xref: /dragonfly/sys/kern/usched_dfly.c (revision 207ba670)
1 /*
2  * Copyright (c) 2012-2017 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Matthew Dillon <dillon@backplane.com>,
7  * by Mihai Carabas <mihai.carabas@gmail.com>
8  * and many others.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/queue.h>
42 #include <sys/proc.h>
43 #include <sys/rtprio.h>
44 #include <sys/uio.h>
45 #include <sys/sysctl.h>
46 #include <sys/resourcevar.h>
47 #include <sys/spinlock.h>
48 #include <sys/cpu_topology.h>
49 #include <sys/thread2.h>
50 #include <sys/spinlock2.h>
51 
52 #include <sys/ktr.h>
53 
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56 
57 /*
58  * Priorities.  Note that with 32 run queues per scheduler each queue
59  * represents four priority levels.
60  */
61 
62 int dfly_rebalanced;
63 
64 #define MAXPRI			128
65 #define PRIMASK			(MAXPRI - 1)
66 #define PRIBASE_REALTIME	0
67 #define PRIBASE_NORMAL		MAXPRI
68 #define PRIBASE_IDLE		(MAXPRI * 2)
69 #define PRIBASE_THREAD		(MAXPRI * 3)
70 #define PRIBASE_NULL		(MAXPRI * 4)
71 
72 #define NQS	32			/* 32 run queues. */
73 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
74 #define PPQMASK	(PPQ - 1)
75 
76 /*
77  * NICE_QS	- maximum queues nice can shift the process
78  * EST_QS	- maximum queues estcpu can shift the process
79  *
80  * ESTCPUPPQ	- number of estcpu units per priority queue
81  * ESTCPUMAX	- number of estcpu units
82  *
83  * Remember that NICE runs over the whole -20 to +20 range.
84  */
85 #define NICE_QS		24	/* -20 to +20 shift in whole queues */
86 #define EST_QS		20	/* 0-MAX shift in whole queues */
87 #define ESTCPUPPQ	512
88 #define ESTCPUMAX	(ESTCPUPPQ * EST_QS)
89 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
90 
91 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
92 
93 TAILQ_HEAD(rq, lwp);
94 
95 #define lwp_priority	lwp_usdata.dfly.priority
96 #define lwp_forked	lwp_usdata.dfly.forked
97 #define lwp_rqindex	lwp_usdata.dfly.rqindex
98 #define lwp_estcpu	lwp_usdata.dfly.estcpu
99 #define lwp_estfast	lwp_usdata.dfly.estfast
100 #define lwp_uload	lwp_usdata.dfly.uload
101 #define lwp_rqtype	lwp_usdata.dfly.rqtype
102 #define lwp_qcpu	lwp_usdata.dfly.qcpu
103 #define lwp_rrcount	lwp_usdata.dfly.rrcount
104 
105 static __inline int
106 lptouload(struct lwp *lp)
107 {
108 	int uload;
109 
110 	uload = lp->lwp_estcpu / NQS;
111 	uload -= uload * lp->lwp_proc->p_nice / (PRIO_MAX + 1);
112 
113 	return uload;
114 }
115 
116 /*
117  * DFly scheduler pcpu structure.  Note that the pcpu uload field must
118  * be 64-bits to avoid overflowing in the situation where more than 32768
119  * processes are on a single cpu's queue.  Since high-end systems can
120  * easily run 900,000+ processes, we have to deal with it.
121  */
122 struct usched_dfly_pcpu {
123 	struct spinlock spin;
124 	struct thread	*helper_thread;
125 	struct globaldata *gd;
126 	u_short		scancpu;
127 	short		upri;
128 	long		uload;		/* 64-bits to avoid overflow (1) */
129 	int		ucount;
130 	int		flags;
131 	struct lwp	*uschedcp;
132 	struct rq	queues[NQS];
133 	struct rq	rtqueues[NQS];
134 	struct rq	idqueues[NQS];
135 	u_int32_t	queuebits;
136 	u_int32_t	rtqueuebits;
137 	u_int32_t	idqueuebits;
138 	int		runqcount;
139 	int		cpuid;
140 	cpumask_t	cpumask;
141 	cpu_node_t	*cpunode;
142 } __cachealign;
143 
144 /*
145  * Reflecting bits in the global atomic masks allows us to avoid
146  * a certain degree of global ping-ponging.
147  */
148 #define DFLY_PCPU_RDYMASK	0x0001	/* reflect rdyprocmask */
149 #define DFLY_PCPU_CURMASK	0x0002	/* reflect curprocmask */
150 
151 typedef struct usched_dfly_pcpu	*dfly_pcpu_t;
152 
153 static void dfly_acquire_curproc(struct lwp *lp);
154 static void dfly_release_curproc(struct lwp *lp);
155 static void dfly_select_curproc(globaldata_t gd);
156 static void dfly_setrunqueue(struct lwp *lp);
157 static void dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp);
158 static void dfly_schedulerclock(struct lwp *lp, sysclock_t period,
159 				sysclock_t cpstamp);
160 static void dfly_recalculate_estcpu(struct lwp *lp);
161 static void dfly_resetpriority(struct lwp *lp);
162 static void dfly_forking(struct lwp *plp, struct lwp *lp);
163 static void dfly_exiting(struct lwp *lp, struct proc *);
164 static void dfly_uload_update(struct lwp *lp);
165 static void dfly_yield(struct lwp *lp);
166 static void dfly_changeqcpu_locked(struct lwp *lp,
167 				dfly_pcpu_t dd, dfly_pcpu_t rdd);
168 static dfly_pcpu_t dfly_choose_best_queue(struct lwp *lp);
169 static dfly_pcpu_t dfly_choose_worst_queue(dfly_pcpu_t dd, int forceit);
170 static dfly_pcpu_t dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp);
171 static void dfly_need_user_resched_remote(void *dummy);
172 static struct lwp *dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
173 					  struct lwp *chklp, int worst);
174 static void dfly_remrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
175 static void dfly_setrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
176 static void dfly_changedcpu(struct lwp *lp);
177 
178 struct usched usched_dfly = {
179 	{ NULL },
180 	"dfly", "Original DragonFly Scheduler",
181 	NULL,			/* default registration */
182 	NULL,			/* default deregistration */
183 	dfly_acquire_curproc,
184 	dfly_release_curproc,
185 	dfly_setrunqueue,
186 	dfly_schedulerclock,
187 	dfly_recalculate_estcpu,
188 	dfly_resetpriority,
189 	dfly_forking,
190 	dfly_exiting,
191 	dfly_uload_update,
192 	NULL,			/* setcpumask not supported */
193 	dfly_yield,
194 	dfly_changedcpu
195 };
196 
197 /*
198  * We have NQS (32) run queues per scheduling class.  For the normal
199  * class, there are 128 priorities scaled onto these 32 queues.  New
200  * processes are added to the last entry in each queue, and processes
201  * are selected for running by taking them from the head and maintaining
202  * a simple FIFO arrangement.  Realtime and Idle priority processes have
203  * and explicit 0-31 priority which maps directly onto their class queue
204  * index.  When a queue has something in it, the corresponding bit is
205  * set in the queuebits variable, allowing a single read to determine
206  * the state of all 32 queues and then a ffs() to find the first busy
207  * queue.
208  *
209  * curprocmask is used to publish cpus with assigned curprocs to the rest
210  * of the cpus.  In certain situations curprocmask may leave a bit set
211  * (e.g. a yield or a token-based yield) even though dd->uschedcp is
212  * NULL'd out temporarily).
213  */
214 					/* currently running a user process */
215 static cpumask_t dfly_curprocmask = CPUMASK_INITIALIZER_ALLONES;
216 static cpumask_t dfly_rdyprocmask;	/* ready to accept a user process */
217 static struct usched_dfly_pcpu dfly_pcpu[MAXCPU];
218 static struct sysctl_ctx_list usched_dfly_sysctl_ctx;
219 static struct sysctl_oid *usched_dfly_sysctl_tree;
220 static struct lock usched_dfly_config_lk = LOCK_INITIALIZER("usdfs", 0, 0);
221 
222 /* Debug info exposed through debug.* sysctl */
223 
224 static int usched_dfly_debug = -1;
225 SYSCTL_INT(_debug, OID_AUTO, dfly_scdebug, CTLFLAG_RW,
226 	   &usched_dfly_debug, 0,
227 	   "Print debug information for this pid");
228 
229 static int usched_dfly_pid_debug = -1;
230 SYSCTL_INT(_debug, OID_AUTO, dfly_pid_debug, CTLFLAG_RW,
231 	   &usched_dfly_pid_debug, 0,
232 	   "Print KTR debug information for this pid");
233 
234 static int usched_dfly_chooser = 0;
235 SYSCTL_INT(_debug, OID_AUTO, dfly_chooser, CTLFLAG_RW,
236 	   &usched_dfly_chooser, 0,
237 	   "Print KTR debug information for this pid");
238 
239 /*
240  * WARNING!
241  *
242  * The fork bias can have a large effect on the system in the face of a
243  * make -j N or other high-forking applications.
244  *
245  * Larger values are much less invasive vs other things that
246  * might be running in the system, but can cause exec chains
247  * such as those typically generated by make to have higher
248  * latencies in the face of modest load.
249  *
250  * Lower values are more invasive but have reduced latencies
251  * for such exec chains.
252  *
253  *	make -j 10 buildkernel example, build times:
254  *
255  *	     +0	3:04
256  *	     +1 3:14	-5.2%	<-- default
257  *	     +2 3:22	-8.9%
258  *
259  * This issue occurs due to the way the scheduler affinity heuristics work.
260  * There is no way to really 'fix' the affinity heuristics because when it
261  * comes right down to it trying to instantly schedule a process on an
262  * available cpu (even if it will become unavailable a microsecond later)
263  * tends to cause processes to shift around between cpus and sockets too much
264  * and breaks the affinity.
265  *
266  * NOTE: Heavily concurrent builds typically have enough things on the pan
267  *	 that they remain time-efficient even with a higher bias.
268  */
269 static int usched_dfly_forkbias = 1;
270 SYSCTL_INT(_debug, OID_AUTO, dfly_forkbias, CTLFLAG_RW,
271 	   &usched_dfly_forkbias, 0,
272 	   "Fork bias for estcpu in whole queues");
273 
274 /*
275  * Tunning usched_dfly - configurable through kern.usched_dfly.
276  *
277  * weight1 - Tries to keep threads on their current cpu.  If you
278  *	     make this value too large the scheduler will not be
279  *	     able to load-balance large loads.
280  *
281  *	     Generally set to a fairly low value, but high enough
282  *	     such that estcpu jitter doesn't move threads around.
283  *
284  * weight2 - If non-zero, detects thread pairs undergoing synchronous
285  *	     communications and tries to move them closer together.
286  *	     The weight advantages the same package and socket and
287  *	     disadvantages the same core and same cpu.
288  *
289  *	     WARNING!  Weight2 is a ridiculously sensitive parameter,
290  *	     particularly against weight4.  change the default at your
291  *	     peril.
292  *
293  * weight3 - Weighting based on the number of recently runnable threads
294  *	     on the userland scheduling queue (ignoring their loads).
295  *
296  *	     A nominal value here prevents high-priority (low-load)
297  *	     threads from accumulating on one cpu core when other
298  *	     cores are available.
299  *
300  *	     This value should be left fairly small because low-load
301  *	     high priority threads can still be mostly idle and too
302  *	     high a value will kick cpu-bound processes off the cpu
303  *	     unnecessarily.
304  *
305  * weight4 - Weighting based on availability of other logical cpus running
306  *	     less important threads (by upri) than the thread we are trying
307  *	     to schedule.
308  *
309  *	     This allows a thread to migrate to another nearby cpu if it
310  *	     is unable to run on the current cpu based on the other cpu
311  *	     being idle or running a less important (higher lwp_priority)
312  *	     thread.  This value should be large enough to override weight1,
313  *	     but not so large as to override weight2.
314  *
315  *	     This parameter generally ensures fairness at the cost of some
316  *	     performance (if set to too high).  It should generally be just
317  *	     a tad lower than weight2.
318  *
319  * weight5 - Weighting based on the relative amount of ram connected
320  *	     to the node a cpu resides on.
321  *
322  *	     This value should remain fairly low to allow assymetric
323  *	     NUMA nodes to get threads scheduled to them.  Setting a very
324  *	     high level will prevent scheduling on assymetric NUMA nodes
325  *	     with low amounts of directly-attached memory.
326  *
327  *	     Note that when testing e.g. N threads on a machine with N
328  *	     cpu cores with assymtric NUMA nodes, a non-zero value will
329  *	     cause some cpu threads on the low-priority NUMA nodes to remain
330  *	     idle even when a few process threads are doubled-up on other
331  *	     cpus.  But this is typically more ideal because it deschedules
332  *	     low-priority NUMA nodes at lighter nodes.
333  *
334  *	     Values between 50 and 200 are recommended.  Default is 50.
335  *
336  * weight6 - rdd transfer weight hysteresis.  Defaults to 0, can be increased
337  *	     to improve stabillity at the cost of more mis-schedules.
338  *
339  * ipc_smt - If enabled, advantage IPC pairing to sibling cpu threads.
340  *	     If -1, automatic when load >= 1/2 ncpus (default).
341  *
342  * ipc_same- If enabled, advantage IPC pairing to the same logical cpu.
343  *	     If -1, automatic when load >= ncpus (default).
344  *
345  * features - These flags can be set or cleared to enable or disable various
346  *	      features.
