xref: /dragonfly/sys/kern/usched_bsd4.c (revision 8a7bdfea)
1 /*
2  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.23 2008/04/21 15:24:46 dillon Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/queue.h>
34 #include <sys/proc.h>
35 #include <sys/rtprio.h>
36 #include <sys/uio.h>
37 #include <sys/sysctl.h>
38 #include <sys/resourcevar.h>
39 #include <sys/spinlock.h>
40 #include <machine/cpu.h>
41 #include <machine/smp.h>
42 
43 #include <sys/thread2.h>
44 #include <sys/spinlock2.h>
45 
46 /*
47  * Priorities.  Note that with 32 run queues per scheduler each queue
48  * represents four priority levels.
49  */
50 
51 #define MAXPRI			128
52 #define PRIMASK			(MAXPRI - 1)
53 #define PRIBASE_REALTIME	0
54 #define PRIBASE_NORMAL		MAXPRI
55 #define PRIBASE_IDLE		(MAXPRI * 2)
56 #define PRIBASE_THREAD		(MAXPRI * 3)
57 #define PRIBASE_NULL		(MAXPRI * 4)
58 
59 #define NQS	32			/* 32 run queues. */
60 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
61 #define PPQMASK	(PPQ - 1)
62 
63 /*
64  * NICEPPQ	- number of nice units per priority queue
65  * ESTCPURAMP	- number of scheduler ticks for estcpu to switch queues
66  *
67  * ESTCPUPPQ	- number of estcpu units per priority queue
68  * ESTCPUMAX	- number of estcpu units
69  * ESTCPUINCR	- amount we have to increment p_estcpu per scheduling tick at
70  *		  100% cpu.
71  */
72 #define NICEPPQ		2
73 #define ESTCPURAMP	4
74 #define ESTCPUPPQ	512
75 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
76 #define ESTCPUINCR	(ESTCPUPPQ / ESTCPURAMP)
77 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
78 
79 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
80 
81 TAILQ_HEAD(rq, lwp);
82 
83 #define lwp_priority	lwp_usdata.bsd4.priority
84 #define lwp_rqindex	lwp_usdata.bsd4.rqindex
85 #define lwp_origcpu	lwp_usdata.bsd4.origcpu
86 #define lwp_estcpu	lwp_usdata.bsd4.estcpu
87 #define lwp_rqtype	lwp_usdata.bsd4.rqtype
88 
89 static void bsd4_acquire_curproc(struct lwp *lp);
90 static void bsd4_release_curproc(struct lwp *lp);
91 static void bsd4_select_curproc(globaldata_t gd);
92 static void bsd4_setrunqueue(struct lwp *lp);
93 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
94 				sysclock_t cpstamp);
95 static void bsd4_recalculate_estcpu(struct lwp *lp);
96 static void bsd4_resetpriority(struct lwp *lp);
97 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
98 static void bsd4_exiting(struct lwp *plp, struct lwp *lp);
99 static void bsd4_yield(struct lwp *lp);
100 
101 #ifdef SMP
102 static void need_user_resched_remote(void *dummy);
103 #endif
104 static struct lwp *chooseproc_locked(struct lwp *chklp);
105 static void bsd4_remrunqueue_locked(struct lwp *lp);
106 static void bsd4_setrunqueue_locked(struct lwp *lp);
107 
108 struct usched usched_bsd4 = {
109 	{ NULL },
110 	"bsd4", "Original DragonFly Scheduler",
111 	NULL,			/* default registration */
112 	NULL,			/* default deregistration */
113 	bsd4_acquire_curproc,
114 	bsd4_release_curproc,
115 	bsd4_setrunqueue,
116 	bsd4_schedulerclock,
117 	bsd4_recalculate_estcpu,
118 	bsd4_resetpriority,
119 	bsd4_forking,
120 	bsd4_exiting,
121 	NULL,			/* setcpumask not supported */
122 	bsd4_yield
123 };
124 
125 struct usched_bsd4_pcpu {
126 	struct thread helper_thread;
127 	short	rrcount;
128 	short	upri;
129 	struct lwp *uschedcp;
130 };
131 
132 typedef struct usched_bsd4_pcpu	*bsd4_pcpu_t;
133 
134 /*
135  * We have NQS (32) run queues per scheduling class.  For the normal
136  * class, there are 128 priorities scaled onto these 32 queues.  New
137  * processes are added to the last entry in each queue, and processes
138  * are selected for running by taking them from the head and maintaining
139  * a simple FIFO arrangement.  Realtime and Idle priority processes have
140  * and explicit 0-31 priority which maps directly onto their class queue
141  * index.  When a queue has something in it, the corresponding bit is
142  * set in the queuebits variable, allowing a single read to determine
143  * the state of all 32 queues and then a ffs() to find the first busy
144  * queue.
