_pred_fast;
80 extern int use_sendfile_async;
81 extern int use_soconnect_async;
82 
83 /*
84  * System call interface to the socket abstraction.
85  */
86 
87 extern	struct fileops socketops;
88 
89 /*
90  * socket_args(int domain, int type, int protocol)
91  */
92 int
93 kern_socket(int domain, int type, int protocol, int *res)
94 {
95 	struct thread *td = curthread;
96 	struct filedesc *fdp = td->td_proc->p_fd;
97 	struct socket *so;
98 	struct file *fp;
99 	int fd, error;
100 	u_int fflags = 0;
101 	int oflags = 0;
102 
103 	KKASSERT(td->td_lwp);
104 
105 	if (type & SOCK_NONBLOCK) {
106 		type &= ~SOCK_NONBLOCK;
107 		fflags |= FNONBLOCK;
108 	}
109 	if (type & SOCK_CLOEXEC) {
110 		type &= ~SOCK_CLOEXEC;
111 		oflags |= O_CLOEXEC;
112 	}
113 
114 	error = falloc(td->td_lwp, &fp, &fd);
115 	if (error)
116 		return (error);
117 	error = socreate(domain, &so, type, protocol, td);
118 	if (error) {
119 		fsetfd(fdp, NULL, fd);
120 	} else {
121 		fp->f_type = DTYPE_SOCKET;
122 		fp->f_flag = FREAD | FWRITE | fflags;
123 		fp->f_ops = &socketops;
124 		fp->f_data = so;
125 		if (oflags & O_CLOEXEC)
126 			fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
127 		*res = fd;
128 		fsetfd(fdp, fp, fd);
129 	}
130 	fdrop(fp);
131 	return (error);
132 }
133 
134 /*
135  * MPALMOSTSAFE
136  */
137 int
138 sys_socket(struct socket_args *uap)
139 {
140 	int error;
141 
142 	error = kern_socket(uap->domain, uap->type, uap->protocol,
143 			    &uap->sysmsg_iresult);
144 
145 	return (error);
146 }
147 
148 int
149 kern_bind(int s, struct sockaddr *sa)
150 {
151 	struct thread *td = curthread;
152 	struct proc *p = td->td_proc;
153 	struct file *fp;
154 	int error;
155 
156 	KKASSERT(p);
157 	error = holdsock(p->p_fd, s, &fp);
158 	if (error)
159 		return (error);
160 	error = sobind((struct socket *)fp->f_data, sa, td);
161 	fdrop(fp);
162 	return (error);
163 }
164 
165 /*
166  * bind_args(int s, caddr_t name, int namelen)
167  *
168  * MPALMOSTSAFE
169  */
170 int
171 sys_bind(struct bind_args *uap)
172 {
173 	struct sockaddr *sa;
174 	int error;
175 
176 	error = getsockaddr(&sa, uap->name, uap->namelen);
177 	if (error)
178 		return (error);
179 	error = kern_bind(uap->s, sa);
180 	kfree(sa, M_SONAME);
181 
182 	return (error);
183 }
184 
185 int
186 kern_listen(int s, int backlog)
187 {
188 	struct thread *td = curthread;
189 	struct proc *p = td->td_proc;
190 	struct file *fp;
191 	int error;
192 
193 	KKASSERT(p);
194 	error = holdsock(p->p_fd, s, &fp);
195 	if (error)
196 		return (error);
197 	error = solisten((struct socket *)fp->f_data, backlog, td);
198 	fdrop(fp);
199 	return(error);
200 }
201 
202 /*
203  * listen_args(int s, int backlog)
204  *
205  * MPALMOSTSAFE
206  */
207 int
208 sys_listen(struct listen_args *uap)
209 {
210 	int error;
211 
212 	error = kern_listen(uap->s, uap->backlog);
213 	return (error);
214 }
215 
216 /*
217  * Returns the accepted socket as well.
218  *
219  * NOTE!  The sockets sitting on so_comp/so_incomp might have 0 refs, the
220  *	  pool token is absolutely required to avoid a sofree() race,
221  *	  as well as to avoid tailq handling races.
222  */
223 static boolean_t
224 soaccept_predicate(struct netmsg_so_notify *msg)
225 {
226 	struct socket *head = msg->base.nm_so;
227 	struct socket *so;
228 
229 	if (head->so_error != 0) {
230 		msg->base.lmsg.ms_error = head->so_error;
231 		return (TRUE);
232 	}
233 	lwkt_getpooltoken(head);
234 	if (!TAILQ_EMPTY(&head->so_comp)) {
235 		/* Abuse nm_so field as copy in/copy out parameter. XXX JH */
236 		so = TAILQ_FIRST(&head->so_comp);
237 		KKASSERT((so->so_state & (SS_INCOMP | SS_COMP)) == SS_COMP);
238 		TAILQ_REMOVE(&head->so_comp, so, so_list);
239 		head->so_qlen--;
240 		soclrstate(so, SS_COMP);
241 
242 		/*
243 		 * Keep a reference before clearing the so_head
244 		 * to avoid racing socket close in netisr.
245 		 */
246 		soreference(so);
247 		so->so_head = NULL;
248 
249 		lwkt_relpooltoken(head);
250 
251 		msg->base.lmsg.ms_error = 0;
252 		msg->base.nm_so = so;
253 		return (TRUE);
254 	}
255 	lwkt_relpooltoken(head);
256 	if (head->so_state & SS_CANTRCVMORE) {
257 		msg->base.lmsg.ms_error = ECONNABORTED;
258 		return (TRUE);
259 	}
260 	if (msg->nm_fflags & FNONBLOCK) {
261 		msg->base.lmsg.ms_error = EWOULDBLOCK;
262 		return (TRUE);
263 	}
264 
265 	return (FALSE);
266 }
267 
268 /*
269  * The second argument to kern_accept() is a handle to a struct sockaddr.
270  * This allows kern_accept() to return a pointer to an allocated struct
271  * sockaddr which must be freed later with FREE().  The caller must
272  * initialize *name to NULL.
273  */
274 int
275 kern_accept(int s, int fflags, struct sockaddr **name, int *namelen, int *res,
276     int sockflags)
277 {
278 	struct thread *td = curthread;
279 	struct filedesc *fdp = td->td_proc->p_fd;
280 	struct file *lfp = NULL;
281 	struct file *nfp = NULL;
282 	struct sockaddr *sa;
283 	struct socket *head, *so;
284 	struct netmsg_so_notify msg;
285 	int fd;
286 	u_int fflag;		/* type must match fp->f_flag */
287 	int error, tmp;
288 
289 	*res = -1;
290 	if (name && namelen && *namelen < 0)
291 		return (EINVAL);
292 
293 	error = holdsock(td->td_proc->p_fd, s, &lfp);
294 	if (error)
295 		return (error);
296 
297 	error = falloc(td->td_lwp, &nfp, &fd);
298 	if (error) {		/* Probably ran out of file descriptors. */
299 		fdrop(lfp);
300 		return (error);
301 	}
302 	head = (struct socket *)lfp->f_data;
303 	if ((head->so_options & SO_ACCEPTCONN) == 0) {
304 		error = EINVAL;
305 		goto done;
306 	}
307 
308 	if (fflags & O_FBLOCKING)
309 		fflags |= lfp->f_flag & ~FNONBLOCK;
310 	else if (fflags & O_FNONBLOCKING)
311 		fflags |= lfp->f_flag | FNONBLOCK;
312 	else
313 		fflags = lfp->f_flag;
314 
315 	if (use_soaccept_pred_fast) {
316 		boolean_t pred;
317 
318 		/* Initialize necessary parts for soaccept_predicate() */
319 		netmsg_init(&msg.base, head, &netisr_apanic_rport, 0, NULL);
320 		msg.nm_fflags = fflags;
321 
322 		lwkt_getpooltoken(head);
323 		pred = soaccept_predicate(&msg);
324 		lwkt_relpooltoken(head);
325 
326 		if (pred) {
327 			error = msg.base.lmsg.ms_error;
328 			if (error)
329 				goto done;
330 			else
331 				goto accepted;
332 		}
333 	}
334 
335 	/* optimize for uniprocessor case later XXX JH */
336 	netmsg_init_abortable(&msg.base, head, &curthread->td_msgport,
337 			      0, netmsg_so_notify, netmsg_so_notify_doabort);
338 	msg.nm_predicate = soaccept_predicate;
339 	msg.nm_fflags = fflags;
340 	msg.nm_etype = NM_REVENT;
341 	error = lwkt_domsg(head->so_port, &msg.base.lmsg, PCATCH);
342 	if (error)
343 		goto done;
344 
345 accepted:
346 	/*
347 	 * At this point we have the connection that's ready to be accepted.