347  *
348  *	      0x01	Enable idle-cpu pulling			(default)
349  *	      0x02	Enable proactive pushing		(default)
350  *	      0x04	Enable rebalancing rover		(default)
351  *	      0x08	Enable more proactive pushing		(default)
352  *	      0x10	(unassigned)
353  *	      0x20	choose best cpu for forked process	(default)
354  *	      0x40	choose current cpu for forked process
355  *	      0x80	choose random cpu for forked process
356  *
357  *	     NOTE - The idea behind forking mechanic 0x20 is that most
358  *		    fork()ing is either followed by an exec in the child,
359  *		    or the parent wait*()s.  If the child is short-lived,
360  *		    there is effectively an IPC dependency (td_wakefromcpu
361  *		    is also set in kern_fork.c) and we want to implement
362  *		    the weight2 behavior to reduce IPIs and to reduce CPU
363  *		    cache ping-ponging.
364  */
365 __read_mostly static int usched_dfly_smt = 0;
366 __read_mostly static int usched_dfly_cache_coherent = 0;
367 __read_mostly static int usched_dfly_weight1 = 30;  /* keep thread on cpu */
368 __read_mostly static int usched_dfly_weight2 = 180; /* IPC locality */
369 __read_mostly static int usched_dfly_weight3 = 10;  /* threads on queue */
370 __read_mostly static int usched_dfly_weight4 = 120; /* availability of cores */
371 __read_mostly static int usched_dfly_weight5 = 50;  /* node attached memory */
372 __read_mostly static int usched_dfly_weight6 = 0;   /* rdd transfer weight */
373 __read_mostly static int usched_dfly_features = 0x2f;	     /* allow pulls */
374 __read_mostly static int usched_dfly_fast_resched = PPQ / 2; /* delta pri */
375 __read_mostly static int usched_dfly_swmask = ~PPQMASK;	     /* allow pulls */
376 __read_mostly static int usched_dfly_rrinterval = (ESTCPUFREQ + 9) / 10;
377 __read_mostly static int usched_dfly_decay = 8;
378 __read_mostly static int usched_dfly_ipc_smt = -1;  /* IPC auto smt pair */
379 __read_mostly static int usched_dfly_ipc_same = -1; /* IPC auto same log cpu */
380 __read_mostly static long usched_dfly_node_mem;
381 
382 /* KTR debug printings */
383 
384 KTR_INFO_MASTER(usched);
385 
386 #if !defined(KTR_USCHED_DFLY)
387 #define	KTR_USCHED_DFLY	KTR_ALL
388 #endif
389 
390 KTR_INFO(KTR_USCHED_DFLY, usched, chooseproc, 0,
391     "USCHED_DFLY(chooseproc: pid %d, old_cpuid %d, curr_cpuid %d)",
392     pid_t pid, int old_cpuid, int curr);
393 
394 /*
395  * This function is called when the kernel intends to return to userland.
396  * It is responsible for making the thread the current designated userland
397  * thread for this cpu, blocking if necessary.
398  *
399  * The kernel will not depress our LWKT priority until after we return,
400  * in case we have to shove over to another cpu.
401  *
402  * We must determine our thread's disposition before we switch away.  This
403  * is very sensitive code.
404  *
405  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
406  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
407  * occur, this function is called only under very controlled circumstances.
408  */
409 static void
410 dfly_acquire_curproc(struct lwp *lp)
411 {
412 	globaldata_t gd;
413 	dfly_pcpu_t dd;
414 	dfly_pcpu_t rdd;
415 	thread_t td;
416 	int force_resched;
417 
418 	/*
419 	 * Make sure we aren't sitting on a tsleep queue.
420 	 */
421 	td = lp->lwp_thread;
422 	crit_enter_quick(td);
423 	if (td->td_flags & TDF_TSLEEPQ)
424 		tsleep_remove(td);
425 	dfly_recalculate_estcpu(lp);
426 
427 	gd = mycpu;
428 	dd = &dfly_pcpu[gd->gd_cpuid];
429 
430 	/*
431 	 * Process any pending interrupts/ipi's, then handle reschedule
432 	 * requests.  dfly_release_curproc() will try to assign a new
433 	 * uschedcp that isn't us and otherwise NULL it out.
434 	 */
435 	force_resched = 0;
436 	if ((td->td_mpflags & TDF_MP_BATCH_DEMARC) &&
437 	    lp->lwp_rrcount >= usched_dfly_rrinterval / 2) {
438 		force_resched = 1;
439 	}
440 
441 	if (user_resched_wanted()) {
442 		if (dd->uschedcp == lp)
443 			force_resched = 1;
444 		clear_user_resched();
445 		dfly_release_curproc(lp);
446 	}
447 
448 	/*
449 	 * Loop until we are the current user thread.
450 	 *
451 	 * NOTE: dd spinlock not held at top of loop.
452 	 */
453 	if (dd->uschedcp == lp)
454 		lwkt_yield_quick();
455 
456 	while (dd->uschedcp != lp) {
457 		/*
458 		 * Do not do a lwkt_yield_quick() here as it will prevent
459 		 * the lwp from being placed on the dfly_bsd runqueue for
460 		 * one cycle (possibly an entire round-robin), preventing
461 		 * it from being scheduled to another cpu.
462 		 */
463 		/* lwkt_yield_quick(); */
464 
465 		if (usched_dfly_debug == lp->lwp_proc->p_pid)
466 			kprintf(" pid %d acquire curcpu %d (force %d) ",
467 				lp->lwp_proc->p_pid, gd->gd_cpuid,
468 				force_resched);
469 
470 
471 		spin_lock(&dd->spin);
472 
473 		/* This lwp is an outcast; force reschedule. */
474 		if (__predict_false(
475 		    CPUMASK_TESTBIT(lp->lwp_cpumask, gd->gd_cpuid) == 0) &&
476 		    (rdd = dfly_choose_best_queue(lp)) != dd) {
477 			dfly_changeqcpu_locked(lp, dd, rdd);
478 			spin_unlock(&dd->spin);
479 			lwkt_deschedule(lp->lwp_thread);
480 			dfly_setrunqueue_dd(rdd, lp);
481 			lwkt_switch();
482 			gd = mycpu;
483 			dd = &dfly_pcpu[gd->gd_cpuid];
484 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
485 				kprintf("SEL-A cpu %d\n", gd->gd_cpuid);
486 			continue;
487 		}
488 
489 		/*
490 		 * We are not or are no longer the current lwp and a forced
491 		 * reschedule was requested.  Figure out the best cpu to
492 		 * run on (our current cpu will be given significant weight).
493 		 *
494 		 * Doing this on many cpus simultaneously leads to
495 		 * instability so pace the operation.
496 		 *
497 		 * (if a reschedule was not requested we want to move this
498 		 * step after the uschedcp tests).
499 		 */
500 		if (force_resched &&
501 		   (usched_dfly_features & 0x08) &&
502 		   (u_int)sched_ticks / 8 % ncpus == gd->gd_cpuid) {
503 			if ((rdd = dfly_choose_best_queue(lp)) != dd) {
504 				dfly_changeqcpu_locked(lp, dd, rdd);
505 				spin_unlock(&dd->spin);
506 				lwkt_deschedule(lp->lwp_thread);
507 				dfly_setrunqueue_dd(rdd, lp);
508 				lwkt_switch();
509 				gd = mycpu;
510 				dd = &dfly_pcpu[gd->gd_cpuid];
511 				if (usched_dfly_debug == lp->lwp_proc->p_pid)
512 					kprintf("SEL-B cpu %d\n", gd->gd_cpuid);
513 				continue;
514 			}
515 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
516 				kprintf("(SEL-B same cpu) ");
517 		}
518 
519 		/*
520 		 * Either no reschedule was requested or the best queue was
521 		 * dd, and no current process has been selected.  We can
522 		 * trivially become the current lwp on the current cpu.
523 		 */
524 		if (dd->uschedcp == NULL) {
525 			atomic_clear_int(&lp->lwp_thread->td_mpflags,
526 					 TDF_MP_DIDYIELD);
527 			if ((dd->flags & DFLY_PCPU_CURMASK) == 0) {
528 				ATOMIC_CPUMASK_ORBIT(dfly_curprocmask,
529 						     gd->gd_cpuid);
530 				dd->flags |= DFLY_PCPU_CURMASK;
531 			}
532 			dd->uschedcp = lp;
533 			dd->upri = lp->lwp_priority;
534 			KKASSERT(lp->lwp_qcpu == dd->cpuid);
535 			spin_unlock(&dd->spin);
536 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
537 				kprintf("SEL-C cpu %d (same cpu)\n",
538 					gd->gd_cpuid);
539 			break;
540 		}
541 
542 		/*
543 		 * Can we steal the current designated user thread?
544 		 *
545 		 * If we do the other thread will stall when it tries to
546 		 * return to userland, possibly rescheduling elsewhere.
547 		 * Set need_user_resched() to get the thread to cycle soonest.
548 		 *
549 		 * It is important to do a masked test to avoid the edge
550 		 * case where two near-equal-priority threads are constantly
551 		 * interrupting each other.
552 		 *
553 		 * In the exact match case another thread has already gained
554 		 * uschedcp and lowered its priority, if we steal it the
555 		 * other thread will stay stuck on the LWKT runq and not
556 		 * push to another cpu.  So don't steal on equal-priority even
557 		 * though it might appear to be more beneficial due to not
558 		 * having to switch back to the other thread's context.
559 		 *
560 		 * usched_dfly_fast_resched requires that two threads be
561 		 * significantly far apart in priority in order to interrupt.
562 		 *
563 		 * If better but not sufficiently far apart, the current
564 		 * uschedcp will be interrupted at the next scheduler clock.
565 		 */
566 		if (dd->uschedcp &&
567 		   (dd->upri & ~PPQMASK) >
568 		   (lp->lwp_priority & ~PPQMASK) + usched_dfly_fast_resched) {
569 			dd->uschedcp = lp;
570 			dd->upri = lp->lwp_priority;
571 			KKASSERT(lp->lwp_qcpu == dd->cpuid);
572 			need_user_resched();
573 			spin_unlock(&dd->spin);
574 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
575 				kprintf("SEL-D cpu %d (same cpu)\n",
576 					gd->gd_cpuid);
577 			break;
578 		}
579 
580 		/*
581 		 * Requeue us at lwp_priority, which recalculate_estcpu()
582 		 * set for us.  Reset the rrcount to force placement
583 		 * at the end of the queue.
584 		 *
585 		 * We used to move ourselves to the worst queue, but
586 		 * this creates a fairly serious priority inversion
587 		 * problem.
588 		 */
589 		if (lp->lwp_thread->td_mpflags & TDF_MP_DIDYIELD) {
590 			spin_unlock(&dd->spin);
591 			lp->lwp_rrcount = usched_dfly_rrinterval;
592 			lp->lwp_rqindex = (lp->lwp_priority & PRIMASK) / PPQ;
593 
594 			lwkt_deschedule(lp->lwp_thread);
595 			dfly_setrunqueue_dd(dd, lp);
596 			atomic_clear_int(&lp->lwp_thread->td_mpflags,
597 					 TDF_MP_DIDYIELD);
598 			lwkt_switch();
599 			gd = mycpu;
600 			dd = &dfly_pcpu[gd->gd_cpuid];
601 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
602 				kprintf("SEL-E cpu %d (requeue)\n",
603 					gd->gd_cpuid);
604 			continue;
605 		}
606 
607 		/*
608 		 * We are not the current lwp, figure out the best cpu
609 		 * to run on (our current cpu will be given significant
610 		 * weight).  Loop on cpu change.
611 		 */
612 		if ((usched_dfly_features & 0x02) &&
613 		    force_resched == 0 &&
614 		    (rdd = dfly_choose_best_queue(lp)) != dd) {
615 			dfly_changeqcpu_locked(lp, dd, rdd);
616 			spin_unlock(&dd->spin);
617 			lwkt_deschedule(lp->lwp_thread);
618 			dfly_setrunqueue_dd(rdd, lp);
619 			lwkt_switch();
620 			gd = mycpu;
621 			dd = &dfly_pcpu[gd->gd_cpuid];
622 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
623 				kprintf("SEL-F cpu %d (requeue new cpu)\n",
624 					gd->gd_cpuid);
625 			continue;
626 		}
627 
628 		/*
629 		 * We cannot become the current lwp, place the lp on the
630 		 * run-queue of this or another cpu and deschedule ourselves.
631 		 *
632 		 * When we are reactivated we will have another chance.
633 		 *
634 		 * Reload after a switch or setrunqueue/switch possibly
635 		 * moved us to another cpu.
636 		 */
637 		spin_unlock(&dd->spin);
638 		lwkt_deschedule(lp->lwp_thread);
639 		dfly_setrunqueue_dd(dd, lp);
640 		lwkt_switch();
641 		gd = mycpu;
642 		dd = &dfly_pcpu[gd->gd_cpuid];
643 		if (usched_dfly_debug == lp->lwp_proc->p_pid)
644 			kprintf("SEL-G cpu %d (fallback setrunq)\n",
645 				gd->gd_cpuid);
646 	}
647 	if (usched_dfly_debug == lp->lwp_proc->p_pid)
648 		kprintf(" pid %d acquire DONE cpu %d\n",
649 			lp->lwp_proc->p_pid, gd->gd_cpuid);
650 
651 	/*
652 	 * Make sure upri is synchronized, then yield to LWKT threads as
653 	 * needed before returning.  This could result in another reschedule.
654 	 * XXX
655 	 */
656 	crit_exit_quick(td);
657 
658 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
659 }
660 
661 /*
662  * DFLY_RELEASE_CURPROC
663  *
664  * This routine detaches the current thread from the userland scheduler,
665  * usually because the thread needs to run or block in the kernel (at
666  * kernel priority) for a while.
667  *
668  * This routine is also responsible for selecting a new thread to
669  * make the current thread.
