xref: /dragonfly/sys/kern/usched_bsd4.c (revision 2038fb68)
1 /*
2  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.26 2008/11/01 23:31:19 dillon Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/queue.h>
34 #include <sys/proc.h>
35 #include <sys/rtprio.h>
36 #include <sys/uio.h>
37 #include <sys/sysctl.h>
38 #include <sys/resourcevar.h>
39 #include <sys/spinlock.h>
40 #include <machine/cpu.h>
41 #include <machine/smp.h>
42 
43 #include <sys/thread2.h>
44 #include <sys/spinlock2.h>
45 
46 /*
47  * Priorities.  Note that with 32 run queues per scheduler each queue
48  * represents four priority levels.
49  */
50 
51 #define MAXPRI			128
52 #define PRIMASK			(MAXPRI - 1)
53 #define PRIBASE_REALTIME	0
54 #define PRIBASE_NORMAL		MAXPRI
55 #define PRIBASE_IDLE		(MAXPRI * 2)
56 #define PRIBASE_THREAD		(MAXPRI * 3)
57 #define PRIBASE_NULL		(MAXPRI * 4)
58 
59 #define NQS	32			/* 32 run queues. */
60 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
61 #define PPQMASK	(PPQ - 1)
62 
63 /*
64  * NICEPPQ	- number of nice units per priority queue
65  * ESTCPURAMP	- number of scheduler ticks for estcpu to switch queues
66  *
67  * ESTCPUPPQ	- number of estcpu units per priority queue
68  * ESTCPUMAX	- number of estcpu units
69  * ESTCPUINCR	- amount we have to increment p_estcpu per scheduling tick at
70  *		  100% cpu.
71  */
72 #define NICEPPQ		2
73 #define ESTCPURAMP	4
74 #define ESTCPUPPQ	512
75 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
76 #define ESTCPUINCR	(ESTCPUPPQ / ESTCPURAMP)
77 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
78 
79 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
80 
81 TAILQ_HEAD(rq, lwp);
82 
83 #define lwp_priority	lwp_usdata.bsd4.priority
84 #define lwp_rqindex	lwp_usdata.bsd4.rqindex
85 #define lwp_origcpu	lwp_usdata.bsd4.origcpu
86 #define lwp_estcpu	lwp_usdata.bsd4.estcpu
87 #define lwp_rqtype	lwp_usdata.bsd4.rqtype
88 
89 static void bsd4_acquire_curproc(struct lwp *lp);
90 static void bsd4_release_curproc(struct lwp *lp);
91 static void bsd4_select_curproc(globaldata_t gd);
92 static void bsd4_setrunqueue(struct lwp *lp);
93 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
94 				sysclock_t cpstamp);
95 static void bsd4_recalculate_estcpu(struct lwp *lp);
96 static void bsd4_resetpriority(struct lwp *lp);
97 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
98 static void bsd4_exiting(struct lwp *plp, struct lwp *lp);
99 static void bsd4_yield(struct lwp *lp);
100 
101 #ifdef SMP
102 static void need_user_resched_remote(void *dummy);
103 #endif
104 static struct lwp *chooseproc_locked(struct lwp *chklp);
105 static void bsd4_remrunqueue_locked(struct lwp *lp);
106 static void bsd4_setrunqueue_locked(struct lwp *lp);
107 
108 struct usched usched_bsd4 = {
109 	{ NULL },
110 	"bsd4", "Original DragonFly Scheduler",
111 	NULL,			/* default registration */
112 	NULL,			/* default deregistration */
113 	bsd4_acquire_curproc,
114 	bsd4_release_curproc,
115 	bsd4_setrunqueue,
116 	bsd4_schedulerclock,
117 	bsd4_recalculate_estcpu,
118 	bsd4_resetpriority,
119 	bsd4_forking,
120 	bsd4_exiting,
121 	NULL,			/* setcpumask not supported */
122 	bsd4_yield
123 };
124 
125 struct usched_bsd4_pcpu {
126 	struct thread helper_thread;
127 	short	rrcount;
128 	short	upri;
129 	struct lwp *uschedcp;
130 };
131 
132 typedef struct usched_bsd4_pcpu	*bsd4_pcpu_t;
133 
134 /*
135  * We have NQS (32) run queues per scheduling class.  For the normal
136  * class, there are 128 priorities scaled onto these 32 queues.  New
137  * processes are added to the last entry in each queue, and processes
138  * are selected for running by taking them from the head and maintaining
139  * a simple FIFO arrangement.  Realtime and Idle priority processes have
140  * and explicit 0-31 priority which maps directly onto their class queue
141  * index.  When a queue has something in it, the corresponding bit is
142  * set in the queuebits variable, allowing a single read to determine
143  * the state of all 32 queues and then a ffs() to find the first busy
144  * queue.