348 	 *
349 	 * NOTE! soaccept_predicate() ref'd so for us, and soaccept() expects
350 	 * 	 to eat the ref and turn it into a descriptor.
351 	 */
352 	so = msg.base.nm_so;
353 
354 	fflag = lfp->f_flag;
355 
356 	/* connection has been removed from the listen queue */
357 	KNOTE(&head->so_rcv.ssb_kq.ki_note, 0);
358 
359 	if (sockflags & SOCK_KERN_NOINHERIT) {
360 		fflag &= ~(FASYNC | FNONBLOCK);
361 		if (sockflags & SOCK_NONBLOCK)
362 			fflag |= FNONBLOCK;
363 	} else {
364 		if (head->so_sigio != NULL)
365 			fsetown(fgetown(&head->so_sigio), &so->so_sigio);
366 	}
367 
368 	nfp->f_type = DTYPE_SOCKET;
369 	nfp->f_flag = fflag;
370 	nfp->f_ops = &socketops;
371 	nfp->f_data = so;
372 	/* Sync socket async state with file flags */
373 	tmp = fflag & FASYNC;
374 	fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, td->td_ucred, NULL);
375 
376 	sa = NULL;
377 	if (so->so_faddr != NULL) {
378 		sa = so->so_faddr;
379 		so->so_faddr = NULL;
380 
381 		soaccept_generic(so);
382 		error = 0;
383 	} else {
384 		error = soaccept(so, &sa);
385 	}
386 
387 	/*
388 	 * Set the returned name and namelen as applicable.  Set the returned
389 	 * namelen to 0 for older code which might ignore the return value
390 	 * from accept.
391 	 */
392 	if (error == 0) {
393 		if (sa && name && namelen) {
394 			if (*namelen > sa->sa_len)
395 				*namelen = sa->sa_len;
396 			*name = sa;
397 		} else {
398 			if (sa)
399 				kfree(sa, M_SONAME);
400 		}
401 	}
402 
403 done:
404 	/*
405 	 * If an error occured clear the reserved descriptor, else associate
406 	 * nfp with it.
407 	 *
408 	 * Note that *res is normally ignored if an error is returned but
409 	 * a syscall message will still have access to the result code.
410 	 */
411 	if (error) {
412 		fsetfd(fdp, NULL, fd);
413 	} else {
414 		if (sockflags & SOCK_CLOEXEC)
415 			fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
416 		*res = fd;
417 		fsetfd(fdp, nfp, fd);
418 	}
419 	fdrop(nfp);
420 	fdrop(lfp);
421 	return (error);
422 }
423 
424 /*
425  * accept(int s, caddr_t name, int *anamelen)
426  *
427  * MPALMOSTSAFE
428  */
429 int
430 sys_accept(struct accept_args *uap)
431 {
432 	struct sockaddr *sa = NULL;
433 	int sa_len;
434 	int error;
435 
436 	if (uap->name) {
437 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
438 		if (error)
439 			return (error);
440 
441 		error = kern_accept(uap->s, 0, &sa, &sa_len,
442 				    &uap->sysmsg_iresult, 0);
443 
444 		if (error == 0)
445 			error = copyout(sa, uap->name, sa_len);
446 		if (error == 0) {
447 			error = copyout(&sa_len, uap->anamelen,
448 			    sizeof(*uap->anamelen));
449 		}
450 		if (sa)
451 			kfree(sa, M_SONAME);
452 	} else {
453 		error = kern_accept(uap->s, 0, NULL, 0,
454 				    &uap->sysmsg_iresult, 0);
455 	}
456 	return (error);
457 }
458 
459 /*
460  * extaccept(int s, int fflags, caddr_t name, int *anamelen)
461  *
462  * MPALMOSTSAFE
463  */
464 int
465 sys_extaccept(struct extaccept_args *uap)
466 {
467 	struct sockaddr *sa = NULL;
468 	int sa_len;
469 	int error;
470 	int fflags = uap->flags & O_FMASK;
471 
472 	if (uap->name) {
473 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
474 		if (error)
475 			return (error);
476 
477 		error = kern_accept(uap->s, fflags, &sa, &sa_len,
478 				    &uap->sysmsg_iresult, 0);
479 
480 		if (error == 0)
481 			error = copyout(sa, uap->name, sa_len);
482 		if (error == 0) {
483 			error = copyout(&sa_len, uap->anamelen,
484 			    sizeof(*uap->anamelen));
485 		}
486 		if (sa)
487 			kfree(sa, M_SONAME);
488 	} else {
489 		error = kern_accept(uap->s, fflags, NULL, 0,
490 				    &uap->sysmsg_iresult, 0);
491 	}
492 	return (error);
493 }
494 
495 /*
496  * accept4(int s, caddr_t name, int *anamelen, int flags)
497  *
498  * MPALMOSTSAFE
499  */
500 int
501 sys_accept4(struct accept4_args *uap)
502 {
503 	struct sockaddr *sa = NULL;
504 	int sa_len;
505 	int error;
506 	int sockflags;
507 
508 	if (uap->flags & ~(SOCK_NONBLOCK | SOCK_CLOEXEC))
509 		return (EINVAL);
510 	sockflags = uap->flags | SOCK_KERN_NOINHERIT;
511 
512 	if (uap->name) {
513 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
514 		if (error)
515 			return (error);
516 
517 		error = kern_accept(uap->s, 0, &sa, &sa_len,
518 				    &uap->sysmsg_iresult, sockflags);
519 
520 		if (error == 0)
521 			error = copyout(sa, uap->name, sa_len);
522 		if (error == 0) {
523 			error = copyout(&sa_len, uap->anamelen,
524 			    sizeof(*uap->anamelen));
525 		}
526 		if (sa)
527 			kfree(sa, M_SONAME);
528 	} else {
529 		error = kern_accept(uap->s, 0, NULL, 0,
530 				    &uap->sysmsg_iresult, sockflags);
531 	}
532 	return (error);
533 }
534 
535 /*
536  * Returns TRUE if predicate satisfied.
