xref: /dragonfly/sys/kern/usched_dfly.c (revision 0720b42f)
1 /*
2  * Copyright (c) 2012 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Matthew Dillon <dillon@backplane.com>,
7  * by Mihai Carabas <mihai.carabas@gmail.com>
8  * and many others.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/queue.h>
42 #include <sys/proc.h>
43 #include <sys/rtprio.h>
44 #include <sys/uio.h>
45 #include <sys/sysctl.h>
46 #include <sys/resourcevar.h>
47 #include <sys/spinlock.h>
48 #include <sys/cpu_topology.h>
49 #include <sys/thread2.h>
50 #include <sys/spinlock2.h>
51 #include <sys/mplock2.h>
52 
53 #include <sys/ktr.h>
54 
55 #include <machine/cpu.h>
56 #include <machine/smp.h>
57 
58 /*
59  * Priorities.  Note that with 32 run queues per scheduler each queue
60  * represents four priority levels.
61  */
62 
63 int dfly_rebalanced;
64 
65 #define MAXPRI			128
66 #define PRIMASK			(MAXPRI - 1)
67 #define PRIBASE_REALTIME	0
68 #define PRIBASE_NORMAL		MAXPRI
69 #define PRIBASE_IDLE		(MAXPRI * 2)
70 #define PRIBASE_THREAD		(MAXPRI * 3)
71 #define PRIBASE_NULL		(MAXPRI * 4)
72 
73 #define NQS	32			/* 32 run queues. */
74 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
75 #define PPQMASK	(PPQ - 1)
76 
77 /*
78  * NICEPPQ	- number of nice units per priority queue
79  * ESTCPUPPQ	- number of estcpu units per priority queue
80  * ESTCPUMAX	- number of estcpu units
81  */
82 #define NICEPPQ		2
83 #define ESTCPUPPQ	512
84 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
85 #define BATCHMAX	(ESTCPUFREQ * 30)
86 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
87 
88 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
89 
90 TAILQ_HEAD(rq, lwp);
91 
92 #define lwp_priority	lwp_usdata.dfly.priority
93 #define lwp_forked	lwp_usdata.dfly.forked
94 #define lwp_rqindex	lwp_usdata.dfly.rqindex
95 #define lwp_estcpu	lwp_usdata.dfly.estcpu
96 #define lwp_estfast	lwp_usdata.dfly.estfast
97 #define lwp_uload	lwp_usdata.dfly.uload
98 #define lwp_rqtype	lwp_usdata.dfly.rqtype
99 #define lwp_qcpu	lwp_usdata.dfly.qcpu
100 #define lwp_rrcount	lwp_usdata.dfly.rrcount
101 
102 struct usched_dfly_pcpu {
103 	struct spinlock spin;
104 	struct thread	helper_thread;
105 	short		unusde01;
106 	short		upri;
107 	int		uload;
108 	int		ucount;
109 	struct lwp	*uschedcp;
110 	struct rq	queues[NQS];
111 	struct rq	rtqueues[NQS];
112 	struct rq	idqueues[NQS];
113 	u_int32_t	queuebits;
114 	u_int32_t	rtqueuebits;
115 	u_int32_t	idqueuebits;
116 	int		runqcount;
117 	int		cpuid;
118 	cpumask_t	cpumask;
119 	cpu_node_t	*cpunode;
120 };
121 
122 typedef struct usched_dfly_pcpu	*dfly_pcpu_t;
123 
124 static void dfly_acquire_curproc(struct lwp *lp);
125 static void dfly_release_curproc(struct lwp *lp);
126 static void dfly_select_curproc(globaldata_t gd);
127 static void dfly_setrunqueue(struct lwp *lp);
128 static void dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp);
129 static void dfly_schedulerclock(struct lwp *lp, sysclock_t period,
130 				sysclock_t cpstamp);
131 static void dfly_recalculate_estcpu(struct lwp *lp);
132 static void dfly_resetpriority(struct lwp *lp);
133 static void dfly_forking(struct lwp *plp, struct lwp *lp);
134 static void dfly_exiting(struct lwp *lp, struct proc *);
135 static void dfly_uload_update(struct lwp *lp);
136 static void dfly_yield(struct lwp *lp);
137 static void dfly_changeqcpu_locked(struct lwp *lp,
138 				dfly_pcpu_t dd, dfly_pcpu_t rdd);
139 static dfly_pcpu_t dfly_choose_best_queue(struct lwp *lp);
140 static dfly_pcpu_t dfly_choose_worst_queue(dfly_pcpu_t dd);
141 static dfly_pcpu_t dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp);
142 static void dfly_need_user_resched_remote(void *dummy);
143 static struct lwp *dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
144 					  struct lwp *chklp, int worst);
145 static void dfly_remrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
146 static void dfly_setrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
147 static void dfly_changedcpu(struct lwp *lp);
148 
149 struct usched usched_dfly = {
150 	{ NULL },
151 	"dfly", "Original DragonFly Scheduler",
152 	NULL,			/* default registration */
153 	NULL,			/* default deregistration */
154 	dfly_acquire_curproc,
155 	dfly_release_curproc,
156 	dfly_setrunqueue,
157 	dfly_schedulerclock,
158 	dfly_recalculate_estcpu,
159 	dfly_resetpriority,
160 	dfly_forking,
161 	dfly_exiting,
162 	dfly_uload_update,
163 	NULL,			/* setcpumask not supported */
164 	dfly_yield,
165 	dfly_changedcpu
166 };
167 
168 /*
169  * We have NQS (32) run queues per scheduling class.  For the normal
170  * class, there are 128 priorities scaled onto these 32 queues.  New
171  * processes are added to the last entry in each queue, and processes
172  * are selected for running by taking them from the head and maintaining
173  * a simple FIFO arrangement.  Realtime and Idle priority processes have
174  * and explicit 0-31 priority which maps directly onto their class queue
175  * index.  When a queue has something in it, the corresponding bit is
176  * set in the queuebits variable, allowing a single read to determine
177  * the state of all 32 queues and then a ffs() to find the first busy
178  * queue.
179  */
180 					/* currently running a user process */
181 static cpumask_t dfly_curprocmask = CPUMASK_INITIALIZER_ALLONES;
182 static cpumask_t dfly_rdyprocmask;	/* ready to accept a user process */
183 static volatile int dfly_scancpu;
184 static volatile int dfly_ucount;	/* total running on whole system */
185 static struct usched_dfly_pcpu dfly_pcpu[MAXCPU];
186 static struct sysctl_ctx_list usched_dfly_sysctl_ctx;
187 static struct sysctl_oid *usched_dfly_sysctl_tree;
188 
189 /* Debug info exposed through debug.* sysctl */
190 
191 static int usched_dfly_debug = -1;
192 SYSCTL_INT(_debug, OID_AUTO, dfly_scdebug, CTLFLAG_RW,
193 	   &usched_dfly_debug, 0,
194 	   "Print debug information for this pid");
195 
196 static int usched_dfly_pid_debug = -1;
197 SYSCTL_INT(_debug, OID_AUTO, dfly_pid_debug, CTLFLAG_RW,
198 	   &usched_dfly_pid_debug, 0,
199 	   "Print KTR debug information for this pid");
200 
201 static int usched_dfly_chooser = 0;
202 SYSCTL_INT(_debug, OID_AUTO, dfly_chooser, CTLFLAG_RW,
203 	   &usched_dfly_chooser, 0,
204 	   "Print KTR debug information for this pid");
205 
206 /*
207  * Tunning usched_dfly - configurable through kern.usched_dfly.
208  *
209  * weight1 - Tries to keep threads on their current cpu.  If you
210  *	     make this value too large the scheduler will not be
211  *	     able to load-balance large loads.
212  *
213  * weight2 - If non-zero, detects thread pairs undergoing synchronous
214  *	     communications and tries to move them closer together.
215  *	     Behavior is adjusted by bit 4 of features (0x10).
216  *
217  *	     WARNING!  Weight2 is a ridiculously sensitive parameter,
218  *	     a small value is recommended.
219  *
220  * weight3 - Weighting based on the number of recently runnable threads
221  *	     on the userland scheduling queue (ignoring their loads).
222  *	     A nominal value here prevents high-priority (low-load)
223  *	     threads from accumulating on one cpu core when other
224  *	     cores are available.
225  *
226  *	     This value should be left fairly small relative to weight1
227  *	     and weight4.
228  *
229  * weight4 - Weighting based on other cpu queues being available
230  *	     or running processes with higher lwp_priority's.
231  *
232  *	     This allows a thread to migrate to another nearby cpu if it
233  *	     is unable to run on the current cpu based on the other cpu
234  *	     being idle or running a lower priority (higher lwp_priority)
235  *	     thread.  This value should be large enough to override weight1
236  *
237  * features - These flags can be set or cleared to enable or disable various
238  *	      features.
239  *
240  *	      0x01	Enable idle-cpu pulling			(default)
241  *	      0x02	Enable proactive pushing		(default)
242  *	      0x04	Enable rebalancing rover		(default)
243  *	      0x08	Enable more proactive pushing		(default)
244  *	      0x10	(flip weight2 limit on same cpu)	(default)
245  *	      0x20	choose best cpu for forked process
246  *	      0x40	choose current cpu for forked process
247  *	      0x80	choose random cpu for forked process	(default)
248  */
249 static int usched_dfly_smt = 0;
250 static int usched_dfly_cache_coherent = 0;
251 static int usched_dfly_weight1 = 200;	/* keep thread on current cpu */
252 static int usched_dfly_weight2 = 180;	/* synchronous peer's current cpu */
253 static int usched_dfly_weight3 = 40;	/* number of threads on queue */
254 static int usched_dfly_weight4 = 160;	/* availability of idle cores */
255 static int usched_dfly_features = 0x8F;	/* allow pulls */
256 static int usched_dfly_fast_resched = 0;/* delta priority / resched */
257 static int usched_dfly_swmask = ~PPQMASK; /* allow pulls */
258 static int usched_dfly_rrinterval = (ESTCPUFREQ + 9) / 10;
259 static int usched_dfly_decay = 8;
260 
261 /* KTR debug printings */
262 
263 KTR_INFO_MASTER(usched);
264 
265 #if !defined(KTR_USCHED_DFLY)
266 #define	KTR_USCHED_DFLY	KTR_ALL
267 #endif
268 
269 KTR_INFO(KTR_USCHED_DFLY, usched, chooseproc, 0,
270     "USCHED_DFLY(chooseproc: pid %d, old_cpuid %d, curr_cpuid %d)",
271     pid_t pid, int old_cpuid, int curr);
272 
273 /*
274  * This function is called when the kernel intends to return to userland.
275  * It is responsible for making the thread the current designated userland
276  * thread for this cpu, blocking if necessary.
277  *
278  * The kernel will not depress our LWKT priority until after we return,
279  * in case we have to shove over to another cpu.
280  *
281  * We must determine our thread's disposition before we switch away.  This
282  * is very sensitive code.
283  *
284  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
285  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
286  * occur, this function is called only under very controlled circumstances.
