xref: /dragonfly/sys/kern/uipc_usrreq.c (revision 2038fb68)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $
35  * $DragonFly: src/sys/kern/uipc_usrreq.c,v 1.44 2008/09/06 05:44:58 dillon Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/domain.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
44 #include <sys/proc.h>
45 #include <sys/file.h>
46 #include <sys/filedesc.h>
47 #include <sys/mbuf.h>
48 #include <sys/nlookup.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/resourcevar.h>
53 #include <sys/stat.h>
54 #include <sys/mount.h>
55 #include <sys/sysctl.h>
56 #include <sys/un.h>
57 #include <sys/unpcb.h>
58 #include <sys/vnode.h>
59 #include <sys/file2.h>
60 #include <sys/spinlock2.h>
61 
62 
63 static	MALLOC_DEFINE(M_UNPCB, "unpcb", "unpcb struct");
64 static	unp_gen_t unp_gencnt;
65 static	u_int unp_count;
66 
67 static	struct unp_head unp_shead, unp_dhead;
68 
69 /*
70  * Unix communications domain.
71  *
72  * TODO:
73  *	RDM
74  *	rethink name space problems
75  *	need a proper out-of-band
76  *	lock pushdown
77  */
78 static struct	sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
79 static ino_t	unp_ino;		/* prototype for fake inode numbers */
80 
81 static int     unp_attach (struct socket *, struct pru_attach_info *);
82 static void    unp_detach (struct unpcb *);
83 static int     unp_bind (struct unpcb *,struct sockaddr *, struct thread *);
84 static int     unp_connect (struct socket *,struct sockaddr *,
85 				struct thread *);
86 static void    unp_disconnect (struct unpcb *);
87 static void    unp_shutdown (struct unpcb *);
88 static void    unp_drop (struct unpcb *, int);
89 static void    unp_gc (void);
90 static int     unp_gc_clearmarks(struct file *, void *);
91 static int     unp_gc_checkmarks(struct file *, void *);
92 static int     unp_gc_checkrefs(struct file *, void *);
93 static int     unp_revoke_gc_check(struct file *, void *);
94 static void    unp_scan (struct mbuf *, void (*)(struct file *, void *),
95 				void *data);
96 static void    unp_mark (struct file *, void *data);
97 static void    unp_discard (struct file *, void *);
98 static int     unp_internalize (struct mbuf *, struct thread *);
99 static int     unp_listen (struct unpcb *, struct thread *);
100 static void    unp_fp_externalize(struct proc *p, struct file *fp, int fd);
101 
102 static int
103 uipc_abort(struct socket *so)
104 {
105 	struct unpcb *unp = so->so_pcb;
106 
107 	if (unp == NULL)
108 		return EINVAL;
109 	unp_drop(unp, ECONNABORTED);
110 	unp_detach(unp);
111 	sofree(so);
112 	return 0;
113 }
114 
115 static int
116 uipc_accept(struct socket *so, struct sockaddr **nam)
117 {
118 	struct unpcb *unp = so->so_pcb;
119 
120 	if (unp == NULL)
121 		return EINVAL;
122 
123 	/*
124 	 * Pass back name of connected socket,
125 	 * if it was bound and we are still connected
126 	 * (our peer may have closed already!).
127 	 */
128 	if (unp->unp_conn && unp->unp_conn->unp_addr) {
129 		*nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr);
130 	} else {
131 		*nam = dup_sockaddr((struct sockaddr *)&sun_noname);
132 	}
133 	return 0;
134 }
135 
136 static int
137 uipc_attach(struct socket *so, int proto, struct pru_attach_info *ai)
138 {
139 	struct unpcb *unp = so->so_pcb;
140 
141 	if (unp != NULL)
142 		return EISCONN;
143 	return unp_attach(so, ai);
144 }
145 
146 static int
147 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
148 {
149 	struct unpcb *unp = so->so_pcb;
150 
151 	if (unp == NULL)
152 		return EINVAL;
153 	return unp_bind(unp, nam, td);
154 }
155 
156 static int
157 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
158 {
159 	struct unpcb *unp = so->so_pcb;
160 
161 	if (unp == NULL)
162 		return EINVAL;
163 	return unp_connect(so, nam, td);
164 }
165 
166 static int
167 uipc_connect2(struct socket *so1, struct socket *so2)
168 {
169 	struct unpcb *unp = so1->so_pcb;
170 
171 	if (unp == NULL)
172 		return EINVAL;
173 
174 	return unp_connect2(so1, so2);
175 }
176 
177 /* control is EOPNOTSUPP */
178 
179 static int
180 uipc_detach(struct socket *so)
181 {
182 	struct unpcb *unp = so->so_pcb;
183 
184 	if (unp == NULL)
185 		return EINVAL;
186 
187 	unp_detach(unp);
188 	return 0;
189 }
190 
191 static int
192 uipc_disconnect(struct socket *so)
193 {
194 	struct unpcb *unp = so->so_pcb;
195 
196 	if (unp == NULL)
197 		return EINVAL;
198 	unp_disconnect(unp);
199 	return 0;
200 }
201 
202 static int
203 uipc_listen(struct socket *so, struct thread *td)
204 {
205 	struct unpcb *unp = so->so_pcb;
206 
207 	if (unp == NULL || unp->unp_vnode == NULL)
208 		return EINVAL;
209 	return unp_listen(unp, td);
210 }
211 
212 static int
213 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
214 {
215 	struct unpcb *unp = so->so_pcb;
216 
217 	if (unp == NULL)
218 		return EINVAL;
219 	if (unp->unp_conn && unp->unp_conn->unp_addr)
220 		*nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr);
221 	else {
222 		/*
223 		 * XXX: It seems that this test always fails even when
224 		 * connection is established.  So, this else clause is
225 		 * added as workaround to return PF_LOCAL sockaddr.
226 		 */
227 		*nam = dup_sockaddr((struct sockaddr *)&sun_noname);
228 	}
229 	return 0;
230 }
231 
232 static int
233 uipc_rcvd(struct socket *so, int flags)
234 {
235 	struct unpcb *unp = so->so_pcb;
236 	struct socket *so2;
237 
238 	if (unp == NULL)
239 		return EINVAL;
240 	switch (so->so_type) {
241 	case SOCK_DGRAM:
242 		panic("uipc_rcvd DGRAM?");
243 		/*NOTREACHED*/
244 
245 	case SOCK_STREAM:
246 	case SOCK_SEQPACKET:
247 		if (unp->unp_conn == NULL)
248 			break;
249 		/*
250 		 * Because we are transfering mbufs directly to the
251 		 * peer socket we have to use SSB_STOP on the sender
252 		 * to prevent it from building up infinite mbufs.