537  */
538 static boolean_t
539 soconnected_predicate(struct netmsg_so_notify *msg)
540 {
541 	struct socket *so = msg->base.nm_so;
542 
543 	/* check predicate */
544 	if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) {
545 		msg->base.lmsg.ms_error = so->so_error;
546 		return (TRUE);
547 	}
548 
549 	return (FALSE);
550 }
551 
552 int
553 kern_connect(int s, int fflags, struct sockaddr *sa)
554 {
555 	struct thread *td = curthread;
556 	struct proc *p = td->td_proc;
557 	struct file *fp;
558 	struct socket *so;
559 	int error, interrupted = 0;
560 
561 	error = holdsock(p->p_fd, s, &fp);
562 	if (error)
563 		return (error);
564 	so = (struct socket *)fp->f_data;
565 
566 	if (fflags & O_FBLOCKING)
567 		/* fflags &= ~FNONBLOCK; */;
568 	else if (fflags & O_FNONBLOCKING)
569 		fflags |= FNONBLOCK;
570 	else
571 		fflags = fp->f_flag;
572 
573 	if (so->so_state & SS_ISCONNECTING) {
574 		error = EALREADY;
575 		goto done;
576 	}
577 	error = soconnect(so, sa, td, use_soconnect_async ? FALSE : TRUE);
578 	if (error)
579 		goto bad;
580 	if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
581 		error = EINPROGRESS;
582 		goto done;
583 	}
584 	if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
585 		struct netmsg_so_notify msg;
586 
587 		netmsg_init_abortable(&msg.base, so,
588 				      &curthread->td_msgport,
589 				      0,
590 				      netmsg_so_notify,
591 				      netmsg_so_notify_doabort);
592 		msg.nm_predicate = soconnected_predicate;
593 		msg.nm_etype = NM_REVENT;
594 		error = lwkt_domsg(so->so_port, &msg.base.lmsg, PCATCH);
595 		if (error == EINTR || error == ERESTART)
596 			interrupted = 1;
597 	}
598 	if (error == 0) {
599 		error = so->so_error;
600 		so->so_error = 0;
601 	}
602 bad:
603 	if (!interrupted)
604 		soclrstate(so, SS_ISCONNECTING);
605 	if (error == ERESTART)
606 		error = EINTR;
607 done:
608 	fdrop(fp);
609 	return (error);
610 }
611 
612 /*
613  * connect_args(int s, caddr_t name, int namelen)
614  *
615  * MPALMOSTSAFE
616  */
617 int
618 sys_connect(struct connect_args *uap)
619 {
620 	struct sockaddr *sa;
621 	int error;
622 
623 	error = getsockaddr(&sa, uap->name, uap->namelen);
624 	if (error)
625 		return (error);
626 	error = kern_connect(uap->s, 0, sa);
627 	kfree(sa, M_SONAME);
628 
629 	return (error);
630 }
631 
632 /*
633  * connect_args(int s, int fflags, caddr_t name, int namelen)
634  *
635  * MPALMOSTSAFE
636  */
637 int
638 sys_extconnect(struct extconnect_args *uap)
639 {
640 	struct sockaddr *sa;
641 	int error;
642 	int fflags = uap->flags & O_FMASK;
643 
644 	error = getsockaddr(&sa, uap->name, uap->namelen);
645 	if (error)
646 		return (error);
647 	error = kern_connect(uap->s, fflags, sa);
648 	kfree(sa, M_SONAME);
649 
650 	return (error);
651 }
652 
653 int
654 kern_socketpair(int domain, int type, int protocol, int *sv)
655 {
656 	struct thread *td = curthread;
657 	struct filedesc *fdp;
658 	struct file *fp1, *fp2;
659 	struct socket *so1, *so2;
660 	int fd1, fd2, error;
661 	u_int fflags = 0;
662 	int oflags = 0;
663 
664 	if (type & SOCK_NONBLOCK) {
665 		type &= ~SOCK_NONBLOCK;
666 		fflags |= FNONBLOCK;
667 	}
668 	if (type & SOCK_CLOEXEC) {
669 		type &= ~SOCK_CLOEXEC;
670 		oflags |= O_CLOEXEC;
671 	}
672 
673 	fdp = td->td_proc->p_fd;
674 	error = socreate(domain, &so1, type, protocol, td);
675 	if (error)
676 		return (error);
677 	error = socreate(domain, &so2, type, protocol, td);
678 	if (error)
679 		goto free1;
680 	error = falloc(td->td_lwp, &fp1, &fd1);
681 	if (error)
682 		goto free2;
683 	sv[0] = fd1;
684 	fp1->f_data = so1;
685 	error = falloc(td->td_lwp, &fp2, &fd2);
686 	if (error)
687 		goto free3;
688 	fp2->f_data = so2;
689 	sv[1] = fd2;
690 	error = soconnect2(so1, so2);
691 	if (error)
692 		goto free4;
693 	if (type == SOCK_DGRAM) {
694 		/*
695 		 * Datagram socket connection is asymmetric.
696 		 */
697 		 error = soconnect2(so2, so1);
698 		 if (error)
699 			goto free4;
700 	}
701 	fp1->f_type = fp2->f_type = DTYPE_SOCKET;
702 	fp1->f_flag = fp2->f_flag = FREAD|FWRITE|fflags;
703 	fp1->f_ops = fp2->f_ops = &socketops;
704 	if (oflags & O_CLOEXEC) {
705 		fdp->fd_files[fd1].fileflags |= UF_EXCLOSE;
706 		fdp->fd_files[fd2].fileflags |= UF_EXCLOSE;
707 	}
708 	fsetfd(fdp, fp1, fd1);
709 	fsetfd(fdp, fp2, fd2);
710 	fdrop(fp1);
711 	fdrop(fp2);
712 	return (error);
713 free4:
714 	fsetfd(fdp, NULL, fd2);
715 	fdrop(fp2);
716 free3:
717 	fsetfd(fdp, NULL, fd1);
718 	fdrop(fp1);
719 free2:
720 	(void)soclose(so2, 0);
721 free1:
722 	(void)soclose(so1, 0);
723 	return (error);
724 }
725 
726 /*
727  * socketpair(int domain, int type, int protocol, int *rsv)
728  */
729 int
730 sys_socketpair(struct socketpair_args *uap)
731 {
732 	int error, sockv[2];
733 
734 	error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
735 
736 	if (error == 0) {
737 		error = copyout(sockv, uap->rsv, sizeof(sockv));
738 
739 		if (error != 0) {
740 			kern_close(sockv[0]);
741 			kern_close(sockv[1]);
742 		}
743 	}
744 
745 	return (error);
746 }
747 
748 int
749 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
750 	     struct mbuf *control, int flags, size_t *res)
751 {
752 	struct thread *td = curthread;
753 	struct lwp *lp = td->td_lwp;
754 	struct proc *p = td->td_proc;
755 	struct file *fp;
756 	size_t len;
757 	int error;
758 	struct socket *so;
759 #ifdef KTRACE
760 	struct iovec *ktriov = NULL;
761 	struct uio ktruio;
762 #endif
763 
764 	error = holdsock(p->p_fd, s, &fp);
765 	if (error)
766 		return (error);
767 #ifdef KTRACE
768 	if (KTRPOINT(td, KTR_GENIO)) {
769 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
770 
771 		ktriov = kmalloc(iovlen, M_TEMP, M_WAITOK);
772 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
773 		ktruio = *auio;
774 	}
775 #endif
776 	len = auio->uio_resid;
777 	so = (struct socket *)fp->f_data;
778 	if ((flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
779 		if (fp->f_flag & FNONBLOCK)
780 			flags |= MSG_FNONBLOCKING;
781 	}
782 	error = so_pru_sosend(so, sa, auio, NULL, control, flags, td);
783 	if (error) {
784 		if (auio->uio_resid != len && (error == ERESTART ||
785 		    error == EINTR || error == EWOULDBLOCK))
786 			error = 0;
787 		if (error == EPIPE && !(flags & MSG_NOSIGNAL) &&
788 		    !(so->so_options & SO_NOSIGPIPE))
789 			lwpsignal(p, lp, SIGPIPE);
790 	}
791 #ifdef KTRACE
792 	if (ktriov != NULL) {
793 		if (error == 0) {
794 			ktruio.uio_iov = ktriov;
795 			ktruio.uio_resid = len - auio->uio_resid;
796 			ktrgenio(lp, s, UIO_WRITE, &ktruio, error);
797 		}
798 		kfree(ktriov, M_TEMP);
799 	}
800 #endif
801 	if (error == 0)
802 		*res  = len - auio->uio_resid;
803 	fdrop(fp);
804 	return (error);
805 }
806 
807 /*
808  * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
809  *
810  * MPALMOSTSAFE
811  */
812 int
813 sys_sendto(struct sendto_args *uap)
814 {
815 	struct thread *td = curthread;
816 	struct uio auio;
817 	struct iovec aiov;
818 	struct sockaddr *sa = NULL;
819 	int error;
820 
821 	if (uap->to) {
822 		error = getsockaddr(&sa, uap->to, uap->tolen);
823 		if (error)
824 			return (error);
825 	}
826 	aiov.iov_base = uap->buf;
827 	aiov.iov_len = uap->len;
828 	auio.uio_iov = &aiov;
829 	auio.uio_iovcnt = 1;
830 	auio.uio_offset = 0;
831 	auio.uio_resid = uap->len;
832 	auio.uio_segflg = UIO_USERSPACE;
833 	auio.uio_rw = UIO_WRITE;
834 	auio.uio_td = td;
835 
836 	error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
837 			     &uap->sysmsg_szresult);
838 
839 	if (sa)
840 		kfree(sa, M_SONAME);
841 	return (error);
842 }
843 
844 /*
845  * sendmsg_args(int s, caddr_t msg, int flags)
846  *
847  * MPALMOSTSAFE
848  */
849 int
850 sys_sendmsg(struct sendmsg_args *uap)
851 {
852 	struct thread *td = curthread;
853 	struct msghdr msg;
854 	struct uio auio;
855 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
856 	struct sockaddr *sa = NULL;
857 	struct mbuf *control = NULL;
858 	int error;
859 
860 	error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
861 	if (error)
862 		return (error);
863 
864 	/*
865 	 * Conditionally copyin msg.msg_name.