287  */
288 static void
289 dfly_acquire_curproc(struct lwp *lp)
290 {
291 	globaldata_t gd;
292 	dfly_pcpu_t dd;
293 	dfly_pcpu_t rdd;
294 	thread_t td;
295 	int force_resched;
296 
297 	/*
298 	 * Make sure we aren't sitting on a tsleep queue.
299 	 */
300 	td = lp->lwp_thread;
301 	crit_enter_quick(td);
302 	if (td->td_flags & TDF_TSLEEPQ)
303 		tsleep_remove(td);
304 	dfly_recalculate_estcpu(lp);
305 
306 	gd = mycpu;
307 	dd = &dfly_pcpu[gd->gd_cpuid];
308 
309 	/*
310 	 * Process any pending interrupts/ipi's, then handle reschedule
311 	 * requests.  dfly_release_curproc() will try to assign a new
312 	 * uschedcp that isn't us and otherwise NULL it out.
313 	 */
314 	force_resched = 0;
315 	if ((td->td_mpflags & TDF_MP_BATCH_DEMARC) &&
316 	    lp->lwp_rrcount >= usched_dfly_rrinterval / 2) {
317 		force_resched = 1;
318 	}
319 
320 	if (user_resched_wanted()) {
321 		if (dd->uschedcp == lp)
322 			force_resched = 1;
323 		clear_user_resched();
324 		dfly_release_curproc(lp);
325 	}
326 
327 	/*
328 	 * Loop until we are the current user thread.
329 	 *
330 	 * NOTE: dd spinlock not held at top of loop.
331 	 */
332 	if (dd->uschedcp == lp)
333 		lwkt_yield_quick();
334 
335 	while (dd->uschedcp != lp) {
336 		lwkt_yield_quick();
337 
338 		spin_lock(&dd->spin);
339 
340 		if (force_resched &&
341 		   (usched_dfly_features & 0x08) &&
342 		   (rdd = dfly_choose_best_queue(lp)) != dd) {
343 			/*
344 			 * We are not or are no longer the current lwp and a
345 			 * forced reschedule was requested.  Figure out the
346 			 * best cpu to run on (our current cpu will be given
347 			 * significant weight).
348 			 *
349 			 * (if a reschedule was not requested we want to
350 			 *  move this step after the uschedcp tests).
351 			 */
352 			dfly_changeqcpu_locked(lp, dd, rdd);
353 			spin_unlock(&dd->spin);
354 			lwkt_deschedule(lp->lwp_thread);
355 			dfly_setrunqueue_dd(rdd, lp);
356 			lwkt_switch();
357 			gd = mycpu;
358 			dd = &dfly_pcpu[gd->gd_cpuid];
359 			continue;
360 		}
361 
362 		/*
363 		 * Either no reschedule was requested or the best queue was
364 		 * dd, and no current process has been selected.  We can
365 		 * trivially become the current lwp on the current cpu.
366 		 */
367 		if (dd->uschedcp == NULL) {
368 			atomic_clear_int(&lp->lwp_thread->td_mpflags,
369 					 TDF_MP_DIDYIELD);
370 			ATOMIC_CPUMASK_ORBIT(dfly_curprocmask, gd->gd_cpuid);
371 			dd->uschedcp = lp;
372 			dd->upri = lp->lwp_priority;
373 			KKASSERT(lp->lwp_qcpu == dd->cpuid);
374 			spin_unlock(&dd->spin);
375 			break;
376 		}
377 
378 		/*
379 		 * Put us back on the same run queue unconditionally.
380 		 *
381 		 * Set rrinterval to force placement at end of queue.
382 		 * Select the worst queue to ensure we round-robin,
383 		 * but do not change estcpu.
384 		 */
385 		if (lp->lwp_thread->td_mpflags & TDF_MP_DIDYIELD) {
386 			u_int32_t tsqbits;
387 
388 			switch(lp->lwp_rqtype) {
389 			case RTP_PRIO_NORMAL:
390 				tsqbits = dd->queuebits;
391 				spin_unlock(&dd->spin);
392 
393 				lp->lwp_rrcount = usched_dfly_rrinterval;
394 				if (tsqbits)
395 					lp->lwp_rqindex = bsrl(tsqbits);
396 				break;
397 			default:
398 				spin_unlock(&dd->spin);
399 				break;
400 			}
401 			lwkt_deschedule(lp->lwp_thread);
402 			dfly_setrunqueue_dd(dd, lp);
403 			atomic_clear_int(&lp->lwp_thread->td_mpflags,
404 					 TDF_MP_DIDYIELD);
405 			lwkt_switch();
406 			gd = mycpu;
407 			dd = &dfly_pcpu[gd->gd_cpuid];
408 			continue;
409 		}
410 
411 		/*
412 		 * Can we steal the current designated user thread?
413 		 *
414 		 * If we do the other thread will stall when it tries to
415 		 * return to userland, possibly rescheduling elsewhere.
416 		 *
417 		 * It is important to do a masked test to avoid the edge
418 		 * case where two near-equal-priority threads are constantly
419 		 * interrupting each other.
420 		 *
421 		 * In the exact match case another thread has already gained
422 		 * uschedcp and lowered its priority, if we steal it the
423 		 * other thread will stay stuck on the LWKT runq and not
424 		 * push to another cpu.  So don't steal on equal-priority even
425 		 * though it might appear to be more beneficial due to not
426 		 * having to switch back to the other thread's context.
427 		 *
428 		 * usched_dfly_fast_resched requires that two threads be
429 		 * significantly far apart in priority in order to interrupt.
430 		 *
431 		 * If better but not sufficiently far apart, the current
432 		 * uschedcp will be interrupted at the next scheduler clock.
433 		 */
434 		if (dd->uschedcp &&
435 		   (dd->upri & ~PPQMASK) >
436 		   (lp->lwp_priority & ~PPQMASK) + usched_dfly_fast_resched) {
437 			dd->uschedcp = lp;
438 			dd->upri = lp->lwp_priority;
439 			KKASSERT(lp->lwp_qcpu == dd->cpuid);
440 			spin_unlock(&dd->spin);
441 			break;
442 		}
443 		/*
444 		 * We are not the current lwp, figure out the best cpu
445 		 * to run on (our current cpu will be given significant
446 		 * weight).  Loop on cpu change.
447 		 */
448 		if ((usched_dfly_features & 0x02) &&
449 		    force_resched == 0 &&
450 		    (rdd = dfly_choose_best_queue(lp)) != dd) {
451 			dfly_changeqcpu_locked(lp, dd, rdd);
452 			spin_unlock(&dd->spin);
453 			lwkt_deschedule(lp->lwp_thread);
454 			dfly_setrunqueue_dd(rdd, lp);
455 			lwkt_switch();
456 			gd = mycpu;
457 			dd = &dfly_pcpu[gd->gd_cpuid];
458 			continue;
459 		}
460 
461 		/*
462 		 * We cannot become the current lwp, place the lp on the
463 		 * run-queue of this or another cpu and deschedule ourselves.
464 		 *
465 		 * When we are reactivated we will have another chance.
466 		 *
467 		 * Reload after a switch or setrunqueue/switch possibly
468 		 * moved us to another cpu.
469 		 */
470 		spin_unlock(&dd->spin);
471 		lwkt_deschedule(lp->lwp_thread);
472 		dfly_setrunqueue_dd(dd, lp);
473 		lwkt_switch();
474 		gd = mycpu;
475 		dd = &dfly_pcpu[gd->gd_cpuid];
476 	}
477 
478 	/*
479 	 * Make sure upri is synchronized, then yield to LWKT threads as
480 	 * needed before returning.  This could result in another reschedule.
481 	 * XXX
482 	 */
483 	crit_exit_quick(td);
484 
485 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
486 }
487 
488 /*
489  * DFLY_RELEASE_CURPROC
490  *
491  * This routine detaches the current thread from the userland scheduler,
492  * usually because the thread needs to run or block in the kernel (at
493  * kernel priority) for a while.
494  *
495  * This routine is also responsible for selecting a new thread to
496  * make the current thread.
497  *
498  * NOTE: This implementation differs from the dummy example in that
499  * dfly_select_curproc() is able to select the current process, whereas
500  * dummy_select_curproc() is not able to select the current process.
501  * This means we have to NULL out uschedcp.
502  *
503  * Additionally, note that we may already be on a run queue if releasing
504  * via the lwkt_switch() in dfly_setrunqueue().
505  */
506 static void
507 dfly_release_curproc(struct lwp *lp)
508 {
509 	globaldata_t gd = mycpu;
510 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
511 
512 	/*
513 	 * Make sure td_wakefromcpu is defaulted.  This will be overwritten
514 	 * by wakeup().
515 	 */
516 	if (dd->uschedcp == lp) {
517 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
518 		spin_lock(&dd->spin);
519 		if (dd->uschedcp == lp) {
520 			dd->uschedcp = NULL;	/* don't let lp be selected */
521 			dd->upri = PRIBASE_NULL;
522 			ATOMIC_CPUMASK_NANDBIT(dfly_curprocmask, gd->gd_cpuid);
523 			spin_unlock(&dd->spin);
524 			dfly_select_curproc(gd);
525 		} else {
526 			spin_unlock(&dd->spin);
527 		}
528 	}
529 }
530 
531 /*
532  * DFLY_SELECT_CURPROC
533  *
534  * Select a new current process for this cpu and clear any pending user
535  * reschedule request.  The cpu currently has no current process.
536  *
537  * This routine is also responsible for equal-priority round-robining,
538  * typically triggered from dfly_schedulerclock().  In our dummy example
539  * all the 'user' threads are LWKT scheduled all at once and we just
540  * call lwkt_switch().
541  *
542  * The calling process is not on the queue and cannot be selected.
543  */
544 static
545 void
546 dfly_select_curproc(globaldata_t gd)
547 {
548 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
549 	struct lwp *nlp;
550 	int cpuid = gd->gd_cpuid;
551 
552 	crit_enter_gd(gd);
553 
554 	spin_lock(&dd->spin);
555 	nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
556 
557 	if (nlp) {
558 		ATOMIC_CPUMASK_ORBIT(dfly_curprocmask, cpuid);
559 		dd->upri = nlp->lwp_priority;
560 		dd->uschedcp = nlp;
561 #if 0
562 		dd->rrcount = 0;		/* reset round robin */
563 #endif
564 		spin_unlock(&dd->spin);
565 		lwkt_acquire(nlp->lwp_thread);
566 		lwkt_schedule(nlp->lwp_thread);
567 	} else {
568 		spin_unlock(&dd->spin);
569 	}
570 	crit_exit_gd(gd);
571 }
572 
573 /*
574  * Place the specified lwp on the user scheduler's run queue.  This routine
575  * must be called with the thread descheduled.  The lwp must be runnable.
576  * It must not be possible for anyone else to explicitly schedule this thread.
577  *
578  * The thread may be the current thread as a special case.
579  */
580 static void
581 dfly_setrunqueue(struct lwp *lp)
582 {
583 	dfly_pcpu_t dd;
584 	dfly_pcpu_t rdd;
585 
586 	/*
587 	 * First validate the process LWKT state.
588 	 */
589 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
590 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0,
591 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
592 	     lp->lwp_tid, lp->lwp_proc->p_flags, lp->lwp_flags));
593 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
594 
595 	/*
596 	 * NOTE: dd/rdd do not necessarily represent the current cpu.