670  *
671  * NOTE: This implementation differs from the dummy example in that
672  * dfly_select_curproc() is able to select the current process, whereas
673  * dummy_select_curproc() is not able to select the current process.
674  * This means we have to NULL out uschedcp.
675  *
676  * Additionally, note that we may already be on a run queue if releasing
677  * via the lwkt_switch() in dfly_setrunqueue().
678  */
679 static void
680 dfly_release_curproc(struct lwp *lp)
681 {
682 	globaldata_t gd = mycpu;
683 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
684 
685 	/*
686 	 * Make sure td_wakefromcpu is defaulted.  This will be overwritten
687 	 * by wakeup().
688 	 */
689 	if (dd->uschedcp == lp) {
690 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
691 		spin_lock(&dd->spin);
692 		if (dd->uschedcp == lp) {
693 			dd->uschedcp = NULL;	/* don't let lp be selected */
694 			dd->upri = PRIBASE_NULL;
695 
696 			/*
697 			 * We're just going to set it again, avoid the global
698 			 * cache line ping-pong.
699 			 */
700 			if ((lp->lwp_thread->td_mpflags & TDF_MP_DIDYIELD) == 0) {
701 				if (dd->flags & DFLY_PCPU_CURMASK) {
702 					ATOMIC_CPUMASK_NANDBIT(dfly_curprocmask,
703 							       gd->gd_cpuid);
704 					dd->flags &= ~DFLY_PCPU_CURMASK;
705 				}
706 			}
707 			spin_unlock(&dd->spin);
708 			dfly_select_curproc(gd);
709 		} else {
710 			spin_unlock(&dd->spin);
711 		}
712 	}
713 }
714 
715 /*
716  * DFLY_SELECT_CURPROC
717  *
718  * Select a new current process for this cpu and clear any pending user
719  * reschedule request.  The cpu currently has no current process.
720  *
721  * This routine is also responsible for equal-priority round-robining,
722  * typically triggered from dfly_schedulerclock().  In our dummy example
723  * all the 'user' threads are LWKT scheduled all at once and we just
724  * call lwkt_switch().
725  *
726  * The calling process is not on the queue and cannot be selected.
727  */
728 static
729 void
730 dfly_select_curproc(globaldata_t gd)
731 {
732 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
733 	struct lwp *nlp;
734 	int cpuid = gd->gd_cpuid;
735 
736 	crit_enter_gd(gd);
737 
738 	spin_lock(&dd->spin);
739 	nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
740 
741 	if (nlp) {
742 		if ((dd->flags & DFLY_PCPU_CURMASK) == 0) {
743 			ATOMIC_CPUMASK_ORBIT(dfly_curprocmask, cpuid);
744 			dd->flags |= DFLY_PCPU_CURMASK;
745 		}
746 		dd->upri = nlp->lwp_priority;
747 		dd->uschedcp = nlp;
748 #if 0
749 		dd->rrcount = 0;		/* reset round robin */
750 #endif
751 		spin_unlock(&dd->spin);
752 		lwkt_acquire(nlp->lwp_thread);
753 		lwkt_schedule(nlp->lwp_thread);
754 	} else {
755 		spin_unlock(&dd->spin);
756 	}
757 	crit_exit_gd(gd);
758 }
759 
760 /*
761  * Place the specified lwp on the user scheduler's run queue.  This routine
762  * must be called with the thread descheduled.  The lwp must be runnable.
763  * It must not be possible for anyone else to explicitly schedule this thread.
764  *
765  * The thread may be the current thread as a special case.
766  */
767 static void
768 dfly_setrunqueue(struct lwp *lp)
769 {
770 	dfly_pcpu_t dd;
771 	dfly_pcpu_t rdd;
772 
773 	/*
774 	 * First validate the process LWKT state.
775 	 */
776 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
777 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0,
778 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
779 	     lp->lwp_tid, lp->lwp_proc->p_flags, lp->lwp_flags));
780 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
781 
782 	/*
783 	 * NOTE: dd/rdd do not necessarily represent the current cpu.
784 	 *	 Instead they may represent the cpu the thread was last
785 	 *	 scheduled on or inherited by its parent.
786 	 */
787 	dd = &dfly_pcpu[lp->lwp_qcpu];
788 	rdd = dd;
789 
790 	/*
791 	 * This process is not supposed to be scheduled anywhere or assigned
792 	 * as the current process anywhere.  Assert the condition.
793 	 */
794 	KKASSERT(rdd->uschedcp != lp);
795 
796 	/*
797 	 * Ok, we have to setrunqueue some target cpu and request a reschedule
798 	 * if necessary.
799 	 *
800 	 * We have to choose the best target cpu.  It might not be the current
801 	 * target even if the current cpu has no running user thread (for
802 	 * example, because the current cpu might be a hyperthread and its
803 	 * sibling has a thread assigned).
804 	 *
805 	 * If we just forked it is most optimal to run the child on the same
806 	 * cpu just in case the parent decides to wait for it (thus getting
807 	 * off that cpu).  As long as there is nothing else runnable on the
808 	 * cpu, that is.  If we did this unconditionally a parent forking
809 	 * multiple children before waiting (e.g. make -j N) leaves other
810 	 * cpus idle that could be working.
811 	 */
812 	if (lp->lwp_forked) {
813 		lp->lwp_forked = 0;
814 		if (usched_dfly_features & 0x20)
815 			rdd = dfly_choose_best_queue(lp);
816 		else if (usched_dfly_features & 0x40)
817 			rdd = &dfly_pcpu[lp->lwp_qcpu];
818 		else if (usched_dfly_features & 0x80)
819 			rdd = dfly_choose_queue_simple(rdd, lp);
820 		else if (dfly_pcpu[lp->lwp_qcpu].runqcount)
821 			rdd = dfly_choose_best_queue(lp);
822 		else
823 			rdd = &dfly_pcpu[lp->lwp_qcpu];
824 	} else {
825 		rdd = dfly_choose_best_queue(lp);
826 		/* rdd = &dfly_pcpu[lp->lwp_qcpu]; */
827 	}
828 	if (lp->lwp_qcpu != rdd->cpuid) {
829 		spin_lock(&dd->spin);
830 		dfly_changeqcpu_locked(lp, dd, rdd);
831 		spin_unlock(&dd->spin);
832 	}
833 	dfly_setrunqueue_dd(rdd, lp);
834 }
835 
836 /*
837  * Change qcpu to rdd->cpuid.  The dd the lp is CURRENTLY on must be
838  * spin-locked on-call.  rdd does not have to be.
839  */
840 static void
841 dfly_changeqcpu_locked(struct lwp *lp, dfly_pcpu_t dd, dfly_pcpu_t rdd)
842 {
843 	if (lp->lwp_qcpu != rdd->cpuid) {
844 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
845 			atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
846 			atomic_add_long(&dd->uload, -lp->lwp_uload);
847 			atomic_add_int(&dd->ucount, -1);
848 		}
849 		lp->lwp_qcpu = rdd->cpuid;
850 	}
851 }
852 
853 /*
854  * Place lp on rdd's runqueue.  Nothing is locked on call.  This function
855  * also performs all necessary ancillary notification actions.
856  */
857 static void
858 dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp)
859 {
860 	globaldata_t rgd;
861 
862 	/*
863 	 * We might be moving the lp to another cpu's run queue, and once
864 	 * on the runqueue (even if it is our cpu's), another cpu can rip
865 	 * it away from us.
866 	 *
867 	 * TDF_MIGRATING might already be set if this is part of a
868 	 * remrunqueue+setrunqueue sequence.
869 	 */
870 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
871 		lwkt_giveaway(lp->lwp_thread);
872 
873 	rgd = rdd->gd;
874 
875 	/*
876 	 * We lose control of the lp the moment we release the spinlock
877 	 * after having placed it on the queue.  i.e. another cpu could pick
878 	 * it up, or it could exit, or its priority could be further
879 	 * adjusted, or something like that.
880 	 *
881 	 * WARNING! rdd can point to a foreign cpu!
882 	 */
883 	spin_lock(&rdd->spin);
884 	dfly_setrunqueue_locked(rdd, lp);
885 
886 	/*
887 	 * Potentially interrupt the currently-running thread
888 	 */
889 	if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK)) {
890 		/*
891 		 * Currently running thread is better or same, do not
892 		 * interrupt.
893 		 */
894 		spin_unlock(&rdd->spin);
895 	} else if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK) +
896 		   usched_dfly_fast_resched) {
897 		/*
898 		 * Currently running thread is not better, but not so bad
899 		 * that we need to interrupt it.  Let it run for one more
900 		 * scheduler tick.
901 		 */
902 		if (rdd->uschedcp &&
903 		    rdd->uschedcp->lwp_rrcount < usched_dfly_rrinterval) {
904 			rdd->uschedcp->lwp_rrcount = usched_dfly_rrinterval - 1;
905 		}
906 		spin_unlock(&rdd->spin);
907 	} else if (rgd == mycpu) {
908 		/*
909 		 * We should interrupt the currently running thread, which
910 		 * is on the current cpu.  However, if DIDYIELD is set we
911 		 * round-robin unconditionally and do not interrupt it.
912 		 */
913 		spin_unlock(&rdd->spin);
914 		if (rdd->uschedcp == NULL)
915 			wakeup_mycpu(rdd->helper_thread); /* XXX */
916 		if ((lp->lwp_thread->td_mpflags & TDF_MP_DIDYIELD) == 0)
917 			need_user_resched();
918 	} else {
919 		/*
920 		 * We should interrupt the currently running thread, which
921 		 * is on a different cpu.
922 		 */
923 		spin_unlock(&rdd->spin);
924 		lwkt_send_ipiq(rgd, dfly_need_user_resched_remote, NULL);
925 	}
926 }
927 
928 /*
929  * This routine is called from a systimer IPI.  It MUST be MP-safe and
930  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
931  * each cpu.
932  */
933 static
934 void
935 dfly_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
936 {
937 	globaldata_t gd = mycpu;
938 	dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
939 
940 	/*
941 	 * Spinlocks also hold a critical section so there should not be
942 	 * any active.
943 	 */
944 	KKASSERT(gd->gd_spinlocks == 0 || dumping);
945 
946 	/*
947 	 * If lp is NULL we might be contended and lwkt_switch() may have
948 	 * cycled into the idle thread.  Apply the tick to the current
949 	 * process on this cpu if it is contended.
950 	 */
951 	if (gd->gd_curthread == &gd->gd_idlethread) {
952 		lp = dd->uschedcp;
953 		if (lp && (lp->lwp_thread == NULL ||
954 			   lp->lwp_thread->td_contended == 0)) {
955 			lp = NULL;
956 		}
957 	}
958 
959 	/*
960 	 * Dock thread for tick
961 	 */
962 	if (lp) {
963 		/*
964 		 * Do we need to round-robin?  We round-robin 10 times a
965 		 * second.  This should only occur for cpu-bound batch
966 		 * processes.
967 		 */
968 		if (++lp->lwp_rrcount >= usched_dfly_rrinterval)
969 			need_user_resched();
970 
971 		/*
972 		 * Adjust estcpu upward using a real time equivalent
973 		 * calculation, and recalculate lp's priority.  Estcpu
974 		 * is increased such that it will cap-out over a period
975 		 * of one second.
976 		 */
977 		lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu +
978 					   ESTCPUMAX / ESTCPUFREQ + 1);
979 		dfly_resetpriority(lp);
980 	}
981 
982 	/*
983 	 * Rebalance two cpus every 8 ticks, pulling the worst thread
984 	 * from the worst cpu's queue into a rotating cpu number.
985 	 * Also require that the moving of the highest-load thread
986 	 * from rdd to dd does not cause the uload to cross over.
987 	 *
988 	 * This mechanic is needed because the push algorithms can
989 	 * steady-state in an non-optimal configuration.  We need to mix it
990 	 * up a little, even if it means breaking up a paired thread, so
991 	 * the push algorithms can rebalance the degenerate conditions.
992 	 * This portion of the algorithm exists to ensure stability at the
993 	 * selected weightings.
994 	 *
995 	 * Because we might be breaking up optimal conditions we do not want
996 	 * to execute this too quickly, hence we only rebalance approximately
997 	 * ~7-8 times per second.  The push's, on the otherhand, are capable
998 	 * moving threads to other cpus at a much higher rate.
999 	 *
1000 	 * We choose the most heavily loaded thread from the worst queue
1001 	 * in order to ensure that multiple heavy-weight threads on the same
1002 	 * queue get broken up, and also because these threads are the most
1003 	 * likely to be able to remain in place.  Hopefully then any pairings,
1004 	 * if applicable, migrate to where these threads are.
1005 	 */
1006 	if ((usched_dfly_features & 0x04) &&
1007 	    ((u_int)sched_ticks & 7) == 0 &&
1008 	    (u_int)sched_ticks / 8 % ncpus == gd->gd_cpuid) {
1009 		/*
1010 		 * Our cpu is up.
1011 		 */
1012 		struct lwp *nlp;
1013 		dfly_pcpu_t rdd;
1014 
1015 		rdd = dfly_choose_worst_queue(dd, 1);
1016 		if (rdd && dd->uload + usched_dfly_weight6 / 2 < rdd->uload) {
1017 			spin_lock(&dd->spin);
1018 			if (spin_trylock(&rdd->spin)) {
1019 				nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
1020 				spin_unlock(&rdd->spin);
1021 				if (nlp == NULL)
1022 					spin_unlock(&dd->spin);
1023 			} else {
1024 				spin_unlock(&dd->spin);
1025 				nlp = NULL;
1026 			}
1027 		} else {
1028 			nlp = NULL;
1029 		}
1030 		/* dd->spin held if nlp != NULL */
1031 
1032 		/*
1033 		 * Either schedule it or add it to our queue.