866 	 */
867 	if (msg.msg_name) {
868 		error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
869 		if (error)
870 			return (error);
871 	}
872 
873 	/*
874 	 * Populate auio.
875 	 */
876 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
877 			     &auio.uio_resid);
878 	if (error)
879 		goto cleanup2;
880 	auio.uio_iov = iov;
881 	auio.uio_iovcnt = msg.msg_iovlen;
882 	auio.uio_offset = 0;
883 	auio.uio_segflg = UIO_USERSPACE;
884 	auio.uio_rw = UIO_WRITE;
885 	auio.uio_td = td;
886 
887 	/*
888 	 * Conditionally copyin msg.msg_control.
889 	 */
890 	if (msg.msg_control) {
891 		if (msg.msg_controllen < sizeof(struct cmsghdr) ||
892 		    msg.msg_controllen > MLEN) {
893 			error = EINVAL;
894 			goto cleanup;
895 		}
896 		control = m_get(M_WAITOK, MT_CONTROL);
897 		if (control == NULL) {
898 			error = ENOBUFS;
899 			goto cleanup;
900 		}
901 		control->m_len = msg.msg_controllen;
902 		error = copyin(msg.msg_control, mtod(control, caddr_t),
903 			       msg.msg_controllen);
904 		if (error) {
905 			m_free(control);
906 			goto cleanup;
907 		}
908 	}
909 
910 	error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
911 			     &uap->sysmsg_szresult);
912 
913 cleanup:
914 	iovec_free(&iov, aiov);
915 cleanup2:
916 	if (sa)
917 		kfree(sa, M_SONAME);
918 	return (error);
919 }
920 
921 /*
922  * kern_recvmsg() takes a handle to sa and control.  If the handle is non-
923  * null, it returns a dynamically allocated struct sockaddr and an mbuf.
924  * Don't forget to FREE() and m_free() these if they are returned.
925  */
926 int
927 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
928 	     struct mbuf **control, int *flags, size_t *res)
929 {
930 	struct thread *td = curthread;
931 	struct proc *p = td->td_proc;
932 	struct file *fp;
933 	size_t len;
934 	int error;
935 	int lflags;
936 	struct socket *so;
937 #ifdef KTRACE
938 	struct iovec *ktriov = NULL;
939 	struct uio ktruio;
940 #endif
941 
942 	error = holdsock(p->p_fd, s, &fp);
943 	if (error)
944 		return (error);
945 #ifdef KTRACE
946 	if (KTRPOINT(td, KTR_GENIO)) {
947 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
948 
949 		ktriov = kmalloc(iovlen, M_TEMP, M_WAITOK);
950 		bcopy(auio->uio_iov, ktriov, iovlen);
951 		ktruio = *auio;
952 	}
953 #endif
954 	len = auio->uio_resid;
955 	so = (struct socket *)fp->f_data;
956 
957 	if (flags == NULL || (*flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
958 		if (fp->f_flag & FNONBLOCK) {
959 			if (flags) {
960 				*flags |= MSG_FNONBLOCKING;
961 			} else {
962 				lflags = MSG_FNONBLOCKING;
963 				flags = &lflags;
964 			}
965 		}
966 	}
967 
968 	error = so_pru_soreceive(so, sa, auio, NULL, control, flags);
969 	if (error) {
970 		if (auio->uio_resid != len && (error == ERESTART ||
971 		    error == EINTR || error == EWOULDBLOCK))
972 			error = 0;
973 	}
974 #ifdef KTRACE
975 	if (ktriov != NULL) {
976 		if (error == 0) {
977 			ktruio.uio_iov = ktriov;
978 			ktruio.uio_resid = len - auio->uio_resid;
979 			ktrgenio(td->td_lwp, s, UIO_READ, &ktruio, error);
980 		}
981 		kfree(ktriov, M_TEMP);
982 	}
983 #endif
984 	if (error == 0)
985 		*res = len - auio->uio_resid;
986 	fdrop(fp);
987 	return (error);
988 }
989 
990 /*
991  * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
992  *			caddr_t from, int *fromlenaddr)
993  *
994  * MPALMOSTSAFE
995  */
996 int
997 sys_recvfrom(struct recvfrom_args *uap)
998 {
999 	struct thread *td = curthread;
1000 	struct uio auio;
1001 	struct iovec aiov;
1002 	struct sockaddr *sa = NULL;
1003 	int error, fromlen;
1004 
1005 	if (uap->from && uap->fromlenaddr) {
1006 		error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
1007 		if (error)
1008 			return (error);
1009 		if (fromlen < 0)
1010 			return (EINVAL);
1011 	} else {
1012 		fromlen = 0;
1013 	}
1014 	aiov.iov_base = uap->buf;
1015 	aiov.iov_len = uap->len;
1016 	auio.uio_iov = &aiov;
1017 	auio.uio_iovcnt = 1;
1018 	auio.uio_offset = 0;
1019 	auio.uio_resid = uap->len;
1020 	auio.uio_segflg = UIO_USERSPACE;
1021 	auio.uio_rw = UIO_READ;
1022 	auio.uio_td = td;
1023 
1024 	error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
1025 			     &uap->flags, &uap->sysmsg_szresult);
1026 
1027 	if (error == 0 && uap->from) {
1028 		/* note: sa may still be NULL */
1029 		if (sa) {
1030 			fromlen = MIN(fromlen, sa->sa_len);
1031 			error = copyout(sa, uap->from, fromlen);
1032 		} else {
1033 			fromlen = 0;
1034 		}
1035 		if (error == 0) {
1036 			error = copyout(&fromlen, uap->fromlenaddr,
1037 					sizeof(fromlen));
1038 		}
1039 	}
1040 	if (sa)
1041 		kfree(sa, M_SONAME);
1042 
1043 	return (error);
1044 }
1045 
1046 /*
1047  * recvmsg_args(int s, struct msghdr *msg, int flags)
1048  *
1049  * MPALMOSTSAFE
1050  */
1051 int
1052 sys_recvmsg(struct recvmsg_args *uap)
1053 {
1054 	struct thread *td = curthread;
1055 	struct msghdr msg;
1056 	struct uio auio;
1057 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1058 	struct mbuf *m, *control = NULL;
1059 	struct sockaddr *sa = NULL;
1060 	caddr_t ctlbuf;
1061 	socklen_t *ufromlenp, *ucontrollenp;
1062 	int error, fromlen, controllen, len, flags, *uflagsp;
1063 
1064 	/*
1065 	 * This copyin handles everything except the iovec.