597 	 *	 Instead they may represent the cpu the thread was last
598 	 *	 scheduled on or inherited by its parent.
599 	 */
600 	dd = &dfly_pcpu[lp->lwp_qcpu];
601 	rdd = dd;
602 
603 	/*
604 	 * This process is not supposed to be scheduled anywhere or assigned
605 	 * as the current process anywhere.  Assert the condition.
606 	 */
607 	KKASSERT(rdd->uschedcp != lp);
608 
609 	/*
610 	 * Ok, we have to setrunqueue some target cpu and request a reschedule
611 	 * if necessary.
612 	 *
613 	 * We have to choose the best target cpu.  It might not be the current
614 	 * target even if the current cpu has no running user thread (for
615 	 * example, because the current cpu might be a hyperthread and its
616 	 * sibling has a thread assigned).
617 	 *
618 	 * If we just forked it is most optimal to run the child on the same
619 	 * cpu just in case the parent decides to wait for it (thus getting
620 	 * off that cpu).  As long as there is nothing else runnable on the
621 	 * cpu, that is.  If we did this unconditionally a parent forking
622 	 * multiple children before waiting (e.g. make -j N) leaves other
623 	 * cpus idle that could be working.
624 	 */
625 	if (lp->lwp_forked) {
626 		lp->lwp_forked = 0;
627 		if (usched_dfly_features & 0x20)
628 			rdd = dfly_choose_best_queue(lp);
629 		else if (usched_dfly_features & 0x40)
630 			rdd = &dfly_pcpu[lp->lwp_qcpu];
631 		else if (usched_dfly_features & 0x80)
632 			rdd = dfly_choose_queue_simple(rdd, lp);
633 		else if (dfly_pcpu[lp->lwp_qcpu].runqcount)
634 			rdd = dfly_choose_best_queue(lp);
635 		else
636 			rdd = &dfly_pcpu[lp->lwp_qcpu];
637 	} else {
638 		rdd = dfly_choose_best_queue(lp);
639 		/* rdd = &dfly_pcpu[lp->lwp_qcpu]; */
640 	}
641 	if (lp->lwp_qcpu != rdd->cpuid) {
642 		spin_lock(&dd->spin);
643 		dfly_changeqcpu_locked(lp, dd, rdd);
644 		spin_unlock(&dd->spin);
645 	}
646 	dfly_setrunqueue_dd(rdd, lp);
647 }
648 
649 /*
650  * Change qcpu to rdd->cpuid.  The dd the lp is CURRENTLY on must be
651  * spin-locked on-call.  rdd does not have to be.
652  */
653 static void
654 dfly_changeqcpu_locked(struct lwp *lp, dfly_pcpu_t dd, dfly_pcpu_t rdd)
655 {
656 	if (lp->lwp_qcpu != rdd->cpuid) {
657 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
658 			atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
659 			atomic_add_int(&dd->uload, -lp->lwp_uload);
660 			atomic_add_int(&dd->ucount, -1);
661 			atomic_add_int(&dfly_ucount, -1);
662 		}
663 		lp->lwp_qcpu = rdd->cpuid;
664 	}
665 }
666 
667 /*
668  * Place lp on rdd's runqueue.  Nothing is locked on call.  This function
669  * also performs all necessary ancillary notification actions.
670  */
671 static void
672 dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp)
673 {
674 	globaldata_t rgd;
675 
676 	/*
677 	 * We might be moving the lp to another cpu's run queue, and once
678 	 * on the runqueue (even if it is our cpu's), another cpu can rip
679 	 * it away from us.
680 	 *
681 	 * TDF_MIGRATING might already be set if this is part of a
682 	 * remrunqueue+setrunqueue sequence.
683 	 */
684 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
685 		lwkt_giveaway(lp->lwp_thread);
686 
687 	rgd = globaldata_find(rdd->cpuid);
688 
689 	/*
690 	 * We lose control of the lp the moment we release the spinlock
691 	 * after having placed it on the queue.  i.e. another cpu could pick
692 	 * it up, or it could exit, or its priority could be further
693 	 * adjusted, or something like that.
694 	 *
695 	 * WARNING! rdd can point to a foreign cpu!
696 	 */
697 	spin_lock(&rdd->spin);
698 	dfly_setrunqueue_locked(rdd, lp);
699 
700 	/*
701 	 * Potentially interrupt the currently-running thread
702 	 */
703 	if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK)) {
704 		/*
705 		 * Currently running thread is better or same, do not
706 		 * interrupt.
707 		 */
708 		spin_unlock(&rdd->spin);
709 	} else if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK) +
710 		   usched_dfly_fast_resched) {
711 		/*
712 		 * Currently running thread is not better, but not so bad
713 		 * that we need to interrupt it.  Let it run for one more
714 		 * scheduler tick.
715 		 */
716 		if (rdd->uschedcp &&
717 		    rdd->uschedcp->lwp_rrcount < usched_dfly_rrinterval) {
718 			rdd->uschedcp->lwp_rrcount = usched_dfly_rrinterval - 1;
719 		}
720 		spin_unlock(&rdd->spin);
721 	} else if (rgd == mycpu) {
722 		/*
723 		 * We should interrupt the currently running thread, which
724 		 * is on the current cpu.  However, if DIDYIELD is set we
725 		 * round-robin unconditionally and do not interrupt it.
726 		 */
727 		spin_unlock(&rdd->spin);
728 		if (rdd->uschedcp == NULL)
729 			wakeup_mycpu(&rdd->helper_thread); /* XXX */
730 		if ((lp->lwp_thread->td_mpflags & TDF_MP_DIDYIELD) == 0)
731 			need_user_resched();
732 	} else {
733 		/*
734 		 * We should interrupt the currently running thread, which
735 		 * is on a different cpu.
736 		 */
737 		spin_unlock(&rdd->spin);
738 		lwkt_send_ipiq(rgd, dfly_need_user_resched_remote, NULL);
739 	}
740 }
741 
742 /*
743  * This routine is called from a systimer IPI.  It MUST be MP-safe and
744  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
745  * each cpu.
746  */
747 static
748 void
749 dfly_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
750 {
751 	globaldata_t gd = mycpu;
752 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
753 
754 	/*
755 	 * Spinlocks also hold a critical section so there should not be
756 	 * any active.
757 	 */
758 	KKASSERT(gd->gd_spinlocks == 0);
759 
760 	if (lp == NULL)
761 		return;
762 
763 	/*
764 	 * Do we need to round-robin?  We round-robin 10 times a second.
765 	 * This should only occur for cpu-bound batch processes.
766 	 */
767 	if (++lp->lwp_rrcount >= usched_dfly_rrinterval) {
768 		lp->lwp_thread->td_wakefromcpu = -1;
769 		need_user_resched();
770 	}
771 
772 	/*
773 	 * Adjust estcpu upward using a real time equivalent calculation,
774 	 * and recalculate lp's priority.
775 	 */
776 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUMAX / ESTCPUFREQ + 1);
777 	dfly_resetpriority(lp);
778 
779 	/*
780 	 * Rebalance two cpus every 8 ticks, pulling the worst thread
781 	 * from the worst cpu's queue into a rotating cpu number.
782 	 *
783 	 * This mechanic is needed because the push algorithms can
784 	 * steady-state in an non-optimal configuration.  We need to mix it
785 	 * up a little, even if it means breaking up a paired thread, so
786 	 * the push algorithms can rebalance the degenerate conditions.
787 	 * This portion of the algorithm exists to ensure stability at the
788 	 * selected weightings.
789 	 *
790 	 * Because we might be breaking up optimal conditions we do not want
791 	 * to execute this too quickly, hence we only rebalance approximately
792 	 * ~7-8 times per second.  The push's, on the otherhand, are capable
793 	 * moving threads to other cpus at a much higher rate.
794 	 *
795 	 * We choose the most heavily loaded thread from the worst queue
796 	 * in order to ensure that multiple heavy-weight threads on the same
797 	 * queue get broken up, and also because these threads are the most
798 	 * likely to be able to remain in place.  Hopefully then any pairings,
799 	 * if applicable, migrate to where these threads are.
800 	 */
801 	if ((usched_dfly_features & 0x04) &&
802 	    ((u_int)sched_ticks & 7) == 0 &&
803 	    (u_int)sched_ticks / 8 % ncpus == gd->gd_cpuid) {
804 		/*
805 		 * Our cpu is up.
806 		 */
807 		struct lwp *nlp;
808 		dfly_pcpu_t rdd;
809 
810 		rdd = dfly_choose_worst_queue(dd);
811 		if (rdd) {
812 			spin_lock(&dd->spin);
813 			if (spin_trylock(&rdd->spin)) {
814 				nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
815 				spin_unlock(&rdd->spin);
816 				if (nlp == NULL)
817 					spin_unlock(&dd->spin);
818 			} else {
819 				spin_unlock(&dd->spin);
820 				nlp = NULL;
821 			}
822 		} else {
823 			nlp = NULL;
824 		}
825 		/* dd->spin held if nlp != NULL */
826 
827 		/*
828 		 * Either schedule it or add it to our queue.
829 		 */
830 		if (nlp &&
831 		    (nlp->lwp_priority & ~PPQMASK) < (dd->upri & ~PPQMASK)) {
832 			ATOMIC_CPUMASK_ORMASK(dfly_curprocmask, dd->cpumask);
833 			dd->upri = nlp->lwp_priority;
834 			dd->uschedcp = nlp;
835 #if 0
836 			dd->rrcount = 0;	/* reset round robin */
837 #endif
838 			spin_unlock(&dd->spin);
839 			lwkt_acquire(nlp->lwp_thread);
840 			lwkt_schedule(nlp->lwp_thread);
841 		} else if (nlp) {
842 			dfly_setrunqueue_locked(dd, nlp);
843 			spin_unlock(&dd->spin);
844 		}
845 	}
846 }
847 
848 /*
849  * Called from acquire and from kern_synch's one-second timer (one of the
850  * callout helper threads) with a critical section held.
851  *
852  * Adjust p_estcpu based on our single-cpu load, p_nice, and compensate for
853  * overall system load.
854  *
855  * Note that no recalculation occurs for a process which sleeps and wakes
856  * up in the same tick.  That is, a system doing thousands of context
857  * switches per second will still only do serious estcpu calculations
858  * ESTCPUFREQ times per second.
859  */
860 static
861 void
862 dfly_recalculate_estcpu(struct lwp *lp)
863 {
864 	globaldata_t gd = mycpu;
865 	sysclock_t cpbase;
866 	sysclock_t ttlticks;
867 	int estcpu;
868 	int decay_factor;
869 	int ucount;
870 
871 	/*
872 	 * We have to subtract periodic to get the last schedclock
873 	 * timeout time, otherwise we would get the upcoming timeout.
874 	 * Keep in mind that a process can migrate between cpus and
875 	 * while the scheduler clock should be very close, boundary
876 	 * conditions could lead to a small negative delta.
877 	 */
878 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
879 
880 	if (lp->lwp_slptime > 1) {
881 		/*
882 		 * Too much time has passed, do a coarse correction.