145  */
146 static struct rq bsd4_queues[NQS];
147 static struct rq bsd4_rtqueues[NQS];
148 static struct rq bsd4_idqueues[NQS];
149 static u_int32_t bsd4_queuebits;
150 static u_int32_t bsd4_rtqueuebits;
151 static u_int32_t bsd4_idqueuebits;
152 static cpumask_t bsd4_curprocmask = -1;	/* currently running a user process */
153 static cpumask_t bsd4_rdyprocmask;	/* ready to accept a user process */
154 static int	 bsd4_runqcount;
155 #ifdef SMP
156 static volatile int bsd4_scancpu;
157 #endif
158 static struct spinlock bsd4_spin;
159 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
160 
161 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0, "");
162 #ifdef INVARIANTS
163 static int usched_nonoptimal;
164 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW,
165         &usched_nonoptimal, 0, "acquire_curproc() was not optimal");
166 static int usched_optimal;
167 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW,
168         &usched_optimal, 0, "acquire_curproc() was optimal");
169 #endif
170 static int usched_debug = -1;
171 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0, "");
172 #ifdef SMP
173 static int remote_resched_nonaffinity;
174 static int remote_resched_affinity;
175 static int choose_affinity;
176 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD,
177         &remote_resched_nonaffinity, 0, "Number of remote rescheds");
178 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD,
179         &remote_resched_affinity, 0, "Number of remote rescheds");
180 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD,
181         &choose_affinity, 0, "chooseproc() was smart");
182 #endif
183 
184 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
185 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW,
186         &usched_bsd4_rrinterval, 0, "");
187 static int usched_bsd4_decay = ESTCPUINCR / 2;
188 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW,
189         &usched_bsd4_decay, 0, "");
190 
191 /*
192  * Initialize the run queues at boot time.
193  */
194 static void
195 rqinit(void *dummy)
196 {
197 	int i;
198 
199 	spin_init(&bsd4_spin);
200 	for (i = 0; i < NQS; i++) {
201 		TAILQ_INIT(&bsd4_queues[i]);
202 		TAILQ_INIT(&bsd4_rtqueues[i]);
203 		TAILQ_INIT(&bsd4_idqueues[i]);
204 	}
205 	atomic_clear_int(&bsd4_curprocmask, 1);
206 }
207 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, rqinit, NULL)
208 
209 /*
210  * BSD4_ACQUIRE_CURPROC
211  *
212  * This function is called when the kernel intends to return to userland.
213  * It is responsible for making the thread the current designated userland
214  * thread for this cpu, blocking if necessary.
215  *
216  * The kernel has already depressed our LWKT priority so we must not switch
217  * until we have either assigned or disposed of the thread.
218  *
219  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
220  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
221  * occur, this function is called only under very controlled circumstances.
222  *
223  * MPSAFE
224  */
225 static void
226 bsd4_acquire_curproc(struct lwp *lp)
227 {
228 	globaldata_t gd;
229 	bsd4_pcpu_t dd;
230 	struct lwp *olp;
231 
232 	crit_enter();
233 	bsd4_recalculate_estcpu(lp);
234 
235 	/*
236 	 * If a reschedule was requested give another thread the
237 	 * driver's seat.
238 	 */
239 	if (user_resched_wanted()) {
240 		clear_user_resched();
241 		bsd4_release_curproc(lp);
242 	}
243 
244 	/*
245 	 * Loop until we are the current user thread
246 	 */
247 	do {
248 		/*
249 		 * Reload after a switch or setrunqueue/switch possibly
250 		 * moved us to another cpu.
251 		 */
252 		clear_lwkt_resched();
253 		gd = mycpu;
254 		dd = &bsd4_pcpu[gd->gd_cpuid];
255 
256 		/*
257 		 * Become the currently scheduled user thread for this cpu
258 		 * if we can do so trivially.
259 		 *
260 		 * We can steal another thread's current thread designation
261 		 * on this cpu since if we are running that other thread
262 		 * must not be, so we can safely deschedule it.
263 		 */
264 		if (dd->uschedcp == lp) {
265 			dd->upri = lp->lwp_priority;
266 		} else if (dd->uschedcp == NULL) {
267 			atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask);
268 			dd->uschedcp = lp;
269 			dd->upri = lp->lwp_priority;
270 		} else if (dd->upri > lp->lwp_priority) {
271 			olp = dd->uschedcp;
272 			dd->uschedcp = lp;
273 			dd->upri = lp->lwp_priority;
274 			lwkt_deschedule(olp->lwp_thread);
275 			bsd4_setrunqueue(olp);
276 		} else {
277 			lwkt_deschedule(lp->lwp_thread);
278 			bsd4_setrunqueue(lp);
279 			lwkt_switch();
280 		}
281 
282 		/*
283 		 * Other threads at our current user priority have already
284 		 * put in their bids, but we must run any kernel threads
285 		 * at higher priorities, and we could lose our bid to
286 		 * another thread trying to return to user mode in the
287 		 * process.
288 		 *
289 		 * If we lose our bid we will be descheduled and put on
290 		 * the run queue.  When we are reactivated we will have
291 		 * another chance.
292 		 */
293 		if (lwkt_check_resched(lp->lwp_thread) > 1) {
294 			lwkt_switch();
295 			continue;
296 		}
297 	} while (dd->uschedcp != lp);
298 
299 	crit_exit();
300 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
301 }
302 
303 /*
304  * BSD4_RELEASE_CURPROC
305  *
306  * This routine detaches the current thread from the userland scheduler,
307  * usually because the thread needs to run or block in the kernel (at
308  * kernel priority) for a while.
309  *
310  * This routine is also responsible for selecting a new thread to
311  * make the current thread.
312  *
313  * NOTE: This implementation differs from the dummy example in that
314  * bsd4_select_curproc() is able to select the current process, whereas
315  * dummy_select_curproc() is not able to select the current process.
