xref: /dragonfly/sys/kern/vfs_aio.c (revision 1d1731fa)
1 /*
2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. John S. Dyson's name may not be used to endorse or promote products
10  *    derived from this software without specific prior written permission.
11  *
12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
13  * bad that happens because of using this software isn't the responsibility
14  * of the author.  This software is distributed AS-IS.
15  *
16  * $FreeBSD: src/sys/kern/vfs_aio.c,v 1.70.2.28 2003/05/29 06:15:35 alc Exp $
17  * $DragonFly: src/sys/kern/vfs_aio.c,v 1.10 2003/07/30 00:19:14 dillon Exp $
18  */
19 
20 /*
21  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
22  */
23 
24 #include <sys/param.h>
25 #include <sys/systm.h>
26 #include <sys/buf.h>
27 #include <sys/sysproto.h>
28 #include <sys/filedesc.h>
29 #include <sys/kernel.h>
30 #include <sys/fcntl.h>
31 #include <sys/file.h>
32 #include <sys/lock.h>
33 #include <sys/unistd.h>
34 #include <sys/proc.h>
35 #include <sys/resourcevar.h>
36 #include <sys/signalvar.h>
37 #include <sys/protosw.h>
38 #include <sys/socketvar.h>
39 #include <sys/sysctl.h>
40 #include <sys/vnode.h>
41 #include <sys/conf.h>
42 #include <sys/event.h>
43 
44 #include <vm/vm.h>
45 #include <vm/vm_extern.h>
46 #include <vm/pmap.h>
47 #include <vm/vm_map.h>
48 #include <vm/vm_zone.h>
49 #include <sys/aio.h>
50 #include <sys/file2.h>
51 #include <sys/buf2.h>
52 
53 #include <machine/limits.h>
54 #include "opt_vfs_aio.h"
55 
56 #ifdef VFS_AIO
57 
58 /*
59  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
60  * overflow.
61  */
62 static	long jobrefid;
63 
64 #define JOBST_NULL		0x0
65 #define JOBST_JOBQGLOBAL	0x2
66 #define JOBST_JOBRUNNING	0x3
67 #define JOBST_JOBFINISHED	0x4
68 #define	JOBST_JOBQBUF		0x5
69 #define	JOBST_JOBBFINISHED	0x6
70 
71 #ifndef MAX_AIO_PER_PROC
72 #define MAX_AIO_PER_PROC	32
73 #endif
74 
75 #ifndef MAX_AIO_QUEUE_PER_PROC
76 #define MAX_AIO_QUEUE_PER_PROC	256 /* Bigger than AIO_LISTIO_MAX */
77 #endif
78 
79 #ifndef MAX_AIO_PROCS
80 #define MAX_AIO_PROCS		32
81 #endif
82 
83 #ifndef MAX_AIO_QUEUE
84 #define	MAX_AIO_QUEUE		1024 /* Bigger than AIO_LISTIO_MAX */
85 #endif
86 
87 #ifndef TARGET_AIO_PROCS
88 #define TARGET_AIO_PROCS	4
89 #endif
90 
91 #ifndef MAX_BUF_AIO
92 #define MAX_BUF_AIO		16
93 #endif
94 
95 #ifndef AIOD_TIMEOUT_DEFAULT
96 #define	AIOD_TIMEOUT_DEFAULT	(10 * hz)
97 #endif
98 
99 #ifndef AIOD_LIFETIME_DEFAULT
100 #define AIOD_LIFETIME_DEFAULT	(30 * hz)
101 #endif
102 
103 SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
104 
105 static int max_aio_procs = MAX_AIO_PROCS;
106 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
107 	CTLFLAG_RW, &max_aio_procs, 0,
108 	"Maximum number of kernel threads to use for handling async IO");
109 
110 static int num_aio_procs = 0;
111 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
112 	CTLFLAG_RD, &num_aio_procs, 0,
113 	"Number of presently active kernel threads for async IO");
114 
115 /*
116  * The code will adjust the actual number of AIO processes towards this
117  * number when it gets a chance.