883 		 */
884 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
885 		dfly_resetpriority(lp);
886 		lp->lwp_cpbase = cpbase;
887 		lp->lwp_cpticks = 0;
888 		lp->lwp_estfast = 0;
889 	} else if (lp->lwp_cpbase != cpbase) {
890 		/*
891 		 * Adjust estcpu if we are in a different tick.  Don't waste
892 		 * time if we are in the same tick.
893 		 *
894 		 * First calculate the number of ticks in the measurement
895 		 * interval.  The ttlticks calculation can wind up 0 due to
896 		 * a bug in the handling of lwp_slptime  (as yet not found),
897 		 * so make sure we do not get a divide by 0 panic.
898 		 */
899 		ttlticks = (cpbase - lp->lwp_cpbase) /
900 			   gd->gd_schedclock.periodic;
901 		if ((ssysclock_t)ttlticks < 0) {
902 			ttlticks = 0;
903 			lp->lwp_cpbase = cpbase;
904 		}
905 		if (ttlticks == 0)
906 			return;
907 		updatepcpu(lp, lp->lwp_cpticks, ttlticks);
908 
909 		/*
910 		 * Calculate the percentage of one cpu being used then
911 		 * compensate for any system load in excess of ncpus.
912 		 *
913 		 * For example, if we have 8 cores and 16 running cpu-bound
914 		 * processes then all things being equal each process will
915 		 * get 50% of one cpu.  We need to pump this value back
916 		 * up to 100% so the estcpu calculation properly adjusts
917 		 * the process's dynamic priority.
918 		 *
919 		 * estcpu is scaled by ESTCPUMAX, pctcpu is scaled by FSCALE.
920 		 */
921 		estcpu = (lp->lwp_pctcpu * ESTCPUMAX) >> FSHIFT;
922 		ucount = dfly_ucount;
923 		if (ucount > ncpus) {
924 			estcpu += estcpu * (ucount - ncpus) / ncpus;
925 		}
926 
927 		if (usched_dfly_debug == lp->lwp_proc->p_pid) {
928 			kprintf("pid %d lwp %p estcpu %3d %3d cp %d/%d",
929 				lp->lwp_proc->p_pid, lp,
930 				estcpu, lp->lwp_estcpu,
931 				lp->lwp_cpticks, ttlticks);
932 		}
933 
934 		/*
935 		 * Adjust lp->lwp_esetcpu.  The decay factor determines how
936 		 * quickly lwp_estcpu collapses to its realtime calculation.
937 		 * A slower collapse gives us a more accurate number over
938 		 * the long term but can create problems with bursty threads
939 		 * or threads which become cpu hogs.
940 		 *
941 		 * To solve this problem, newly started lwps and lwps which
942 		 * are restarting after having been asleep for a while are
943 		 * given a much, much faster decay in order to quickly
944 		 * detect whether they become cpu-bound.
945 		 *
946 		 * NOTE: p_nice is accounted for in dfly_resetpriority(),
947 		 *	 and not here, but we must still ensure that a
948 		 *	 cpu-bound nice -20 process does not completely
949 		 *	 override a cpu-bound nice +20 process.
950 		 *
951 		 * NOTE: We must use ESTCPULIM() here to deal with any
952 		 *	 overshoot.
953 		 */
954 		decay_factor = usched_dfly_decay;
955 		if (decay_factor < 1)
956 			decay_factor = 1;
957 		if (decay_factor > 1024)
958 			decay_factor = 1024;
959 
960 		if (lp->lwp_estfast < usched_dfly_decay) {
961 			++lp->lwp_estfast;
962 			lp->lwp_estcpu = ESTCPULIM(
963 				(lp->lwp_estcpu * lp->lwp_estfast + estcpu) /
964 				(lp->lwp_estfast + 1));
965 		} else {
966 			lp->lwp_estcpu = ESTCPULIM(
967 				(lp->lwp_estcpu * decay_factor + estcpu) /
968 				(decay_factor + 1));
969 		}
970 
971 		if (usched_dfly_debug == lp->lwp_proc->p_pid)
972 			kprintf(" finalestcpu %d\n", lp->lwp_estcpu);
973 		dfly_resetpriority(lp);
974 		lp->lwp_cpbase += ttlticks * gd->gd_schedclock.periodic;
975 		lp->lwp_cpticks = 0;
976 	}
977 }
978 
979 /*
980  * Compute the priority of a process when running in user mode.
981  * Arrange to reschedule if the resulting priority is better
982  * than that of the current process.
983  *
984  * This routine may be called with any process.
985  *
986  * This routine is called by fork1() for initial setup with the process of
987  * the run queue, and also may be called normally with the process on or
988  * off the run queue.
989  */
990 static void
991 dfly_resetpriority(struct lwp *lp)
992 {
993 	dfly_pcpu_t rdd;
994 	int newpriority;
995 	u_short newrqtype;
996 	int rcpu;
997 	int checkpri;
998 	int estcpu;
999 	int delta_uload;
1000 
1001 	crit_enter();
1002 
1003 	/*
1004 	 * Lock the scheduler (lp) belongs to.  This can be on a different
1005 	 * cpu.  Handle races.  This loop breaks out with the appropriate
1006 	 * rdd locked.
1007 	 */
1008 	for (;;) {
1009 		rcpu = lp->lwp_qcpu;
1010 		cpu_ccfence();
1011 		rdd = &dfly_pcpu[rcpu];
1012 		spin_lock(&rdd->spin);
1013 		if (rcpu == lp->lwp_qcpu)
1014 			break;
1015 		spin_unlock(&rdd->spin);
1016 	}
1017 
1018 	/*
1019 	 * Calculate the new priority and queue type
1020 	 */
1021 	newrqtype = lp->lwp_rtprio.type;
1022 
1023 	switch(newrqtype) {
1024 	case RTP_PRIO_REALTIME:
1025 	case RTP_PRIO_FIFO:
1026 		newpriority = PRIBASE_REALTIME +
1027 			     (lp->lwp_rtprio.prio & PRIMASK);
1028 		break;
1029 	case RTP_PRIO_NORMAL:
1030 		/*
1031 		 *
1032 		 */
1033 		estcpu = lp->lwp_estcpu;
1034 
1035 		/*
1036 		 * p_nice piece		Adds (0-40) * 2		0-80
1037 		 * estcpu		Adds 16384  * 4 / 512   0-128
1038 		 */
1039 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
1040 		newpriority += estcpu * PPQ / ESTCPUPPQ;
1041 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
1042 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
1043 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
1044 		break;
1045 	case RTP_PRIO_IDLE:
1046 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
1047 		break;
1048 	case RTP_PRIO_THREAD:
1049 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
1050 		break;
1051 	default:
1052 		panic("Bad RTP_PRIO %d", newrqtype);
1053 		/* NOT REACHED */
1054 	}
1055 
1056 	/*
1057 	 * The LWKT scheduler doesn't dive usched structures, give it a hint
1058 	 * on the relative priority of user threads running in the kernel.
1059 	 * The LWKT scheduler will always ensure that a user thread running
1060 	 * in the kernel will get cpu some time, regardless of its upri,
1061 	 * but can decide not to instantly switch from one kernel or user
1062 	 * mode user thread to a kernel-mode user thread when it has a less
1063 	 * desireable user priority.
1064 	 *
1065 	 * td_upri has normal sense (higher values are more desireable), so
1066 	 * negate it.
1067 	 */
1068 	lp->lwp_thread->td_upri = -(newpriority & usched_dfly_swmask);
1069 
1070 	/*
1071 	 * The newpriority incorporates the queue type so do a simple masked
1072 	 * check to determine if the process has moved to another queue.  If
1073 	 * it has, and it is currently on a run queue, then move it.
1074 	 *
1075 	 * Since uload is ~PPQMASK masked, no modifications are necessary if
1076 	 * we end up in the same run queue.
1077 	 *
1078 	 * Reset rrcount if moving to a higher-priority queue, otherwise
1079 	 * retain rrcount.
1080 	 */
1081 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
1082 		if (lp->lwp_priority < newpriority)
1083 			lp->lwp_rrcount = 0;
1084 		if (lp->lwp_mpflags & LWP_MP_ONRUNQ) {
1085 			dfly_remrunqueue_locked(rdd, lp);
1086 			lp->lwp_priority = newpriority;
1087 			lp->lwp_rqtype = newrqtype;
1088 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1089 			dfly_setrunqueue_locked(rdd, lp);
1090 			checkpri = 1;
1091 		} else {
1092 			lp->lwp_priority = newpriority;
1093 			lp->lwp_rqtype = newrqtype;
1094 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1095 			checkpri = 0;
1096 		}
1097 	} else {
1098 		/*
1099 		 * In the same PPQ, uload cannot change.
1100 		 */
1101 		lp->lwp_priority = newpriority;
1102 		checkpri = 1;
1103 		rcpu = -1;
1104 	}
1105 
1106 	/*
1107 	 * Adjust effective load.
1108 	 *
1109 	 * Calculate load then scale up or down geometrically based on p_nice.
1110 	 * Processes niced up (positive) are less important, and processes
1111 	 * niced downard (negative) are more important.  The higher the uload,
1112 	 * the more important the thread.
1113 	 */
1114 	/* 0-511, 0-100% cpu */
1115 	delta_uload = lp->lwp_estcpu / NQS;
1116 	delta_uload -= delta_uload * lp->lwp_proc->p_nice / (PRIO_MAX + 1);
1117 
1118 
1119 	delta_uload -= lp->lwp_uload;
1120 	lp->lwp_uload += delta_uload;
1121 	if (lp->lwp_mpflags & LWP_MP_ULOAD)
1122 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, delta_uload);
1123 
1124 	/*
1125 	 * Determine if we need to reschedule the target cpu.  This only
1126 	 * occurs if the LWP is already on a scheduler queue, which means
1127 	 * that idle cpu notification has already occured.  At most we
1128 	 * need only issue a need_user_resched() on the appropriate cpu.
1129 	 *
1130 	 * The LWP may be owned by a CPU different from the current one,
1131 	 * in which case dd->uschedcp may be modified without an MP lock
1132 	 * or a spinlock held.  The worst that happens is that the code
1133 	 * below causes a spurious need_user_resched() on the target CPU
1134 	 * and dd->pri to be wrong for a short period of time, both of
1135 	 * which are harmless.
1136 	 *
1137 	 * If checkpri is 0 we are adjusting the priority of the current
1138 	 * process, possibly higher (less desireable), so ignore the upri
1139 	 * check which will fail in that case.
1140 	 */
1141 	if (rcpu >= 0) {
1142 		if (CPUMASK_TESTBIT(dfly_rdyprocmask, rcpu) &&
1143 		    (checkpri == 0 ||
1144 		     (rdd->upri & ~PRIMASK) >
1145 		     (lp->lwp_priority & ~PRIMASK))) {
1146 			if (rcpu == mycpu->gd_cpuid) {
1147 				spin_unlock(&rdd->spin);
1148 				need_user_resched();
1149 			} else {
1150 				spin_unlock(&rdd->spin);
1151 				lwkt_send_ipiq(globaldata_find(rcpu),
1152 					       dfly_need_user_resched_remote,
1153 					       NULL);
1154 			}
1155 		} else {
1156 			spin_unlock(&rdd->spin);
1157 		}
1158 	} else {
1159 		spin_unlock(&rdd->spin);
1160 	}
1161 	crit_exit();
1162 }
1163 
1164 static
1165 void
1166 dfly_yield(struct lwp *lp)
1167 {
1168 	if (lp->lwp_qcpu != mycpu->gd_cpuid)
1169 		return;
1170 	KKASSERT(lp == curthread->td_lwp);
1171 
1172 	/*
1173 	 * Don't set need_user_resched() or mess with rrcount or anything.