316  * This means we have to NULL out uschedcp.
317  *
318  * Additionally, note that we may already be on a run queue if releasing
319  * via the lwkt_switch() in bsd4_setrunqueue().
320  *
321  * WARNING!  The MP lock may be in an unsynchronized state due to the
322  * way get_mplock() works and the fact that this function may be called
323  * from a passive release during a lwkt_switch().   try_mplock() will deal
324  * with this for us but you should be aware that td_mpcount may not be
325  * useable.
326  *
327  * MPSAFE
328  */
329 static void
330 bsd4_release_curproc(struct lwp *lp)
331 {
332 	globaldata_t gd = mycpu;
333 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
334 
335 	if (dd->uschedcp == lp) {
336 		crit_enter();
337 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
338 		dd->uschedcp = NULL;	/* don't let lp be selected */
339 		dd->upri = PRIBASE_NULL;
340 		atomic_clear_int(&bsd4_curprocmask, gd->gd_cpumask);
341 		bsd4_select_curproc(gd);
342 		crit_exit();
343 	}
344 }
345 
346 /*
347  * BSD4_SELECT_CURPROC
348  *
349  * Select a new current process for this cpu and clear any pending user
350  * reschedule request.  The cpu currently has no current process.
351  *
352  * This routine is also responsible for equal-priority round-robining,
353  * typically triggered from bsd4_schedulerclock().  In our dummy example
354  * all the 'user' threads are LWKT scheduled all at once and we just
355  * call lwkt_switch().
356  *
357  * The calling process is not on the queue and cannot be selected.
358  *
359  * MPSAFE
360  */
361 static
362 void
363 bsd4_select_curproc(globaldata_t gd)
364 {
365 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
366 	struct lwp *nlp;
367 	int cpuid = gd->gd_cpuid;
368 
369 	crit_enter_gd(gd);
370 
371 	spin_lock_wr(&bsd4_spin);
372 	if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
373 		atomic_set_int(&bsd4_curprocmask, 1 << cpuid);
374 		dd->upri = nlp->lwp_priority;
375 		dd->uschedcp = nlp;
376 		spin_unlock_wr(&bsd4_spin);
377 #ifdef SMP
378 		lwkt_acquire(nlp->lwp_thread);
379 #endif
380 		lwkt_schedule(nlp->lwp_thread);
381 	} else if (bsd4_runqcount && (bsd4_rdyprocmask & (1 << cpuid))) {
382 		atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid);
383 		spin_unlock_wr(&bsd4_spin);
384 		lwkt_schedule(&dd->helper_thread);
385 	} else {
386 		spin_unlock_wr(&bsd4_spin);
387 	}
388 	crit_exit_gd(gd);
389 }
390 
391 /*
392  * BSD4_SETRUNQUEUE
393  *
394  * Place the specified lwp on the user scheduler's run queue.  This routine
395  * must be called with the thread descheduled.  The lwp must be runnable.
396  *
397  * The thread may be the current thread as a special case.
398  *
399  * MPSAFE
400  */
401 static void
402 bsd4_setrunqueue(struct lwp *lp)
403 {
404 	globaldata_t gd;
405 	bsd4_pcpu_t dd;
406 #ifdef SMP
407 	int cpuid;
408 	cpumask_t mask;
409 	cpumask_t tmpmask;
410 #endif
411 
412 	/*
413 	 * First validate the process state relative to the current cpu.
414 	 * We don't need the spinlock for this, just a critical section.
415 	 * We are in control of the process.
416 	 */
417 	crit_enter();
418 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
419 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0,
420 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
421 	     lp->lwp_tid, lp->lwp_proc->p_flag, lp->lwp_flag));
422 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
423 
424 	/*
425 	 * Note: gd and dd are relative to the target thread's last cpu,
426 	 * NOT our current cpu.
427 	 */
428 	gd = lp->lwp_thread->td_gd;
429 	dd = &bsd4_pcpu[gd->gd_cpuid];
430 
431 	/*
432 	 * This process is not supposed to be scheduled anywhere or assigned
433 	 * as the current process anywhere.  Assert the condition.
434 	 */
435 	KKASSERT(dd->uschedcp != lp);
436 
437 #ifndef SMP
438 	/*
439 	 * If we are not SMP we do not have a scheduler helper to kick
440 	 * and must directly activate the process if none are scheduled.
441 	 *
442 	 * This is really only an issue when bootstrapping init since
443 	 * the caller in all other cases will be a user process, and
444 	 * even if released (dd->uschedcp == NULL), that process will
445 	 * kickstart the scheduler when it returns to user mode from
446 	 * the kernel.
447 	 */
448 	if (dd->uschedcp == NULL) {
449 		atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask);
450 		dd->uschedcp = lp;
451 		dd->upri = lp->lwp_priority;
452 		lwkt_schedule(lp->lwp_thread);
453 		crit_exit();
454 		return;
455 	}
456 #endif
457 
458 #ifdef SMP
459 	/*
460 	 * XXX fixme.  Could be part of a remrunqueue/setrunqueue
461 	 * operation when the priority is recalculated, so TDF_MIGRATING
462 	 * may already be set.