253 		 */
254 		so2 = unp->unp_conn->unp_socket;
255 		if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat &&
256 		    so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax
257 		) {
258 			so2->so_snd.ssb_flags &= ~SSB_STOP;
259 			sowwakeup(so2);
260 		}
261 		break;
262 
263 	default:
264 		panic("uipc_rcvd unknown socktype");
265 	}
266 	return 0;
267 }
268 
269 /* pru_rcvoob is EOPNOTSUPP */
270 
271 static int
272 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
273 	  struct mbuf *control, struct thread *td)
274 {
275 	int error = 0;
276 	struct unpcb *unp = so->so_pcb;
277 	struct socket *so2;
278 
279 	if (unp == NULL) {
280 		error = EINVAL;
281 		goto release;
282 	}
283 	if (flags & PRUS_OOB) {
284 		error = EOPNOTSUPP;
285 		goto release;
286 	}
287 
288 	if (control && (error = unp_internalize(control, td)))
289 		goto release;
290 
291 	switch (so->so_type) {
292 	case SOCK_DGRAM:
293 	{
294 		struct sockaddr *from;
295 
296 		if (nam) {
297 			if (unp->unp_conn) {
298 				error = EISCONN;
299 				break;
300 			}
301 			error = unp_connect(so, nam, td);
302 			if (error)
303 				break;
304 		} else {
305 			if (unp->unp_conn == NULL) {
306 				error = ENOTCONN;
307 				break;
308 			}
309 		}
310 		so2 = unp->unp_conn->unp_socket;
311 		if (unp->unp_addr)
312 			from = (struct sockaddr *)unp->unp_addr;
313 		else
314 			from = &sun_noname;
315 		if (ssb_appendaddr(&so2->so_rcv, from, m, control)) {
316 			sorwakeup(so2);
317 			m = NULL;
318 			control = NULL;
319 		} else {
320 			error = ENOBUFS;
321 		}
322 		if (nam)
323 			unp_disconnect(unp);
324 		break;
325 	}
326 
327 	case SOCK_STREAM:
328 	case SOCK_SEQPACKET:
329 		/* Connect if not connected yet. */
330 		/*
331 		 * Note: A better implementation would complain
332 		 * if not equal to the peer's address.
333 		 */
334 		if (!(so->so_state & SS_ISCONNECTED)) {
335 			if (nam) {
336 				error = unp_connect(so, nam, td);
337 				if (error)
338 					break;	/* XXX */
339 			} else {
340 				error = ENOTCONN;
341 				break;
342 			}
343 		}
344 
345 		if (so->so_state & SS_CANTSENDMORE) {
346 			error = EPIPE;
347 			break;
348 		}
349 		if (unp->unp_conn == NULL)
350 			panic("uipc_send connected but no connection?");
351 		so2 = unp->unp_conn->unp_socket;
352 		/*
353 		 * Send to paired receive port, and then reduce
354 		 * send buffer hiwater marks to maintain backpressure.
355 		 * Wake up readers.
356 		 */
357 		if (control) {
358 			if (ssb_appendcontrol(&so2->so_rcv, m, control)) {
359 				control = NULL;
360 				m = NULL;
361 			}
362 		} else if (so->so_type == SOCK_SEQPACKET) {
363 			sbappendrecord(&so2->so_rcv.sb, m);
364 			m = NULL;
365 		} else {
366 			sbappend(&so2->so_rcv.sb, m);
367 			m = NULL;
368 		}
369 
370 		/*
371 		 * Because we are transfering mbufs directly to the
372 		 * peer socket we have to use SSB_STOP on the sender
373 		 * to prevent it from building up infinite mbufs.
374 		 */
375 		if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat ||
376 		    so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax
377 		) {
378 			so->so_snd.ssb_flags |= SSB_STOP;
379 		}
380 		sorwakeup(so2);
381 		break;
382 
383 	default:
384 		panic("uipc_send unknown socktype");
385 	}
386 
387 	/*
388 	 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
389 	 */
390 	if (flags & PRUS_EOF) {
391 		socantsendmore(so);
392 		unp_shutdown(unp);
393 	}
394 
395 	if (control && error != 0)
396 		unp_dispose(control);
397 
398 release:
399 	if (control)
400 		m_freem(control);
401 	if (m)
402 		m_freem(m);
403 	return error;
404 }
405 
406 static int
407 uipc_sense(struct socket *so, struct stat *sb)
408 {
409 	struct unpcb *unp = so->so_pcb;
410 
411 	if (unp == NULL)
412 		return EINVAL;
413 	sb->st_blksize = so->so_snd.ssb_hiwat;
414 	sb->st_dev = NOUDEV;
415 	if (unp->unp_ino == 0)		/* make up a non-zero inode number */
416 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
417 	sb->st_ino = unp->unp_ino;
418 	return (0);
419 }
420 
421 static int
422 uipc_shutdown(struct socket *so)
423 {
424 	struct unpcb *unp = so->so_pcb;
425 
426 	if (unp == NULL)
427 		return EINVAL;
428 	socantsendmore(so);
429 	unp_shutdown(unp);
430 	return 0;
431 }
432 
433 static int
434 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
435 {
436 	struct unpcb *unp = so->so_pcb;
437 
438 	if (unp == NULL)
439 		return EINVAL;
440 	if (unp->unp_addr)
441 		*nam = dup_sockaddr((struct sockaddr *)unp->unp_addr);
442 	return 0;
443 }
444 
445 struct pr_usrreqs uipc_usrreqs = {
446 	.pru_abort = uipc_abort,
447 	.pru_accept = uipc_accept,
448 	.pru_attach = uipc_attach,
449 	.pru_bind = uipc_bind,
450 	.pru_connect = uipc_connect,
451 	.pru_connect2 = uipc_connect2,
452 	.pru_control = pru_control_notsupp,
453 	.pru_detach = uipc_detach,
454 	.pru_disconnect = uipc_disconnect,
455 	.pru_listen = uipc_listen,
456 	.pru_peeraddr = uipc_peeraddr,
457 	.pru_rcvd = uipc_rcvd,
458 	.pru_rcvoob = pru_rcvoob_notsupp,
459 	.pru_send = uipc_send,
460 	.pru_sense = uipc_sense,
461 	.pru_shutdown = uipc_shutdown,
462 	.pru_sockaddr = uipc_sockaddr,
463 	.pru_sosend = sosend,
464 	.pru_soreceive = soreceive,
465 	.pru_sopoll = sopoll
466 };
467 
468 int
469 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
470 {
471 	struct unpcb *unp = so->so_pcb;
472 	int error = 0;
473 
474 	switch (sopt->sopt_dir) {
475 	case SOPT_GET:
476 		switch (sopt->sopt_name) {
477 		case LOCAL_PEERCRED:
478 			if (unp->unp_flags & UNP_HAVEPC)
479 				soopt_from_kbuf(sopt, &unp->unp_peercred,
480 						sizeof(unp->unp_peercred));
481 			else {
482 				if (so->so_type == SOCK_STREAM)
483 					error = ENOTCONN;
484 				else if (so->so_type == SOCK_SEQPACKET)
485 					error = ENOTCONN;
486 				else
487 					error = EINVAL;
488 			}
489 			break;
490 		default:
491 			error = EOPNOTSUPP;
492 			break;
493 		}
494 		break;
495 	case SOPT_SET:
496 	default:
497 		error = EOPNOTSUPP;
498 		break;
499 	}
500 	return (error);
501 }
502 
503 /*
504  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
505  * for stream sockets, although the total for sender and receiver is
506  * actually only PIPSIZ.