1066 	 */
1067 	error = copyin(uap->msg, &msg, sizeof(msg));
1068 	if (error)
1069 		return (error);
1070 
1071 	if (msg.msg_name && msg.msg_namelen < 0)
1072 		return (EINVAL);
1073 	if (msg.msg_control && msg.msg_controllen < 0)
1074 		return (EINVAL);
1075 
1076 	ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
1077 		    msg_namelen));
1078 	ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
1079 		       msg_controllen));
1080 	uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
1081 							msg_flags));
1082 
1083 	/*
1084 	 * Populate auio.
1085 	 */
1086 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
1087 			     &auio.uio_resid);
1088 	if (error)
1089 		return (error);
1090 	auio.uio_iov = iov;
1091 	auio.uio_iovcnt = msg.msg_iovlen;
1092 	auio.uio_offset = 0;
1093 	auio.uio_segflg = UIO_USERSPACE;
1094 	auio.uio_rw = UIO_READ;
1095 	auio.uio_td = td;
1096 
1097 	flags = uap->flags;
1098 
1099 	error = kern_recvmsg(uap->s,
1100 			     (msg.msg_name ? &sa : NULL), &auio,
1101 			     (msg.msg_control ? &control : NULL), &flags,
1102 			     &uap->sysmsg_szresult);
1103 
1104 	/*
1105 	 * Conditionally copyout the name and populate the namelen field.
1106 	 */
1107 	if (error == 0 && msg.msg_name) {
1108 		/* note: sa may still be NULL */
1109 		if (sa != NULL) {
1110 			fromlen = MIN(msg.msg_namelen, sa->sa_len);
1111 			error = copyout(sa, msg.msg_name, fromlen);
1112 		} else {
1113 			fromlen = 0;
1114 		}
1115 		if (error == 0)
1116 			error = copyout(&fromlen, ufromlenp,
1117 			    sizeof(*ufromlenp));
1118 	}
1119 
1120 	/*
1121 	 * Copyout msg.msg_control and msg.msg_controllen.
1122 	 */
1123 	if (error == 0 && msg.msg_control) {
1124 		len = msg.msg_controllen;
1125 		m = control;
1126 		ctlbuf = (caddr_t)msg.msg_control;
1127 
1128 		while(m && len > 0) {
1129 			unsigned int tocopy;
1130 
1131 			if (len >= m->m_len) {
1132 				tocopy = m->m_len;
1133 			} else {
1134 				msg.msg_flags |= MSG_CTRUNC;
1135 				tocopy = len;
1136 			}
1137 
1138 			error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
1139 			if (error)
1140 				goto cleanup;
1141 
1142 			ctlbuf += tocopy;
1143 			len -= tocopy;
1144 			m = m->m_next;
1145 		}
1146 		controllen = ctlbuf - (caddr_t)msg.msg_control;
1147 		error = copyout(&controllen, ucontrollenp,
1148 		    sizeof(*ucontrollenp));
1149 	}
1150 
1151 	if (error == 0)
1152 		error = copyout(&flags, uflagsp, sizeof(*uflagsp));
1153 
1154 cleanup:
1155 	if (sa)
1156 		kfree(sa, M_SONAME);
1157 	iovec_free(&iov, aiov);
1158 	if (control)
1159 		m_freem(control);
1160 	return (error);
1161 }
1162 
1163 /*
1164  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1165  * in kernel pointer instead of a userland pointer.  This allows us
1166  * to manipulate socket options in the emulation code.
1167  */
1168 int
1169 kern_setsockopt(int s, struct sockopt *sopt)
1170 {
1171 	struct thread *td = curthread;
1172 	struct proc *p = td->td_proc;
1173 	struct file *fp;
1174 	int error;
1175 
1176 	if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1177 		return (EFAULT);
1178 	if (sopt->sopt_val != NULL && sopt->sopt_valsize == 0)
1179 		return (EINVAL);
1180 	if (sopt->sopt_valsize > SOMAXOPT_SIZE)	/* unsigned */
1181 		return (EINVAL);
1182 
1183 	error = holdsock(p->p_fd, s, &fp);
1184 	if (error)
1185 		return (error);
1186 
1187 	error = sosetopt((struct socket *)fp->f_data, sopt);
1188 	fdrop(fp);
1189 	return (error);
1190 }
1191 
1192 /*
1193  * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
1194  *
1195  * MPALMOSTSAFE
1196  */
1197 int
1198 sys_setsockopt(struct setsockopt_args *uap)
1199 {
1200 	struct thread *td = curthread;
1201 	struct sockopt sopt;
1202 	int error;
1203 
1204 	sopt.sopt_level = uap->level;
1205 	sopt.sopt_name = uap->name;
1206 	sopt.sopt_valsize = uap->valsize;
1207 	sopt.sopt_td = td;
1208 	sopt.sopt_val = NULL;
1209 
1210 	if (sopt.sopt_valsize > SOMAXOPT_SIZE) /* unsigned */
1211 		return (EINVAL);
1212 	if (uap->val) {
1213 		sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP, M_WAITOK);
1214 		error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1215 		if (error)
1216 			goto out;
1217 	}
1218 
1219 	error = kern_setsockopt(uap->s, &sopt);
1220 out:
1221 	if (uap->val)
1222 		kfree(sopt.sopt_val, M_TEMP);
1223 	return(error);
1224 }
1225 
1226 /*
1227  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1228  * in kernel pointer instead of a userland pointer.  This allows us
1229  * to manipulate socket options in the emulation code.
1230  */
1231 int
1232 kern_getsockopt(int s, struct sockopt *sopt)
1233 {
1234 	struct thread *td = curthread;
1235 	struct proc *p = td->td_proc;
1236 	struct file *fp;
1237 	int error;
1238 
1239 	if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1240 		return (EFAULT);
1241 	if (sopt->sopt_val != NULL && sopt->sopt_valsize == 0)
1242 		return (EINVAL);
1243 
1244 	error = holdsock(p->p_fd, s, &fp);
1245 	if (error)
1246 		return (error);
1247 
1248 	error = sogetopt((struct socket *)fp->f_data, sopt);
1249 	fdrop(fp);
1250 	return (error);
1251 }
1252 
1253 /*
1254  * getsockopt_args(int s, int level, int name, caddr_t val, int *avalsize)
1255  *
1256  * MPALMOSTSAFE
1257  */
1258 int
1259 sys_getsockopt(struct getsockopt_args *uap)
1260 {
1261 	struct thread *td = curthread;
1262 	struct sockopt sopt;
1263 	int error, valsize, valszmax, mflag = 0;
1264 
1265 	if (uap->val) {
1266 		error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1267 		if (error)
1268 			return (error);
1269 	} else {
1270 		valsize = 0;
1271 	}
1272 
1273 	sopt.sopt_level = uap->level;
1274 	sopt.sopt_name = uap->name;
1275 	sopt.sopt_valsize = valsize;
1276 	sopt.sopt_td = td;
1277 	sopt.sopt_val = NULL;
1278 
1279 	if (td->td_proc->p_ucred->cr_uid == 0) {
1280 		valszmax = SOMAXOPT_SIZE0;
1281 		mflag = M_NULLOK;
1282 	} else {
1283 		valszmax = SOMAXOPT_SIZE;
1284 	}
1285 	if (sopt.sopt_valsize > valszmax) /* unsigned */
1286 		return (EINVAL);
1287 	if (uap->val) {
1288 		sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP,
1289 		    M_WAITOK | mflag);
1290 		if (sopt.sopt_val == NULL)
1291 			return (ENOBUFS);
1292 		error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1293 		if (error)
1294 			goto out;
1295 	}
1296 
1297 	error = kern_getsockopt(uap->s, &sopt);
1298 	if (error)
1299 		goto out;
1300 	valsize = sopt.sopt_valsize;
1301 	error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1302 	if (error)
1303 		goto out;
1304 	if (uap->val)
1305 		error = copyout(sopt.sopt_val, uap->val, sopt.sopt_valsize);
1306 out:
1307 	if (uap->val)
1308 		kfree(sopt.sopt_val, M_TEMP);
1309 	return (error);
1310 }
1311 
1312 /*
1313  * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1314  * This allows kern_getsockname() to return a pointer to an allocated struct
1315  * sockaddr which must be freed later with FREE().  The caller must
1316  * initialize *name to NULL.