463 	 */
464 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
465 		lwkt_giveaway(lp->lwp_thread);
466 #endif
467 
468 	/*
469 	 * We lose control of lp the moment we release the spinlock after
470 	 * having placed lp on the queue.  i.e. another cpu could pick it
471 	 * up and it could exit, or its priority could be further adjusted,
472 	 * or something like that.
473 	 */
474 	spin_lock_wr(&bsd4_spin);
475 	bsd4_setrunqueue_locked(lp);
476 
477 #ifdef SMP
478 	/*
479 	 * Kick the scheduler helper on one of the other cpu's
480 	 * and request a reschedule if appropriate.
481 	 */
482 	cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
483 	++bsd4_scancpu;
484 	mask = ~bsd4_curprocmask & bsd4_rdyprocmask &
485 		lp->lwp_cpumask & smp_active_mask;
486 	spin_unlock_wr(&bsd4_spin);
487 
488 	while (mask) {
489 		tmpmask = ~((1 << cpuid) - 1);
490 		if (mask & tmpmask)
491 			cpuid = bsfl(mask & tmpmask);
492 		else
493 			cpuid = bsfl(mask);
494 		gd = globaldata_find(cpuid);
495 		dd = &bsd4_pcpu[cpuid];
496 
497 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
498 			if (gd == mycpu)
499 				need_user_resched_remote(NULL);
500 			else
501 				lwkt_send_ipiq(gd, need_user_resched_remote, NULL);
502 			break;
503 		}
504 		mask &= ~(1 << cpuid);
505 	}
506 #else
507 	/*
508 	 * Request a reschedule if appropriate.
509 	 */
510 	spin_unlock_wr(&bsd4_spin);
511 	if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
512 		need_user_resched();
513 	}
514 #endif
515 	crit_exit();
516 }
517 
518 /*
519  * This routine is called from a systimer IPI.  It MUST be MP-safe and
520  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
521  * each cpu.
522  *
523  * Because this is effectively a 'fast' interrupt, we cannot safely
524  * use spinlocks unless gd_spinlock_rd is NULL and gd_spinlocks_wr is 0,
525  * even if the spinlocks are 'non conflicting'.  This is due to the way
526  * spinlock conflicts against cached read locks are handled.
527  *
528  * MPSAFE
529  */
530 static
531 void
532 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
533 {
534 	globaldata_t gd = mycpu;
535 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
536 
537 	/*
538 	 * Do we need to round-robin?  We round-robin 10 times a second.
539 	 * This should only occur for cpu-bound batch processes.
540 	 */
541 	if (++dd->rrcount >= usched_bsd4_rrinterval) {
542 		dd->rrcount = 0;
543 		need_user_resched();
544 	}
545 
546 	/*
547 	 * As the process accumulates cpu time p_estcpu is bumped and may
548 	 * push the process into another scheduling queue.  It typically
549 	 * takes 4 ticks to bump the queue.
550 	 */
551 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
552 
553 	/*
554 	 * Reducing p_origcpu over time causes more of our estcpu to be
555 	 * returned to the parent when we exit.  This is a small tweak
556 	 * for the batch detection heuristic.
557 	 */
558 	if (lp->lwp_origcpu)
559 		--lp->lwp_origcpu;
560 
561 	/*
562 	 * We can only safely call bsd4_resetpriority(), which uses spinlocks,
563 	 * if we aren't interrupting a thread that is using spinlocks.
564 	 * Otherwise we can deadlock with another cpu waiting for our read
565 	 * spinlocks to clear.
566 	 */
567 	if (gd->gd_spinlock_rd == NULL && gd->gd_spinlocks_wr == 0)
568 		bsd4_resetpriority(lp);
569 	else
570 		need_user_resched();
571 }
572 
573 /*
574  * Called from acquire and from kern_synch's one-second timer (one of the
575  * callout helper threads) with a critical section held.
576  *
577  * Decay p_estcpu based on the number of ticks we haven't been running
578  * and our p_nice.  As the load increases each process observes a larger
579  * number of idle ticks (because other processes are running in them).
580  * This observation leads to a larger correction which tends to make the
581  * system more 'batchy'.
582  *
583  * Note that no recalculation occurs for a process which sleeps and wakes
584  * up in the same tick.  That is, a system doing thousands of context
585  * switches per second will still only do serious estcpu calculations
586  * ESTCPUFREQ times per second.
587  *
588  * MPSAFE
589  */
590 static
591 void
592 bsd4_recalculate_estcpu(struct lwp *lp)
593 {
594 	globaldata_t gd = mycpu;
595 	sysclock_t cpbase;
596 	int loadfac;
597 	int ndecay;
598 	int nticks;
599 	int nleft;
600 
601 	/*
602 	 * We have to subtract periodic to get the last schedclock
603 	 * timeout time, otherwise we would get the upcoming timeout.
604 	 * Keep in mind that a process can migrate between cpus and
605 	 * while the scheduler clock should be very close, boundary
606 	 * conditions could lead to a small negative delta.
607 	 */
608 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
609 
610 	if (lp->lwp_slptime > 1) {
611 		/*
612 		 * Too much time has passed, do a coarse correction.
613 		 */
614 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
615 		bsd4_resetpriority(lp);
616 		lp->lwp_cpbase = cpbase;
617 		lp->lwp_cpticks = 0;
618 	} else if (lp->lwp_cpbase != cpbase) {
619 		/*
620 		 * Adjust estcpu if we are in a different tick.  Don't waste
621 		 * time if we are in the same tick.