145  */
146 static struct rq bsd4_queues[NQS];
147 static struct rq bsd4_rtqueues[NQS];
148 static struct rq bsd4_idqueues[NQS];
149 static u_int32_t bsd4_queuebits;
150 static u_int32_t bsd4_rtqueuebits;
151 static u_int32_t bsd4_idqueuebits;
152 static cpumask_t bsd4_curprocmask = -1;	/* currently running a user process */
153 static cpumask_t bsd4_rdyprocmask;	/* ready to accept a user process */
154 static int	 bsd4_runqcount;
155 #ifdef SMP
156 static volatile int bsd4_scancpu;
157 #endif
158 static struct spinlock bsd4_spin;
159 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
160 
161 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0, "");
162 #ifdef INVARIANTS
163 static int usched_nonoptimal;
164 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW,
165         &usched_nonoptimal, 0, "acquire_curproc() was not optimal");
166 static int usched_optimal;
167 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW,
168         &usched_optimal, 0, "acquire_curproc() was optimal");
169 #endif
170 static int usched_debug = -1;
171 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0, "");
172 #ifdef SMP
173 static int remote_resched_nonaffinity;
174 static int remote_resched_affinity;
175 static int choose_affinity;
176 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD,
177         &remote_resched_nonaffinity, 0, "Number of remote rescheds");
178 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD,
179         &remote_resched_affinity, 0, "Number of remote rescheds");
180 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD,
181         &choose_affinity, 0, "chooseproc() was smart");
182 #endif
183 
184 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
185 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW,
186         &usched_bsd4_rrinterval, 0, "");
187 static int usched_bsd4_decay = ESTCPUINCR / 2;
188 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW,
189         &usched_bsd4_decay, 0, "");
190 
191 /*
192  * Initialize the run queues at boot time.
193  */
194 static void
195 rqinit(void *dummy)
196 {
197 	int i;
198 
199 	spin_init(&bsd4_spin);
200 	for (i = 0; i < NQS; i++) {
201 		TAILQ_INIT(&bsd4_queues[i]);
202 		TAILQ_INIT(&bsd4_rtqueues[i]);
203 		TAILQ_INIT(&bsd4_idqueues[i]);
204 	}
205 	atomic_clear_int(&bsd4_curprocmask, 1);
206 }
207 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, rqinit, NULL)
208 
209 /*
210  * BSD4_ACQUIRE_CURPROC
211  *
212  * This function is called when the kernel intends to return to userland.
213  * It is responsible for making the thread the current designated userland
214  * thread for this cpu, blocking if necessary.
215  *
216  * We are expected to handle userland reschedule requests here too.
217  *
218  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
219  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
220  * occur, this function is called only under very controlled circumstances.
221  *
222  * Basically we recalculate our estcpu to hopefully give us a more
223  * favorable disposition, setrunqueue, then wait for the curlwp
224  * designation to be handed to us (if the setrunqueue didn't do it).
225  *
226  * MPSAFE
227  */
228 static void
229 bsd4_acquire_curproc(struct lwp *lp)
230 {
231 	globaldata_t gd = mycpu;
232 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
233 
234 	/*
235 	 * Possibly select another thread, or keep the current thread.
236 	 */
237 	if (user_resched_wanted())
238 		bsd4_select_curproc(gd);
239 
240 	/*
241 	 * If uschedcp is still pointing to us, we're done
242 	 */
243 	if (dd->uschedcp == lp)
244 		return;
245 
246 	/*
247 	 * If this cpu has no current thread, and the run queue is
248 	 * empty, we can safely select ourself.
249 	 */
250 	if (dd->uschedcp == NULL && bsd4_runqcount == 0) {
251 		atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask);
252 		dd->uschedcp = lp;
253 		dd->upri = lp->lwp_priority;
254 		return;
255 	}
256 
257 	/*
258 	 * Adjust estcpu and recalculate our priority, then put us back on
259 	 * the user process scheduler's runq.  Only increment the involuntary
260 	 * context switch count if the setrunqueue call did not immediately
261 	 * schedule us.
262 	 *
263 	 * Loop until we become the currently scheduled process.  Note that
264 	 * calling setrunqueue can cause us to be migrated to another cpu
265 	 * after we switch away.
266 	 */
267 	do {
268 		crit_enter();
269 		bsd4_recalculate_estcpu(lp);
270 		lwkt_deschedule_self(gd->gd_curthread);
271 		bsd4_setrunqueue(lp);
272 		if ((gd->gd_curthread->td_flags & TDF_RUNQ) == 0)
273 			++lp->lwp_ru.ru_nivcsw;
274 		lwkt_switch();
275 		crit_exit();
276 		gd = mycpu;
277 		dd = &bsd4_pcpu[gd->gd_cpuid];
278 	} while (dd->uschedcp != lp);
279 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
280 }
281 
282 /*
283  * BSD4_RELEASE_CURPROC
284  *
285  * This routine detaches the current thread from the userland scheduler,
286  * usually because the thread needs to run in the kernel (at kernel priority)
287  * for a while.
288  *
289  * This routine is also responsible for selecting a new thread to
290  * make the current thread.
291  *
292  * NOTE: This implementation differs from the dummy example in that
293  * bsd4_select_curproc() is able to select the current process, whereas
294  * dummy_select_curproc() is not able to select the current process.
295  * This means we have to NULL out uschedcp.
296  *
297  * Additionally, note that we may already be on a run queue if releasing
298  * via the lwkt_switch() in bsd4_setrunqueue().
299  *
300  * WARNING!  The MP lock may be in an unsynchronized state due to the
301  * way get_mplock() works and the fact that this function may be called
302  * from a passive release during a lwkt_switch().   try_mplock() will deal
303  * with this for us but you should be aware that td_mpcount may not be
304  * useable.
305  *
306  * MPSAFE
307  */
308 static void
309 bsd4_release_curproc(struct lwp *lp)
310 {
311 	globaldata_t gd = mycpu;
312 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
313 
314 	if (dd->uschedcp == lp) {
315 		/*
316 		 * Note: we leave ou curprocmask bit set to prevent
317 		 * unnecessary scheduler helper wakeups.