1174 	 * the TDF flag will override everything as long as we release.
1175 	 */
1176 	atomic_set_int(&lp->lwp_thread->td_mpflags, TDF_MP_DIDYIELD);
1177 	dfly_release_curproc(lp);
1178 }
1179 
1180 /*
1181  * Thread was forcefully migrated to another cpu.  Normally forced migrations
1182  * are used for iterations and the kernel returns to the original cpu before
1183  * returning and this is not needed.  However, if the kernel migrates a
1184  * thread to another cpu and wants to leave it there, it has to call this
1185  * scheduler helper.
1186  *
1187  * Note that the lwkt_migratecpu() function also released the thread, so
1188  * we don't have to worry about that.
1189  */
1190 static
1191 void
1192 dfly_changedcpu(struct lwp *lp)
1193 {
1194 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1195 	dfly_pcpu_t rdd = &dfly_pcpu[mycpu->gd_cpuid];
1196 
1197 	if (dd != rdd) {
1198 		spin_lock(&dd->spin);
1199 		dfly_changeqcpu_locked(lp, dd, rdd);
1200 		spin_unlock(&dd->spin);
1201 	}
1202 }
1203 
1204 /*
1205  * Called from fork1() when a new child process is being created.
1206  *
1207  * Give the child process an initial estcpu that is more batch then
1208  * its parent and dock the parent for the fork (but do not
1209  * reschedule the parent).
1210  *
1211  * fast
1212  *
1213  * XXX lwp should be "spawning" instead of "forking"
1214  */
1215 static void
1216 dfly_forking(struct lwp *plp, struct lwp *lp)
1217 {
1218 	/*
1219 	 * Put the child 4 queue slots (out of 32) higher than the parent
1220 	 * (less desireable than the parent).
1221 	 */
1222 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ * 4);
1223 	lp->lwp_forked = 1;
1224 	lp->lwp_estfast = 0;
1225 
1226 	/*
1227 	 * Dock the parent a cost for the fork, protecting us from fork
1228 	 * bombs.  If the parent is forking quickly make the child more
1229 	 * batchy.
1230 	 */
1231 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ / 16);
1232 }
1233 
1234 /*
1235  * Called when a lwp is being removed from this scheduler, typically
1236  * during lwp_exit().  We have to clean out any ULOAD accounting before
1237  * we can let the lp go.  The dd->spin lock is not needed for uload
1238  * updates.
1239  *
1240  * Scheduler dequeueing has already occurred, no further action in that
1241  * regard is needed.
1242  */
1243 static void
1244 dfly_exiting(struct lwp *lp, struct proc *child_proc)
1245 {
1246 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1247 
1248 	if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1249 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1250 		atomic_add_int(&dd->uload, -lp->lwp_uload);
1251 		atomic_add_int(&dd->ucount, -1);
1252 		atomic_add_int(&dfly_ucount, -1);
1253 	}
1254 }
1255 
1256 /*
1257  * This function cannot block in any way, but spinlocks are ok.
1258  *
1259  * Update the uload based on the state of the thread (whether it is going
1260  * to sleep or running again).  The uload is meant to be a longer-term
1261  * load and not an instantanious load.
1262  */
1263 static void
1264 dfly_uload_update(struct lwp *lp)
1265 {
1266 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1267 
1268 	if (lp->lwp_thread->td_flags & TDF_RUNQ) {
1269 		if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1270 			spin_lock(&dd->spin);
1271 			if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1272 				atomic_set_int(&lp->lwp_mpflags,
1273 					       LWP_MP_ULOAD);
1274 				atomic_add_int(&dd->uload, lp->lwp_uload);
1275 				atomic_add_int(&dd->ucount, 1);
1276 				atomic_add_int(&dfly_ucount, 1);
1277 			}
1278 			spin_unlock(&dd->spin);
1279 		}
1280 	} else if (lp->lwp_slptime > 0) {
1281 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1282 			spin_lock(&dd->spin);
1283 			if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1284 				atomic_clear_int(&lp->lwp_mpflags,
1285 						 LWP_MP_ULOAD);
1286 				atomic_add_int(&dd->uload, -lp->lwp_uload);
1287 				atomic_add_int(&dd->ucount, -1);
1288 				atomic_add_int(&dfly_ucount, -1);
1289 			}
1290 			spin_unlock(&dd->spin);
1291 		}
1292 	}
1293 }
1294 
1295 /*
1296  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
1297  * it selects a user process and returns it.  If chklp is non-NULL and chklp
1298  * has a better or equal priority then the process that would otherwise be
1299  * chosen, NULL is returned.
1300  *
1301  * Until we fix the RUNQ code the chklp test has to be strict or we may
1302  * bounce between processes trying to acquire the current process designation.
1303  *
1304  * Must be called with rdd->spin locked.  The spinlock is left intact through
1305  * the entire routine.  dd->spin does not have to be locked.
1306  *
1307  * If worst is non-zero this function finds the worst thread instead of the
1308  * best thread (used by the schedulerclock-based rover).
1309  */
1310 static
1311 struct lwp *
1312 dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
1313 		       struct lwp *chklp, int worst)
1314 {
1315 	struct lwp *lp;
1316 	struct rq *q;
1317 	u_int32_t *which;
1318 	u_int32_t pri;
1319 	u_int32_t rtqbits;
1320 	u_int32_t tsqbits;
1321 	u_int32_t idqbits;
1322 
1323 	rtqbits = rdd->rtqueuebits;
1324 	tsqbits = rdd->queuebits;
1325 	idqbits = rdd->idqueuebits;
1326 
1327 	if (worst) {
1328 		if (idqbits) {
1329 			pri = bsrl(idqbits);
1330 			q = &rdd->idqueues[pri];
1331 			which = &rdd->idqueuebits;
1332 		} else if (tsqbits) {
1333 			pri = bsrl(tsqbits);
1334 			q = &rdd->queues[pri];
1335 			which = &rdd->queuebits;
1336 		} else if (rtqbits) {
1337 			pri = bsrl(rtqbits);
1338 			q = &rdd->rtqueues[pri];
1339 			which = &rdd->rtqueuebits;
1340 		} else {
1341 			return (NULL);
1342 		}
1343 		lp = TAILQ_LAST(q, rq);
1344 	} else {
1345 		if (rtqbits) {
1346 			pri = bsfl(rtqbits);
1347 			q = &rdd->rtqueues[pri];
1348 			which = &rdd->rtqueuebits;
1349 		} else if (tsqbits) {
1350 			pri = bsfl(tsqbits);
1351 			q = &rdd->queues[pri];
1352 			which = &rdd->queuebits;
1353 		} else if (idqbits) {
1354 			pri = bsfl(idqbits);
1355 			q = &rdd->idqueues[pri];
1356 			which = &rdd->idqueuebits;
1357 		} else {
1358 			return (NULL);
1359 		}
1360 		lp = TAILQ_FIRST(q);
1361 	}
1362 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1363 
1364 	/*
1365 	 * If the passed lwp <chklp> is reasonably close to the selected
1366 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1367 	 *
1368 	 * Note that we must error on the side of <chklp> to avoid bouncing
1369 	 * between threads in the acquire code.
1370 	 */
1371 	if (chklp) {
1372 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
1373 			return(NULL);
1374 	}
1375 
1376 	KTR_COND_LOG(usched_chooseproc,
1377 	    lp->lwp_proc->p_pid == usched_dfly_pid_debug,
1378 	    lp->lwp_proc->p_pid,
1379 	    lp->lwp_thread->td_gd->gd_cpuid,
1380 	    mycpu->gd_cpuid);
1381 
1382 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1383 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1384 	TAILQ_REMOVE(q, lp, lwp_procq);
1385 	--rdd->runqcount;
1386 	if (TAILQ_EMPTY(q))
1387 		*which &= ~(1 << pri);
1388 
1389 	/*
1390 	 * If we are choosing a process from rdd with the intent to
1391 	 * move it to dd, lwp_qcpu must be adjusted while rdd's spinlock
1392 	 * is still held.
1393 	 */
1394 	if (rdd != dd) {
1395 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1396 			atomic_add_int(&rdd->uload, -lp->lwp_uload);
1397 			atomic_add_int(&rdd->ucount, -1);
1398 			atomic_add_int(&dfly_ucount, -1);
1399 		}
1400 		lp->lwp_qcpu = dd->cpuid;
1401 		atomic_add_int(&dd->uload, lp->lwp_uload);
1402 		atomic_add_int(&dd->ucount, 1);
1403 		atomic_add_int(&dfly_ucount, 1);
1404 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1405 	}
1406 	return lp;
1407 }
1408 
1409 /*
1410  * USED TO PUSH RUNNABLE LWPS TO THE LEAST LOADED CPU.
1411  *
1412  * Choose a cpu node to schedule lp on, hopefully nearby its current
1413  * node.
1414  *
1415  * We give the current node a modest advantage for obvious reasons.
1416  *
1417  * We also give the node the thread was woken up FROM a slight advantage
1418  * in order to try to schedule paired threads which synchronize/block waiting
1419  * for each other fairly close to each other.  Similarly in a network setting
1420  * this feature will also attempt to place a user process near the kernel
1421  * protocol thread that is feeding it data.  THIS IS A CRITICAL PART of the
1422  * algorithm as it heuristically groups synchronizing processes for locality
1423  * of reference in multi-socket systems.
1424  *
1425  * We check against running processes and give a big advantage if there
1426  * are none running.
1427  *
1428  * The caller will normally dfly_setrunqueue() lp on the returned queue.
1429  *
1430  * When the topology is known choose a cpu whos group has, in aggregate,
1431  * has the lowest weighted load.
1432  */
1433 static
1434 dfly_pcpu_t
1435 dfly_choose_best_queue(struct lwp *lp)
1436 {
1437 	cpumask_t wakemask;
1438 	cpumask_t mask;
1439 	cpu_node_t *cpup;
1440 	cpu_node_t *cpun;
1441 	cpu_node_t *cpub;
1442 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1443 	dfly_pcpu_t rdd;
1444 	int wakecpu;
1445 	int cpuid;
1446 	int n;
1447 	int count;
1448 	int load;
1449 	int lowest_load;
1450 
1451 	/*
1452 	 * When the topology is unknown choose a random cpu that is hopefully
1453 	 * idle.
1454 	 */
1455 	if (dd->cpunode == NULL)
1456 		return (dfly_choose_queue_simple(dd, lp));
1457 
1458 	/*
1459 	 * Pairing mask
1460 	 */
1461 	if ((wakecpu = lp->lwp_thread->td_wakefromcpu) >= 0)
1462 		wakemask = dfly_pcpu[wakecpu].cpumask;
1463 	else
1464 		CPUMASK_ASSZERO(wakemask);
1465 
1466 	/*
1467 	 * When the topology is known choose a cpu whos group has, in
1468 	 * aggregate, has the lowest weighted load.