622 		 *
623 		 * First calculate the number of ticks in the measurement
624 		 * interval.  The nticks calculation can wind up 0 due to
625 		 * a bug in the handling of lwp_slptime  (as yet not found),
626 		 * so make sure we do not get a divide by 0 panic.
627 		 */
628 		nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic;
629 		if (nticks <= 0)
630 			nticks = 1;
631 		updatepcpu(lp, lp->lwp_cpticks, nticks);
632 
633 		if ((nleft = nticks - lp->lwp_cpticks) < 0)
634 			nleft = 0;
635 		if (usched_debug == lp->lwp_proc->p_pid) {
636 			kprintf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d",
637 				lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu,
638 				lp->lwp_cpticks, nticks, nleft);
639 		}
640 
641 		/*
642 		 * Calculate a decay value based on ticks remaining scaled
643 		 * down by the instantanious load and p_nice.
644 		 */
645 		if ((loadfac = bsd4_runqcount) < 2)
646 			loadfac = 2;
647 		ndecay = nleft * usched_bsd4_decay * 2 *
648 			(PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2);
649 
650 		/*
651 		 * Adjust p_estcpu.  Handle a border case where batch jobs
652 		 * can get stalled long enough to decay to zero when they
653 		 * shouldn't.
654 		 */
655 		if (lp->lwp_estcpu > ndecay * 2)
656 			lp->lwp_estcpu -= ndecay;
657 		else
658 			lp->lwp_estcpu >>= 1;
659 
660 		if (usched_debug == lp->lwp_proc->p_pid)
661 			kprintf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu);
662 		bsd4_resetpriority(lp);
663 		lp->lwp_cpbase = cpbase;
664 		lp->lwp_cpticks = 0;
665 	}
666 }
667 
668 /*
669  * Compute the priority of a process when running in user mode.
670  * Arrange to reschedule if the resulting priority is better
671  * than that of the current process.
672  *
673  * This routine may be called with any process.
674  *
675  * This routine is called by fork1() for initial setup with the process
676  * of the run queue, and also may be called normally with the process on or
677  * off the run queue.
678  *
679  * MPSAFE
680  */
681 static void
682 bsd4_resetpriority(struct lwp *lp)
683 {
684 	bsd4_pcpu_t dd;
685 	int newpriority;
686 	u_short newrqtype;
687 	int reschedcpu;
688 
689 	/*
690 	 * Calculate the new priority and queue type
691 	 */
692 	crit_enter();
693 	spin_lock_wr(&bsd4_spin);
694 
695 	newrqtype = lp->lwp_rtprio.type;
696 
697 	switch(newrqtype) {
698 	case RTP_PRIO_REALTIME:
699 	case RTP_PRIO_FIFO:
700 		newpriority = PRIBASE_REALTIME +
701 			     (lp->lwp_rtprio.prio & PRIMASK);
702 		break;
703 	case RTP_PRIO_NORMAL:
704 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
705 		newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ;
706 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
707 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
708 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
709 		break;
710 	case RTP_PRIO_IDLE:
711 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
712 		break;
713 	case RTP_PRIO_THREAD:
714 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
715 		break;
716 	default:
717 		panic("Bad RTP_PRIO %d", newrqtype);
718 		/* NOT REACHED */
719 	}
720 
721 	/*
722 	 * The newpriority incorporates the queue type so do a simple masked
723 	 * check to determine if the process has moved to another queue.  If
724 	 * it has, and it is currently on a run queue, then move it.
725 	 */
726 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
727 		lp->lwp_priority = newpriority;
728 		if (lp->lwp_flag & LWP_ONRUNQ) {
729 			bsd4_remrunqueue_locked(lp);
730 			lp->lwp_rqtype = newrqtype;
731 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
732 			bsd4_setrunqueue_locked(lp);
733 			reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
734 		} else {
735 			lp->lwp_rqtype = newrqtype;
736 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
737 			reschedcpu = -1;
738 		}
739 	} else {
740 		lp->lwp_priority = newpriority;
741 		reschedcpu = -1;
742 	}
743 	spin_unlock_wr(&bsd4_spin);
744 
745 	/*
746 	 * Determine if we need to reschedule the target cpu.  This only
747 	 * occurs if the LWP is already on a scheduler queue, which means
748 	 * that idle cpu notification has already occured.  At most we
749 	 * need only issue a need_user_resched() on the appropriate cpu.
750 	 *
751 	 * The LWP may be owned by a CPU different from the current one,
752 	 * in which case dd->uschedcp may be modified without an MP lock
753 	 * or a spinlock held.  The worst that happens is that the code
754 	 * below causes a spurious need_user_resched() on the target CPU
755 	 * and dd->pri to be wrong for a short period of time, both of
756 	 * which are harmless.