118  */
119 static int target_aio_procs = TARGET_AIO_PROCS;
120 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
121 	0, "Preferred number of ready kernel threads for async IO");
122 
123 static int max_queue_count = MAX_AIO_QUEUE;
124 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
125     "Maximum number of aio requests to queue, globally");
126 
127 static int num_queue_count = 0;
128 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
129     "Number of queued aio requests");
130 
131 static int num_buf_aio = 0;
132 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
133     "Number of aio requests presently handled by the buf subsystem");
134 
135 /* Number of async I/O thread in the process of being started */
136 /* XXX This should be local to _aio_aqueue() */
137 static int num_aio_resv_start = 0;
138 
139 static int aiod_timeout;
140 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
141     "Timeout value for synchronous aio operations");
142 
143 static int aiod_lifetime;
144 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
145     "Maximum lifetime for idle aiod");
146 
147 static int max_aio_per_proc = MAX_AIO_PER_PROC;
148 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
149     0, "Maximum active aio requests per process (stored in the process)");
150 
151 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
152 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
153     &max_aio_queue_per_proc, 0,
154     "Maximum queued aio requests per process (stored in the process)");
155 
156 static int max_buf_aio = MAX_BUF_AIO;
157 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
158     "Maximum buf aio requests per process (stored in the process)");
159 
160 /*
161  * AIO process info
162  */
163 #define AIOP_FREE	0x1			/* proc on free queue */
164 #define AIOP_SCHED	0x2			/* proc explicitly scheduled */
165 
166 struct aioproclist {
167 	int aioprocflags;			/* AIO proc flags */
168 	TAILQ_ENTRY(aioproclist) list;		/* List of processes */
169 	struct proc *aioproc;			/* The AIO thread */
170 };
171 
172 /*
173  * data-structure for lio signal management
174  */
175 struct aio_liojob {
176 	int	lioj_flags;
177 	int	lioj_buffer_count;
178 	int	lioj_buffer_finished_count;
179 	int	lioj_queue_count;
180 	int	lioj_queue_finished_count;
181 	struct	sigevent lioj_signal;	/* signal on all I/O done */
182 	TAILQ_ENTRY(aio_liojob) lioj_list;
183 	struct	kaioinfo *lioj_ki;
184 };
185 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
186 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
187 
188 /*
189  * per process aio data structure
190  */
191 struct kaioinfo {
192 	int	kaio_flags;		/* per process kaio flags */
193 	int	kaio_maxactive_count;	/* maximum number of AIOs */
194 	int	kaio_active_count;	/* number of currently used AIOs */
195 	int	kaio_qallowed_count;	/* maxiumu size of AIO queue */
196 	int	kaio_queue_count;	/* size of AIO queue */
197 	int	kaio_ballowed_count;	/* maximum number of buffers */
198 	int	kaio_queue_finished_count; /* number of daemon jobs finished */
199 	int	kaio_buffer_count;	/* number of physio buffers */
200 	int	kaio_buffer_finished_count; /* count of I/O done */
201 	struct 	proc *kaio_p;		/* process that uses this kaio block */
202 	TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */
203 	TAILQ_HEAD(,aiocblist) kaio_jobqueue;	/* job queue for process */
204 	TAILQ_HEAD(,aiocblist) kaio_jobdone;	/* done queue for process */