507  *
508  * Datagram sockets really use the sendspace as the maximum datagram size,
509  * and don't really want to reserve the sendspace.  Their recvspace should
510  * be large enough for at least one max-size datagram plus address.
511  *
512  * We want the local send/recv space to be significant larger then lo0's
513  * mtu of 16384.
514  */
515 #ifndef PIPSIZ
516 #define	PIPSIZ	57344
517 #endif
518 static u_long	unpst_sendspace = PIPSIZ;
519 static u_long	unpst_recvspace = PIPSIZ;
520 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
521 static u_long	unpdg_recvspace = 4*1024;
522 
523 static int	unp_rights;			/* file descriptors in flight */
524 static struct spinlock unp_spin = SPINLOCK_INITIALIZER(&unp_spin);
525 
526 SYSCTL_DECL(_net_local_seqpacket);
527 SYSCTL_DECL(_net_local_stream);
528 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
529 	   &unpst_sendspace, 0, "");
530 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
531 	   &unpst_recvspace, 0, "");
532 
533 SYSCTL_DECL(_net_local_dgram);
534 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
535 	   &unpdg_sendspace, 0, "");
536 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
537 	   &unpdg_recvspace, 0, "");
538 
539 SYSCTL_DECL(_net_local);
540 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, "");
541 
542 static int
543 unp_attach(struct socket *so, struct pru_attach_info *ai)
544 {
545 	struct unpcb *unp;
546 	int error;
547 
548 	if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
549 		switch (so->so_type) {
550 
551 		case SOCK_STREAM:
552 		case SOCK_SEQPACKET:
553 			error = soreserve(so, unpst_sendspace, unpst_recvspace,
554 					  ai->sb_rlimit);
555 			break;
556 
557 		case SOCK_DGRAM:
558 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace,
559 					  ai->sb_rlimit);
560 			break;
561 
562 		default:
563 			panic("unp_attach");
564 		}
565 		if (error)
566 			return (error);
567 	}
568 	unp = kmalloc(sizeof(*unp), M_UNPCB, M_NOWAIT|M_ZERO);
569 	if (unp == NULL)
570 		return (ENOBUFS);
571 	unp->unp_gencnt = ++unp_gencnt;
572 	unp_count++;
573 	LIST_INIT(&unp->unp_refs);
574 	unp->unp_socket = so;
575 	unp->unp_rvnode = ai->fd_rdir;		/* jail cruft XXX JH */
576 	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead
577 			 : &unp_shead, unp, unp_link);
578 	so->so_pcb = (caddr_t)unp;
579 	return (0);
580 }
581 
582 static void
583 unp_detach(struct unpcb *unp)
584 {
585 	LIST_REMOVE(unp, unp_link);
586 	unp->unp_gencnt = ++unp_gencnt;
587 	--unp_count;
588 	if (unp->unp_vnode) {
589 		unp->unp_vnode->v_socket = NULL;
590 		vrele(unp->unp_vnode);
591 		unp->unp_vnode = NULL;
592 	}
593 	if (unp->unp_conn)
594 		unp_disconnect(unp);
595 	while (!LIST_EMPTY(&unp->unp_refs))
596 		unp_drop(LIST_FIRST(&unp->unp_refs), ECONNRESET);
597 	soisdisconnected(unp->unp_socket);
598 	unp->unp_socket->so_pcb = NULL;
599 	if (unp_rights) {
600 		/*
601 		 * Normally the receive buffer is flushed later,
602 		 * in sofree, but if our receive buffer holds references
603 		 * to descriptors that are now garbage, we will dispose
604 		 * of those descriptor references after the garbage collector
605 		 * gets them (resulting in a "panic: closef: count < 0").