757 	 */
758 	if (reschedcpu >= 0) {
759 		dd = &bsd4_pcpu[reschedcpu];
760 		if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
761 			dd->upri = lp->lwp_priority;
762 #ifdef SMP
763 			if (reschedcpu == mycpu->gd_cpuid) {
764 				need_user_resched();
765 			} else {
766 				lwkt_send_ipiq(lp->lwp_thread->td_gd,
767 					       need_user_resched_remote, NULL);
768 			}
769 #else
770 			need_user_resched();
771 #endif
772 		}
773 	}
774 	crit_exit();
775 }
776 
777 static
778 void
779 bsd4_yield(struct lwp *lp)
780 {
781 #if 0
782 	/* FUTURE (or something similar) */
783 	switch(lp->lwp_rqtype) {
784 	case RTP_PRIO_NORMAL:
785 		lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
786 		break;
787 	default:
788 		break;
789 	}
790 #endif
791         need_user_resched();
792 }
793 
794 /*
795  * Called from fork1() when a new child process is being created.
796  *
797  * Give the child process an initial estcpu that is more batch then
798  * its parent and dock the parent for the fork (but do not
799  * reschedule the parent).   This comprises the main part of our batch
800  * detection heuristic for both parallel forking and sequential execs.
801  *
802  * Interactive processes will decay the boosted estcpu quickly while batch
803  * processes will tend to compound it.
804  * XXX lwp should be "spawning" instead of "forking"
805  *
806  * MPSAFE
807  */
808 static void
809 bsd4_forking(struct lwp *plp, struct lwp *lp)
810 {
811 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
812 	lp->lwp_origcpu = lp->lwp_estcpu;
813 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
814 }
815 
816 /*
817  * Called when the parent reaps a child.   Propogate cpu use by the child
818  * back to the parent.
819  *
820  * MPSAFE
821  */
822 static void
823 bsd4_exiting(struct lwp *plp, struct lwp *lp)
824 {
825 	int delta;
826 
827 	if (plp->lwp_proc->p_pid != 1) {
828 		delta = lp->lwp_estcpu - lp->lwp_origcpu;
829 		if (delta > 0)
830 			plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta);
831 	}
832 }
833 
834 
835 /*
836  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
837  * it selects a user process and returns it.  If chklp is non-NULL and chklp
838  * has a better or equal priority then the process that would otherwise be
839  * chosen, NULL is returned.
840  *
841  * Until we fix the RUNQ code the chklp test has to be strict or we may
842  * bounce between processes trying to acquire the current process designation.
843  *
844  * MPSAFE - must be called with bsd4_spin exclusive held.  The spinlock is
845  *	    left intact through the entire routine.
846  */
847 static
848 struct lwp *
849 chooseproc_locked(struct lwp *chklp)
850 {
851 	struct lwp *lp;
852 	struct rq *q;
853 	u_int32_t *which, *which2;
854 	u_int32_t pri;
855 	u_int32_t rtqbits;
856 	u_int32_t tsqbits;
857 	u_int32_t idqbits;
858 	cpumask_t cpumask;
859 
860 	rtqbits = bsd4_rtqueuebits;
861 	tsqbits = bsd4_queuebits;
862 	idqbits = bsd4_idqueuebits;
863 	cpumask = mycpu->gd_cpumask;
864 
865 #ifdef SMP
866 again:
867 #endif
868 	if (rtqbits) {
869 		pri = bsfl(rtqbits);
870 		q = &bsd4_rtqueues[pri];
871 		which = &bsd4_rtqueuebits;
872 		which2 = &rtqbits;
873 	} else if (tsqbits) {
874 		pri = bsfl(tsqbits);
875 		q = &bsd4_queues[pri];
876 		which = &bsd4_queuebits;
877 		which2 = &tsqbits;
878 	} else if (idqbits) {
879 		pri = bsfl(idqbits);
880 		q = &bsd4_idqueues[pri];
881 		which = &bsd4_idqueuebits;
882 		which2 = &idqbits;
883 	} else {
884 		return NULL;
885 	}
886 	lp = TAILQ_FIRST(q);
887 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
888 
889 #ifdef SMP
890 	while ((lp->lwp_cpumask & cpumask) == 0) {
891 		lp = TAILQ_NEXT(lp, lwp_procq);
892 		if (lp == NULL) {
893 			*which2 &= ~(1 << pri);
894 			goto again;
895 		}
896 	}
897 #endif
898 
899 	/*
900 	 * If the passed lwp <chklp> is reasonably close to the selected
901 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
902 	 *
903 	 * Note that we must error on the side of <chklp> to avoid bouncing
904 	 * between threads in the acquire code.
905 	 */
906 	if (chklp) {
907 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
908 			return(NULL);
909 	}
910 
911 #ifdef SMP
912 	/*
913 	 * If the chosen lwp does not reside on this cpu spend a few
914 	 * cycles looking for a better candidate at the same priority level.
915 	 * This is a fallback check, setrunqueue() tries to wakeup the
916 	 * correct cpu and is our front-line affinity.
917 	 */
918 	if (lp->lwp_thread->td_gd != mycpu &&
919 	    (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
920 	) {
921 		if (chklp->lwp_thread->td_gd == mycpu) {
922 			++choose_affinity;
923 			lp = chklp;
924 		}
925 	}
926 #endif
927 
928 	TAILQ_REMOVE(q, lp, lwp_procq);
929 	--bsd4_runqcount;
930 	if (TAILQ_EMPTY(q))
931 		*which &= ~(1 << pri);
932 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) != 0, ("not on runq6!"));
933 	lp->lwp_flag &= ~LWP_ONRUNQ;
934 	return lp;
935 }
936 
937 #ifdef SMP
938 
939 /*
940  * Called via an ipi message to reschedule on another cpu.  If no
941  * user thread is active on the target cpu we wake the scheduler
942  * helper thread up to help schedule one.