205 	TAILQ_HEAD(,aiocblist) kaio_bufqueue;	/* buffer job queue for process */
206 	TAILQ_HEAD(,aiocblist) kaio_bufdone;	/* buffer done queue for process */
207 	TAILQ_HEAD(,aiocblist) kaio_sockqueue;	/* queue for aios waiting on sockets */
208 };
209 
210 #define KAIO_RUNDOWN	0x1	/* process is being run down */
211 #define KAIO_WAKEUP	0x2	/* wakeup process when there is a significant event */
212 
213 static TAILQ_HEAD(,aioproclist) aio_freeproc, aio_activeproc;
214 static TAILQ_HEAD(,aiocblist) aio_jobs;			/* Async job list */
215 static TAILQ_HEAD(,aiocblist) aio_bufjobs;		/* Phys I/O job list */
216 static TAILQ_HEAD(,aiocblist) aio_freejobs;		/* Pool of free jobs */
217 
218 static void	aio_init_aioinfo(struct proc *p);
219 static void	aio_onceonly(void *);
220 static int	aio_free_entry(struct aiocblist *aiocbe);
221 static void	aio_process(struct aiocblist *aiocbe);
222 static int	aio_newproc(void);
223 static int	aio_aqueue(struct aiocb *job, int type);
224 static void	aio_physwakeup(struct buf *bp);
225 static int	aio_fphysio(struct aiocblist *aiocbe);
226 static int	aio_qphysio(struct proc *p, struct aiocblist *iocb);
227 static void	aio_daemon(void *uproc);
228 static void	process_signal(void *aioj);
229 
230 SYSINIT(aio, SI_SUB_VFS, SI_ORDER_ANY, aio_onceonly, NULL);
231 
232 /*
233  * Zones for:
234  * 	kaio	Per process async io info
235  *	aiop	async io thread data
236  *	aiocb	async io jobs
237  *	aiol	list io job pointer - internal to aio_suspend XXX
238  *	aiolio	list io jobs
239  */
240 static vm_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
241 
242 /*
243  * Startup initialization
244  */
245 static void
246 aio_onceonly(void *na)
247 {
248 	TAILQ_INIT(&aio_freeproc);
249 	TAILQ_INIT(&aio_activeproc);
250 	TAILQ_INIT(&aio_jobs);
251 	TAILQ_INIT(&aio_bufjobs);
252 	TAILQ_INIT(&aio_freejobs);
253 	kaio_zone = zinit("AIO", sizeof(struct kaioinfo), 0, 0, 1);
254 	aiop_zone = zinit("AIOP", sizeof(struct aioproclist), 0, 0, 1);
255 	aiocb_zone = zinit("AIOCB", sizeof(struct aiocblist), 0, 0, 1);
256 	aiol_zone = zinit("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t), 0, 0, 1);
257 	aiolio_zone = zinit("AIOLIO", sizeof(struct aio_liojob), 0, 0, 1);
258 	aiod_timeout = AIOD_TIMEOUT_DEFAULT;
259 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
260 	jobrefid = 1;
261 }
262 
263 /*
264  * Init the per-process aioinfo structure.  The aioinfo limits are set
265  * per-process for user limit (resource) management.
266  */
267 static void
268 aio_init_aioinfo(struct proc *p)
269 {
270 	struct kaioinfo *ki;
271 	if (p->p_aioinfo == NULL) {
272 		ki = zalloc(kaio_zone);
273 		p->p_aioinfo = ki;
274 		ki->kaio_flags = 0;
275 		ki->kaio_maxactive_count = max_aio_per_proc;
276 		ki->kaio_active_count = 0;
277 		ki->kaio_qallowed_count = max_aio_queue_per_proc;
278 		ki->kaio_queue_count = 0;
279 		ki->kaio_ballowed_count = max_buf_aio;
280 		ki->kaio_buffer_count = 0;
281 		ki->kaio_buffer_finished_count = 0;
282 		ki->kaio_p = p;
283 		TAILQ_INIT(&ki->kaio_jobdone);
284 		TAILQ_INIT(&ki->kaio_jobqueue);
285 		TAILQ_INIT(&ki->kaio_bufdone);
286 		TAILQ_INIT(&ki->kaio_bufqueue);
287 		TAILQ_INIT(&ki->kaio_liojoblist);
288 		TAILQ_INIT(&ki->kaio_sockqueue);
289 	}
290 
291 	while (num_aio_procs < target_aio_procs)
292 		aio_newproc();
293 }
294 
295 /*
296  * Free a job entry.  Wait for completion if it is currently active, but don't
297  * delay forever.  If we delay, we return a flag that says that we have to
298  * restart the queue scan.