1469 	 */
1470 	cpup = root_cpu_node;
1471 	rdd = dd;
1472 
1473 	while (cpup) {
1474 		/*
1475 		 * Degenerate case super-root
1476 		 */
1477 		if (cpup->child_no == 1) {
1478 			cpup = cpup->child_node[0];
1479 			continue;
1480 		}
1481 
1482 		/*
1483 		 * Terminal cpunode
1484 		 */
1485 		if (cpup->child_no == 0) {
1486 			rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1487 			break;
1488 		}
1489 
1490 		cpub = NULL;
1491 		lowest_load = 0x7FFFFFFF;
1492 
1493 		for (n = 0; n < cpup->child_no; ++n) {
1494 			/*
1495 			 * Accumulate load information for all cpus
1496 			 * which are members of this node.
1497 			 */
1498 			cpun = cpup->child_node[n];
1499 			mask = cpun->members;
1500 			CPUMASK_ANDMASK(mask, usched_global_cpumask);
1501 			CPUMASK_ANDMASK(mask, smp_active_mask);
1502 			CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
1503 			if (CPUMASK_TESTZERO(mask))
1504 				continue;
1505 
1506 			count = 0;
1507 			load = 0;
1508 
1509 			while (CPUMASK_TESTNZERO(mask)) {
1510 				cpuid = BSFCPUMASK(mask);
1511 				rdd = &dfly_pcpu[cpuid];
1512 				load += rdd->uload;
1513 				load += rdd->ucount * usched_dfly_weight3;
1514 
1515 				if (rdd->uschedcp == NULL &&
1516 				    rdd->runqcount == 0 &&
1517 				    globaldata_find(cpuid)->gd_tdrunqcount == 0
1518 				) {
1519 					load -= usched_dfly_weight4;
1520 				}
1521 #if 0
1522 				else if (rdd->upri > lp->lwp_priority + PPQ) {
1523 					load -= usched_dfly_weight4 / 2;
1524 				}
1525 #endif
1526 				CPUMASK_NANDBIT(mask, cpuid);
1527 				++count;
1528 			}
1529 
1530 			/*
1531 			 * Compensate if the lp is already accounted for in
1532 			 * the aggregate uload for this mask set.  We want
1533 			 * to calculate the loads as if lp were not present,
1534 			 * otherwise the calculation is bogus.
1535 			 */
1536 			if ((lp->lwp_mpflags & LWP_MP_ULOAD) &&
1537 			    CPUMASK_TESTMASK(dd->cpumask, cpun->members)) {
1538 				load -= lp->lwp_uload;
1539 				load -= usched_dfly_weight3;
1540 			}
1541 
1542 			load /= count;
1543 
1544 			/*
1545 			 * Advantage the cpu group (lp) is already on.
1546 			 */
1547 			if (CPUMASK_TESTMASK(cpun->members, dd->cpumask))
1548 				load -= usched_dfly_weight1;
1549 
1550 			/*
1551 			 * Advantage the cpu group we want to pair (lp) to,
1552 			 * but don't let it go to the exact same cpu as
1553 			 * the wakecpu target.
1554 			 *
1555 			 * We do this by checking whether cpun is a
1556 			 * terminal node or not.  All cpun's at the same
1557 			 * level will either all be terminal or all not
1558 			 * terminal.
1559 			 *
1560 			 * If it is and we match we disadvantage the load.
1561 			 * If it is and we don't match we advantage the load.
1562 			 *
1563 			 * Also note that we are effectively disadvantaging
1564 			 * all-but-one by the same amount, so it won't effect
1565 			 * the weight1 factor for the all-but-one nodes.
1566 			 */
1567 			if (CPUMASK_TESTMASK(cpun->members, wakemask)) {
1568 				if (cpun->child_no != 0) {
1569 					/* advantage */
1570 					load -= usched_dfly_weight2;
1571 				} else {
1572 					if (usched_dfly_features & 0x10)
1573 						load += usched_dfly_weight2;
1574 					else
1575 						load -= usched_dfly_weight2;
1576 				}
1577 			}
1578 
1579 			/*
1580 			 * Calculate the best load
1581 			 */
1582 			if (cpub == NULL || lowest_load > load ||
1583 			    (lowest_load == load &&
1584 			     CPUMASK_TESTMASK(cpun->members, dd->cpumask))
1585 			) {
1586 				lowest_load = load;
1587 				cpub = cpun;
1588 			}
1589 		}
1590 		cpup = cpub;
1591 	}
1592 	if (usched_dfly_chooser)
1593 		kprintf("lp %02d->%02d %s\n",
1594 			lp->lwp_qcpu, rdd->cpuid, lp->lwp_proc->p_comm);
1595 	return (rdd);
1596 }
1597 
1598 /*
1599  * USED TO PULL RUNNABLE LWPS FROM THE MOST LOADED CPU.
1600  *
1601  * Choose the worst queue close to dd's cpu node with a non-empty runq
1602  * that is NOT dd.  Also require that the moving of the highest-load thread
1603  * from rdd to dd does not cause the uload's to cross each other.
1604  *
1605  * This is used by the thread chooser when the current cpu's queues are
1606  * empty to steal a thread from another cpu's queue.  We want to offload
1607  * the most heavily-loaded queue.
1608  */
1609 static
1610 dfly_pcpu_t
1611 dfly_choose_worst_queue(dfly_pcpu_t dd)
1612 {
1613 	cpumask_t mask;
1614 	cpu_node_t *cpup;
1615 	cpu_node_t *cpun;
1616 	cpu_node_t *cpub;
1617 	dfly_pcpu_t rdd;
1618 	int cpuid;
1619 	int n;
1620 	int count;
1621 	int load;
1622 #if 0
1623 	int pri;
1624 	int hpri;
1625 #endif
1626 	int highest_load;
1627 
1628 	/*
1629 	 * When the topology is unknown choose a random cpu that is hopefully
1630 	 * idle.
1631 	 */
1632 	if (dd->cpunode == NULL) {
1633 		return (NULL);
1634 	}
1635 
1636 	/*
1637 	 * When the topology is known choose a cpu whos group has, in
1638 	 * aggregate, has the lowest weighted load.
1639 	 */
1640 	cpup = root_cpu_node;
1641 	rdd = dd;
1642 	while (cpup) {
1643 		/*
1644 		 * Degenerate case super-root
1645 		 */
1646 		if (cpup->child_no == 1) {
1647 			cpup = cpup->child_node[0];
1648 			continue;
1649 		}
1650 
1651 		/*
1652 		 * Terminal cpunode
1653 		 */
1654 		if (cpup->child_no == 0) {
1655 			rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1656 			break;
1657 		}
1658 
1659 		cpub = NULL;
1660 		highest_load = 0;
1661 
1662 		for (n = 0; n < cpup->child_no; ++n) {
1663 			/*
1664 			 * Accumulate load information for all cpus
1665 			 * which are members of this node.
1666 			 */
1667 			cpun = cpup->child_node[n];
1668 			mask = cpun->members;
1669 			CPUMASK_ANDMASK(mask, usched_global_cpumask);
1670 			CPUMASK_ANDMASK(mask, smp_active_mask);
1671 			if (CPUMASK_TESTZERO(mask))
1672 				continue;
1673 			count = 0;
1674 			load = 0;
1675 
1676 			while (CPUMASK_TESTNZERO(mask)) {
1677 				cpuid = BSFCPUMASK(mask);
1678 				rdd = &dfly_pcpu[cpuid];
1679 				load += rdd->uload;
1680 				load += rdd->ucount * usched_dfly_weight3;
1681 				if (rdd->uschedcp == NULL &&
1682 				    rdd->runqcount == 0 &&
1683 				    globaldata_find(cpuid)->gd_tdrunqcount == 0
1684 				) {
1685 					load -= usched_dfly_weight4;
1686 				}
1687 #if 0
1688 				else if (rdd->upri > dd->upri + PPQ) {
1689 					load -= usched_dfly_weight4 / 2;
1690 				}
1691 #endif
1692 				CPUMASK_NANDBIT(mask, cpuid);
1693 				++count;
1694 			}
1695 			load /= count;
1696 
1697 			/*
1698 			 * Prefer candidates which are somewhat closer to
1699 			 * our cpu.
1700 			 */
1701 			if (CPUMASK_TESTMASK(dd->cpumask, cpun->members))
1702 				load += usched_dfly_weight1;
1703 
1704 			/*
1705 			 * The best candidate is the one with the worst
1706 			 * (highest) load.
1707 			 */
1708 			if (cpub == NULL || highest_load < load) {
1709 				highest_load = load;
1710 				cpub = cpun;
1711 			}
1712 		}
1713 		cpup = cpub;
1714 	}
1715 
1716 	/*
1717 	 * We never return our own node (dd), and only return a remote
1718 	 * node if it's load is significantly worse than ours (i.e. where
1719 	 * stealing a thread would be considered reasonable).
1720 	 *
1721 	 * This also helps us avoid breaking paired threads apart which
1722 	 * can have disastrous effects on performance.
1723 	 */
1724 	if (rdd == dd)
1725 		return(NULL);
1726 
1727 #if 0
1728 	hpri = 0;
1729 	if (rdd->rtqueuebits && hpri < (pri = bsrl(rdd->rtqueuebits)))
1730 		hpri = pri;
1731 	if (rdd->queuebits && hpri < (pri = bsrl(rdd->queuebits)))
1732 		hpri = pri;
1733 	if (rdd->idqueuebits && hpri < (pri = bsrl(rdd->idqueuebits)))
1734 		hpri = pri;
1735 	hpri *= PPQ;
1736 	if (rdd->uload - hpri < dd->uload + hpri)
1737 		return(NULL);
1738 #endif
1739 	return (rdd);
1740 }
1741 
1742 static
1743 dfly_pcpu_t
1744 dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp)
1745 {
1746 	dfly_pcpu_t rdd;
1747 	cpumask_t tmpmask;
1748 	cpumask_t mask;
1749 	int cpuid;
1750 
1751 	/*
1752 	 * Fallback to the original heuristic, select random cpu,
1753 	 * first checking cpus not currently running a user thread.