943  *
944  * MPSAFE
945  */
946 static
947 void
948 need_user_resched_remote(void *dummy)
949 {
950 	globaldata_t gd = mycpu;
951 	bsd4_pcpu_t  dd = &bsd4_pcpu[gd->gd_cpuid];
952 
953 	if (dd->uschedcp == NULL && (bsd4_rdyprocmask & gd->gd_cpumask)) {
954 		atomic_clear_int(&bsd4_rdyprocmask, gd->gd_cpumask);
955 		lwkt_schedule(&dd->helper_thread);
956 	} else {
957 		need_user_resched();
958 	}
959 }
960 
961 #endif
962 
963 /*
964  * bsd4_remrunqueue_locked() removes a given process from the run queue
965  * that it is on, clearing the queue busy bit if it becomes empty.
966  *
967  * Note that user process scheduler is different from the LWKT schedule.
968  * The user process scheduler only manages user processes but it uses LWKT
969  * underneath, and a user process operating in the kernel will often be
970  * 'released' from our management.
971  *
972  * MPSAFE - bsd4_spin must be held exclusively on call
973  */
974 static void
975 bsd4_remrunqueue_locked(struct lwp *lp)
976 {
977 	struct rq *q;
978 	u_int32_t *which;
979 	u_int8_t pri;
980 
981 	KKASSERT(lp->lwp_flag & LWP_ONRUNQ);
982 	lp->lwp_flag &= ~LWP_ONRUNQ;
983 	--bsd4_runqcount;
984 	KKASSERT(bsd4_runqcount >= 0);
985 
986 	pri = lp->lwp_rqindex;
987 	switch(lp->lwp_rqtype) {
988 	case RTP_PRIO_NORMAL:
989 		q = &bsd4_queues[pri];
990 		which = &bsd4_queuebits;
991 		break;
992 	case RTP_PRIO_REALTIME:
993 	case RTP_PRIO_FIFO:
994 		q = &bsd4_rtqueues[pri];
995 		which = &bsd4_rtqueuebits;
996 		break;
997 	case RTP_PRIO_IDLE:
998 		q = &bsd4_idqueues[pri];
999 		which = &bsd4_idqueuebits;
1000 		break;
1001 	default:
1002 		panic("remrunqueue: invalid rtprio type");
1003 		/* NOT REACHED */
1004 	}
1005 	TAILQ_REMOVE(q, lp, lwp_procq);
1006 	if (TAILQ_EMPTY(q)) {
1007 		KASSERT((*which & (1 << pri)) != 0,
1008 			("remrunqueue: remove from empty queue"));
1009 		*which &= ~(1 << pri);
1010 	}
1011 }
1012 
1013 /*
1014  * bsd4_setrunqueue_locked()
1015  *
1016  * Add a process whos rqtype and rqindex had previously been calculated
1017  * onto the appropriate run queue.   Determine if the addition requires
1018  * a reschedule on a cpu and return the cpuid or -1.
1019  *
1020  * NOTE: Lower priorities are better priorities.
1021  *
1022  * MPSAFE - bsd4_spin must be held exclusively on call
1023  */
1024 static void
1025 bsd4_setrunqueue_locked(struct lwp *lp)
1026 {
1027 	struct rq *q;
1028 	u_int32_t *which;
1029 	int pri;
1030 
1031 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
1032 	lp->lwp_flag |= LWP_ONRUNQ;
1033 	++bsd4_runqcount;
1034 
1035 	pri = lp->lwp_rqindex;
1036 
1037 	switch(lp->lwp_rqtype) {
1038 	case RTP_PRIO_NORMAL:
1039 		q = &bsd4_queues[pri];
1040 		which = &bsd4_queuebits;
1041 		break;
1042 	case RTP_PRIO_REALTIME:
1043 	case RTP_PRIO_FIFO:
1044 		q = &bsd4_rtqueues[pri];
1045 		which = &bsd4_rtqueuebits;
1046 		break;
1047 	case RTP_PRIO_IDLE:
1048 		q = &bsd4_idqueues[pri];
1049 		which = &bsd4_idqueuebits;
1050 		break;
1051 	default:
1052 		panic("remrunqueue: invalid rtprio type");
1053 		/* NOT REACHED */
1054 	}
1055 
1056 	/*
1057 	 * Add to the correct queue and set the appropriate bit.  If no
1058 	 * lower priority (i.e. better) processes are in the queue then
1059 	 * we want a reschedule, calculate the best cpu for the job.
1060 	 *
1061 	 * Always run reschedules on the LWPs original cpu.
1062 	 */
1063 	TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1064 	*which |= 1 << pri;
1065 }
1066 
1067 #ifdef SMP
1068 
1069 /*
1070  * For SMP systems a user scheduler helper thread is created for each
1071  * cpu and is used to allow one cpu to wakeup another for the purposes of
1072  * scheduling userland threads from setrunqueue().  UP systems do not
1073  * need the helper since there is only one cpu.  We can't use the idle
1074  * thread for this because we need to hold the MP lock.  Additionally,
1075  * doing things this way allows us to HLT idle cpus on MP systems.