1034 		 */
1035 		if (nlp &&
1036 		    (nlp->lwp_priority & ~PPQMASK) < (dd->upri & ~PPQMASK)) {
1037 			if ((dd->flags & DFLY_PCPU_CURMASK) == 0) {
1038 				ATOMIC_CPUMASK_ORMASK(dfly_curprocmask,
1039 						      dd->cpumask);
1040 				dd->flags |= DFLY_PCPU_CURMASK;
1041 			}
1042 			dd->upri = nlp->lwp_priority;
1043 			dd->uschedcp = nlp;
1044 #if 0
1045 			dd->rrcount = 0;	/* reset round robin */
1046 #endif
1047 			spin_unlock(&dd->spin);
1048 			lwkt_acquire(nlp->lwp_thread);
1049 			lwkt_schedule(nlp->lwp_thread);
1050 		} else if (nlp) {
1051 			dfly_setrunqueue_locked(dd, nlp);
1052 			spin_unlock(&dd->spin);
1053 		}
1054 	}
1055 }
1056 
1057 /*
1058  * Called from acquire and from kern_synch's one-second timer (one of the
1059  * callout helper threads) with a critical section held.
1060  *
1061  * Adjust p_estcpu based on our single-cpu load, p_nice, and compensate for
1062  * overall system load.
1063  *
1064  * Note that no recalculation occurs for a process which sleeps and wakes
1065  * up in the same tick.  That is, a system doing thousands of context
1066  * switches per second will still only do serious estcpu calculations
1067  * ESTCPUFREQ times per second.
1068  */
1069 static
1070 void
1071 dfly_recalculate_estcpu(struct lwp *lp)
1072 {
1073 	globaldata_t gd = mycpu;
1074 	sysclock_t cpbase;
1075 	sysclock_t ttlticks;
1076 	int estcpu;
1077 	int decay_factor;
1078 	int ucount;
1079 
1080 	/*
1081 	 * We have to subtract periodic to get the last schedclock
1082 	 * timeout time, otherwise we would get the upcoming timeout.
1083 	 * Keep in mind that a process can migrate between cpus and
1084 	 * while the scheduler clock should be very close, boundary
1085 	 * conditions could lead to a small negative delta.
1086 	 */
1087 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
1088 
1089 	if (lp->lwp_slptime > 1) {
1090 		/*
1091 		 * Too much time has passed, do a coarse correction.
1092 		 */
1093 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
1094 		dfly_resetpriority(lp);
1095 		lp->lwp_cpbase = cpbase;
1096 		lp->lwp_cpticks = 0;
1097 		lp->lwp_estfast = 0;
1098 	} else if (lp->lwp_cpbase != cpbase) {
1099 		/*
1100 		 * Adjust estcpu if we are in a different tick.  Don't waste
1101 		 * time if we are in the same tick.
1102 		 *
1103 		 * First calculate the number of ticks in the measurement
1104 		 * interval.  The ttlticks calculation can wind up 0 due to
1105 		 * a bug in the handling of lwp_slptime  (as yet not found),
1106 		 * so make sure we do not get a divide by 0 panic.
1107 		 */
1108 		ttlticks = (cpbase - lp->lwp_cpbase) /
1109 			   gd->gd_schedclock.periodic;
1110 		if ((ssysclock_t)ttlticks < 0) {
1111 			ttlticks = 0;
1112 			lp->lwp_cpbase = cpbase;
1113 		}
1114 		if (ttlticks < 4)
1115 			return;
1116 		updatepcpu(lp, lp->lwp_cpticks, ttlticks);
1117 
1118 		/*
1119 		 * Calculate instant estcpu based percentage of (one) cpu
1120 		 * used and exponentially average it into the current
1121 		 * lwp_estcpu.
1122 		 */
1123 		ucount = dfly_pcpu[lp->lwp_qcpu].ucount;
1124 		estcpu = lp->lwp_cpticks * ESTCPUMAX / ttlticks;
1125 
1126 		/*
1127 		 * The higher ttlticks gets, the more meaning the calculation
1128 		 * has and the smaller our decay_factor in the exponential
1129 		 * average.
1130 		 *
1131 		 * The uload calculation has been removed because it actually
1132 		 * makes things worse, causing processes which use less cpu
1133 		 * (such as a browser) to be pumped up and treated the same
1134 		 * as a cpu-bound process (such as a make).  The same effect
1135 		 * can occur with sufficient load without the uload
1136 		 * calculation, but occurs less quickly and takes more load.
1137 		 * In addition, the less cpu a process uses the smaller the
1138 		 * effect of the overload.
1139 		 */
1140 		if (ttlticks >= hz)
1141 			decay_factor = 1;
1142 		else
1143 			decay_factor = hz - ttlticks;
1144 
1145 		lp->lwp_estcpu = ESTCPULIM(
1146 				(lp->lwp_estcpu * ttlticks + estcpu) /
1147 				(ttlticks + 1));
1148 		dfly_resetpriority(lp);
1149 		lp->lwp_cpbase += ttlticks * gd->gd_schedclock.periodic;
1150 		lp->lwp_cpticks = 0;
1151 	}
1152 }
1153 
1154 /*
1155  * Compute the priority of a process when running in user mode.
1156  * Arrange to reschedule if the resulting priority is better
1157  * than that of the current process.
1158  *
1159  * This routine may be called with any process.
1160  *
1161  * This routine is called by fork1() for initial setup with the process of
1162  * the run queue, and also may be called normally with the process on or
1163  * off the run queue.
1164  */
1165 static void
1166 dfly_resetpriority(struct lwp *lp)
1167 {
1168 	dfly_pcpu_t rdd;
1169 	int newpriority;
1170 	u_short newrqtype;
1171 	int rcpu;
1172 	int checkpri;
1173 	int estcpu;
1174 	int delta_uload;
1175 
1176 	crit_enter();
1177 
1178 	/*
1179 	 * Lock the scheduler (lp) belongs to.  This can be on a different
1180 	 * cpu.  Handle races.  This loop breaks out with the appropriate
1181 	 * rdd locked.
1182 	 */
1183 	for (;;) {
1184 		rcpu = lp->lwp_qcpu;
1185 		cpu_ccfence();
1186 		rdd = &dfly_pcpu[rcpu];
1187 		spin_lock(&rdd->spin);
1188 		if (rcpu == lp->lwp_qcpu)
1189 			break;
1190 		spin_unlock(&rdd->spin);
1191 	}
1192 
1193 	/*
1194 	 * Calculate the new priority and queue type
1195 	 */
1196 	newrqtype = lp->lwp_rtprio.type;
1197 
1198 	switch(newrqtype) {
1199 	case RTP_PRIO_REALTIME:
1200 	case RTP_PRIO_FIFO:
1201 		newpriority = PRIBASE_REALTIME +
1202 			     (lp->lwp_rtprio.prio & PRIMASK);
1203 		break;
1204 	case RTP_PRIO_NORMAL:
1205 		/*
1206 		 * Calculate the new priority.
1207 		 *
1208 		 * nice contributes up to NICE_QS queues (typ 32 - full range)
1209 		 * estcpu contributes up to EST_QS queues (typ 24)
1210 		 *
1211 		 * A nice +20 process receives 1/10 cpu vs nice+0.  Niced
1212 		 * process more than 20 apart may receive no cpu, so cpu
1213 		 * bound nice -20 can prevent a nice +5 from getting any
1214 		 * cpu.  A nice+0, being in the middle, always gets some cpu
1215 		 * no matter what.
1216 		 */
1217 		estcpu = lp->lwp_estcpu;
1218 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) *
1219 			      (NICE_QS * PPQ) / PRIO_RANGE;
1220 		newpriority += estcpu * PPQ / ESTCPUPPQ;
1221 		if (newpriority < 0)
1222 			newpriority = 0;
1223 		if (newpriority >= MAXPRI)
1224 			newpriority = MAXPRI - 1;
1225 		newpriority += PRIBASE_NORMAL;
1226 		break;
1227 	case RTP_PRIO_IDLE:
1228 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
1229 		break;
1230 	case RTP_PRIO_THREAD:
1231 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
1232 		break;
1233 	default:
1234 		panic("Bad RTP_PRIO %d", newrqtype);
1235 		/* NOT REACHED */
1236 	}
1237 
1238 	/*
1239 	 * The LWKT scheduler doesn't dive usched structures, give it a hint
1240 	 * on the relative priority of user threads running in the kernel.
1241 	 * The LWKT scheduler will always ensure that a user thread running
1242 	 * in the kernel will get cpu some time, regardless of its upri,
1243 	 * but can decide not to instantly switch from one kernel or user
1244 	 * mode user thread to a kernel-mode user thread when it has a less
1245 	 * desireable user priority.
1246 	 *
1247 	 * td_upri has normal sense (higher values are more desireable), so
1248 	 * negate it (this is a different field lp->lwp_priority)
1249 	 */
1250 	lp->lwp_thread->td_upri = -(newpriority & usched_dfly_swmask);
1251 
1252 	/*
1253 	 * The newpriority incorporates the queue type so do a simple masked
1254 	 * check to determine if the process has moved to another queue.  If
1255 	 * it has, and it is currently on a run queue, then move it.
1256 	 *
1257 	 * Since uload is ~PPQMASK masked, no modifications are necessary if
1258 	 * we end up in the same run queue.
1259 	 *
1260 	 * Reset rrcount if moving to a higher-priority queue, otherwise
1261 	 * retain rrcount.
1262 	 */
1263 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
1264 		if (lp->lwp_priority < newpriority)
1265 			lp->lwp_rrcount = 0;
1266 		if (lp->lwp_mpflags & LWP_MP_ONRUNQ) {
1267 			dfly_remrunqueue_locked(rdd, lp);
1268 			lp->lwp_priority = newpriority;
1269 			lp->lwp_rqtype = newrqtype;
1270 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1271 			dfly_setrunqueue_locked(rdd, lp);
1272 			checkpri = 1;
1273 		} else {
1274 			lp->lwp_priority = newpriority;
1275 			lp->lwp_rqtype = newrqtype;
1276 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1277 			checkpri = 0;
1278 		}
1279 	} else {
1280 		/*
1281 		 * In the same PPQ, uload cannot change.
1282 		 */
1283 		lp->lwp_priority = newpriority;
1284 		checkpri = 1;
1285 		rcpu = -1;
1286 	}
1287 
1288 	/*
1289 	 * Adjust effective load.
1290 	 *
1291 	 * Calculate load then scale up or down geometrically based on p_nice.
1292 	 * Processes niced up (positive) are less important, and processes
1293 	 * niced downard (negative) are more important.  The higher the uload,
1294 	 * the more important the thread.
1295 	 */
1296 	/* 0-511, 0-100% cpu */
1297 	delta_uload = lptouload(lp);
1298 	delta_uload -= lp->lwp_uload;
1299 	if (lp->lwp_uload + delta_uload < -32767) {
1300 		delta_uload = -32768 - lp->lwp_uload;
1301 	} else if (lp->lwp_uload + delta_uload > 32767) {
1302 		delta_uload = 32767 - lp->lwp_uload;
1303 	}
1304 	lp->lwp_uload += delta_uload;
1305 	if (lp->lwp_mpflags & LWP_MP_ULOAD)
1306 		atomic_add_long(&dfly_pcpu[lp->lwp_qcpu].uload, delta_uload);
1307 
1308 	/*
1309 	 * Determine if we need to reschedule the target cpu.  This only
1310 	 * occurs if the LWP is already on a scheduler queue, which means
1311 	 * that idle cpu notification has already occured.  At most we
1312 	 * need only issue a need_user_resched() on the appropriate cpu.
1313 	 *
1314 	 * The LWP may be owned by a CPU different from the current one,
1315 	 * in which case dd->uschedcp may be modified without an MP lock
1316 	 * or a spinlock held.  The worst that happens is that the code
1317 	 * below causes a spurious need_user_resched() on the target CPU
1318 	 * and dd->pri to be wrong for a short period of time, both of
1319 	 * which are harmless.
1320 	 *
1321 	 * If checkpri is 0 we are adjusting the priority of the current
1322 	 * process, possibly higher (less desireable), so ignore the upri
1323 	 * check which will fail in that case.
1324 	 */
1325 	if (rcpu >= 0) {
1326 		if (CPUMASK_TESTBIT(dfly_rdyprocmask, rcpu) &&
1327 		    (checkpri == 0 ||
1328 		     (rdd->upri & ~PRIMASK) >
1329 		     (lp->lwp_priority & ~PRIMASK))) {
1330 			if (rcpu == mycpu->gd_cpuid) {
1331 				spin_unlock(&rdd->spin);
1332 				need_user_resched();
1333 			} else {
1334 				spin_unlock(&rdd->spin);
1335 				lwkt_send_ipiq(globaldata_find(rcpu),
1336 					       dfly_need_user_resched_remote,
1337 					       NULL);
1338 			}
1339 		} else {
1340 			spin_unlock(&rdd->spin);
1341 		}
1342 	} else {
1343 		spin_unlock(&rdd->spin);
1344 	}
1345 	crit_exit();
1346 }
1347 
1348 static
1349 void
1350 dfly_yield(struct lwp *lp)
1351 {
1352 	if (lp->lwp_qcpu != mycpu->gd_cpuid)
1353 		return;
1354 	KKASSERT(lp == curthread->td_lwp);
1355 
1356 	/*
1357 	 * Don't set need_user_resched() or mess with rrcount or anything.
1358 	 * the TDF flag will override everything as long as we release.
1359 	 */
1360 	atomic_set_int(&lp->lwp_thread->td_mpflags, TDF_MP_DIDYIELD);
1361 	dfly_release_curproc(lp);
1362 }
1363 
1364 /*
1365  * Thread was forcefully migrated to another cpu.  Normally forced migrations
1366  * are used for iterations and the kernel returns to the original cpu before
1367  * returning and this is not needed.  However, if the kernel migrates a
1368  * thread to another cpu and wants to leave it there, it has to call this
1369  * scheduler helper.