606 		 */
607 		sorflush(unp->unp_socket);
608 		unp_gc();
609 	}
610 	if (unp->unp_addr)
611 		kfree(unp->unp_addr, M_SONAME);
612 	kfree(unp, M_UNPCB);
613 }
614 
615 static int
616 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
617 {
618 	struct proc *p = td->td_proc;
619 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
620 	struct vnode *vp;
621 	struct vattr vattr;
622 	int error, namelen;
623 	struct nlookupdata nd;
624 	char buf[SOCK_MAXADDRLEN];
625 
626 	if (unp->unp_vnode != NULL)
627 		return (EINVAL);
628 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
629 	if (namelen <= 0)
630 		return (EINVAL);
631 	strncpy(buf, soun->sun_path, namelen);
632 	buf[namelen] = 0;	/* null-terminate the string */
633 	error = nlookup_init(&nd, buf, UIO_SYSSPACE,
634 			     NLC_LOCKVP | NLC_CREATE | NLC_REFDVP);
635 	if (error == 0)
636 		error = nlookup(&nd);
637 	if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL)
638 		error = EADDRINUSE;
639 	if (error)
640 		goto done;
641 
642 	VATTR_NULL(&vattr);
643 	vattr.va_type = VSOCK;
644 	vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask);
645 	error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr);
646 	if (error == 0) {
647 		vp->v_socket = unp->unp_socket;
648 		unp->unp_vnode = vp;
649 		unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam);
650 		vn_unlock(vp);
651 	}
652 done:
653 	nlookup_done(&nd);
654 	return (error);
655 }
656 
657 static int
658 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
659 {
660 	struct proc *p = td->td_proc;
661 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
662 	struct vnode *vp;
663 	struct socket *so2, *so3;
664 	struct unpcb *unp, *unp2, *unp3;
665 	int error, len;
666 	struct nlookupdata nd;
667 	char buf[SOCK_MAXADDRLEN];
668 
669 	KKASSERT(p);
670 
671 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
672 	if (len <= 0)
673 		return EINVAL;
674 	strncpy(buf, soun->sun_path, len);
675 	buf[len] = 0;
676 
677 	vp = NULL;
678 	error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW);
679 	if (error == 0)
680 		error = nlookup(&nd);
681 	if (error == 0)
682 		error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp);
683 	nlookup_done(&nd);
684 	if (error)
685 		return (error);
686 
687 	if (vp->v_type != VSOCK) {
688 		error = ENOTSOCK;
689 		goto bad;
690 	}
691 	error = VOP_ACCESS(vp, VWRITE, p->p_ucred);
692 	if (error)
693 		goto bad;
694 	so2 = vp->v_socket;
695 	if (so2 == NULL) {
696 		error = ECONNREFUSED;
697 		goto bad;
698 	}
699 	if (so->so_type != so2->so_type) {
700 		error = EPROTOTYPE;
701 		goto bad;
702 	}
703 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
704 		if (!(so2->so_options & SO_ACCEPTCONN) ||
705 		    (so3 = sonewconn(so2, 0)) == NULL) {
706 			error = ECONNREFUSED;
707 			goto bad;
708 		}
709 		unp = so->so_pcb;
710 		unp2 = so2->so_pcb;
711 		unp3 = so3->so_pcb;
712 		if (unp2->unp_addr)
713 			unp3->unp_addr = (struct sockaddr_un *)
714 				dup_sockaddr((struct sockaddr *)unp2->unp_addr);
715 
716 		/*
717 		 * unp_peercred management:
718 		 *
719 		 * The connecter's (client's) credentials are copied
720 		 * from its process structure at the time of connect()
721 		 * (which is now).
722 		 */
723 		cru2x(p->p_ucred, &unp3->unp_peercred);
724 		unp3->unp_flags |= UNP_HAVEPC;
725 		/*
726 		 * The receiver's (server's) credentials are copied
727 		 * from the unp_peercred member of socket on which the
728 		 * former called listen(); unp_listen() cached that
729 		 * process's credentials at that time so we can use
730 		 * them now.
731 		 */
732 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
733 		    ("unp_connect: listener without cached peercred"));
734 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
735 		    sizeof(unp->unp_peercred));
736 		unp->unp_flags |= UNP_HAVEPC;
737 
738 		so2 = so3;
739 	}
740 	error = unp_connect2(so, so2);
741 bad:
742 	vput(vp);
743 	return (error);
744 }
745 
746 int
747 unp_connect2(struct socket *so, struct socket *so2)
748 {
749 	struct unpcb *unp = so->so_pcb;
750 	struct unpcb *unp2;
751 
752 	if (so2->so_type != so->so_type)
753 		return (EPROTOTYPE);
754 	unp2 = so2->so_pcb;
755 	unp->unp_conn = unp2;
756 	switch (so->so_type) {
757 
758 	case SOCK_DGRAM:
759 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
760 		soisconnected(so);
761 		break;
762 
763 	case SOCK_STREAM:
764 	case SOCK_SEQPACKET:
765 		unp2->unp_conn = unp;
766 		soisconnected(so);
767 		soisconnected(so2);
768 		break;
769 
770 	default:
771 		panic("unp_connect2");
772 	}
773 	return (0);
774 }
775 
776 static void
777 unp_disconnect(struct unpcb *unp)
778 {
779 	struct unpcb *unp2 = unp->unp_conn;
780 
781 	if (unp2 == NULL)
782 		return;
783 
784 	unp->unp_conn = NULL;
785 
786 	switch (unp->unp_socket->so_type) {
787 	case SOCK_DGRAM:
788 		LIST_REMOVE(unp, unp_reflink);
789 		unp->unp_socket->so_state &= ~SS_ISCONNECTED;
790 		break;
791 	case SOCK_STREAM:
792 	case SOCK_SEQPACKET:
793 		soisdisconnected(unp->unp_socket);
794 		unp2->unp_conn = NULL;
795 		soisdisconnected(unp2->unp_socket);
796 		break;
797 	}
798 }
799 
800 #ifdef notdef
801 void
802 unp_abort(struct unpcb *unp)
803 {
804 
805 	unp_detach(unp);
806 }
807 #endif
808 
809 static int
810 prison_unpcb(struct thread *td, struct unpcb *unp)
811 {
812 	struct proc *p;
813 
814 	if (td == NULL)
815 		return (0);
816 	if ((p = td->td_proc) == NULL)
817 		return (0);
818 	if (!p->p_ucred->cr_prison)
819 		return (0);
820 	if (p->p_fd->fd_rdir == unp->unp_rvnode)
821 		return (0);
822 	return (1);
823 }
824 
825 static int
826 unp_pcblist(SYSCTL_HANDLER_ARGS)
827 {
828 	int error, i, n;
829 	struct unpcb *unp, **unp_list;
830 	unp_gen_t gencnt;
831 	struct unp_head *head;
832 
833 	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
834 
835 	KKASSERT(curproc != NULL);
836 
837 	/*
838 	 * The process of preparing the PCB list is too time-consuming and
839 	 * resource-intensive to repeat twice on every request.