318 		 * bsd4_select_curproc() will clean it up.
319 		 */
320 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
321 		dd->uschedcp = NULL;	/* don't let lp be selected */
322 		bsd4_select_curproc(gd);
323 	}
324 }
325 
326 /*
327  * BSD4_SELECT_CURPROC
328  *
329  * Select a new current process for this cpu.  This satisfies a user
330  * scheduler reschedule request so clear that too.
331  *
332  * This routine is also responsible for equal-priority round-robining,
333  * typically triggered from bsd4_schedulerclock().  In our dummy example
334  * all the 'user' threads are LWKT scheduled all at once and we just
335  * call lwkt_switch().
336  *
337  * MPSAFE
338  */
339 static
340 void
341 bsd4_select_curproc(globaldata_t gd)
342 {
343 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
344 	struct lwp *nlp;
345 	int cpuid = gd->gd_cpuid;
346 
347 	crit_enter_gd(gd);
348 	clear_user_resched();	/* This satisfied the reschedule request */
349 	dd->rrcount = 0;	/* Reset the round-robin counter */
350 
351 	spin_lock_wr(&bsd4_spin);
352 	if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
353 		atomic_set_int(&bsd4_curprocmask, 1 << cpuid);
354 		dd->upri = nlp->lwp_priority;
355 		dd->uschedcp = nlp;
356 		spin_unlock_wr(&bsd4_spin);
357 #ifdef SMP
358 		lwkt_acquire(nlp->lwp_thread);
359 #endif
360 		lwkt_schedule(nlp->lwp_thread);
361 	} else if (dd->uschedcp) {
362 		dd->upri = dd->uschedcp->lwp_priority;
363 		spin_unlock_wr(&bsd4_spin);
364 		KKASSERT(bsd4_curprocmask & (1 << cpuid));
365 	} else if (bsd4_runqcount && (bsd4_rdyprocmask & (1 << cpuid))) {
366 		atomic_clear_int(&bsd4_curprocmask, 1 << cpuid);
367 		atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid);
368 		dd->uschedcp = NULL;
369 		dd->upri = PRIBASE_NULL;
370 		spin_unlock_wr(&bsd4_spin);
371 		lwkt_schedule(&dd->helper_thread);
372 	} else {
373 		dd->uschedcp = NULL;
374 		dd->upri = PRIBASE_NULL;
375 		atomic_clear_int(&bsd4_curprocmask, 1 << cpuid);
376 		spin_unlock_wr(&bsd4_spin);
377 	}
378 	crit_exit_gd(gd);
379 }
380 
381 /*
382  * BSD4_SETRUNQUEUE
383  *
384  * This routine is called to schedule a new user process after a fork.
385  *
386  * The caller may set P_PASSIVE_ACQ in p_flag to indicate that we should
387  * attempt to leave the thread on the current cpu.
388  *
389  * If P_PASSIVE_ACQ is set setrunqueue() will not wakeup potential target
390  * cpus in an attempt to keep the process on the current cpu at least for
391  * a little while to take advantage of locality of reference (e.g. fork/exec
392  * or short fork/exit, and uio_yield()).
393  *
394  * CPU AFFINITY: cpu affinity is handled by attempting to either schedule
395  * or (user level) preempt on the same cpu that a process was previously
396  * scheduled to.  If we cannot do this but we are at enough of a higher
397  * priority then the processes running on other cpus, we will allow the
398  * process to be stolen by another cpu.
399  *
400  * WARNING!  This routine cannot block.  bsd4_acquire_curproc() does
401  * a deschedule/switch interlock and we can be moved to another cpu
402  * the moment we are switched out.  Our LWKT run state is the only
403  * thing preventing the transfer.
404  *
405  * The associated thread must NOT currently be scheduled (but can be the
406  * current process after it has been LWKT descheduled).  It must NOT be on
407  * a bsd4 scheduler queue either.  The purpose of this routine is to put
408  * it on a scheduler queue or make it the current user process and LWKT
409  * schedule it.  It is possible that the thread is in the middle of a LWKT
410  * switchout on another cpu, lwkt_acquire() deals with that case.
411  *
412  * The process must be runnable.
413  *
414  * MPSAFE
415  */
416 static void
417 bsd4_setrunqueue(struct lwp *lp)
418 {
419 	globaldata_t gd;
420 	bsd4_pcpu_t dd;
421 	int cpuid;
422 #ifdef SMP
423 	cpumask_t mask;
424 	cpumask_t tmpmask;
425 #endif
426 
427 	/*
428 	 * First validate the process state relative to the current cpu.
429 	 * We don't need the spinlock for this, just a critical section.
430 	 * We are in control of the process.
431 	 */
432 	crit_enter();
433 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
434 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0,
435 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
436 	     lp->lwp_tid, lp->lwp_proc->p_flag, lp->lwp_flag));
437 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
438 
439 	/*
440 	 * Note: gd and dd are relative to the target thread's last cpu,
441 	 * NOT our current cpu.
442 	 */
443 	gd = lp->lwp_thread->td_gd;
444 	dd = &bsd4_pcpu[gd->gd_cpuid];
445 
446 	/*
447 	 * This process is not supposed to be scheduled anywhere or assigned
448 	 * as the current process anywhere.  Assert the condition.
449 	 */
450 	KKASSERT(dd->uschedcp != lp);
451 
452 	/*
453 	 * Check local cpu affinity.  The associated thread is stable at
454 	 * the moment.  Note that we may be checking another cpu here so we
455 	 * have to be careful.  We can only assign uschedcp on OUR cpu.