1370  *
1371  * Note that the lwkt_migratecpu() function also released the thread, so
1372  * we don't have to worry about that.
1373  */
1374 static
1375 void
1376 dfly_changedcpu(struct lwp *lp)
1377 {
1378 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1379 	dfly_pcpu_t rdd = &dfly_pcpu[mycpu->gd_cpuid];
1380 
1381 	if (dd != rdd) {
1382 		spin_lock(&dd->spin);
1383 		dfly_changeqcpu_locked(lp, dd, rdd);
1384 		spin_unlock(&dd->spin);
1385 	}
1386 }
1387 
1388 /*
1389  * Called from fork1() when a new child process is being created.
1390  *
1391  * Give the child process an initial estcpu that is more batch then
1392  * its parent and dock the parent for the fork (but do not
1393  * reschedule the parent).
1394  *
1395  * fast
1396  *
1397  * XXX lwp should be "spawning" instead of "forking"
1398  */
1399 static void
1400 dfly_forking(struct lwp *plp, struct lwp *lp)
1401 {
1402 	int estcpu;
1403 
1404 	/*
1405 	 * Put the child 4 queue slots (out of 32) higher than the parent
1406 	 * (less desireable than the parent).
1407 	 */
1408 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu +
1409 				   ESTCPUPPQ * usched_dfly_forkbias);
1410 	lp->lwp_forked = 1;
1411 	lp->lwp_estfast = 0;
1412 
1413 	/*
1414 	 * Even though the lp will be scheduled specially the first time
1415 	 * due to lp->lwp_forked, it is important to initialize lwp_qcpu
1416 	 * to avoid favoring a fixed cpu.
1417 	 */
1418 #if 0
1419 	static uint16_t save_cpu;
1420 	lp->lwp_qcpu = ++save_cpu % ncpus;
1421 #else
1422 	lp->lwp_qcpu = plp->lwp_qcpu;
1423 	if (CPUMASK_TESTBIT(lp->lwp_cpumask, lp->lwp_qcpu) == 0)
1424 		lp->lwp_qcpu = BSFCPUMASK(lp->lwp_cpumask);
1425 #endif
1426 
1427 	/*
1428 	 * Dock the parent a cost for the fork, protecting us from fork
1429 	 * bombs.  If the parent is forking quickly this makes both the
1430 	 * parent and child more batchy.
1431 	 */
1432 	estcpu = plp->lwp_estcpu + ESTCPUPPQ / 16;
1433 	plp->lwp_estcpu = ESTCPULIM(estcpu);
1434 }
1435 
1436 /*
1437  * Called when a lwp is being removed from this scheduler, typically
1438  * during lwp_exit().  We have to clean out any ULOAD accounting before
1439  * we can let the lp go.  The dd->spin lock is not needed for uload
1440  * updates.
1441  *
1442  * Scheduler dequeueing has already occurred, no further action in that
1443  * regard is needed.
1444  */
1445 static void
1446 dfly_exiting(struct lwp *lp, struct proc *child_proc)
1447 {
1448 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1449 
1450 	if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1451 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1452 		atomic_add_long(&dd->uload, -lp->lwp_uload);
1453 		atomic_add_int(&dd->ucount, -1);
1454 	}
1455 }
1456 
1457 /*
1458  * This function cannot block in any way, but spinlocks are ok.
1459  *
1460  * Update the uload based on the state of the thread (whether it is going
1461  * to sleep or running again).  The uload is meant to be a longer-term
1462  * load and not an instantanious load.
1463  */
1464 static void
1465 dfly_uload_update(struct lwp *lp)
1466 {
1467 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1468 
1469 	if (lp->lwp_thread->td_flags & TDF_RUNQ) {
1470 		if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1471 			spin_lock(&dd->spin);
1472 			if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1473 				atomic_set_int(&lp->lwp_mpflags,
1474 					       LWP_MP_ULOAD);
1475 				atomic_add_long(&dd->uload, lp->lwp_uload);
1476 				atomic_add_int(&dd->ucount, 1);
1477 			}
1478 			spin_unlock(&dd->spin);
1479 		}
1480 	} else if (lp->lwp_slptime > 0) {
1481 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1482 			spin_lock(&dd->spin);
1483 			if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1484 				atomic_clear_int(&lp->lwp_mpflags,
1485 						 LWP_MP_ULOAD);
1486 				atomic_add_long(&dd->uload, -lp->lwp_uload);
1487 				atomic_add_int(&dd->ucount, -1);
1488 			}
1489 			spin_unlock(&dd->spin);
1490 		}
1491 	}
1492 }
1493 
1494 /*
1495  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
1496  * it selects a user process and returns it.  If chklp is non-NULL and chklp
1497  * has a better or equal priority then the process that would otherwise be
1498  * chosen, NULL is returned.
1499  *
1500  * Until we fix the RUNQ code the chklp test has to be strict or we may
1501  * bounce between processes trying to acquire the current process designation.
1502  *
1503  * Must be called with rdd->spin locked.  The spinlock is left intact through
1504  * the entire routine.  dd->spin does not have to be locked.
1505  *
1506  * If worst is non-zero this function finds the worst thread instead of the
1507  * best thread (used by the schedulerclock-based rover).
1508  */
1509 static
1510 struct lwp *
1511 dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
1512 		       struct lwp *chklp, int worst)
1513 {
1514 	struct lwp *lp;
1515 	struct rq *q;
1516 	u_int32_t *which;
1517 	u_int32_t pri;
1518 	u_int32_t rtqbits;
1519 	u_int32_t tsqbits;
1520 	u_int32_t idqbits;
1521 
1522 	/*
1523 	 * Select best or worst process.  Once selected, clear the bit
1524 	 * in our local variable (idqbits, tsqbits, or rtqbits) just
1525 	 * in case we have to loop.
1526 	 */
1527 	rtqbits = rdd->rtqueuebits;
1528 	tsqbits = rdd->queuebits;
1529 	idqbits = rdd->idqueuebits;
1530 
1531 loopfar:
1532 	if (worst) {
1533 		if (idqbits) {
1534 			pri = bsrl(idqbits);
1535 			idqbits &= ~(1U << pri);
1536 			q = &rdd->idqueues[pri];
1537 			which = &rdd->idqueuebits;
1538 		} else if (tsqbits) {
1539 			pri = bsrl(tsqbits);
1540 			tsqbits &= ~(1U << pri);
1541 			q = &rdd->queues[pri];
1542 			which = &rdd->queuebits;
1543 		} else if (rtqbits) {
1544 			pri = bsrl(rtqbits);
1545 			rtqbits &= ~(1U << pri);
1546 			q = &rdd->rtqueues[pri];
1547 			which = &rdd->rtqueuebits;
1548 		} else {
1549 			return (NULL);
1550 		}
1551 		lp = TAILQ_LAST(q, rq);
1552 	} else {
1553 		if (rtqbits) {
1554 			pri = bsfl(rtqbits);
1555 			rtqbits &= ~(1U << pri);
1556 			q = &rdd->rtqueues[pri];
1557 			which = &rdd->rtqueuebits;
1558 		} else if (tsqbits) {
1559 			pri = bsfl(tsqbits);
1560 			tsqbits &= ~(1U << pri);
1561 			q = &rdd->queues[pri];
1562 			which = &rdd->queuebits;
1563 		} else if (idqbits) {
1564 			pri = bsfl(idqbits);
1565 			idqbits &= ~(1U << pri);
1566 			q = &rdd->idqueues[pri];
1567 			which = &rdd->idqueuebits;
1568 		} else {
1569 			return (NULL);
1570 		}
1571 		lp = TAILQ_FIRST(q);
1572 	}
1573 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1574 
1575 loopnear:
1576 	/*
1577 	 * If the passed lwp <chklp> is reasonably close to the selected
1578 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1579 	 *
1580 	 * Note that we must error on the side of <chklp> to avoid bouncing
1581 	 * between threads in the acquire code.
1582 	 */
1583 	if (chklp) {
1584 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
1585 			return(NULL);
1586 	}
1587 
1588 	/*
1589 	 * When rdd != dd, we have to make sure that the process we
1590 	 * are pulling is allow to run on our cpu.  This alternative
1591 	 * path is a bit more expensive but its not considered to be
1592 	 * in the critical path.
1593 	 */
1594 	if (rdd != dd && CPUMASK_TESTBIT(lp->lwp_cpumask, dd->cpuid) == 0) {
1595 		if (worst)
1596 			lp = TAILQ_PREV(lp, rq, lwp_procq);
1597 		else
1598 			lp = TAILQ_NEXT(lp, lwp_procq);
1599 		if (lp)
1600 			goto loopnear;
1601 		goto loopfar;
1602 	}
1603 
1604 	KTR_COND_LOG(usched_chooseproc,
1605 	    lp->lwp_proc->p_pid == usched_dfly_pid_debug,
1606 	    lp->lwp_proc->p_pid,
1607 	    lp->lwp_thread->td_gd->gd_cpuid,
1608 	    mycpu->gd_cpuid);
1609 
1610 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1611 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1612 	TAILQ_REMOVE(q, lp, lwp_procq);
1613 	--rdd->runqcount;
1614 	if (TAILQ_EMPTY(q))
1615 		*which &= ~(1 << pri);
1616 
1617 	/*
1618 	 * If we are choosing a process from rdd with the intent to
1619 	 * move it to dd, lwp_qcpu must be adjusted while rdd's spinlock
1620 	 * is still held.
1621 	 */
1622 	if (rdd != dd) {
1623 		if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1624 			atomic_add_long(&rdd->uload, -lp->lwp_uload);
1625 			atomic_add_int(&rdd->ucount, -1);
1626 		}
1627 		lp->lwp_qcpu = dd->cpuid;
1628 		atomic_add_long(&dd->uload, lp->lwp_uload);
1629 		atomic_add_int(&dd->ucount, 1);
1630 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1631 	}
1632 	return lp;
1633 }
1634 
1635 /*
1636  * USED TO PUSH RUNNABLE LWPS TO THE LEAST LOADED CPU.
1637  *
1638  * Choose a cpu node to schedule lp on, hopefully nearby its current
1639  * node.
1640  *
1641  * We give the current node a modest advantage for obvious reasons.
1642  *
1643  * We also give the node the thread was woken up FROM a slight advantage
1644  * in order to try to schedule paired threads which synchronize/block waiting
1645  * for each other fairly close to each other.  Similarly in a network setting
1646  * this feature will also attempt to place a user process near the kernel
1647  * protocol thread that is feeding it data.  THIS IS A CRITICAL PART of the
1648  * algorithm as it heuristically groups synchronizing processes for locality
1649  * of reference in multi-socket systems.
1650  *
1651  * We check against running processes and give a big advantage if there
1652  * are none running.
1653  *
1654  * The caller will normally dfly_setrunqueue() lp on the returned queue.
1655  *
1656  * When the topology is known choose a cpu whos group has, in aggregate,
1657  * has the lowest weighted load.
1658  */
1659 static
1660 dfly_pcpu_t
1661 dfly_choose_best_queue(struct lwp *lp)
1662 {
1663 	cpumask_t wakemask;
1664 	cpumask_t mask;
1665 	cpu_node_t *cpup;
1666 	cpu_node_t *cpun;
1667 	cpu_node_t *cpub;
1668 	dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1669 	dfly_pcpu_t rdd;
1670 	int wakecpu;
1671 	int cpuid;
1672 	int n;
1673 	int loadav;
1674 	long load;
1675 	long lowest_load;
1676 
1677 	/*
1678 	 * When the topology is unknown choose a random cpu that is hopefully
1679 	 * idle.
1680 	 */
1681 	if (dd->cpunode == NULL)
1682 		return (dfly_choose_queue_simple(dd, lp));
1683 
1684 	loadav = (averunnable.ldavg[0] + FSCALE / 2) >> FSHIFT;
1685 
1686 	/*
1687 	 * Pairing mask
1688 	 */
1689 	if ((wakecpu = lp->lwp_thread->td_wakefromcpu) >= 0)
1690 		wakemask = dfly_pcpu[wakecpu].cpumask;
1691 	else
1692 		CPUMASK_ASSZERO(wakemask);
1693 
1694 	if (usched_dfly_debug == lp->lwp_proc->p_pid)
1695 		kprintf("choosebest wakefromcpu %d:\n",
1696 			lp->lwp_thread->td_wakefromcpu);
1697 
1698 	/*
1699 	 * When the topology is known choose a cpu whos group has, in
1700 	 * aggregate, has the lowest weighted load.
1701 	 */
1702 	cpup = root_cpu_node;
1703 	rdd = dd;
1704 
1705 	while (cpup) {
1706 		/*
1707 		 * Degenerate case super-root
1708 		 */
1709 		if (cpup->child_no == 1) {
1710 			cpup = cpup->child_node[0];
1711 			continue;
1712 		}
1713 
1714 		/*
1715 		 * Terminal cpunode
1716 		 */
1717 		if (cpup->child_no == 0) {
1718 			rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1719 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
1720 				kprintf("  last cpu %d\n", rdd->cpuid);
1721 			break;
1722 		}
1723 
1724 		cpub = NULL;
1725 		lowest_load = 0x7FFFFFFFFFFFFFFFLL;
1726 		if (usched_dfly_debug == lp->lwp_proc->p_pid)
1727 			kprintf("  reset lowest_load for scan\n");
1728 
1729 		for (n = 0; n < cpup->child_no; ++n) {
1730 			/*
1731 			 * Accumulate load information for all cpus
1732 			 * which are members of this node.