840 	 */
841 	if (req->oldptr == NULL) {
842 		n = unp_count;
843 		req->oldidx = (n + n/8) * sizeof(struct xunpcb);
844 		return 0;
845 	}
846 
847 	if (req->newptr != NULL)
848 		return EPERM;
849 
850 	/*
851 	 * OK, now we're committed to doing something.
852 	 */
853 	gencnt = unp_gencnt;
854 	n = unp_count;
855 
856 	unp_list = kmalloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
857 
858 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
859 	     unp = LIST_NEXT(unp, unp_link)) {
860 		if (unp->unp_gencnt <= gencnt && !prison_unpcb(req->td, unp))
861 			unp_list[i++] = unp;
862 	}
863 	n = i;			/* in case we lost some during malloc */
864 
865 	error = 0;
866 	for (i = 0; i < n; i++) {
867 		unp = unp_list[i];
868 		if (unp->unp_gencnt <= gencnt) {
869 			struct xunpcb xu;
870 			xu.xu_len = sizeof xu;
871 			xu.xu_unpp = unp;
872 			/*
873 			 * XXX - need more locking here to protect against
874 			 * connect/disconnect races for SMP.
875 			 */
876 			if (unp->unp_addr)
877 				bcopy(unp->unp_addr, &xu.xu_addr,
878 				      unp->unp_addr->sun_len);
879 			if (unp->unp_conn && unp->unp_conn->unp_addr)
880 				bcopy(unp->unp_conn->unp_addr,
881 				      &xu.xu_caddr,
882 				      unp->unp_conn->unp_addr->sun_len);
883 			bcopy(unp, &xu.xu_unp, sizeof *unp);
884 			sotoxsocket(unp->unp_socket, &xu.xu_socket);
885 			error = SYSCTL_OUT(req, &xu, sizeof xu);
886 		}
887 	}
888 	kfree(unp_list, M_TEMP);
889 	return error;
890 }
891 
892 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
893 	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
894 	    "List of active local datagram sockets");
895 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
896 	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
897 	    "List of active local stream sockets");
898 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
899 	    (caddr_t)(long)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
900 	    "List of active local seqpacket stream sockets");
901 
902 static void
903 unp_shutdown(struct unpcb *unp)
904 {
905 	struct socket *so;
906 
907 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
908 	     unp->unp_socket->so_type == SOCK_SEQPACKET) &&
909 	    unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) {
910 		socantrcvmore(so);
911 	}
912 }
913 
914 static void
915 unp_drop(struct unpcb *unp, int err)
916 {
917 	struct socket *so = unp->unp_socket;
918 
919 	so->so_error = err;
920 	unp_disconnect(unp);
921 }
922 
923 #ifdef notdef
924 void
925 unp_drain(void)
926 {
927 
928 }
929 #endif
930 
931 int
932 unp_externalize(struct mbuf *rights)
933 {
934 	struct proc *p = curproc;		/* XXX */
935 	int i;
936 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
937 	int *fdp;
938 	struct file **rp;
939 	struct file *fp;
940 	int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
941 		/ sizeof (struct file *);
942 	int f;
943 
944 	/*
945 	 * if the new FD's will not fit, then we free them all
946 	 */
947 	if (!fdavail(p, newfds)) {
948 		rp = (struct file **)CMSG_DATA(cm);
949 		for (i = 0; i < newfds; i++) {
950 			fp = *rp;
951 			/*
952 			 * zero the pointer before calling unp_discard,
953 			 * since it may end up in unp_gc()..
954 			 */
955 			*rp++ = 0;
956 			unp_discard(fp, NULL);
957 		}
958 		return (EMSGSIZE);
959 	}
960 
961 	/*
962 	 * now change each pointer to an fd in the global table to
963 	 * an integer that is the index to the local fd table entry
964 	 * that we set up to point to the global one we are transferring.
965 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
966 	 * then do it in forward order. In that case, an integer will
967 	 * always come in the same place or before its corresponding
968 	 * struct file pointer.
969 	 * If sizeof (struct file *) is smaller than sizeof int, then
970 	 * do it in reverse order.
971 	 */
972 	if (sizeof (struct file *) >= sizeof (int)) {
973 		fdp = (int *)(cm + 1);
974 		rp = (struct file **)CMSG_DATA(cm);
975 		for (i = 0; i < newfds; i++) {
976 			if (fdalloc(p, 0, &f))
977 				panic("unp_externalize");
978 			fp = *rp++;
979 			unp_fp_externalize(p, fp, f);
980 			*fdp++ = f;
981 		}
982 	} else {
983 		fdp = (int *)(cm + 1) + newfds - 1;
984 		rp = (struct file **)CMSG_DATA(cm) + newfds - 1;
985 		for (i = 0; i < newfds; i++) {
986 			if (fdalloc(p, 0, &f))
987 				panic("unp_externalize");
988 			fp = *rp--;
989 			unp_fp_externalize(p, fp, f);
990 			*fdp-- = f;
991 		}
992 	}
993 
994 	/*
995 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
996 	 * differs.
997 	 */
998 	cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
999 	rights->m_len = cm->cmsg_len;
1000 	return (0);
1001 }
1002 
1003 static void
1004 unp_fp_externalize(struct proc *p, struct file *fp, int fd)
1005 {
1006 	struct file *fx;
1007 	int error;
1008 
1009 	if (p) {
1010 		KKASSERT(fd >= 0);
1011 		if (fp->f_flag & FREVOKED) {
1012 			kprintf("Warning: revoked fp exiting unix socket\n");
1013 			fx = NULL;
1014 			error = falloc(p, &fx, NULL);
1015 			if (error == 0)
1016 				fsetfd(p, fx, fd);
1017 			else
1018 				fsetfd(p, NULL, fd);
1019 			fdrop(fx);
1020 		} else {
1021 			fsetfd(p, fp, fd);
1022 		}
1023 	}
1024 	spin_lock_wr(&unp_spin);
1025 	fp->f_msgcount--;
1026 	unp_rights--;
1027 	spin_unlock_wr(&unp_spin);
1028 	fdrop(fp);
1029 }
1030 
1031 
1032 void
1033 unp_init(void)
1034 {
1035 	LIST_INIT(&unp_dhead);
1036 	LIST_INIT(&unp_shead);
1037 	spin_init(&unp_spin);
1038 }
1039 
1040 static int
1041 unp_internalize(struct mbuf *control, struct thread *td)
1042 {
1043 	struct proc *p = td->td_proc;
1044 	struct filedesc *fdescp;
1045 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1046 	struct file **rp;
1047 	struct file *fp;
1048 	int i, fd, *fdp;
1049 	struct cmsgcred *cmcred;
1050 	int oldfds;
1051 	u_int newlen;
1052 
1053 	KKASSERT(p);
1054 	fdescp = p->p_fd;
1055 	if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1056 	    cm->cmsg_level != SOL_SOCKET || cm->cmsg_len != control->m_len)
1057 		return (EINVAL);
1058 
1059 	/*
1060 	 * Fill in credential information.