1076  *
1077  * MPSAFE
1078  */
1079 static void
1080 sched_thread(void *dummy)
1081 {
1082     globaldata_t gd;
1083     bsd4_pcpu_t  dd;
1084     struct lwp *nlp;
1085     cpumask_t cpumask;
1086     int cpuid;
1087 #if 0
1088     cpumask_t tmpmask;
1089     int tmpid;
1090 #endif
1091 
1092     gd = mycpu;
1093     cpuid = gd->gd_cpuid;	/* doesn't change */
1094     cpumask = gd->gd_cpumask;	/* doesn't change */
1095     dd = &bsd4_pcpu[cpuid];
1096 
1097     /*
1098      * The scheduler thread does not need to hold the MP lock.  Since we
1099      * are woken up only when no user processes are scheduled on a cpu, we
1100      * can run at an ultra low priority.
1101      */
1102     rel_mplock();
1103     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1104 
1105     for (;;) {
1106 	/*
1107 	 * We use the LWKT deschedule-interlock trick to avoid racing
1108 	 * bsd4_rdyprocmask.  This means we cannot block through to the
1109 	 * manual lwkt_switch() call we make below.
1110 	 */
1111 	crit_enter_gd(gd);
1112 	lwkt_deschedule_self(gd->gd_curthread);
1113 	spin_lock_wr(&bsd4_spin);
1114 	atomic_set_int(&bsd4_rdyprocmask, cpumask);
1115 
1116 	clear_user_resched();	/* This satisfied the reschedule request */
1117 	dd->rrcount = 0;	/* Reset the round-robin counter */
1118 
1119 	if ((bsd4_curprocmask & cpumask) == 0) {
1120 		/*
1121 		 * No thread is currently scheduled.
1122 		 */
1123 		KKASSERT(dd->uschedcp == NULL);
1124 		if ((nlp = chooseproc_locked(NULL)) != NULL) {
1125 			atomic_set_int(&bsd4_curprocmask, cpumask);
1126 			dd->upri = nlp->lwp_priority;
1127 			dd->uschedcp = nlp;
1128 			spin_unlock_wr(&bsd4_spin);
1129 			lwkt_acquire(nlp->lwp_thread);
1130 			lwkt_schedule(nlp->lwp_thread);
1131 		} else {
1132 			spin_unlock_wr(&bsd4_spin);
1133 		}
1134 #if 0
1135 	/*
1136 	 * Disabled for now, this can create an infinite loop.
1137 	 */
1138 	} else if (bsd4_runqcount) {
1139 		/*
1140 		 * Someone scheduled us but raced.  In order to not lose
1141 		 * track of the fact that there may be a LWP ready to go,
1142 		 * forward the request to another cpu if available.
1143 		 *
1144 		 * Rotate through cpus starting with cpuid + 1.  Since cpuid
1145 		 * is already masked out by gd_other_cpus, just use ~cpumask.
1146 		 */
1147 		tmpmask = bsd4_rdyprocmask & mycpu->gd_other_cpus &
1148 			  ~bsd4_curprocmask;
1149 		if (tmpmask) {
1150 			if (tmpmask & ~(cpumask - 1))
1151 				tmpid = bsfl(tmpmask & ~(cpumask - 1));
1152 			else
1153 				tmpid = bsfl(tmpmask);
1154 			bsd4_scancpu = tmpid;
1155 			atomic_clear_int(&bsd4_rdyprocmask, 1 << tmpid);
1156 			spin_unlock_wr(&bsd4_spin);
1157 			lwkt_schedule(&bsd4_pcpu[tmpid].helper_thread);
1158 		} else {
1159 			spin_unlock_wr(&bsd4_spin);
1160 		}
1161 #endif
1162 	} else {
1163 		/*
1164 		 * The runq is empty.
1165 		 */
1166 		spin_unlock_wr(&bsd4_spin);
1167 	}
1168 	crit_exit_gd(gd);
1169 	lwkt_switch();
1170     }
1171 }
1172 
1173 /*
1174  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
1175  * been cleared by rqinit() and we should not mess with it further.
1176  */
1177 static void
1178 sched_thread_cpu_init(void)
1179 {
1180     int i;
1181 
1182     if (bootverbose)
1183 	kprintf("start scheduler helpers on cpus:");
1184 
1185     for (i = 0; i < ncpus; ++i) {
1186 	bsd4_pcpu_t dd = &bsd4_pcpu[i];
1187 	cpumask_t mask = 1 << i;
1188 
1189 	if ((mask & smp_active_mask) == 0)
1190 	    continue;
1191 
1192 	if (bootverbose)
1193 	    kprintf(" %d", i);
1194 
1195 	lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1196 		    TDF_STOPREQ, i, "usched %d", i);
1197 
1198 	/*
1199 	 * Allow user scheduling on the target cpu.  cpu #0 has already
1200 	 * been enabled in rqinit().
1201 	 */
1202 	if (i)
1203 	    atomic_clear_int(&bsd4_curprocmask, mask);
1204 	atomic_set_int(&bsd4_rdyprocmask, mask);
1205 	dd->upri = PRIBASE_NULL;
1206     }
1207     if (bootverbose)
1208 	kprintf("\n");
1209 }
1210 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
1211 	sched_thread_cpu_init, NULL)
1212 
1213 #endif
1214 
1215