1733 			 */
1734 			int count;
1735 
1736 			cpun = cpup->child_node[n];
1737 			mask = cpun->members;
1738 			CPUMASK_ANDMASK(mask, usched_global_cpumask);
1739 			CPUMASK_ANDMASK(mask, smp_active_mask);
1740 			CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
1741 			if (CPUMASK_TESTZERO(mask))
1742 				continue;
1743 
1744 			load = 0;
1745 			count = 0;
1746 
1747 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
1748 				kprintf("  mask:");
1749 			while (CPUMASK_TESTNZERO(mask)) {
1750 				cpuid = BSFCPUMASK(mask);
1751 				rdd = &dfly_pcpu[cpuid];
1752 
1753 				if (usched_dfly_debug == lp->lwp_proc->p_pid)
1754 					kprintf(" %d", cpuid);
1755 
1756 				/*
1757 				 * Cumulative load for members.  Note that
1758 				 * if (lp) is part of the group, lp's
1759 				 * contribution will be backed out later.
1760 				 */
1761 				load += rdd->uload;
1762 				load += rdd->ucount *
1763 					usched_dfly_weight3;
1764 
1765 				/*
1766 				 * If the node is running a less important
1767 				 * thread than our thread, give it an
1768 				 * advantage.  Witha high-enough weighting
1769 				 * this can override most other considerations
1770 				 * to provide ultimate priority fairness at
1771 				 * the cost of localization.
1772 				 */
1773 				if ((rdd->upri & ~PPQMASK) >
1774 				    (lp->lwp_priority & ~PPQMASK)) {
1775 					load -= usched_dfly_weight4;
1776 				}
1777 
1778 #if 0
1779 				if (rdd->uschedcp == NULL &&
1780 				    rdd->runqcount == 0 &&
1781 				    rdd->gd->gd_tdrunqcount == 0
1782 				) {
1783 					load += rdd->uload / 2;
1784 					load += rdd->ucount *
1785 						usched_dfly_weight3 / 2;
1786 				} else {
1787 					load += rdd->uload;
1788 					load += rdd->ucount *
1789 						usched_dfly_weight3;
1790 				}
1791 #endif
1792 				CPUMASK_NANDBIT(mask, cpuid);
1793 				++count;
1794 			}
1795 
1796 			/*
1797 			 * Compensate if the lp is already accounted for in
1798 			 * the aggregate uload for this mask set.  We want
1799 			 * to calculate the loads as if lp were not present,
1800 			 * otherwise the calculation is bogus.
1801 			 */
1802 			if ((lp->lwp_mpflags & LWP_MP_ULOAD) &&
1803 			    CPUMASK_TESTMASK(dd->cpumask, cpun->members)) {
1804 				load -= lp->lwp_uload;
1805 				load -= usched_dfly_weight3;	/* ucount */
1806 			}
1807 
1808 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
1809 				kprintf("\n  accum_start c=%d ld=%ld "
1810 					"cpu=%d ld/cnt=%ld ",
1811 					count, load, rdd->cpuid,
1812 					load / count);
1813 
1814 			/*
1815 			 * load is the aggregate load of count CPUs in the
1816 			 * group.  For the weightings to work as intended,
1817 			 * we want an average per-cpu load.
1818 			 */
1819 			load = load / count;
1820 
1821 			/*
1822 			 * Advantage the cpu group (lp) is already on.
1823 			 */
1824 			if (CPUMASK_TESTMASK(cpun->members, dd->cpumask))
1825 				load -= usched_dfly_weight1;
1826 
1827 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
1828 				kprintf("B:%ld ", load);
1829 
1830 			/*
1831 			 * Advantage nodes with more memory
1832 			 */
1833 			if (usched_dfly_node_mem) {
1834 				load -= cpun->phys_mem * usched_dfly_weight5 /
1835 					usched_dfly_node_mem;
1836 			}
1837 
1838 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
1839 				kprintf("C:%ld ", load);
1840 
1841 			/*
1842 			 * Advantage the cpu group we desire to pair (lp)
1843 			 * to, but Disadvantage hyperthreads on the same
1844 			 * core, or the same thread as the ipc peer.
1845 			 *
1846 			 * Under very heavy loads it is usually beneficial
1847 			 * to set kern.usched_dfly.ipc_smt to 1, and under
1848 			 * extreme loads it might be beneficial to also set
1849 			 * kern.usched_dfly.ipc_same to 1.
1850 			 *
1851 			 * load+    disadvantage
1852 			 * load-    advantage
1853 			 */
1854 			if (CPUMASK_TESTMASK(cpun->members, wakemask)) {
1855 				if (cpun->child_no) {
1856 					if (cpun->type == CORE_LEVEL &&
1857 					    usched_dfly_ipc_smt < 0 &&
1858 					    loadav >= (ncpus >> 1)) {
1859 						/*
1860 						 * Advantage at higher levels
1861 						 * of the topology.
1862 						 */
1863 						load -= usched_dfly_weight2;
1864 					} else if (cpun->type == CORE_LEVEL &&
1865 						   usched_dfly_ipc_smt == 0) {
1866 						/*
1867 						 * Disadvantage the same core
1868 						 * when there are hyperthreads.
1869 						 */
1870 						load += usched_dfly_weight2;
1871 					} else {
1872 						/*
1873 						 * Advantage at higher levels
1874 						 * of the topology.
1875 						 */
1876 						load -= usched_dfly_weight2;
1877 					}
1878 				} else {
1879 					/*
1880 					 * Disadvantage the last level (core
1881 					 * or hyperthread).  Try to schedule
1882 					 * the ipc
1883 					 */
1884 					if (usched_dfly_ipc_same < 0 &&
1885 					    loadav >= ncpus) {
1886 						load -= usched_dfly_weight2;
1887 					} else if (usched_dfly_ipc_same) {
1888 						load -= usched_dfly_weight2;
1889 					} else {
1890 						load += usched_dfly_weight2;
1891 					}
1892 				}
1893 #if 0
1894 				if (cpun->child_no != 0) {
1895 					/* advantage */
1896 					load -= usched_dfly_weight2;
1897 				} else {
1898 					/*
1899 					 * 0x10 (disadvantage)
1900 					 * 0x00 (advantage)   - default
1901 					 */
1902 					if (usched_dfly_features & 0x10)
1903 						load += usched_dfly_weight2;
1904 					else
1905 						load -= usched_dfly_weight2;
1906 				}
1907 #endif
1908 			}
1909 
1910 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
1911 				kprintf("D:%ld ", load);
1912 
1913 			/*
1914 			 * Calculate the best load
1915 			 */
1916 			if (cpub == NULL || lowest_load > load ||
1917 			    (lowest_load == load &&
1918 			     CPUMASK_TESTMASK(cpun->members, dd->cpumask))
1919 			) {
1920 				lowest_load = load;
1921 				cpub = cpun;
1922 			}
1923 
1924 			if (usched_dfly_debug == lp->lwp_proc->p_pid)
1925 				kprintf("low=%ld]\n", lowest_load);
1926 		}
1927 		cpup = cpub;
1928 	}
1929 	/* Dispatch this outcast to a proper CPU. */
1930 	if (__predict_false(CPUMASK_TESTBIT(lp->lwp_cpumask, rdd->cpuid) == 0))
1931 		rdd = &dfly_pcpu[BSFCPUMASK(lp->lwp_cpumask)];
1932 	if (usched_dfly_chooser > 0) {
1933 		--usched_dfly_chooser;		/* only N lines */
1934 		kprintf("lp %02d->%02d %s\n",
1935 			lp->lwp_qcpu, rdd->cpuid, lp->lwp_proc->p_comm);
1936 	}
1937 	if (usched_dfly_debug == lp->lwp_proc->p_pid)
1938 		kprintf("final cpu %d\n", rdd->cpuid);
1939 	return (rdd);
1940 }
1941 
1942 /*
1943  * USED TO PULL RUNNABLE LWPS FROM THE MOST LOADED CPU.
1944  *
1945  * Choose the worst queue close to dd's cpu node with a non-empty runq
1946  * that is NOT dd.
1947  *
1948  * This is used by the thread chooser when the current cpu's queues are
1949  * empty to steal a thread from another cpu's queue.  We want to offload
1950  * the most heavily-loaded queue.
1951  *
1952  * However, we do not want to steal from far-away nodes who themselves
1953  * have idle cpu's that are more suitable to distribute the far-away
1954  * thread to.
1955  */
1956 static
1957 dfly_pcpu_t
1958 dfly_choose_worst_queue(dfly_pcpu_t dd, int forceit)
1959 {
1960 	cpumask_t mask;
1961 	cpu_node_t *cpup;
1962 	cpu_node_t *cpun;
1963 	cpu_node_t *cpub;
1964 	dfly_pcpu_t rdd;
1965 	int cpuid;
1966 	int n;
1967 	long load;
1968 	long highest_load;
1969 #if 0
1970 	int pri;
1971 	int hpri;
1972 #endif
1973 
1974 	/*
1975 	 * When the topology is unknown choose a random cpu that is hopefully
1976 	 * idle.
1977 	 */
1978 	if (dd->cpunode == NULL) {
1979 		return (NULL);
1980 	}
1981 
1982 	/*
1983 	 * When the topology is known choose a cpu whos group has, in
1984 	 * aggregate, has the highest weighted load.
1985 	 */
1986 	cpup = root_cpu_node;
1987 	rdd = dd;
1988 	while (cpup) {
1989 		/*
1990 		 * Degenerate case super-root
1991 		 */
1992 		if (cpup->child_no == 1) {
1993 			cpup = cpup->child_node[0];
1994 			continue;
1995 		}
1996 
1997 		/*
1998 		 * Terminal cpunode
1999 		 */
2000 		if (cpup->child_no == 0) {
2001 			rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
2002 			break;
2003 		}
2004 
2005 		cpub = NULL;
2006 		highest_load = -0x7FFFFFFFFFFFFFFFLL;
2007 
2008 		for (n = 0; n < cpup->child_no; ++n) {
2009 			/*
2010 			 * Accumulate load information for all cpus
2011 			 * which are members of this node.
2012 			 */
2013 			int count;
2014 
2015 			cpun = cpup->child_node[n];
2016 			mask = cpun->members;
2017 			CPUMASK_ANDMASK(mask, usched_global_cpumask);
2018 			CPUMASK_ANDMASK(mask, smp_active_mask);
2019 			if (CPUMASK_TESTZERO(mask))
2020 				continue;
2021 
2022 			load = 0;
2023 			count = 0;
2024 
2025 			while (CPUMASK_TESTNZERO(mask)) {
2026 				cpuid = BSFCPUMASK(mask);
2027 				rdd = &dfly_pcpu[cpuid];
2028 
2029 				load += rdd->uload;
2030 				load += rdd->ucount * usched_dfly_weight3;
2031 
2032 #if 0
2033 				if (rdd->uschedcp == NULL &&
2034 				    rdd->runqcount == 0 &&
2035 				    rdd->gd->gd_tdrunqcount == 0
2036 				) {
2037 					load += rdd->uload / 2;
2038 					load += rdd->ucount *
2039 						usched_dfly_weight3 / 2;
2040 				} else {
2041 					load += rdd->uload;
2042 					load += rdd->ucount *
2043 						usched_dfly_weight3;
2044 				}
2045 #endif
2046 				CPUMASK_NANDBIT(mask, cpuid);
2047 				++count;
2048 			}
2049 			load /= count;
2050 
2051 			/*
2052 			 * Advantage the cpu group (dd) is already on.
2053 			 *
2054 			 * When choosing the worst queue we reverse the
2055 			 * sign, but only count half the weight.
2056 			 *
2057 			 * weight1 needs to be high enough to be stable,
2058 			 * but this can also cause it to be too sticky,
2059 			 * so the iterator which rebalances the load sets
2060 			 * forceit to ignore it.
2061 			 */
2062 			if (forceit == 0 &&
2063 			    CPUMASK_TESTMASK(dd->cpumask, cpun->members)) {
2064 				load += usched_dfly_weight1 / 2;
2065 			}
2066 
2067 			/*
2068 			 * Disadvantage nodes with more memory (same sign).
2069 			 */
2070 			if (usched_dfly_node_mem) {
2071 				load -= cpun->phys_mem * usched_dfly_weight5 /
2072 					usched_dfly_node_mem;
2073 			}
2074 
2075 
2076 			/*
2077 			 * The best candidate is the one with the worst
2078 			 * (highest) load.
2079 			 */
2080 			if (cpub == NULL || highest_load < load ||
2081 			    (highest_load == load &&
2082 			     CPUMASK_TESTMASK(cpun->members, dd->cpumask))) {
2083 				highest_load = load;
2084 				cpub = cpun;
2085 			}
2086 		}
2087 		cpup = cpub;
2088 	}
2089 
2090 	/*
2091 	 * We never return our own node (dd), and only return a remote
2092 	 * node if it's load is significantly worse than ours (i.e. where
2093 	 * stealing a thread would be considered reasonable).
2094 	 *
2095 	 * This also helps us avoid breaking paired threads apart which
2096 	 * can have disastrous effects on performance.
2097 	 */
2098 	if (rdd == dd)
2099 		return(NULL);
2100 
2101 #if 0
2102 	hpri = 0;
2103 	if (rdd->rtqueuebits && hpri < (pri = bsrl(rdd->rtqueuebits)))
2104 		hpri = pri;
2105 	if (rdd->queuebits && hpri < (pri = bsrl(rdd->queuebits)))
2106 		hpri = pri;
2107 	if (rdd->idqueuebits && hpri < (pri = bsrl(rdd->idqueuebits)))
2108 		hpri = pri;
2109 	hpri *= PPQ;
2110 	if (rdd->uload - hpri < dd->uload + hpri)
2111 		return(NULL);
2112 #endif
2113 	return (rdd);
2114 }
2115 
2116 static
2117 dfly_pcpu_t
2118 dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp)
2119 {
2120 	dfly_pcpu_t rdd;
2121 	cpumask_t tmpmask;
2122 	cpumask_t mask;
2123 	int cpubase;
2124 	int cpuid;
2125 
2126 	/*
2127 	 * Fallback to the original heuristic, select random cpu,
2128 	 * first checking the cpus not currently running a user thread.