1061 	 */
1062 	if (cm->cmsg_type == SCM_CREDS) {
1063 		cmcred = (struct cmsgcred *)(cm + 1);
1064 		cmcred->cmcred_pid = p->p_pid;
1065 		cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1066 		cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1067 		cmcred->cmcred_euid = p->p_ucred->cr_uid;
1068 		cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1069 							CMGROUP_MAX);
1070 		for (i = 0; i < cmcred->cmcred_ngroups; i++)
1071 			cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1072 		return(0);
1073 	}
1074 
1075 	oldfds = (cm->cmsg_len - sizeof (*cm)) / sizeof (int);
1076 	/*
1077 	 * check that all the FDs passed in refer to legal OPEN files
1078 	 * If not, reject the entire operation.
1079 	 */
1080 	fdp = (int *)(cm + 1);
1081 	for (i = 0; i < oldfds; i++) {
1082 		fd = *fdp++;
1083 		if ((unsigned)fd >= fdescp->fd_nfiles ||
1084 		    fdescp->fd_files[fd].fp == NULL)
1085 			return (EBADF);
1086 		if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE)
1087 			return (EOPNOTSUPP);
1088 	}
1089 	/*
1090 	 * Now replace the integer FDs with pointers to
1091 	 * the associated global file table entry..
1092 	 * Allocate a bigger buffer as necessary. But if an cluster is not
1093 	 * enough, return E2BIG.
1094 	 */
1095 	newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1096 	if (newlen > MCLBYTES)
1097 		return (E2BIG);
1098 	if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1099 		if (control->m_flags & M_EXT)
1100 			return (E2BIG);
1101 		MCLGET(control, MB_WAIT);
1102 		if (!(control->m_flags & M_EXT))
1103 			return (ENOBUFS);
1104 
1105 		/* copy the data to the cluster */
1106 		memcpy(mtod(control, char *), cm, cm->cmsg_len);
1107 		cm = mtod(control, struct cmsghdr *);
1108 	}
1109 
1110 	/*
1111 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1112 	 * differs.
1113 	 */
1114 	control->m_len = cm->cmsg_len = newlen;
1115 
1116 	/*
1117 	 * Transform the file descriptors into struct file pointers.
1118 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1119 	 * then do it in reverse order so that the int won't get until
1120 	 * we're done.
1121 	 * If sizeof (struct file *) is smaller than sizeof int, then
1122 	 * do it in forward order.
1123 	 */
1124 	if (sizeof (struct file *) >= sizeof (int)) {
1125 		fdp = (int *)(cm + 1) + oldfds - 1;
1126 		rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1127 		for (i = 0; i < oldfds; i++) {
1128 			fp = fdescp->fd_files[*fdp--].fp;
1129 			*rp-- = fp;
1130 			fhold(fp);
1131 			spin_lock_wr(&unp_spin);
1132 			fp->f_msgcount++;
1133 			unp_rights++;
1134 			spin_unlock_wr(&unp_spin);
1135 		}
1136 	} else {
1137 		fdp = (int *)(cm + 1);
1138 		rp = (struct file **)CMSG_DATA(cm);
1139 		for (i = 0; i < oldfds; i++) {
1140 			fp = fdescp->fd_files[*fdp++].fp;
1141 			*rp++ = fp;
1142 			fhold(fp);
1143 			spin_lock_wr(&unp_spin);
1144 			fp->f_msgcount++;
1145 			unp_rights++;
1146 			spin_unlock_wr(&unp_spin);
1147 		}
1148 	}
1149 	return (0);
1150 }
1151 
1152 /*
1153  * Garbage collect in-transit file descriptors that get lost due to
1154  * loops (i.e. when a socket is sent to another process over itself,
1155  * and more complex situations).
1156  *
1157  * NOT MPSAFE - TODO socket flush code and maybe closef.  Rest is MPSAFE.
1158  */
1159 
1160 struct unp_gc_info {
1161 	struct file **extra_ref;
1162 	struct file *locked_fp;
1163 	int defer;
1164 	int index;
1165 	int maxindex;
1166 };
1167 
1168 static void
1169 unp_gc(void)
1170 {
1171 	struct unp_gc_info info;
1172 	static boolean_t unp_gcing;
1173 	struct file **fpp;
1174 	int i;
1175 
1176 	spin_lock_wr(&unp_spin);
1177 	if (unp_gcing) {
1178 		spin_unlock_wr(&unp_spin);
1179 		return;
1180 	}
1181 	unp_gcing = TRUE;
1182 	spin_unlock_wr(&unp_spin);
1183 
1184 	/*
1185 	 * before going through all this, set all FDs to
1186 	 * be NOT defered and NOT externally accessible
1187 	 */
1188 	info.defer = 0;
1189 	allfiles_scan_exclusive(unp_gc_clearmarks, NULL);
1190 	do {
1191 		allfiles_scan_exclusive(unp_gc_checkmarks, &info);
1192 	} while (info.defer);
1193 
1194 	/*
1195 	 * We grab an extra reference to each of the file table entries
1196 	 * that are not otherwise accessible and then free the rights
1197 	 * that are stored in messages on them.
1198 	 *
1199 	 * The bug in the orginal code is a little tricky, so I'll describe
1200 	 * what's wrong with it here.