1317  */
1318 int
1319 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1320 {
1321 	struct thread *td = curthread;
1322 	struct proc *p = td->td_proc;
1323 	struct file *fp;
1324 	struct socket *so;
1325 	struct sockaddr *sa = NULL;
1326 	int error;
1327 
1328 	error = holdsock(p->p_fd, s, &fp);
1329 	if (error)
1330 		return (error);
1331 	if (*namelen < 0) {
1332 		fdrop(fp);
1333 		return (EINVAL);
1334 	}
1335 	so = (struct socket *)fp->f_data;
1336 	error = so_pru_sockaddr(so, &sa);
1337 	if (error == 0) {
1338 		if (sa == NULL) {
1339 			*namelen = 0;
1340 		} else {
1341 			*namelen = MIN(*namelen, sa->sa_len);
1342 			*name = sa;
1343 		}
1344 	}
1345 
1346 	fdrop(fp);
1347 	return (error);
1348 }
1349 
1350 /*
1351  * getsockname_args(int fdes, caddr_t asa, int *alen)
1352  *
1353  * Get socket name.
1354  *
1355  * MPALMOSTSAFE
1356  */
1357 int
1358 sys_getsockname(struct getsockname_args *uap)
1359 {
1360 	struct sockaddr *sa = NULL;
1361 	int error, sa_len;
1362 
1363 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1364 	if (error)
1365 		return (error);
1366 
1367 	error = kern_getsockname(uap->fdes, &sa, &sa_len);
1368 
1369 	if (error == 0)
1370 		error = copyout(sa, uap->asa, sa_len);
1371 	if (error == 0)
1372 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1373 	if (sa)
1374 		kfree(sa, M_SONAME);
1375 	return (error);
1376 }
1377 
1378 /*
1379  * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1380  * This allows kern_getpeername() to return a pointer to an allocated struct
1381  * sockaddr which must be freed later with FREE().  The caller must
1382  * initialize *name to NULL.
1383  */
1384 int
1385 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1386 {
1387 	struct thread *td = curthread;
1388 	struct proc *p = td->td_proc;
1389 	struct file *fp;
1390 	struct socket *so;
1391 	struct sockaddr *sa = NULL;
1392 	int error;
1393 
1394 	error = holdsock(p->p_fd, s, &fp);
1395 	if (error)
1396 		return (error);
1397 	if (*namelen < 0) {
1398 		fdrop(fp);
1399 		return (EINVAL);
1400 	}
1401 	so = (struct socket *)fp->f_data;
1402 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1403 		fdrop(fp);
1404 		return (ENOTCONN);
1405 	}
1406 	error = so_pru_peeraddr(so, &sa);
1407 	if (error == 0) {
1408 		if (sa == NULL) {
1409 			*namelen = 0;
1410 		} else {
1411 			*namelen = MIN(*namelen, sa->sa_len);
1412 			*name = sa;
1413 		}
1414 	}
1415 
1416 	fdrop(fp);
1417 	return (error);
1418 }
1419 
1420 /*
1421  * getpeername_args(int fdes, caddr_t asa, int *alen)
1422  *
1423  * Get name of peer for connected socket.
1424  *
1425  * MPALMOSTSAFE
1426  */
1427 int
1428 sys_getpeername(struct getpeername_args *uap)
1429 {
1430 	struct sockaddr *sa = NULL;
1431 	int error, sa_len;
1432 
1433 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1434 	if (error)
1435 		return (error);
1436 
1437 	error = kern_getpeername(uap->fdes, &sa, &sa_len);
1438 
1439 	if (error == 0)
1440 		error = copyout(sa, uap->asa, sa_len);
1441 	if (error == 0)
1442 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1443 	if (sa)
1444 		kfree(sa, M_SONAME);
1445 	return (error);
1446 }
1447 
1448 int
1449 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1450 {
1451 	struct sockaddr *sa;
1452 	int error;
1453 
1454 	*namp = NULL;
1455 	if (len > SOCK_MAXADDRLEN)
1456 		return ENAMETOOLONG;
1457 	if (len < offsetof(struct sockaddr, sa_data[0]))
1458 		return EDOM;
1459 	sa = kmalloc(len, M_SONAME, M_WAITOK);
1460 	error = copyin(uaddr, sa, len);
1461 	if (error) {
1462 		kfree(sa, M_SONAME);
1463 	} else {
1464 #if BYTE_ORDER != BIG_ENDIAN
1465 		/*
1466 		 * The bind(), connect(), and sendto() syscalls were not
1467 		 * versioned for COMPAT_43.  Thus, this check must stay.
1468 		 */
1469 		if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1470 			sa->sa_family = sa->sa_len;
1471 #endif
1472 		sa->sa_len = len;
1473 		*namp = sa;
1474 	}
1475 	return error;
1476 }
1477 
1478 /*
1479  * Detach a mapped page and release resources back to the system.
1480  * We must release our wiring and if the object is ripped out
1481  * from under the vm_page we become responsible for freeing the
1482  * page.
1483  *
1484  * MPSAFE
1485  */
1486 static void
1487 sf_buf_mfree(void *arg)
1488 {
1489 	struct sf_buf *sf = arg;
1490 	vm_page_t m;
1491 
1492 	m = sf_buf_page(sf);
1493 	if (sf_buf_free(sf)) {
1494 		/* sf invalid now */
1495 		/*
1496 		vm_page_busy_wait(m, FALSE, "sockpgf");
1497 		vm_page_wakeup(m);
1498 		*/
1499 		vm_page_unhold(m);
1500 #if 0
1501 		if (m->object == NULL &&
1502 		    m->wire_count == 0 &&
1503 		    (m->flags & PG_NEED_COMMIT) == 0) {
1504 			vm_page_free(m);
1505 		} else {
1506 			vm_page_wakeup(m);
1507 		}
1508 #endif
1509 	}
1510 }
1511 
1512 /*
1513  * sendfile(2).
1514  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1515  *	 struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1516  *
1517  * Send a file specified by 'fd' and starting at 'offset' to a socket
1518  * specified by 's'. Send only 'nbytes' of the file or until EOF if
1519  * nbytes == 0. Optionally add a header and/or trailer to the socket
1520  * output. If specified, write the total number of bytes sent into *sbytes.
1521  *
1522  * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused
1523  * the headers to count against the remaining bytes to be sent from
1524  * the file descriptor.  We may wish to implement a compatibility syscall
1525  * in the future.
1526  *
1527  * MPALMOSTSAFE
1528  */
1529 int
1530 sys_sendfile(struct sendfile_args *uap)
1531 {
1532 	struct thread *td = curthread;
1533 	struct proc *p = td->td_proc;
1534 	struct file *fp;
1535 	struct vnode *vp = NULL;
1536 	struct sf_hdtr hdtr;
1537 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1538 	struct uio auio;
1539 	struct mbuf *mheader = NULL;
1540 	size_t hbytes = 0;
1541 	size_t tbytes;
1542 	off_t hdtr_size = 0;
1543 	off_t sbytes;
1544 	int error;
1545 
1546 	KKASSERT(p);
1547 
1548 	/*
1549 	 * Do argument checking. Must be a regular file in, stream
1550 	 * type and connected socket out, positive offset.
1551 	 */
1552 	fp = holdfp(p->p_fd, uap->fd, FREAD);
1553 	if (fp == NULL) {
1554 		return (EBADF);
1555 	}
1556 	if (fp->f_type != DTYPE_VNODE) {
1557 		fdrop(fp);
1558 		return (EINVAL);
1559 	}
1560 	vp = (struct vnode *)fp->f_data;
1561 	vref(vp);
1562 	fdrop(fp);
1563 
1564 	/*
1565 	 * If specified, get the pointer to the sf_hdtr struct for
1566 	 * any headers/trailers.