2129 	 *
2130 	 * Use cpuid as the base cpu in our scan, first checking
2131 	 * cpuid...(ncpus-1), then 0...(cpuid-1).  This avoid favoring
2132 	 * lower-numbered cpus.
2133 	 */
2134 	++dd->scancpu;		/* SMP race ok */
2135 	mask = dfly_rdyprocmask;
2136 	CPUMASK_NANDMASK(mask, dfly_curprocmask);
2137 	CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
2138 	CPUMASK_ANDMASK(mask, smp_active_mask);
2139 	CPUMASK_ANDMASK(mask, usched_global_cpumask);
2140 
2141 	cpubase = (int)(dd->scancpu % ncpus);
2142 	CPUMASK_ASSBMASK(tmpmask, cpubase);
2143 	CPUMASK_INVMASK(tmpmask);
2144 	CPUMASK_ANDMASK(tmpmask, mask);
2145 	while (CPUMASK_TESTNZERO(tmpmask)) {
2146 		cpuid = BSFCPUMASK(tmpmask);
2147 		rdd = &dfly_pcpu[cpuid];
2148 
2149 		if ((rdd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK))
2150 			goto found;
2151 		CPUMASK_NANDBIT(tmpmask, cpuid);
2152 	}
2153 
2154 	CPUMASK_ASSBMASK(tmpmask, cpubase);
2155 	CPUMASK_ANDMASK(tmpmask, mask);
2156 	while (CPUMASK_TESTNZERO(tmpmask)) {
2157 		cpuid = BSFCPUMASK(tmpmask);
2158 		rdd = &dfly_pcpu[cpuid];
2159 
2160 		if ((rdd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK))
2161 			goto found;
2162 		CPUMASK_NANDBIT(tmpmask, cpuid);
2163 	}
2164 
2165 	/*
2166 	 * Then cpus which might have a currently running lp
2167 	 */
2168 	mask = dfly_rdyprocmask;
2169 	CPUMASK_ANDMASK(mask, dfly_curprocmask);
2170 	CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
2171 	CPUMASK_ANDMASK(mask, smp_active_mask);
2172 	CPUMASK_ANDMASK(mask, usched_global_cpumask);
2173 
2174 	CPUMASK_ASSBMASK(tmpmask, cpubase);
2175 	CPUMASK_INVMASK(tmpmask);
2176 	CPUMASK_ANDMASK(tmpmask, mask);
2177 	while (CPUMASK_TESTNZERO(tmpmask)) {
2178 		cpuid = BSFCPUMASK(tmpmask);
2179 		rdd = &dfly_pcpu[cpuid];
2180 
2181 		if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
2182 			goto found;
2183 		CPUMASK_NANDBIT(tmpmask, cpuid);
2184 	}
2185 
2186 	CPUMASK_ASSBMASK(tmpmask, cpubase);
2187 	CPUMASK_ANDMASK(tmpmask, mask);
2188 	while (CPUMASK_TESTNZERO(tmpmask)) {
2189 		cpuid = BSFCPUMASK(tmpmask);
2190 		rdd = &dfly_pcpu[cpuid];
2191 
2192 		if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
2193 			goto found;
2194 		CPUMASK_NANDBIT(tmpmask, cpuid);
2195 	}
2196 
2197 	/*
2198 	 * If we cannot find a suitable cpu we round-robin using scancpu.
2199 	 * Other cpus will pickup as they release their current lwps or
2200 	 * become ready.
2201 	 *
2202 	 * Avoid a degenerate system lockup case if usched_global_cpumask
2203 	 * is set to 0 or otherwise does not cover lwp_cpumask.
2204 	 *
2205 	 * We only kick the target helper thread in this case, we do not
2206 	 * set the user resched flag because
2207 	 */
2208 	cpuid = cpubase;
2209 	if (CPUMASK_TESTBIT(lp->lwp_cpumask, cpuid) == 0)
2210 		cpuid = BSFCPUMASK(lp->lwp_cpumask);
2211 	else if (CPUMASK_TESTBIT(usched_global_cpumask, cpuid) == 0)
2212 		cpuid = 0;
2213 	rdd = &dfly_pcpu[cpuid];
2214 found:
2215 	return (rdd);
2216 }
2217 
2218 static
2219 void
2220 dfly_need_user_resched_remote(void *dummy)
2221 {
2222 	globaldata_t gd = mycpu;
2223 	dfly_pcpu_t  dd = &dfly_pcpu[gd->gd_cpuid];
2224 
2225 	/*
2226 	 * Flag reschedule needed
2227 	 */
2228 	need_user_resched();
2229 
2230 	/*
2231 	 * If no user thread is currently running we need to kick the helper
2232 	 * on our cpu to recover.  Otherwise the cpu will never schedule
2233 	 * anything again.
2234 	 *
2235 	 * We cannot schedule the process ourselves because this is an
2236 	 * IPI callback and we cannot acquire spinlocks in an IPI callback.
2237 	 *
2238 	 * Call wakeup_mycpu to avoid sending IPIs to other CPUs
2239 	 */
2240 	if (dd->uschedcp == NULL && (dd->flags & DFLY_PCPU_RDYMASK)) {
2241 		ATOMIC_CPUMASK_NANDBIT(dfly_rdyprocmask, gd->gd_cpuid);
2242 		dd->flags &= ~DFLY_PCPU_RDYMASK;
2243 		wakeup_mycpu(dd->helper_thread);
2244 	}
2245 }
2246 
2247 /*
2248  * dfly_remrunqueue_locked() removes a given process from the run queue
2249  * that it is on, clearing the queue busy bit if it becomes empty.
2250  *
2251  * Note that user process scheduler is different from the LWKT schedule.
2252  * The user process scheduler only manages user processes but it uses LWKT
2253  * underneath, and a user process operating in the kernel will often be
2254  * 'released' from our management.
2255  *
2256  * uload is NOT adjusted here.  It is only adjusted if the lwkt_thread goes
2257  * to sleep or the lwp is moved to a different runq.
2258  */
2259 static void
2260 dfly_remrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
2261 {
2262 	struct rq *q;
2263 	u_int32_t *which;
2264 	u_int8_t pri;
2265 
2266 	KKASSERT(rdd->runqcount >= 0);
2267 
2268 	pri = lp->lwp_rqindex;
2269 
2270 	switch(lp->lwp_rqtype) {
2271 	case RTP_PRIO_NORMAL:
2272 		q = &rdd->queues[pri];
2273 		which = &rdd->queuebits;
2274 		break;
2275 	case RTP_PRIO_REALTIME:
2276 	case RTP_PRIO_FIFO:
2277 		q = &rdd->rtqueues[pri];
2278 		which = &rdd->rtqueuebits;
2279 		break;
2280 	case RTP_PRIO_IDLE:
2281 		q = &rdd->idqueues[pri];
2282 		which = &rdd->idqueuebits;
2283 		break;
2284 	default:
2285 		panic("remrunqueue: invalid rtprio type");
2286 		/* NOT REACHED */
2287 	}
2288 	KKASSERT(lp->lwp_mpflags & LWP_MP_ONRUNQ);
2289 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
2290 	TAILQ_REMOVE(q, lp, lwp_procq);
2291 	--rdd->runqcount;
2292 	if (TAILQ_EMPTY(q)) {
2293 		KASSERT((*which & (1 << pri)) != 0,
2294 			("remrunqueue: remove from empty queue"));
2295 		*which &= ~(1 << pri);
2296 	}
2297 }
2298 
2299 /*
2300  * dfly_setrunqueue_locked()
2301  *
2302  * Add a process whos rqtype and rqindex had previously been calculated
2303  * onto the appropriate run queue.   Determine if the addition requires
2304  * a reschedule on a cpu and return the cpuid or -1.
2305  *
2306  * NOTE: 	  Lower priorities are better priorities.
2307  *
2308  * NOTE ON ULOAD: This variable specifies the aggregate load on a cpu, the
2309  *		  sum of the rough lwp_priority for all running and runnable
2310  *		  processes.  Lower priority processes (higher lwp_priority
2311  *		  values) actually DO count as more load, not less, because
2312  *		  these are the programs which require the most care with
2313  *		  regards to cpu selection.
2314  */
2315 static void
2316 dfly_setrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
2317 {
2318 	u_int32_t *which;
2319 	struct rq *q;
2320 	int pri;
2321 
2322 	KKASSERT(lp->lwp_qcpu == rdd->cpuid);
2323 
2324 	if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
2325 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
2326 		atomic_add_long(&rdd->uload, lp->lwp_uload);
2327 		atomic_add_int(&rdd->ucount, 1);
2328 	}
2329 
2330 	pri = lp->lwp_rqindex;
2331 
2332 	switch(lp->lwp_rqtype) {
2333 	case RTP_PRIO_NORMAL:
2334 		q = &rdd->queues[pri];
2335 		which = &rdd->queuebits;
2336 		break;
2337 	case RTP_PRIO_REALTIME:
2338 	case RTP_PRIO_FIFO:
2339 		q = &rdd->rtqueues[pri];
2340 		which = &rdd->rtqueuebits;
2341 		break;
2342 	case RTP_PRIO_IDLE:
2343 		q = &rdd->idqueues[pri];
2344 		which = &rdd->idqueuebits;
2345 		break;
2346 	default:
2347 		panic("remrunqueue: invalid rtprio type");
2348 		/* NOT REACHED */
2349 	}
2350 
2351 	/*
2352 	 * Place us on the selected queue.  Determine if we should be
2353 	 * placed at the head of the queue or at the end.
2354 	 *
2355 	 * We are placed at the tail if our round-robin count has expired,
2356 	 * or is about to expire and the system thinks its a good place to
2357 	 * round-robin, or there is already a next thread on the queue
2358 	 * (it might be trying to pick up where it left off and we don't
2359 	 * want to interfere).
2360 	 */
2361 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
2362 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
2363 	++rdd->runqcount;
2364 
2365 	if (lp->lwp_rrcount >= usched_dfly_rrinterval ||
2366 	    (lp->lwp_rrcount >= usched_dfly_rrinterval / 2 &&
2367 	     (lp->lwp_thread->td_mpflags & TDF_MP_BATCH_DEMARC))
2368 	) {
2369 		/*
2370 		 * Place on tail
2371 		 */
2372 		atomic_clear_int(&lp->lwp_thread->td_mpflags,
2373 				 TDF_MP_BATCH_DEMARC);
2374 		lp->lwp_rrcount = 0;
2375 		TAILQ_INSERT_TAIL(q, lp, lwp_procq);
2376 	} else {
2377 		/*
2378 		 * Retain rrcount and place on head.  Count is retained
2379 		 * even if the queue is empty.
2380 		 */
2381 		TAILQ_INSERT_HEAD(q, lp, lwp_procq);
2382 	}
2383 	*which |= 1 << pri;
2384 }
2385 
2386 /*
2387  * For SMP systems a user scheduler helper thread is created for each
2388  * cpu and is used to allow one cpu to wakeup another for the purposes of
2389  * scheduling userland threads from setrunqueue().
2390  *
2391  * UP systems do not need the helper since there is only one cpu.
2392  *
2393  * We can't use the idle thread for this because we might block.
2394  * Additionally, doing things this way allows us to HLT idle cpus
2395  * on MP systems.
2396  */
2397 static void
2398 dfly_helper_thread(void *dummy)
2399 {
2400     globaldata_t gd;
2401     dfly_pcpu_t dd;
2402     dfly_pcpu_t rdd;
2403     struct lwp *nlp;
2404     cpumask_t mask;
2405     int cpuid;
2406 
2407     gd = mycpu;
2408     cpuid = gd->gd_cpuid;	/* doesn't change */
2409     mask = gd->gd_cpumask;	/* doesn't change */
2410     dd = &dfly_pcpu[cpuid];
2411 
2412     /*
2413      * Initial interlock, make sure all dfly_pcpu[] structures have
2414      * been initialized before proceeding.
2415      */
2416     lockmgr(&usched_dfly_config_lk, LK_SHARED);
2417     lockmgr(&usched_dfly_config_lk, LK_RELEASE);
2418 
2419     /*
2420      * Since we only want to be woken up only when no user processes
2421      * are scheduled on a cpu, run at an ultra low priority.
2422      */
2423     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
2424 
2425     for (;;) {
2426 	/*
2427 	 * We use the LWKT deschedule-interlock trick to avoid racing
2428 	 * dfly_rdyprocmask.  This means we cannot block through to the
2429 	 * manual lwkt_switch() call we make below.
2430 	 */
2431 	crit_enter_gd(gd);
2432 	tsleep_interlock(dd->helper_thread, 0);
2433 
2434 	spin_lock(&dd->spin);
2435 	if ((dd->flags & DFLY_PCPU_RDYMASK) == 0) {
2436 		ATOMIC_CPUMASK_ORMASK(dfly_rdyprocmask, mask);
2437 		dd->flags |= DFLY_PCPU_RDYMASK;
2438 	}
2439 	clear_user_resched();	/* This satisfied the reschedule request */
2440 #if 0
2441 	dd->rrcount = 0;	/* Reset the round-robin counter */
2442 #endif
2443 
2444 	if (dd->runqcount || dd->uschedcp != NULL) {
2445 		/*
2446 		 * Threads are available.  A thread may or may not be
2447 		 * currently scheduled.  Get the best thread already queued
2448 		 * to this cpu.