456 	 *
457 	 * This allows us to avoid actually queueing the process.
458 	 * acquire_curproc() will handle any threads we mistakenly schedule.
459 	 */
460 	cpuid = gd->gd_cpuid;
461 	if (gd == mycpu && (bsd4_curprocmask & (1 << cpuid)) == 0) {
462 		atomic_set_int(&bsd4_curprocmask, 1 << cpuid);
463 		dd->uschedcp = lp;
464 		dd->upri = lp->lwp_priority;
465 		lwkt_schedule(lp->lwp_thread);
466 		crit_exit();
467 		return;
468 	}
469 
470 	/*
471 	 * gd and cpuid may still 'hint' at another cpu.  Even so we have
472 	 * to place this process on the userland scheduler's run queue for
473 	 * action by the target cpu.
474 	 */
475 #ifdef SMP
476 	/*
477 	 * XXX fixme.  Could be part of a remrunqueue/setrunqueue
478 	 * operation when the priority is recalculated, so TDF_MIGRATING
479 	 * may already be set.
480 	 */
481 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
482 		lwkt_giveaway(lp->lwp_thread);
483 #endif
484 
485 	/*
486 	 * We lose control of lp the moment we release the spinlock after
487 	 * having placed lp on the queue.  i.e. another cpu could pick it
488 	 * up and it could exit, or its priority could be further adjusted,
489 	 * or something like that.
490 	 */
491 	spin_lock_wr(&bsd4_spin);
492 	bsd4_setrunqueue_locked(lp);
493 
494 	/*
495 	 * gd, dd, and cpuid are still our target cpu 'hint', not our current
496 	 * cpu info.
497 	 *
498 	 * We always try to schedule a LWP to its original cpu first.  It
499 	 * is possible for the scheduler helper or setrunqueue to assign
500 	 * the LWP to a different cpu before the one we asked for wakes
501 	 * up.
502 	 *
503 	 * If the LWP has higher priority (lower lwp_priority value) on
504 	 * its target cpu, reschedule on that cpu.
505 	 */
506 	if ((lp->lwp_thread->td_flags & TDF_NORESCHED) == 0) {
507 		if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
508 			dd->upri = lp->lwp_priority;
509 			spin_unlock_wr(&bsd4_spin);
510 #ifdef SMP
511 			if (gd == mycpu) {
512 				need_user_resched();
513 			} else {
514 				lwkt_send_ipiq(gd, need_user_resched_remote,
515 					       NULL);
516 			}
517 #else
518 			need_user_resched();
519 #endif
520 			crit_exit();
521 			return;
522 		}
523 	}
524 	spin_unlock_wr(&bsd4_spin);
525 
526 #ifdef SMP
527 	/*
528 	 * Otherwise the LWP has a lower priority or we were asked not
529 	 * to reschedule.  Look for an idle cpu whos scheduler helper
530 	 * is ready to accept more work.
531 	 *
532 	 * Look for an idle cpu starting at our rotator (bsd4_scancpu).
533 	 *
534 	 * If no cpus are ready to accept work, just return.
535 	 *
536 	 * XXX P_PASSIVE_ACQ
537 	 */
538 	mask = ~bsd4_curprocmask & bsd4_rdyprocmask & mycpu->gd_other_cpus &
539 	    lp->lwp_cpumask;
540 	if (mask) {
541 		cpuid = bsd4_scancpu;
542 		if (++cpuid == ncpus)
543 			cpuid = 0;
544 		tmpmask = ~((1 << cpuid) - 1);
545 		if (mask & tmpmask)
546 			cpuid = bsfl(mask & tmpmask);
547 		else
548 			cpuid = bsfl(mask);
549 		atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid);
550 		bsd4_scancpu = cpuid;
551 		lwkt_schedule(&bsd4_pcpu[cpuid].helper_thread);
552 	}
553 #endif
554 	crit_exit();
555 }
556 
557 /*
558  * This routine is called from a systimer IPI.  It MUST be MP-safe and
559  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
560  * each cpu.
561  *
562  * Because this is effectively a 'fast' interrupt, we cannot safely
563  * use spinlocks unless gd_spinlock_rd is NULL and gd_spinlocks_wr is 0,
564  * even if the spinlocks are 'non conflicting'.  This is due to the way
565  * spinlock conflicts against cached read locks are handled.
566  *
567  * MPSAFE
568  */
569 static
570 void
571 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
572 {
573 	globaldata_t gd = mycpu;
574 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
575 
576 	/*
577 	 * Do we need to round-robin?  We round-robin 10 times a second.
578 	 * This should only occur for cpu-bound batch processes.
579 	 */
580 	if (++dd->rrcount >= usched_bsd4_rrinterval) {
581 		dd->rrcount = 0;
582 		need_user_resched();
583 	}
584 
585 	/*
586 	 * As the process accumulates cpu time p_estcpu is bumped and may
587 	 * push the process into another scheduling queue.  It typically
588 	 * takes 4 ticks to bump the queue.
589 	 */
590 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
591 
592 	/*
593 	 * Reducing p_origcpu over time causes more of our estcpu to be
594 	 * returned to the parent when we exit.  This is a small tweak
595 	 * for the batch detection heuristic.