1201 	 *
1202 	 * It is incorrect to simply unp_discard each entry for f_msgcount
1203 	 * times -- consider the case of sockets A and B that contain
1204 	 * references to each other.  On a last close of some other socket,
1205 	 * we trigger a gc since the number of outstanding rights (unp_rights)
1206 	 * is non-zero.  If during the sweep phase the gc code un_discards,
1207 	 * we end up doing a (full) closef on the descriptor.  A closef on A
1208 	 * results in the following chain.  Closef calls soo_close, which
1209 	 * calls soclose.   Soclose calls first (through the switch
1210 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1211 	 * returns because the previous instance had set unp_gcing, and
1212 	 * we return all the way back to soclose, which marks the socket
1213 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1214 	 * to free up the rights that are queued in messages on the socket A,
1215 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1216 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1217 	 * instance of unp_discard just calls closef on B.
1218 	 *
1219 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1220 	 * which results in another closef on A.  Unfortunately, A is already
1221 	 * being closed, and the descriptor has already been marked with
1222 	 * SS_NOFDREF, and soclose panics at this point.
1223 	 *
1224 	 * Here, we first take an extra reference to each inaccessible
1225 	 * descriptor.  Then, we call sorflush ourself, since we know
1226 	 * it is a Unix domain socket anyhow.  After we destroy all the
1227 	 * rights carried in messages, we do a last closef to get rid
1228 	 * of our extra reference.  This is the last close, and the
1229 	 * unp_detach etc will shut down the socket.
1230 	 *
1231 	 * 91/09/19, bsy@cs.cmu.edu
1232 	 */
1233 	info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK);
1234 	info.maxindex = 256;
1235 
1236 	do {
1237 		/*
1238 		 * Look for matches
1239 		 */
1240 		info.index = 0;
1241 		allfiles_scan_exclusive(unp_gc_checkrefs, &info);
1242 
1243 		/*
1244 		 * For each FD on our hit list, do the following two things
1245 		 */
1246 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) {
1247 			struct file *tfp = *fpp;
1248 			if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1249 				sorflush((struct socket *)(tfp->f_data));
1250 		}
1251 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp)
1252 			closef(*fpp, NULL);
1253 	} while (info.index == info.maxindex);
1254 	kfree((caddr_t)info.extra_ref, M_FILE);
1255 	unp_gcing = FALSE;
1256 }
1257 
1258 /*
1259  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1260  */
1261 static int
1262 unp_gc_checkrefs(struct file *fp, void *data)
1263 {
1264 	struct unp_gc_info *info = data;
1265 
1266 	if (fp->f_count == 0)
1267 		return(0);
1268 	if (info->index == info->maxindex)
1269 		return(-1);
1270 
1271 	/*
1272 	 * If all refs are from msgs, and it's not marked accessible
1273 	 * then it must be referenced from some unreachable cycle
1274 	 * of (shut-down) FDs, so include it in our
1275 	 * list of FDs to remove
1276 	 */
1277 	if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1278 		info->extra_ref[info->index++] = fp;
1279 		fhold(fp);
1280 	}
1281 	return(0);
1282 }
1283 
1284 /*
1285  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1286  */
1287 static int
1288 unp_gc_clearmarks(struct file *fp, void *data __unused)
1289 {
1290 	atomic_clear_int(&fp->f_flag, FMARK | FDEFER);
1291 	return(0);
1292 }
1293 
1294 /*
1295  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1296  */
1297 static int
1298 unp_gc_checkmarks(struct file *fp, void *data)
1299 {
1300 	struct unp_gc_info *info = data;
1301 	struct socket *so;
1302 
1303 	/*
1304 	 * If the file is not open, skip it
1305 	 */
1306 	if (fp->f_count == 0)
1307 		return(0);
1308 	/*
1309 	 * If we already marked it as 'defer'  in a
1310 	 * previous pass, then try process it this time
1311 	 * and un-mark it
1312 	 */
1313 	if (fp->f_flag & FDEFER) {
1314 		atomic_clear_int(&fp->f_flag, FDEFER);
1315 		--info->defer;
1316 	} else {
1317 		/*
1318 		 * if it's not defered, then check if it's
1319 		 * already marked.. if so skip it
1320 		 */
1321 		if (fp->f_flag & FMARK)
1322 			return(0);
1323 		/*
1324 		 * If all references are from messages
1325 		 * in transit, then skip it. it's not
1326 		 * externally accessible.
1327 		 */
1328 		if (fp->f_count == fp->f_msgcount)
1329 			return(0);
1330 		/*
1331 		 * If it got this far then it must be
1332 		 * externally accessible.
1333 		 */
1334 		atomic_set_int(&fp->f_flag, FMARK);
1335 	}
1336 
1337 	/*
1338 	 * either it was defered, or it is externally
1339 	 * accessible and not already marked so.
1340 	 * Now check if it is possibly one of OUR sockets.
1341 	 */
1342 	if (fp->f_type != DTYPE_SOCKET ||
1343 	    (so = (struct socket *)fp->f_data) == NULL)
1344 		return(0);
1345 	if (so->so_proto->pr_domain != &localdomain ||
1346 	    !(so->so_proto->pr_flags & PR_RIGHTS))
1347 		return(0);
1348 #ifdef notdef
1349 	if (so->so_rcv.sb_flags & SB_LOCK) {
1350 		/*
1351 		 * This is problematical; it's not clear
1352 		 * we need to wait for the sockbuf to be
1353 		 * unlocked (on a uniprocessor, at least),
1354 		 * and it's also not clear what to do
1355 		 * if sbwait returns an error due to receipt
1356 		 * of a signal.  If sbwait does return
1357 		 * an error, we'll go into an infinite
1358 		 * loop.  Delete all of this for now.
1359 		 */
1360 		sbwait(&so->so_rcv);
1361 		goto restart;
1362 	}
1363 #endif
1364 	/*
1365 	 * So, Ok, it's one of our sockets and it IS externally
1366 	 * accessible (or was defered). Now we look
1367 	 * to see if we hold any file descriptors in its
1368 	 * message buffers. Follow those links and mark them
1369 	 * as accessible too.
1370 	 */
1371 	info->locked_fp = fp;
1372 /*	spin_lock_wr(&so->so_rcv.sb_spin); */
1373 	unp_scan(so->so_rcv.ssb_mb, unp_mark, info);
1374 /*	spin_unlock_wr(&so->so_rcv.sb_spin);*/
1375 	return (0);
1376 }
1377 
1378 /*
1379  * Scan all unix domain sockets and replace any revoked file pointers
1380  * found with the dummy file pointer fx.  We don't worry about races
1381  * against file pointers being read out as those are handled in the
1382  * externalize code.