2449 		 */
2450 		nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
2451 		if (nlp) {
2452 			if ((dd->flags & DFLY_PCPU_CURMASK) == 0) {
2453 				ATOMIC_CPUMASK_ORMASK(dfly_curprocmask, mask);
2454 				dd->flags |= DFLY_PCPU_CURMASK;
2455 			}
2456 			dd->upri = nlp->lwp_priority;
2457 			dd->uschedcp = nlp;
2458 #if 0
2459 			dd->rrcount = 0;	/* reset round robin */
2460 #endif
2461 			spin_unlock(&dd->spin);
2462 			lwkt_acquire(nlp->lwp_thread);
2463 			lwkt_schedule(nlp->lwp_thread);
2464 		} else {
2465 			/*
2466 			 * This situation should not occur because we had
2467 			 * at least one thread available.
2468 			 */
2469 			spin_unlock(&dd->spin);
2470 		}
2471 	} else if (usched_dfly_features & 0x01) {
2472 		/*
2473 		 * This cpu is devoid of runnable threads, steal a thread
2474 		 * from another cpu.  Since we're stealing, might as well
2475 		 * load balance at the same time.
2476 		 *
2477 		 * We choose the highest-loaded thread from the worst queue.
2478 		 *
2479 		 * NOTE! This function only returns a non-NULL rdd when
2480 		 *	 another cpu's queue is obviously overloaded.  We
2481 		 *	 do not want to perform the type of rebalancing
2482 		 *	 the schedclock does here because it would result
2483 		 *	 in insane process pulling when 'steady' state is
2484 		 *	 partially unbalanced (e.g. 6 runnables and only
2485 		 *	 4 cores).
2486 		 */
2487 		rdd = dfly_choose_worst_queue(dd, 0);
2488 		if (rdd && dd->uload + usched_dfly_weight6 < rdd->uload &&
2489 		    spin_trylock(&rdd->spin)) {
2490 			nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
2491 			spin_unlock(&rdd->spin);
2492 		} else {
2493 			nlp = NULL;
2494 		}
2495 		if (nlp) {
2496 			if ((dd->flags & DFLY_PCPU_CURMASK) == 0) {
2497 				ATOMIC_CPUMASK_ORMASK(dfly_curprocmask, mask);
2498 				dd->flags |= DFLY_PCPU_CURMASK;
2499 			}
2500 			dd->upri = nlp->lwp_priority;
2501 			dd->uschedcp = nlp;
2502 #if 0
2503 			dd->rrcount = 0;	/* reset round robin */
2504 #endif
2505 			spin_unlock(&dd->spin);
2506 			lwkt_acquire(nlp->lwp_thread);
2507 			lwkt_schedule(nlp->lwp_thread);
2508 		} else {
2509 			/*
2510 			 * Leave the thread on our run queue.  Another
2511 			 * scheduler will try to pull it later.
2512 			 */
2513 			spin_unlock(&dd->spin);
2514 		}
2515 	} else {
2516 		/*
2517 		 * devoid of runnable threads and not allowed to steal
2518 		 * any.
2519 		 */
2520 		spin_unlock(&dd->spin);
2521 	}
2522 
2523 	/*
2524 	 * We're descheduled unless someone scheduled us.  Switch away.
2525 	 * Exiting the critical section will cause splz() to be called
2526 	 * for us if interrupts and such are pending.
2527 	 */
2528 	crit_exit_gd(gd);
2529 	tsleep(dd->helper_thread, PINTERLOCKED, "schslp", 0);
2530     }
2531 }
2532 
2533 #if 0
2534 static int
2535 sysctl_usched_dfly_stick_to_level(SYSCTL_HANDLER_ARGS)
2536 {
2537 	int error, new_val;
2538 
2539 	new_val = usched_dfly_stick_to_level;
2540 
2541 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2542         if (error != 0 || req->newptr == NULL)
2543 		return (error);
2544 	if (new_val > cpu_topology_levels_number - 1 || new_val < 0)
2545 		return (EINVAL);
2546 	usched_dfly_stick_to_level = new_val;
2547 	return (0);
2548 }
2549 #endif
2550 
2551 /*
2552  * Setup the queues and scheduler helpers (scheduler helpers are SMP only).
2553  * Note that curprocmask bit 0 has already been cleared by rqinit() and
2554  * we should not mess with it further.
2555  */
2556 static void
2557 usched_dfly_cpu_init(void)
2558 {
2559 	int i;
2560 	int j;
2561 	int smt_not_supported = 0;
2562 	int cache_coherent_not_supported = 0;
2563 
2564 	if (bootverbose)
2565 		kprintf("Start usched_dfly helpers on cpus:\n");
2566 
2567 	sysctl_ctx_init(&usched_dfly_sysctl_ctx);
2568 	usched_dfly_sysctl_tree =
2569 		SYSCTL_ADD_NODE(&usched_dfly_sysctl_ctx,
2570 				SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
2571 				"usched_dfly", CTLFLAG_RD, 0, "");
2572 
2573 	usched_dfly_node_mem = get_highest_node_memory();
2574 
2575 	lockmgr(&usched_dfly_config_lk, LK_EXCLUSIVE);
2576 
2577 	for (i = 0; i < ncpus; ++i) {
2578 		dfly_pcpu_t dd = &dfly_pcpu[i];
2579 		cpumask_t mask;
2580 
2581 		CPUMASK_ASSBIT(mask, i);
2582 		if (CPUMASK_TESTMASK(mask, smp_active_mask) == 0)
2583 		    continue;
2584 
2585 		spin_init(&dd->spin, "uschedcpuinit");
2586 		dd->cpunode = get_cpu_node_by_cpuid(i);
2587 		dd->cpuid = i;
2588 		dd->gd = globaldata_find(i);
2589 		CPUMASK_ASSBIT(dd->cpumask, i);
2590 		for (j = 0; j < NQS; j++) {
2591 			TAILQ_INIT(&dd->queues[j]);
2592 			TAILQ_INIT(&dd->rtqueues[j]);
2593 			TAILQ_INIT(&dd->idqueues[j]);
2594 		}
2595 		ATOMIC_CPUMASK_NANDBIT(dfly_curprocmask, 0);
2596 		if (i == 0)
2597 			dd->flags &= ~DFLY_PCPU_CURMASK;
2598 
2599 		if (dd->cpunode == NULL) {
2600 			smt_not_supported = 1;
2601 			cache_coherent_not_supported = 1;
2602 			if (bootverbose)
2603 				kprintf ("    cpu%d - WARNING: No CPU NODE "
2604 					 "found for cpu\n", i);
2605 		} else {
2606 			switch (dd->cpunode->type) {
2607 			case THREAD_LEVEL:
2608 				if (bootverbose)
2609 					kprintf ("    cpu%d - HyperThreading "
2610 						 "available. Core siblings: ",
2611 						 i);
2612 				break;
2613 			case CORE_LEVEL:
2614 				smt_not_supported = 1;
2615 
2616 				if (bootverbose)
2617 					kprintf ("    cpu%d - No HT available, "
2618 						 "multi-core/physical "
2619 						 "cpu. Physical siblings: ",
2620 						 i);
2621 				break;
2622 			case CHIP_LEVEL:
2623 				smt_not_supported = 1;
2624 
2625 				if (bootverbose)
2626 					kprintf ("    cpu%d - No HT available, "
2627 						 "single-core/physical cpu. "
2628 						 "Package siblings: ",
2629 						 i);
2630 				break;
2631 			default:
2632 				/* Let's go for safe defaults here */
2633 				smt_not_supported = 1;
2634 				cache_coherent_not_supported = 1;
2635 				if (bootverbose)
2636 					kprintf ("    cpu%d - Unknown cpunode->"
2637 						 "type=%u. siblings: ",
2638 						 i,
2639 						 (u_int)dd->cpunode->type);
2640 				break;
2641 			}
2642 
2643 			if (bootverbose) {
2644 				if (dd->cpunode->parent_node != NULL) {
2645 					kprint_cpuset(&dd->cpunode->
2646 							parent_node->members);
2647 					kprintf("\n");
2648 				} else {
2649 					kprintf(" no siblings\n");
2650 				}
2651 			}
2652 		}
2653 
2654 		lwkt_create(dfly_helper_thread, NULL, &dd->helper_thread, NULL,
2655 			    0, i, "usched %d", i);
2656 
2657 		/*
2658 		 * Allow user scheduling on the target cpu.  cpu #0 has already
2659 		 * been enabled in rqinit().
2660 		 */
2661 		if (i) {
2662 			ATOMIC_CPUMASK_NANDMASK(dfly_curprocmask, mask);
2663 			dd->flags &= ~DFLY_PCPU_CURMASK;
2664 		}
2665 		if ((dd->flags & DFLY_PCPU_RDYMASK) == 0) {
2666 			ATOMIC_CPUMASK_ORMASK(dfly_rdyprocmask, mask);
2667 			dd->flags |= DFLY_PCPU_RDYMASK;
2668 		}
2669 		dd->upri = PRIBASE_NULL;
2670 
2671 	}
2672 
2673 	/* usched_dfly sysctl configurable parameters */
2674 
2675 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2676 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2677 		       OID_AUTO, "rrinterval", CTLFLAG_RW,
2678 		       &usched_dfly_rrinterval, 0, "");
2679 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2680 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2681 		       OID_AUTO, "decay", CTLFLAG_RW,
2682 		       &usched_dfly_decay, 0, "Extra decay when not running");
2683 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2684 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2685 		       OID_AUTO, "ipc_smt", CTLFLAG_RW,
2686 		       &usched_dfly_ipc_smt, 0, "Pair IPC on hyper-threads");
2687 	SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2688 		       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2689 		       OID_AUTO, "ipc_same", CTLFLAG_RW,
2690 		       &usched_dfly_ipc_same, 0, "Pair IPC on same thread");
2691 
2692 	/* Add enable/disable option for SMT scheduling if supported */
2693 	if (smt_not_supported) {
2694 		usched_dfly_smt = 0;
2695 		SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2696 				  SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2697 				  OID_AUTO, "smt", CTLFLAG_RD,
2698 				  "NOT SUPPORTED", 0, "SMT NOT SUPPORTED");
2699 	} else {
2700 		usched_dfly_smt = 1;
2701 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2702 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2703 			       OID_AUTO, "smt", CTLFLAG_RW,
2704 			       &usched_dfly_smt, 0, "Enable SMT scheduling");
2705 	}
2706 
2707 	/*
2708 	 * Add enable/disable option for cache coherent scheduling
2709 	 * if supported
2710 	 */
2711 	if (cache_coherent_not_supported) {
2712 		usched_dfly_cache_coherent = 0;
2713 		SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2714 				  SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2715 				  OID_AUTO, "cache_coherent", CTLFLAG_RD,
2716 				  "NOT SUPPORTED", 0,
2717 				  "Cache coherence NOT SUPPORTED");
2718 	} else {
2719 		usched_dfly_cache_coherent = 1;
2720 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2721 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2722 			       OID_AUTO, "cache_coherent", CTLFLAG_RW,
2723 			       &usched_dfly_cache_coherent, 0,
2724 			       "Enable/Disable cache coherent scheduling");
2725 
2726 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2727 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2728 			       OID_AUTO, "weight1", CTLFLAG_RW,
2729 			       &usched_dfly_weight1, 200,
2730 			       "Weight selection for current cpu");
2731 
2732 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2733 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2734 			       OID_AUTO, "weight2", CTLFLAG_RW,
2735 			       &usched_dfly_weight2, 180,
2736 			       "Weight selection for wakefrom cpu");
2737 
2738 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2739 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2740 			       OID_AUTO, "weight3", CTLFLAG_RW,
2741 			       &usched_dfly_weight3, 40,
2742 			       "Weight selection for num threads on queue");
2743 
2744 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2745 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2746 			       OID_AUTO, "weight4", CTLFLAG_RW,
2747 			       &usched_dfly_weight4, 160,
2748 			       "Availability of other idle cpus");
2749 
2750 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2751 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2752 			       OID_AUTO, "weight5", CTLFLAG_RW,
2753 			       &usched_dfly_weight5, 50,
2754 			       "Memory attached to node");
2755 
2756 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2757 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2758 			       OID_AUTO, "weight6", CTLFLAG_RW,
2759 			       &usched_dfly_weight6, 150,
2760 			       "Transfer weight");
2761 
2762 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2763 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2764 			       OID_AUTO, "fast_resched", CTLFLAG_RW,
2765 			       &usched_dfly_fast_resched, 0,
2766 			       "Availability of other idle cpus");
2767 
2768 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2769 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2770 			       OID_AUTO, "features", CTLFLAG_RW,
2771 			       &usched_dfly_features, 0x8F,
2772 			       "Allow pulls into empty queues");
2773 
2774 		SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2775 			       SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2776 			       OID_AUTO, "swmask", CTLFLAG_RW,
2777 			       &usched_dfly_swmask, ~PPQMASK,
2778 			       "Queue mask to force thread switch");
2779 
2780 #if 0
2781 		SYSCTL_ADD_PROC(&usched_dfly_sysctl_ctx,
2782 				SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2783 				OID_AUTO, "stick_to_level",
2784 				CTLTYPE_INT | CTLFLAG_RW,
2785 				NULL, sizeof usched_dfly_stick_to_level,
2786 				sysctl_usched_dfly_stick_to_level, "I",
2787 				"Stick a process to this level. See sysctl"
2788 				"paremter hw.cpu_topology.level_description");
2789 #endif
2790 	}
2791 	lockmgr(&usched_dfly_config_lk, LK_RELEASE);
2792 }
2793 
2794 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2795 	usched_dfly_cpu_init, NULL);
2796