596 	 */
597 	if (lp->lwp_origcpu)
598 		--lp->lwp_origcpu;
599 
600 	/*
601 	 * We can only safely call bsd4_resetpriority(), which uses spinlocks,
602 	 * if we aren't interrupting a thread that is using spinlocks.
603 	 * Otherwise we can deadlock with another cpu waiting for our read
604 	 * spinlocks to clear.
605 	 */
606 	if (gd->gd_spinlock_rd == NULL && gd->gd_spinlocks_wr == 0)
607 		bsd4_resetpriority(lp);
608 	else
609 		need_user_resched();
610 }
611 
612 /*
613  * Called from acquire and from kern_synch's one-second timer (one of the
614  * callout helper threads) with a critical section held.
615  *
616  * Decay p_estcpu based on the number of ticks we haven't been running
617  * and our p_nice.  As the load increases each process observes a larger
618  * number of idle ticks (because other processes are running in them).
619  * This observation leads to a larger correction which tends to make the
620  * system more 'batchy'.
621  *
622  * Note that no recalculation occurs for a process which sleeps and wakes
623  * up in the same tick.  That is, a system doing thousands of context
624  * switches per second will still only do serious estcpu calculations
625  * ESTCPUFREQ times per second.
626  *
627  * MPSAFE
628  */
629 static
630 void
631 bsd4_recalculate_estcpu(struct lwp *lp)
632 {
633 	globaldata_t gd = mycpu;
634 	sysclock_t cpbase;
635 	int loadfac;
636 	int ndecay;
637 	int nticks;
638 	int nleft;
639 
640 	/*
641 	 * We have to subtract periodic to get the last schedclock
642 	 * timeout time, otherwise we would get the upcoming timeout.
643 	 * Keep in mind that a process can migrate between cpus and
644 	 * while the scheduler clock should be very close, boundary
645 	 * conditions could lead to a small negative delta.
646 	 */
647 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
648 
649 	if (lp->lwp_slptime > 1) {
650 		/*
651 		 * Too much time has passed, do a coarse correction.
652 		 */
653 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
654 		bsd4_resetpriority(lp);
655 		lp->lwp_cpbase = cpbase;
656 		lp->lwp_cpticks = 0;
657 	} else if (lp->lwp_cpbase != cpbase) {
658 		/*
659 		 * Adjust estcpu if we are in a different tick.  Don't waste
660 		 * time if we are in the same tick.
661 		 *
662 		 * First calculate the number of ticks in the measurement
663 		 * interval.  The nticks calculation can wind up 0 due to
664 		 * a bug in the handling of lwp_slptime  (as yet not found),
665 		 * so make sure we do not get a divide by 0 panic.
666 		 */
667 		nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic;
668 		if (nticks <= 0)
669 			nticks = 1;
670 		updatepcpu(lp, lp->lwp_cpticks, nticks);
671 
672 		if ((nleft = nticks - lp->lwp_cpticks) < 0)
673 			nleft = 0;
674 		if (usched_debug == lp->lwp_proc->p_pid) {
675 			kprintf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d",
676 				lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu,
677 				lp->lwp_cpticks, nticks, nleft);
678 		}
679 
680 		/*
681 		 * Calculate a decay value based on ticks remaining scaled
682 		 * down by the instantanious load and p_nice.
683 		 */
684 		if ((loadfac = bsd4_runqcount) < 2)
685 			loadfac = 2;
686 		ndecay = nleft * usched_bsd4_decay * 2 *
687 			(PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2);
688 
689 		/*
690 		 * Adjust p_estcpu.  Handle a border case where batch jobs
691 		 * can get stalled long enough to decay to zero when they
692 		 * shouldn't.
693 		 */
694 		if (lp->lwp_estcpu > ndecay * 2)
695 			lp->lwp_estcpu -= ndecay;
696 		else
697 			lp->lwp_estcpu >>= 1;
698 
699 		if (usched_debug == lp->lwp_proc->p_pid)
700 			kprintf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu);
701 		bsd4_resetpriority(lp);
702 		lp->lwp_cpbase = cpbase;
703 		lp->lwp_cpticks = 0;
704 	}
705 }
706 
707 /*
708  * Compute the priority of a process when running in user mode.
709  * Arrange to reschedule if the resulting priority is better
710  * than that of the current process.
711  *
712  * This routine may be called with any process.
713  *
714  * This routine is called by fork1() for initial setup with the process
715  * of the run queue, and also may be called normally with the process on or
716  * off the run queue.
717  *
718  * MPSAFE
719  */
720 static void
721 bsd4_resetpriority(struct lwp *lp)
722 {
723 	bsd4_pcpu_t dd;
724 	int newpriority;
725 	u_short newrqtype;
726 	int reschedcpu;
727 
728 	/*
729 	 * Calculate the new priority and queue type
730 	 */
731 	crit_enter();
732 	spin_lock_wr(&bsd4_spin);
733 
734 	newrqtype = lp->lwp_rtprio.type;
735 
736 	switch(newrqtype) {
737 	case RTP_PRIO_REALTIME:
738 	case RTP_PRIO_FIFO:
739 		newpriority = PRIBASE_REALTIME +
740 			     (lp->lwp_rtprio.prio & PRIMASK);
741 		break;
742 	case RTP_PRIO_NORMAL:
743 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
744 		newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ;
745 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
746 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
747 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
748 		break;
749 	case RTP_PRIO_IDLE:
750 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
751 		break;
752 	case RTP_PRIO_THREAD:
753 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
754 		break;
755 	default:
756 		panic("Bad RTP_PRIO %d", newrqtype);
757 		/* NOT REACHED */
758 	}
759 
760 	/*
761 	 * The newpriority incorporates the queue type so do a simple masked
762 	 * check to determine if the process has moved to another queue.  If
763 	 * it has, and it is currently on a run queue, then move it.