1383  */
1384 
1385 #define REVOKE_GC_MAXFILES	32
1386 
1387 struct unp_revoke_gc_info {
1388 	struct file	*fx;
1389 	struct file	*fary[REVOKE_GC_MAXFILES];
1390 	int		fcount;
1391 };
1392 
1393 void
1394 unp_revoke_gc(struct file *fx)
1395 {
1396 	struct unp_revoke_gc_info info;
1397 	int i;
1398 
1399 	info.fx = fx;
1400 	do {
1401 		info.fcount = 0;
1402 		allfiles_scan_exclusive(unp_revoke_gc_check, &info);
1403 		for (i = 0; i < info.fcount; ++i)
1404 			unp_fp_externalize(NULL, info.fary[i], -1);
1405 	} while (info.fcount == REVOKE_GC_MAXFILES);
1406 }
1407 
1408 /*
1409  * Check for and replace revoked descriptors.
1410  *
1411  * WARNING:  This routine is not allowed to block.
1412  */
1413 static int
1414 unp_revoke_gc_check(struct file *fps, void *vinfo)
1415 {
1416 	struct unp_revoke_gc_info *info = vinfo;
1417 	struct file *fp;
1418 	struct socket *so;
1419 	struct mbuf *m0;
1420 	struct mbuf *m;
1421 	struct file **rp;
1422 	struct cmsghdr *cm;
1423 	int i;
1424 	int qfds;
1425 
1426 	/*
1427 	 * Is this a unix domain socket with rights-passing abilities?
1428 	 */
1429 	if (fps->f_type != DTYPE_SOCKET)
1430 		return (0);
1431 	if ((so = (struct socket *)fps->f_data) == NULL)
1432 		return(0);
1433 	if (so->so_proto->pr_domain != &localdomain)
1434 		return(0);
1435 	if ((so->so_proto->pr_flags & PR_RIGHTS) == 0)
1436 		return(0);
1437 
1438 	/*
1439 	 * Scan the mbufs for control messages and replace any revoked
1440 	 * descriptors we find.
1441 	 */
1442 	m0 = so->so_rcv.ssb_mb;
1443 	while (m0) {
1444 		for (m = m0; m; m = m->m_next) {
1445 			if (m->m_type != MT_CONTROL)
1446 				continue;
1447 			if (m->m_len < sizeof(*cm))
1448 				continue;
1449 			cm = mtod(m, struct cmsghdr *);
1450 			if (cm->cmsg_level != SOL_SOCKET ||
1451 			    cm->cmsg_type != SCM_RIGHTS) {
1452 				continue;
1453 			}
1454 			qfds = (cm->cmsg_len -
1455 				(CMSG_DATA(cm) - (u_char *)cm))
1456 					/ sizeof (struct file *);
1457 			rp = (struct file **)CMSG_DATA(cm);
1458 			for (i = 0; i < qfds; i++) {
1459 				fp = rp[i];
1460 				if (fp->f_flag & FREVOKED) {
1461 					kprintf("Warning: Removing revoked fp from unix domain socket queue\n");
1462 					fhold(info->fx);
1463 					info->fx->f_msgcount++;
1464 					unp_rights++;
1465 					rp[i] = info->fx;
1466 					info->fary[info->fcount++] = fp;
1467 				}
1468 				if (info->fcount == REVOKE_GC_MAXFILES)
1469 					break;
1470 			}
1471 			if (info->fcount == REVOKE_GC_MAXFILES)
1472 				break;
1473 		}
1474 		m0 = m0->m_nextpkt;
1475 		if (info->fcount == REVOKE_GC_MAXFILES)
1476 			break;
1477 	}
1478 
1479 	/*
1480 	 * Stop the scan if we filled up our array.
1481 	 */
1482 	if (info->fcount == REVOKE_GC_MAXFILES)
1483 		return(-1);
1484 	return(0);
1485 }
1486 
1487 void
1488 unp_dispose(struct mbuf *m)
1489 {
1490 	if (m)
1491 		unp_scan(m, unp_discard, NULL);
1492 }
1493 
1494 static int
1495 unp_listen(struct unpcb *unp, struct thread *td)
1496 {
1497 	struct proc *p = td->td_proc;
1498 
1499 	KKASSERT(p);
1500 	cru2x(p->p_ucred, &unp->unp_peercred);
1501 	unp->unp_flags |= UNP_HAVEPCCACHED;
1502 	return (0);
1503 }
1504 
1505 static void
1506 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data)
1507 {
1508 	struct mbuf *m;
1509 	struct file **rp;
1510 	struct cmsghdr *cm;
1511 	int i;
1512 	int qfds;
1513 
1514 	while (m0) {
1515 		for (m = m0; m; m = m->m_next) {
1516 			if (m->m_type == MT_CONTROL &&
1517 			    m->m_len >= sizeof(*cm)) {
1518 				cm = mtod(m, struct cmsghdr *);
1519 				if (cm->cmsg_level != SOL_SOCKET ||
1520 				    cm->cmsg_type != SCM_RIGHTS)
1521 					continue;
1522 				qfds = (cm->cmsg_len -
1523 					(CMSG_DATA(cm) - (u_char *)cm))
1524 						/ sizeof (struct file *);
1525 				rp = (struct file **)CMSG_DATA(cm);
1526 				for (i = 0; i < qfds; i++)
1527 					(*op)(*rp++, data);
1528 				break;		/* XXX, but saves time */
1529 			}
1530 		}
1531 		m0 = m0->m_nextpkt;
1532 	}
1533 }
1534 
1535 static void
1536 unp_mark(struct file *fp, void *data)
1537 {
1538 	struct unp_gc_info *info = data;
1539 
1540 	if ((fp->f_flag & FMARK) == 0) {
1541 		++info->defer;
1542 		atomic_set_int(&fp->f_flag, FMARK | FDEFER);
1543 	}
1544 }
1545 
1546 static void
1547 unp_discard(struct file *fp, void *data __unused)
1548 {
1549 	spin_lock_wr(&unp_spin);
1550 	fp->f_msgcount--;
1551 	unp_rights--;
1552 	spin_unlock_wr(&unp_spin);
1553 	closef(fp, NULL);
1554 }
1555 
1556