1567 	 */
1568 	if (uap->hdtr) {
1569 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1570 		if (error)
1571 			goto done;
1572 		/*
1573 		 * Send any headers.
1574 		 */
1575 		if (hdtr.headers) {
1576 			error = iovec_copyin(hdtr.headers, &iov, aiov,
1577 					     hdtr.hdr_cnt, &hbytes);
1578 			if (error)
1579 				goto done;
1580 			auio.uio_iov = iov;
1581 			auio.uio_iovcnt = hdtr.hdr_cnt;
1582 			auio.uio_offset = 0;
1583 			auio.uio_segflg = UIO_USERSPACE;
1584 			auio.uio_rw = UIO_WRITE;
1585 			auio.uio_td = td;
1586 			auio.uio_resid = hbytes;
1587 
1588 			mheader = m_uiomove(&auio);
1589 
1590 			iovec_free(&iov, aiov);
1591 			if (mheader == NULL)
1592 				goto done;
1593 		}
1594 	}
1595 
1596 	error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader,
1597 			      &sbytes, uap->flags);
1598 	if (error)
1599 		goto done;
1600 
1601 	/*
1602 	 * Send trailers. Wimp out and use writev(2).
1603 	 */
1604 	if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1605 		error = iovec_copyin(hdtr.trailers, &iov, aiov,
1606 				     hdtr.trl_cnt, &auio.uio_resid);
1607 		if (error)
1608 			goto done;
1609 		auio.uio_iov = iov;
1610 		auio.uio_iovcnt = hdtr.trl_cnt;
1611 		auio.uio_offset = 0;
1612 		auio.uio_segflg = UIO_USERSPACE;
1613 		auio.uio_rw = UIO_WRITE;
1614 		auio.uio_td = td;
1615 
1616 		tbytes = 0;	/* avoid gcc warnings */
1617 		error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes);
1618 
1619 		iovec_free(&iov, aiov);
1620 		if (error)
1621 			goto done;
1622 		hdtr_size += tbytes;	/* trailer bytes successfully sent */
1623 	}
1624 
1625 done:
1626 	if (vp)
1627 		vrele(vp);
1628 	if (uap->sbytes != NULL) {
1629 		sbytes += hdtr_size;
1630 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1631 	}
1632 	return (error);
1633 }
1634 
1635 int
1636 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes,
1637 	      struct mbuf *mheader, off_t *sbytes, int flags)
1638 {
1639 	struct thread *td = curthread;
1640 	struct proc *p = td->td_proc;
1641 	struct vm_object *obj;
1642 	struct socket *so;
1643 	struct file *fp;
1644 	struct mbuf *m, *mp;
1645 	struct sf_buf *sf;
1646 	struct vm_page *pg;
1647 	off_t off, xfsize, xbytes;
1648 	off_t hbytes = 0;
1649 	int error = 0;
1650 
1651 	if (vp->v_type != VREG) {
1652 		error = EINVAL;
1653 		goto done0;
1654 	}
1655 	if ((obj = vp->v_object) == NULL) {
1656 		error = EINVAL;
1657 		goto done0;
1658 	}
1659 	error = holdsock(p->p_fd, sfd, &fp);
1660 	if (error)
1661 		goto done0;
1662 	so = (struct socket *)fp->f_data;
1663 	if (so->so_type != SOCK_STREAM) {
1664 		error = EINVAL;
1665 		goto done;
1666 	}
1667 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1668 		error = ENOTCONN;
1669 		goto done;
1670 	}
1671 	if (offset < 0) {
1672 		error = EINVAL;
1673 		goto done;
1674 	}
1675 
1676 	/*
1677 	 * preallocation is required for asynchronous passing of mbufs,
1678 	 * otherwise we can wind up building up an infinite number of
1679 	 * mbufs during the asynchronous latency.
1680 	 */
1681 	if ((so->so_snd.ssb_flags & (SSB_PREALLOC | SSB_STOPSUPP)) == 0) {
1682 		error = EINVAL;
1683 		goto done;
1684 	}
1685 
1686 	*sbytes = 0;
1687 	xbytes = 0;
1688 	/*
1689 	 * Protect against multiple writers to the socket.
1690 	 */
1691 	ssb_lock(&so->so_snd, M_WAITOK);
1692 
1693 	/*
1694 	 * Loop through the pages in the file, starting with the requested
1695 	 * offset. Get a file page (do I/O if necessary), map the file page
1696 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1697 	 * it on the socket.
1698 	 */
1699 	for (off = offset; ; off += xfsize, *sbytes += xfsize + hbytes, xbytes += xfsize) {
1700 		vm_pindex_t pindex;
1701 		vm_offset_t pgoff;
1702 		long space;
1703 
1704 		pindex = OFF_TO_IDX(off);
1705 retry_lookup:
1706 		/*
1707 		 * Calculate the amount to transfer. Not to exceed a page,
1708 		 * the EOF, or the passed in nbytes.
1709 		 */
1710 		xfsize = vp->v_filesize - off;
1711 		if (xfsize > PAGE_SIZE)
1712 			xfsize = PAGE_SIZE;
1713 		pgoff = (vm_offset_t)(off & PAGE_MASK);
1714 		if (PAGE_SIZE - pgoff < xfsize)
1715 			xfsize = PAGE_SIZE - pgoff;
1716 		if (nbytes && xfsize > (nbytes - xbytes))
1717 			xfsize = nbytes - xbytes;
1718 		if (xfsize <= 0)
1719 			break;
1720 		/*
1721 		 * Optimize the non-blocking case by looking at the socket space
1722 		 * before going to the extra work of constituting the sf_buf.
1723 		 */
1724 		if (so->so_snd.ssb_flags & SSB_PREALLOC)
1725 			space = ssb_space_prealloc(&so->so_snd);
1726 		else
1727 			space = ssb_space(&so->so_snd);
1728 
1729 		if ((fp->f_flag & FNONBLOCK) && space <= 0) {
1730 			if (so->so_state & SS_CANTSENDMORE)
1731 				error = EPIPE;
1732 			else
1733 				error = EAGAIN;
1734 			ssb_unlock(&so->so_snd);
1735 			goto done;
1736 		}
1737 		/*
1738 		 * Attempt to look up the page.
1739 		 *
1740 		 * Allocate if not found, wait and loop if busy, then hold the page.
1741 		 * We hold rather than wire the page because we do not want to prevent
1742 		 * filesystem truncation operations from occuring on the file.  This
1743 		 * can happen even under normal operation if the file being sent is
1744 		 * remove()d after the sendfile() call completes, because the socket buffer
1745 		 * may still be draining.  tmpfs will crash if we try to use wire.
1746 		 */
1747 		vm_object_hold(obj);
1748 		pg = vm_page_lookup_busy_try(obj, pindex, TRUE, &error);
1749 		if (error) {
1750 			vm_page_sleep_busy(pg, TRUE, "sfpbsy");
1751 			vm_object_drop(obj);
1752 			goto retry_lookup;
1753 		}
1754 		if (pg == NULL) {
1755 			pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL |
1756 							VM_ALLOC_NULL_OK);
1757 			if (pg == NULL) {
1758 				vm_wait(0);
1759 				vm_object_drop(obj);
1760 				goto retry_lookup;
1761 			}
1762 		}
1763 		vm_page_hold(pg);
1764 		vm_object_drop(obj);
1765 
1766 		/*
1767 		 * If page is not valid for what we need, initiate I/O
1768 		 */
1769 
1770 		if (!pg->valid || !vm_page_is_valid(pg, pgoff, xfsize)) {
1771 			struct uio auio;
1772 			struct iovec aiov;
1773 			int bsize;
1774 
1775 			/*
1776 			 * Ensure that our page is still around when the I/O
1777 			 * completes.
1778 			 *
1779 			 * Ensure that our page is not modified while part of
1780 			 * a mbuf as this could mess up tcp checksums, DMA,
1781 			 * etc (XXX NEEDS WORK).  The softbusy is supposed to
1782 			 * help here but it actually doesn't.