764 	 */
765 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
766 		lp->lwp_priority = newpriority;
767 		if (lp->lwp_flag & LWP_ONRUNQ) {
768 			bsd4_remrunqueue_locked(lp);
769 			lp->lwp_rqtype = newrqtype;
770 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
771 			bsd4_setrunqueue_locked(lp);
772 			reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
773 		} else {
774 			lp->lwp_rqtype = newrqtype;
775 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
776 			reschedcpu = -1;
777 		}
778 	} else {
779 		lp->lwp_priority = newpriority;
780 		reschedcpu = -1;
781 	}
782 	spin_unlock_wr(&bsd4_spin);
783 
784 	/*
785 	 * Determine if we need to reschedule the target cpu.  This only
786 	 * occurs if the LWP is already on a scheduler queue, which means
787 	 * that idle cpu notification has already occured.  At most we
788 	 * need only issue a need_user_resched() on the appropriate cpu.
789 	 */
790 	if (reschedcpu >= 0) {
791 		dd = &bsd4_pcpu[reschedcpu];
792 		KKASSERT(dd->uschedcp != lp);
793 		if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
794 			dd->upri = lp->lwp_priority;
795 #ifdef SMP
796 			if (reschedcpu == mycpu->gd_cpuid) {
797 				need_user_resched();
798 			} else {
799 				lwkt_send_ipiq(lp->lwp_thread->td_gd,
800 					       need_user_resched_remote, NULL);
801 			}
802 #else
803 			need_user_resched();
804 #endif
805 		}
806 	}
807 	crit_exit();
808 }
809 
810 static
811 void
812 bsd4_yield(struct lwp *lp)
813 {
814 #if 0
815 	/* FUTURE (or something similar) */
816 	switch(lp->lwp_rqtype) {
817 	case RTP_PRIO_NORMAL:
818 		lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
819 		kprintf("Y");
820 		break;
821 	default:
822 		break;
823 	}
824 #endif
825         need_user_resched();
826 }
827 
828 /*
829  * Called from fork1() when a new child process is being created.
830  *
831  * Give the child process an initial estcpu that is more batch then
832  * its parent and dock the parent for the fork (but do not
833  * reschedule the parent).   This comprises the main part of our batch
834  * detection heuristic for both parallel forking and sequential execs.
835  *
836  * Interactive processes will decay the boosted estcpu quickly while batch
837  * processes will tend to compound it.
838  * XXX lwp should be "spawning" instead of "forking"
839  *
840  * MPSAFE
841  */
842 static void
843 bsd4_forking(struct lwp *plp, struct lwp *lp)
844 {
845 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
846 	lp->lwp_origcpu = lp->lwp_estcpu;
847 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
848 }
849 
850 /*
851  * Called when the parent reaps a child.   Propogate cpu use by the child
852  * back to the parent.
853  *
854  * MPSAFE
855  */
856 static void
857 bsd4_exiting(struct lwp *plp, struct lwp *lp)
858 {
859 	int delta;
860 
861 	if (plp->lwp_proc->p_pid != 1) {
862 		delta = lp->lwp_estcpu - lp->lwp_origcpu;
863 		if (delta > 0)
864 			plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta);
865 	}
866 }
867 
868 
869 /*
870  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
871  * it selects a user process and returns it.  If chklp is non-NULL and chklp
872  * has a better or equal priority then the process that would otherwise be
873  * chosen, NULL is returned.
874  *
875  * Until we fix the RUNQ code the chklp test has to be strict or we may
876  * bounce between processes trying to acquire the current process designation.
877  *
878  * MPSAFE - must be called with bsd4_spin exclusive held.  The spinlock is
879  *	    left intact through the entire routine.
880  */
881 static
882 struct lwp *
883 chooseproc_locked(struct lwp *chklp)
884 {
885 	struct lwp *lp;
886 	struct rq *q;
887 	u_int32_t *which, *which2;
888 	u_int32_t pri;
889 	u_int32_t rtqbits;
890 	u_int32_t tsqbits;
891 	u_int32_t idqbits;
892 	cpumask_t cpumask;
893 
894 	rtqbits = bsd4_rtqueuebits;
895 	tsqbits = bsd4_queuebits;
896 	idqbits = bsd4_idqueuebits;
897 	cpumask = mycpu->gd_cpumask;
898 
899 #ifdef SMP
900 again:
901 #endif
902 	if (rtqbits) {
903 		pri = bsfl(rtqbits);
904 		q = &bsd4_rtqueues[pri];
905 		which = &bsd4_rtqueuebits;
906 		which2 = &rtqbits;
907 	} else if (tsqbits) {
908 		pri = bsfl(tsqbits);
909 		q = &bsd4_queues[pri];
910 		which = &bsd4_queuebits;
911 		which2 = &tsqbits;
912 	} else if (idqbits) {
913 		pri = bsfl(idqbits);
914 		q = &bsd4_idqueues[pri];
915 		which = &bsd4_idqueuebits;
916 		which2 = &idqbits;
917 	} else {
918 		return NULL;
919 	}
920 	lp = TAILQ_FIRST(q);
921 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
922 
923 #ifdef SMP
924 	while ((lp->lwp_cpumask & cpumask) == 0) {
925 		lp = TAILQ_NEXT(lp, lwp_procq);
926 		if (lp == NULL) {
927 			*which2 &= ~(1 << pri);
928 			goto again;
929 		}
930 	}
931 #endif
932 
933 	/*
934 	 * If the passed lwp <chklp> is reasonably close to the selected
935 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
936 	 *
937 	 * Note that we must error on the side of <chklp> to avoid bouncing
938 	 * between threads in the acquire code.