1754 	 */
1755 	++dfly_scancpu;
1756 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1757 	mask = dfly_rdyprocmask;
1758 	CPUMASK_NANDMASK(mask, dfly_curprocmask);
1759 	CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
1760 	CPUMASK_ANDMASK(mask, smp_active_mask);
1761 	CPUMASK_ANDMASK(mask, usched_global_cpumask);
1762 
1763 	while (CPUMASK_TESTNZERO(mask)) {
1764 		CPUMASK_ASSNBMASK(tmpmask, cpuid);
1765 		if (CPUMASK_TESTMASK(tmpmask, mask)) {
1766 			CPUMASK_ANDMASK(tmpmask, mask);
1767 			cpuid = BSFCPUMASK(tmpmask);
1768 		} else {
1769 			cpuid = BSFCPUMASK(mask);
1770 		}
1771 		rdd = &dfly_pcpu[cpuid];
1772 
1773 		if ((rdd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK))
1774 			goto found;
1775 		CPUMASK_NANDBIT(mask, cpuid);
1776 	}
1777 
1778 	/*
1779 	 * Then cpus which might have a currently running lp
1780 	 */
1781 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1782 	mask = dfly_rdyprocmask;
1783 	CPUMASK_ANDMASK(mask, dfly_curprocmask);
1784 	CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
1785 	CPUMASK_ANDMASK(mask, smp_active_mask);
1786 	CPUMASK_ANDMASK(mask, usched_global_cpumask);
1787 
1788 	while (CPUMASK_TESTNZERO(mask)) {
1789 		CPUMASK_ASSNBMASK(tmpmask, cpuid);
1790 		if (CPUMASK_TESTMASK(tmpmask, mask)) {
1791 			CPUMASK_ANDMASK(tmpmask, mask);
1792 			cpuid = BSFCPUMASK(tmpmask);
1793 		} else {
1794 			cpuid = BSFCPUMASK(mask);
1795 		}
1796 		rdd = &dfly_pcpu[cpuid];
1797 
1798 		if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
1799 			goto found;
1800 		CPUMASK_NANDBIT(mask, cpuid);
1801 	}
1802 
1803 	/*
1804 	 * If we cannot find a suitable cpu we reload from dfly_scancpu
1805 	 * and round-robin.  Other cpus will pickup as they release their
1806 	 * current lwps or become ready.
1807 	 *
1808 	 * Avoid a degenerate system lockup case if usched_global_cpumask
1809 	 * is set to 0 or otherwise does not cover lwp_cpumask.
1810 	 *
1811 	 * We only kick the target helper thread in this case, we do not
1812 	 * set the user resched flag because
1813 	 */
1814 	cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1815 	if (CPUMASK_TESTBIT(usched_global_cpumask, cpuid) == 0)
1816 		cpuid = 0;
1817 	rdd = &dfly_pcpu[cpuid];
1818 found:
1819 	return (rdd);
1820 }
1821 
1822 static
1823 void
1824 dfly_need_user_resched_remote(void *dummy)
1825 {
1826 	globaldata_t gd = mycpu;
1827 	dfly_pcpu_t  dd = &dfly_pcpu[gd->gd_cpuid];
1828 
1829 	/*
1830 	 * Flag reschedule needed
1831 	 */
1832 	need_user_resched();
1833 
1834 	/*
1835 	 * If no user thread is currently running we need to kick the helper
1836 	 * on our cpu to recover.  Otherwise the cpu will never schedule
1837 	 * anything again.
1838 	 *
1839 	 * We cannot schedule the process ourselves because this is an
1840 	 * IPI callback and we cannot acquire spinlocks in an IPI callback.
1841 	 *
1842 	 * Call wakeup_mycpu to avoid sending IPIs to other CPUs
1843 	 */
1844 	if (dd->uschedcp == NULL &&
1845 	    CPUMASK_TESTBIT(dfly_rdyprocmask, gd->gd_cpuid)) {
1846 		ATOMIC_CPUMASK_NANDBIT(dfly_rdyprocmask, gd->gd_cpuid);
1847 		wakeup_mycpu(&dd->helper_thread);
1848 	}
1849 }
1850 
1851 /*
1852  * dfly_remrunqueue_locked() removes a given process from the run queue
1853  * that it is on, clearing the queue busy bit if it becomes empty.
1854  *
1855  * Note that user process scheduler is different from the LWKT schedule.
1856  * The user process scheduler only manages user processes but it uses LWKT
1857  * underneath, and a user process operating in the kernel will often be
1858  * 'released' from our management.
1859  *
1860  * uload is NOT adjusted here.  It is only adjusted if the lwkt_thread goes
1861  * to sleep or the lwp is moved to a different runq.
1862  */
1863 static void
1864 dfly_remrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1865 {
1866 	struct rq *q;
1867 	u_int32_t *which;
1868 	u_int8_t pri;
1869 
1870 	KKASSERT(rdd->runqcount >= 0);
1871 
1872 	pri = lp->lwp_rqindex;
1873 
1874 	switch(lp->lwp_rqtype) {
1875 	case RTP_PRIO_NORMAL:
1876 		q = &rdd->queues[pri];
1877 		which = &rdd->queuebits;
1878 		break;
1879 	case RTP_PRIO_REALTIME:
1880 	case RTP_PRIO_FIFO:
1881 		q = &rdd->rtqueues[pri];
1882 		which = &rdd->rtqueuebits;
1883 		break;
1884 	case RTP_PRIO_IDLE:
1885 		q = &rdd->idqueues[pri];
1886 		which = &rdd->idqueuebits;
1887 		break;
1888 	default:
1889 		panic("remrunqueue: invalid rtprio type");
1890 		/* NOT REACHED */
1891 	}
1892 	KKASSERT(lp->lwp_mpflags & LWP_MP_ONRUNQ);
1893 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1894 	TAILQ_REMOVE(q, lp, lwp_procq);
1895 	--rdd->runqcount;
1896 	if (TAILQ_EMPTY(q)) {
1897 		KASSERT((*which & (1 << pri)) != 0,
1898 			("remrunqueue: remove from empty queue"));
1899 		*which &= ~(1 << pri);
1900 	}
1901 }
1902 
1903 /*
1904  * dfly_setrunqueue_locked()
1905  *
1906  * Add a process whos rqtype and rqindex had previously been calculated
1907  * onto the appropriate run queue.   Determine if the addition requires
1908  * a reschedule on a cpu and return the cpuid or -1.
1909  *
1910  * NOTE: 	  Lower priorities are better priorities.
1911  *
1912  * NOTE ON ULOAD: This variable specifies the aggregate load on a cpu, the
1913  *		  sum of the rough lwp_priority for all running and runnable
1914  *		  processes.  Lower priority processes (higher lwp_priority
1915  *		  values) actually DO count as more load, not less, because
1916  *		  these are the programs which require the most care with
1917  *		  regards to cpu selection.
1918  */
1919 static void
1920 dfly_setrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1921 {
1922 	u_int32_t *which;
1923 	struct rq *q;
1924 	int pri;
1925 
1926 	KKASSERT(lp->lwp_qcpu == rdd->cpuid);
1927 
1928 	if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1929 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1930 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, lp->lwp_uload);
1931 		atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].ucount, 1);
1932 		atomic_add_int(&dfly_ucount, 1);
1933 	}
1934 
1935 	pri = lp->lwp_rqindex;
1936 
1937 	switch(lp->lwp_rqtype) {
1938 	case RTP_PRIO_NORMAL:
1939 		q = &rdd->queues[pri];
1940 		which = &rdd->queuebits;
1941 		break;
1942 	case RTP_PRIO_REALTIME:
1943 	case RTP_PRIO_FIFO:
1944 		q = &rdd->rtqueues[pri];
1945 		which = &rdd->rtqueuebits;
1946 		break;
1947 	case RTP_PRIO_IDLE:
1948 		q = &rdd->idqueues[pri];
1949 		which = &rdd->idqueuebits;
1950 		break;
1951 	default:
1952 		panic("remrunqueue: invalid rtprio type");
1953 		/* NOT REACHED */
1954 	}
1955 
1956 	/*
1957 	 * Place us on the selected queue.  Determine if we should be
1958 	 * placed at the head of the queue or at the end.
1959 	 *
1960 	 * We are placed at the tail if our round-robin count has expired,
1961 	 * or is about to expire and the system thinks its a good place to
1962 	 * round-robin, or there is already a next thread on the queue
1963 	 * (it might be trying to pick up where it left off and we don't
1964 	 * want to interfere).
1965 	 */
1966 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1967 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1968 	++rdd->runqcount;
1969 
1970 	if (lp->lwp_rrcount >= usched_dfly_rrinterval ||
1971 	    (lp->lwp_rrcount >= usched_dfly_rrinterval / 2 &&
1972 	     (lp->lwp_thread->td_mpflags & TDF_MP_BATCH_DEMARC))
1973 	) {
1974 		/*
1975 		 * Place on tail
1976 		 */
1977 		atomic_clear_int(&lp->lwp_thread->td_mpflags,
1978 				 TDF_MP_BATCH_DEMARC);
1979 		lp->lwp_rrcount = 0;
1980 		TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1981 	} else {
1982 		/*
1983 		 * Retain rrcount and place on head.  Count is retained
1984 		 * even if the queue is empty.
1985 		 */
1986 		TAILQ_INSERT_HEAD(q, lp, lwp_procq);
1987 	}
1988 	*which |= 1 << pri;
1989 }
1990 
1991 /*
1992  * For SMP systems a user scheduler helper thread is created for each
1993  * cpu and is used to allow one cpu to wakeup another for the purposes of
1994  * scheduling userland threads from setrunqueue().
1995  *
1996  * UP systems do not need the helper since there is only one cpu.
1997  *
1998  * We can't use the idle thread for this because we might block.
1999  * Additionally, doing things this way allows us to HLT idle cpus
2000  * on MP systems.
2001  */
2002 static void
2003 dfly_helper_thread(void *dummy)
2004 {
2005     globaldata_t gd;
2006     dfly_pcpu_t dd;
2007     dfly_pcpu_t rdd;
2008     struct lwp *nlp;
2009     cpumask_t mask;
2010     int cpuid;
2011 
2012     gd = mycpu;
2013     cpuid = gd->gd_cpuid;	/* doesn't change */
2014     mask = gd->gd_cpumask;	/* doesn't change */
2015     dd = &dfly_pcpu[cpuid];
2016 
2017     /*
2018      * Since we only want to be woken up only when no user processes
2019      * are scheduled on a cpu, run at an ultra low priority.
2020      */
2021     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
2022 
2023     tsleep(&dd->helper_thread, 0, "schslp", 0);
2024 
2025     for (;;) {
2026 	/*
2027 	 * We use the LWKT deschedule-interlock trick to avoid racing
2028 	 * dfly_rdyprocmask.  This means we cannot block through to the
2029 	 * manual lwkt_switch() call we make below.
2030 	 */
2031 	crit_enter_gd(gd);
2032 	tsleep_interlock(&dd->helper_thread, 0);
2033 
2034 	spin_lock(&dd->spin);
2035 
2036 	ATOMIC_CPUMASK_ORMASK(dfly_rdyprocmask, mask);
2037 	clear_user_resched();	/* This satisfied the reschedule request */
2038 #if 0
2039 	dd->rrcount = 0;	/* Reset the round-robin counter */
2040 #endif
2041 
2042 	if (dd->runqcount || dd->uschedcp != NULL) {
2043 		/*
2044 		 * Threads are available.  A thread may or may not be
2045 		 * currently scheduled.  Get the best thread already queued
2046 		 * to this cpu.
2047 		 */
2048 		nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
2049 		if (nlp) {
2050 			ATOMIC_CPUMASK_ORMASK(dfly_curprocmask, mask);
2051 			dd->upri = nlp->lwp_priority;
2052 			dd->uschedcp = nlp;
2053 #if 0
2054 			dd->rrcount = 0;	/* reset round robin */
2055 #endif
2056 			spin_unlock(&dd->spin);
2057 			lwkt_acquire(nlp->lwp_thread);
2058 			lwkt_schedule(nlp->lwp_thread);
2059 		} else {
2060 			/*
2061 			 * This situation should not occur because we had
2062 			 * at least one thread available.