1783 			 *
1784 			 * XXX THIS HAS MULTIPLE PROBLEMS.  The underlying
1785 			 *     VM pages are not protected by the soft-busy
1786 			 *     unless we vm_page_protect... READ them, and
1787 			 *     they STILL aren't protected against
1788 			 *     modification via the buffer cache (VOP_WRITE).
1789 			 *
1790 			 *     Fixing the second issue is particularly
1791 			 *     difficult.
1792 			 *
1793 			 * XXX We also can't soft-busy anyway because it can
1794 			 *     deadlock against the syncer doing a vfs_msync(),
1795 			 *     vfs_msync->vmntvnodesca->vfs_msync_scan2->
1796 			 *     vm_object_page_clean->(scan)-> ... page
1797 			 *     busy-wait.
1798 			 */
1799 			/*vm_page_io_start(pg);*/
1800 			vm_page_wakeup(pg);
1801 
1802 			/*
1803 			 * Get the page from backing store.
1804 			 */
1805 			bsize = vp->v_mount->mnt_stat.f_iosize;
1806 			auio.uio_iov = &aiov;
1807 			auio.uio_iovcnt = 1;
1808 			aiov.iov_base = 0;
1809 			aiov.iov_len = MAXBSIZE;
1810 			auio.uio_resid = MAXBSIZE;
1811 			auio.uio_offset = trunc_page(off);
1812 			auio.uio_segflg = UIO_NOCOPY;
1813 			auio.uio_rw = UIO_READ;
1814 			auio.uio_td = td;
1815 			vn_lock(vp, LK_SHARED | LK_RETRY);
1816 			error = VOP_READ(vp, &auio,
1817 				    IO_VMIO | ((MAXBSIZE / bsize) << 16),
1818 				    td->td_ucred);
1819 			vn_unlock(vp);
1820 			vm_page_busy_wait(pg, FALSE, "sockpg");
1821 			/*vm_page_io_finish(pg);*/
1822 			if (error) {
1823 				vm_page_wakeup(pg);
1824 				vm_page_unhold(pg);
1825 				/* vm_page_try_to_free(pg); */
1826 				ssb_unlock(&so->so_snd);
1827 				goto done;
1828 			}
1829 		}
1830 
1831 
1832 		/*
1833 		 * Get a sendfile buf. We usually wait as long as necessary,
1834 		 * but this wait can be interrupted.
1835 		 */
1836 		if ((sf = sf_buf_alloc(pg)) == NULL) {
1837 			vm_page_wakeup(pg);
1838 			vm_page_unhold(pg);
1839 			/* vm_page_try_to_free(pg); */
1840 			ssb_unlock(&so->so_snd);
1841 			error = EINTR;
1842 			goto done;
1843 		}
1844 
1845 		/*
1846 		 * Get an mbuf header and set it up as having external storage.
1847 		 */
1848 		MGETHDR(m, M_WAITOK, MT_DATA);
1849 		if (m == NULL) {
1850 			error = ENOBUFS;
1851 			vm_page_wakeup(pg);
1852 			vm_page_unhold(pg);
1853 			/* vm_page_try_to_free(pg); */
1854 			sf_buf_free(sf);
1855 			ssb_unlock(&so->so_snd);
1856 			goto done;
1857 		}
1858 
1859 		vm_page_wakeup(pg);
1860 
1861 		m->m_ext.ext_free = sf_buf_mfree;
1862 		m->m_ext.ext_ref = sf_buf_ref;
1863 		m->m_ext.ext_arg = sf;
1864 		m->m_ext.ext_buf = (void *)sf_buf_kva(sf);
1865 		m->m_ext.ext_size = PAGE_SIZE;
1866 		m->m_data = (char *)sf_buf_kva(sf) + pgoff;
1867 		m->m_flags |= M_EXT;
1868 		m->m_pkthdr.len = m->m_len = xfsize;
1869 		KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0);
1870 
1871 		if (mheader != NULL) {
1872 			hbytes = mheader->m_pkthdr.len;
1873 			mheader->m_pkthdr.len += m->m_pkthdr.len;
1874 			m_cat(mheader, m);
1875 			m = mheader;
1876 			mheader = NULL;
1877 		} else
1878 			hbytes = 0;
1879 
1880 		/*
1881 		 * Add the buffer to the socket buffer chain.
1882 		 */
1883 		crit_enter();
1884 retry_space:
1885 		/*
1886 		 * Make sure that the socket is still able to take more data.
1887 		 * CANTSENDMORE being true usually means that the connection
1888 		 * was closed. so_error is true when an error was sensed after
1889 		 * a previous send.
1890 		 * The state is checked after the page mapping and buffer
1891 		 * allocation above since those operations may block and make
1892 		 * any socket checks stale. From this point forward, nothing
1893 		 * blocks before the pru_send (or more accurately, any blocking
1894 		 * results in a loop back to here to re-check).
1895 		 */
1896 		if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1897 			if (so->so_state & SS_CANTSENDMORE) {
1898 				error = EPIPE;
1899 			} else {
1900 				error = so->so_error;
1901 				so->so_error = 0;
1902 			}
1903 			m_freem(m);
1904 			ssb_unlock(&so->so_snd);
1905 			crit_exit();
1906 			goto done;
1907 		}
1908 		/*
1909 		 * Wait for socket space to become available. We do this just
1910 		 * after checking the connection state above in order to avoid
1911 		 * a race condition with ssb_wait().
1912 		 */
1913 		if (so->so_snd.ssb_flags & SSB_PREALLOC)
1914 			space = ssb_space_prealloc(&so->so_snd);
1915 		else
1916 			space = ssb_space(&so->so_snd);
1917 
1918 		if (space < m->m_pkthdr.len && space < so->so_snd.ssb_lowat) {
1919 			if (fp->f_flag & FNONBLOCK) {
1920 				m_freem(m);
1921 				ssb_unlock(&so->so_snd);
1922 				crit_exit();
1923 				error = EAGAIN;
1924 				goto done;
1925 			}
1926 			error = ssb_wait(&so->so_snd);
1927 			/*
1928 			 * An error from ssb_wait usually indicates that we've
1929 			 * been interrupted by a signal. If we've sent anything
1930 			 * then return bytes sent, otherwise return the error.
1931 			 */
1932 			if (error) {
1933 				m_freem(m);
1934 				ssb_unlock(&so->so_snd);
1935 				crit_exit();
1936 				goto done;
1937 			}
1938 			goto retry_space;
1939 		}
1940 
1941 		if (so->so_snd.ssb_flags & SSB_PREALLOC) {
1942 			for (mp = m; mp != NULL; mp = mp->m_next)
1943 				ssb_preallocstream(&so->so_snd, mp);
1944 		}
1945 		if (use_sendfile_async)
1946 			error = so_pru_senda(so, 0, m, NULL, NULL, td);
1947 		else
1948 			error = so_pru_send(so, 0, m, NULL, NULL, td);
1949 
1950 		crit_exit();
1951 		if (error) {
1952 			ssb_unlock(&so->so_snd);
1953 			goto done;
1954 		}
1955 	}
1956 	if (mheader != NULL) {
1957 		*sbytes += mheader->m_pkthdr.len;
1958 
1959 		if (so->so_snd.ssb_flags & SSB_PREALLOC) {
1960 			for (mp = mheader; mp != NULL; mp = mp->m_next)
1961 				ssb_preallocstream(&so->so_snd, mp);
1962 		}
1963 		if (use_sendfile_async)
1964 			error = so_pru_senda(so, 0, mheader, NULL, NULL, td);
1965 		else
1966 			error = so_pru_send(so, 0, mheader, NULL, NULL, td);
1967 
1968 		mheader = NULL;
1969 	}
1970 	ssb_unlock(&so->so_snd);
1971 
1972 done:
1973 	fdrop(fp);
1974 done0:
1975 	if (mheader != NULL)
1976 		m_freem(mheader);
1977 	return (error);
1978 }
1979