939 	 */
940 	if (chklp) {
941 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
942 			return(NULL);
943 	}
944 
945 #ifdef SMP
946 	/*
947 	 * If the chosen lwp does not reside on this cpu spend a few
948 	 * cycles looking for a better candidate at the same priority level.
949 	 * This is a fallback check, setrunqueue() tries to wakeup the
950 	 * correct cpu and is our front-line affinity.
951 	 */
952 	if (lp->lwp_thread->td_gd != mycpu &&
953 	    (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
954 	) {
955 		if (chklp->lwp_thread->td_gd == mycpu) {
956 			++choose_affinity;
957 			lp = chklp;
958 		}
959 	}
960 #endif
961 
962 	TAILQ_REMOVE(q, lp, lwp_procq);
963 	--bsd4_runqcount;
964 	if (TAILQ_EMPTY(q))
965 		*which &= ~(1 << pri);
966 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) != 0, ("not on runq6!"));
967 	lp->lwp_flag &= ~LWP_ONRUNQ;
968 	return lp;
969 }
970 
971 #ifdef SMP
972 /*
973  * Called via an ipi message to reschedule on another cpu.
974  *
975  * MPSAFE
976  */
977 static
978 void
979 need_user_resched_remote(void *dummy)
980 {
981 	need_user_resched();
982 }
983 
984 #endif
985 
986 
987 /*
988  * bsd4_remrunqueue_locked() removes a given process from the run queue
989  * that it is on, clearing the queue busy bit if it becomes empty.
990  *
991  * Note that user process scheduler is different from the LWKT schedule.
992  * The user process scheduler only manages user processes but it uses LWKT
993  * underneath, and a user process operating in the kernel will often be
994  * 'released' from our management.
995  *
996  * MPSAFE - bsd4_spin must be held exclusively on call
997  */
998 static void
999 bsd4_remrunqueue_locked(struct lwp *lp)
1000 {
1001 	struct rq *q;
1002 	u_int32_t *which;
1003 	u_int8_t pri;
1004 
1005 	KKASSERT(lp->lwp_flag & LWP_ONRUNQ);
1006 	lp->lwp_flag &= ~LWP_ONRUNQ;
1007 	--bsd4_runqcount;
1008 	KKASSERT(bsd4_runqcount >= 0);
1009 
1010 	pri = lp->lwp_rqindex;
1011 	switch(lp->lwp_rqtype) {
1012 	case RTP_PRIO_NORMAL:
1013 		q = &bsd4_queues[pri];
1014 		which = &bsd4_queuebits;
1015 		break;
1016 	case RTP_PRIO_REALTIME:
1017 	case RTP_PRIO_FIFO:
1018 		q = &bsd4_rtqueues[pri];
1019 		which = &bsd4_rtqueuebits;
1020 		break;
1021 	case RTP_PRIO_IDLE:
1022 		q = &bsd4_idqueues[pri];
1023 		which = &bsd4_idqueuebits;
1024 		break;
1025 	default:
1026 		panic("remrunqueue: invalid rtprio type");
1027 		/* NOT REACHED */
1028 	}
1029 	TAILQ_REMOVE(q, lp, lwp_procq);
1030 	if (TAILQ_EMPTY(q)) {
1031 		KASSERT((*which & (1 << pri)) != 0,
1032 			("remrunqueue: remove from empty queue"));
1033 		*which &= ~(1 << pri);
1034 	}
1035 }
1036 
1037 /*
1038  * bsd4_setrunqueue_locked()
1039  *
1040  * Add a process whos rqtype and rqindex had previously been calculated
1041  * onto the appropriate run queue.   Determine if the addition requires
1042  * a reschedule on a cpu and return the cpuid or -1.
1043  *
1044  * NOTE: Lower priorities are better priorities.
1045  *
1046  * MPSAFE - bsd4_spin must be held exclusively on call
1047  */
1048 static void
1049 bsd4_setrunqueue_locked(struct lwp *lp)
1050 {
1051 	struct rq *q;
1052 	u_int32_t *which;
1053 	int pri;
1054 
1055 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
1056 	lp->lwp_flag |= LWP_ONRUNQ;
1057 	++bsd4_runqcount;
1058 
1059 	pri = lp->lwp_rqindex;
1060 
1061 	switch(lp->lwp_rqtype) {
1062 	case RTP_PRIO_NORMAL:
1063 		q = &bsd4_queues[pri];
1064 		which = &bsd4_queuebits;
1065 		break;
1066 	case RTP_PRIO_REALTIME:
1067 	case RTP_PRIO_FIFO:
1068 		q = &bsd4_rtqueues[pri];
1069 		which = &bsd4_rtqueuebits;
1070 		break;
1071 	case RTP_PRIO_IDLE:
1072 		q = &bsd4_idqueues[pri];
1073 		which = &bsd4_idqueuebits;
1074 		break;
1075 	default:
1076 		panic("remrunqueue: invalid rtprio type");
1077 		/* NOT REACHED */
1078 	}
1079 
1080 	/*
1081 	 * Add to the correct queue and set the appropriate bit.  If no
1082 	 * lower priority (i.e. better) processes are in the queue then
1083 	 * we want a reschedule, calculate the best cpu for the job.