2063 			 */
2064 			spin_unlock(&dd->spin);
2065 		}
2066 	} else if (usched_dfly_features & 0x01) {
2067 		/*
2068 		 * This cpu is devoid of runnable threads, steal a thread
2069 		 * from another cpu.  Since we're stealing, might as well
2070 		 * load balance at the same time.
2071 		 *
2072 		 * We choose the highest-loaded thread from the worst queue.
2073 		 *
2074 		 * NOTE! This function only returns a non-NULL rdd when
2075 		 *	 another cpu's queue is obviously overloaded.  We
2076 		 *	 do not want to perform the type of rebalancing
2077 		 *	 the schedclock does here because it would result
2078 		 *	 in insane process pulling when 'steady' state is
2079 		 *	 partially unbalanced (e.g. 6 runnables and only
2080 		 *	 4 cores).
2081 		 */
2082 		rdd = dfly_choose_worst_queue(dd);
2083 		if (rdd && spin_trylock(&rdd->spin)) {
2084 			nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
2085 			spin_unlock(&rdd->spin);
2086 		} else {
2087 			nlp = NULL;
2088 		}
2089 		if (nlp) {
2090 			ATOMIC_CPUMASK_ORMASK(dfly_curprocmask, mask);
2091 			dd->upri = nlp->lwp_priority;
2092 			dd->uschedcp = nlp;
2093 #if 0
2094 			dd->rrcount = 0;	/* reset round robin */
2095 #endif
2096 			spin_unlock(&dd->spin);
2097 			lwkt_acquire(nlp->lwp_thread);
2098 			lwkt_schedule(nlp->lwp_thread);
2099 		} else {
2100 			/*
2101 			 * Leave the thread on our run queue.  Another
2102 			 * scheduler will try to pull it later.
2103 			 */
2104 			spin_unlock(&dd->spin);
2105 		}
2106 	} else {
2107 		/*
2108 		 * devoid of runnable threads and not allowed to steal
2109 		 * any.
2110 		 */
2111 		spin_unlock(&dd->spin);
2112 	}
2113 
2114 	/*
2115 	 * We're descheduled unless someone scheduled us.  Switch away.
2116 	 * Exiting the critical section will cause splz() to be called
2117 	 * for us if interrupts and such are pending.
2118 	 */
2119 	crit_exit_gd(gd);
2120 	tsleep(&dd->helper_thread, PINTERLOCKED, "schslp", 0);
2121     }
2122 }
2123 
2124 #if 0
2125 static int
2126 sysctl_usched_dfly_stick_to_level(SYSCTL_HANDLER_ARGS)
2127 {
2128 	int error, new_val;
2129 
2130 	new_val = usched_dfly_stick_to_level;
2131 
2132 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2133         if (error != 0 || req->newptr == NULL)
2134 		return (error);
2135 	if (new_val > cpu_topology_levels_number - 1 || new_val < 0)
2136 		return (EINVAL);
2137 	usched_dfly_stick_to_level = new_val;
2138 	return (0);
2139 }
2140 #endif
2141 
2142 /*
2143  * Setup the queues and scheduler helpers (scheduler helpers are SMP only).
2144  * Note that curprocmask bit 0 has already been cleared by rqinit() and
2145  * we should not mess with it further.
2146  */
2147 static void
2148 usched_dfly_cpu_init(void)
2149 {
2150 	int i;
2151 	int j;
2152 	int smt_not_supported = 0;
2153 	int cache_coherent_not_supported = 0;
2154 
2155 	if (bootverbose)
2156 		kprintf("Start usched_dfly helpers on cpus:\n");
2157 
2158 	sysctl_ctx_init(&usched_dfly_sysctl_ctx);
2159 	usched_dfly_sysctl_tree =
2160 		SYSCTL_ADD_NODE(&usched_dfly_sysctl_ctx,
2161 				SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
2162 				"usched_dfly", CTLFLAG_RD, 0, "");
2163 
2164 	for (i = 0; i < ncpus; ++i) {
2165 		dfly_pcpu_t dd = &dfly_pcpu[i];
2166 		cpumask_t mask;
2167 
2168 		CPUMASK_ASSBIT(mask, i);
2169 		if (CPUMASK_TESTMASK(mask, smp_active_mask) == 0)
2170 		    continue;
2171 
2172 		spin_init(&dd->spin, "uschedcpuinit");
2173 		dd->cpunode = get_cpu_node_by_cpuid(i);
2174 		dd->cpuid = i;
2175 		CPUMASK_ASSBIT(dd->cpumask, i);
2176 		for (j = 0; j < NQS; j++) {
2177 			TAILQ_INIT(&dd->queues[j]);
2178 			TAILQ_INIT(&dd->rtqueues[j]);
2179 			TAILQ_INIT(&dd->idqueues[j]);
2180 		}
2181 		ATOMIC_CPUMASK_NANDBIT(dfly_curprocmask, 0);
2182 
2183 		if (dd->cpunode == NULL) {
2184 			smt_not_supported = 1;
2185 			cache_coherent_not_supported = 1;
2186 			if (bootverbose)
2187 				kprintf ("    cpu%d - WARNING: No CPU NODE "
2188 					 "found for cpu\n", i);
2189 		} else {
2190 			switch (dd->cpunode->type) {
2191 			case THREAD_LEVEL:
2192 				if (bootverbose)
2193 					kprintf ("    cpu%d - HyperThreading "
2194 						 "available. Core siblings: ",
2195 						 i);
2196 				break;
2197 			case CORE_LEVEL:
2198 				smt_not_supported = 1;
2199 
2200 				if (bootverbose)
2201 					kprintf ("    cpu%d - No HT available, "
2202 						 "multi-core/physical "
2203 						 "cpu. Physical siblings: ",
2204 						 i);
2205 				break;
2206 			case CHIP_LEVEL:
2207 				smt_not_supported = 1;
2208 
2209 				if (bootverbose)
2210 					kprintf ("    cpu%d - No HT available, "
2211 						 "single-core/physical cpu. "
2212 						 "Package siblings: ",
2213 						 i);
2214 				break;
2215 			default:
2216 				/* Let's go for safe defaults here */
2217 				smt_not_supported = 1;
2218 				cache_coherent_not_supported = 1;
2219 				if (bootverbose)
2220 					kprintf ("    cpu%d - Unknown cpunode->"
2221 						 "type=%u. siblings: ",
2222 						 i,
2223 						 (u_int)dd->cpunode->type);
2224 				break;
2225 			}
2226 
2227 			if (bootverbose) {
2228 				if (dd->cpunode->parent_node != NULL) {
2229 					kprint_cpuset(&dd->cpunode->
2230 							parent_node->members);
2231 					kprintf("\n");
2232 				} else {
2233 					kprintf(" no siblings\n");
2234 				}
2235 			}
2236 		}
2237 
2238 		lwkt_create(dfly_helper_thread, NULL, NULL, &dd->helper_thread,
2239 			    0, i, "usched %d", i);
2240 
2241 		/*
2242 		 * Allow user scheduling on the target cpu.  cpu #0 has already
2243 		 * been enabled in rqinit().
2244 		 */
2245 		if (i)
2246 			ATOMIC_CPUMASK_NANDMASK(dfly_curprocmask, mask);
2247 		ATOMIC_CPUMASK_ORMASK(dfly_rdyprocmask, mask);
2248 		dd->upri = PRIBASE_NULL;
2249 
2250 	}
2251 
2252 	/* usched_dfly sysctl configurable parameters */
2253 
2254 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2255 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2256 		       OID_AUTO, "rrinterval", CTLFLAG_RW,
2257 		       &usched_dfly_rrinterval, 0, "");
2258 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2259 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2260 		       OID_AUTO, "decay", CTLFLAG_RW,
2261 		       &usched_dfly_decay, 0, "Extra decay when not running");
2262 
2263 	/* Add enable/disable option for SMT scheduling if supported */
2264 	if (smt_not_supported) {
2265 		usched_dfly_smt = 0;
2266 		SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2267 				  SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2268 				  OID_AUTO, "smt", CTLFLAG_RD,
2269 				  "NOT SUPPORTED", 0, "SMT NOT SUPPORTED");
2270 	} else {
2271 		usched_dfly_smt = 1;
2272 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2273 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2274 			       OID_AUTO, "smt", CTLFLAG_RW,
2275 			       &usched_dfly_smt, 0, "Enable SMT scheduling");
2276 	}
2277 
2278 	/*
2279 	 * Add enable/disable option for cache coherent scheduling
2280 	 * if supported
2281 	 */
2282 	if (cache_coherent_not_supported) {
2283 		usched_dfly_cache_coherent = 0;
2284 		SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2285 				  SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2286 				  OID_AUTO, "cache_coherent", CTLFLAG_RD,
2287 				  "NOT SUPPORTED", 0,
2288 				  "Cache coherence NOT SUPPORTED");
2289 	} else {
2290 		usched_dfly_cache_coherent = 1;
2291 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2292 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2293 			       OID_AUTO, "cache_coherent", CTLFLAG_RW,
2294 			       &usched_dfly_cache_coherent, 0,
2295 			       "Enable/Disable cache coherent scheduling");
2296 
2297 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2298 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2299 			       OID_AUTO, "weight1", CTLFLAG_RW,
2300 			       &usched_dfly_weight1, 200,
2301 			       "Weight selection for current cpu");
2302 
2303 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2304 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2305 			       OID_AUTO, "weight2", CTLFLAG_RW,
2306 			       &usched_dfly_weight2, 180,
2307 			       "Weight selection for wakefrom cpu");
2308 
2309 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2310 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2311 			       OID_AUTO, "weight3", CTLFLAG_RW,
2312 			       &usched_dfly_weight3, 40,
2313 			       "Weight selection for num threads on queue");
2314 
2315 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2316 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2317 			       OID_AUTO, "weight4", CTLFLAG_RW,
2318 			       &usched_dfly_weight4, 160,
2319 			       "Availability of other idle cpus");
2320 
2321 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2322 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2323 			       OID_AUTO, "fast_resched", CTLFLAG_RW,
2324 			       &usched_dfly_fast_resched, 0,
2325 			       "Availability of other idle cpus");
2326 
2327 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2328 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2329 			       OID_AUTO, "features", CTLFLAG_RW,
2330 			       &usched_dfly_features, 0x8F,
2331 			       "Allow pulls into empty queues");
2332 
2333 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2334 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2335 			       OID_AUTO, "swmask", CTLFLAG_RW,
2336 			       &usched_dfly_swmask, ~PPQMASK,
2337 			       "Queue mask to force thread switch");
2338 
2339 #if 0
2340 		SYSCTL_ADD_PROC(&usched_dfly_sysctl_ctx,
2341 				SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2342 				OID_AUTO, "stick_to_level",
2343 				CTLTYPE_INT | CTLFLAG_RW,
2344 				NULL, sizeof usched_dfly_stick_to_level,
2345 				sysctl_usched_dfly_stick_to_level, "I",
2346 				"Stick a process to this level. See sysctl"
2347 				"paremter hw.cpu_topology.level_description");
2348 #endif
2349 	}
2350 }
2351 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2352 	usched_dfly_cpu_init, NULL);
2353