1084 	 *
1085 	 * Always run reschedules on the LWPs original cpu.
1086 	 */
1087 	TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1088 	*which |= 1 << pri;
1089 }
1090 
1091 #ifdef SMP
1092 
1093 /*
1094  * For SMP systems a user scheduler helper thread is created for each
1095  * cpu and is used to allow one cpu to wakeup another for the purposes of
1096  * scheduling userland threads from setrunqueue().  UP systems do not
1097  * need the helper since there is only one cpu.  We can't use the idle
1098  * thread for this because we need to hold the MP lock.  Additionally,
1099  * doing things this way allows us to HLT idle cpus on MP systems.
1100  *
1101  * MPSAFE
1102  */
1103 static void
1104 sched_thread(void *dummy)
1105 {
1106     globaldata_t gd;
1107     bsd4_pcpu_t  dd;
1108     struct lwp *nlp;
1109     cpumask_t cpumask;
1110     cpumask_t tmpmask;
1111     int cpuid;
1112     int tmpid;
1113 
1114     gd = mycpu;
1115     cpuid = gd->gd_cpuid;	/* doesn't change */
1116     cpumask = 1 << cpuid;	/* doesn't change */
1117     dd = &bsd4_pcpu[cpuid];
1118 
1119     /*
1120      * The scheduler thread does not need to hold the MP lock.  Since we
1121      * are woken up only when no user processes are scheduled on a cpu, we
1122      * can run at an ultra low priority.
1123      */
1124     rel_mplock();
1125     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1126 
1127     for (;;) {
1128 	/*
1129 	 * We use the LWKT deschedule-interlock trick to avoid racing
1130 	 * bsd4_rdyprocmask.  This means we cannot block through to the
1131 	 * manual lwkt_switch() call we make below.
1132 	 */
1133 	crit_enter_gd(gd);
1134 	lwkt_deschedule_self(gd->gd_curthread);
1135 	spin_lock_wr(&bsd4_spin);
1136 	atomic_set_int(&bsd4_rdyprocmask, cpumask);
1137 	if ((bsd4_curprocmask & cpumask) == 0) {
1138 		if ((nlp = chooseproc_locked(NULL)) != NULL) {
1139 			atomic_set_int(&bsd4_curprocmask, cpumask);
1140 			dd->upri = nlp->lwp_priority;
1141 			dd->uschedcp = nlp;
1142 			spin_unlock_wr(&bsd4_spin);
1143 			lwkt_acquire(nlp->lwp_thread);
1144 			lwkt_schedule(nlp->lwp_thread);
1145 		} else {
1146 			spin_unlock_wr(&bsd4_spin);
1147 		}
1148 	} else {
1149 		/*
1150 		 * Someone scheduled us but raced.  In order to not lose
1151 		 * track of the fact that there may be a LWP ready to go,
1152 		 * forward the request to another cpu if available.
1153 		 *
1154 		 * Rotate through cpus starting with cpuid + 1.  Since cpuid
1155 		 * is already masked out by gd_other_cpus, just use ~cpumask.
1156 		 */
1157 		tmpmask = ~bsd4_curprocmask & bsd4_rdyprocmask &
1158 			  mycpu->gd_other_cpus;
1159 		if (tmpmask) {
1160 			if (tmpmask & ~(cpumask - 1))
1161 				tmpid = bsfl(tmpmask & ~(cpumask - 1));
1162 			else
1163 				tmpid = bsfl(tmpmask);
1164 			bsd4_scancpu = tmpid;
1165 			atomic_clear_int(&bsd4_rdyprocmask, 1 << tmpid);
1166 			spin_unlock_wr(&bsd4_spin);
1167 			lwkt_schedule(&bsd4_pcpu[tmpid].helper_thread);
1168 		} else {
1169 			spin_unlock_wr(&bsd4_spin);
1170 		}
1171 	}
1172 	crit_exit_gd(gd);
1173 	lwkt_switch();
1174     }
1175 }
1176 
1177 /*
1178  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
1179  * been cleared by rqinit() and we should not mess with it further.
1180  */
1181 static void
1182 sched_thread_cpu_init(void)
1183 {
1184     int i;
1185 
1186     if (bootverbose)
1187 	kprintf("start scheduler helpers on cpus:");
1188 
1189     for (i = 0; i < ncpus; ++i) {
1190 	bsd4_pcpu_t dd = &bsd4_pcpu[i];
1191 	cpumask_t mask = 1 << i;
1192 
1193 	if ((mask & smp_active_mask) == 0)
1194 	    continue;
1195 
1196 	if (bootverbose)
1197 	    kprintf(" %d", i);
1198 
1199 	lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1200 		    TDF_STOPREQ, i, "usched %d", i);
1201 
1202 	/*
1203 	 * Allow user scheduling on the target cpu.  cpu #0 has already
1204 	 * been enabled in rqinit().
1205 	 */
1206 	if (i)
1207 	    atomic_clear_int(&bsd4_curprocmask, mask);
1208 	atomic_set_int(&bsd4_rdyprocmask, mask);
1209     }
1210     if (bootverbose)
1211 	kprintf("\n");
1212 }
1213 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
1214 	sched_thread_cpu_init, NULL)
1215 
1216 #endif
1217 
1218