299  */
300 static int
301 aio_free_entry(struct aiocblist *aiocbe)
302 {
303 	struct kaioinfo *ki;
304 	struct aio_liojob *lj;
305 	struct proc *p;
306 	int error;
307 	int s;
308 
309 	if (aiocbe->jobstate == JOBST_NULL)
310 		panic("aio_free_entry: freeing already free job");
311 
312 	p = aiocbe->userproc;
313 	ki = p->p_aioinfo;
314 	lj = aiocbe->lio;
315 	if (ki == NULL)
316 		panic("aio_free_entry: missing p->p_aioinfo");
317 
318 	while (aiocbe->jobstate == JOBST_JOBRUNNING) {
319 		aiocbe->jobflags |= AIOCBLIST_RUNDOWN;
320 		tsleep(aiocbe, 0, "jobwai", 0);
321 	}
322 	if (aiocbe->bp == NULL) {
323 		if (ki->kaio_queue_count <= 0)
324 			panic("aio_free_entry: process queue size <= 0");
325 		if (num_queue_count <= 0)
326 			panic("aio_free_entry: system wide queue size <= 0");
327 
328 		if (lj) {
329 			lj->lioj_queue_count--;
330 			if (aiocbe->jobflags & AIOCBLIST_DONE)
331 				lj->lioj_queue_finished_count--;
332 		}
333 		ki->kaio_queue_count--;
334 		if (aiocbe->jobflags & AIOCBLIST_DONE)
335 			ki->kaio_queue_finished_count--;
336 		num_queue_count--;
337 	} else {
338 		if (lj) {
339 			lj->lioj_buffer_count--;
340 			if (aiocbe->jobflags & AIOCBLIST_DONE)
341 				lj->lioj_buffer_finished_count--;
342 		}
343 		if (aiocbe->jobflags & AIOCBLIST_DONE)
344 			ki->kaio_buffer_finished_count--;
345 		ki->kaio_buffer_count--;
346 		num_buf_aio--;
347 	}
348 
349 	/* aiocbe is going away, we need to destroy any knotes */
350 	knote_remove(p->p_thread, &aiocbe->klist);
351 
352 	if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN)
353 	    && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) {
354 		ki->kaio_flags &= ~KAIO_WAKEUP;
355 		wakeup(p);
356 	}
357 
358 	if (aiocbe->jobstate == JOBST_JOBQBUF) {
359 		if ((error = aio_fphysio(aiocbe)) != 0)
360 			return error;
361 		if (aiocbe->jobstate != JOBST_JOBBFINISHED)
362 			panic("aio_free_entry: invalid physio finish-up state");
363 		s = splbio();
364 		TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
365 		splx(s);
366 	} else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) {
367 		s = splnet();
368 		TAILQ_REMOVE(&aio_jobs, aiocbe, list);
369 		TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
370 		splx(s);
371 	} else if (aiocbe->jobstate == JOBST_JOBFINISHED)
372 		TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist);
373 	else if (aiocbe->jobstate == JOBST_JOBBFINISHED) {
374 		s = splbio();
375 		TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
376 		splx(s);
377 		if (aiocbe->bp) {
378 			vunmapbuf(aiocbe->bp);
379 			relpbuf(aiocbe->bp, NULL);
380 			aiocbe->bp = NULL;
381 		}
382 	}
383 	if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) {
384 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
385 		zfree(aiolio_zone, lj);
386 	}
387 	aiocbe->jobstate = JOBST_NULL;
388 	untimeout(process_signal, aiocbe, aiocbe->timeouthandle);
389 	fdrop(aiocbe->fd_file, curthread);
390 	TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
391 	return 0;
392 }
393 #endif /* VFS_AIO */
394 
395 /*
396  * Rundown the jobs for a given process.
397  */
398 void
399 aio_proc_rundown(struct proc *p)
400 {
401 #ifndef VFS_AIO
402 	return;
403 #else
404 	int s;
405 	struct kaioinfo *ki;
406 	struct aio_liojob *lj, *ljn;
407 	struct aiocblist *aiocbe, *aiocbn;
408 	struct file *fp;
409 	struct socket *so;
410 
411 	ki = p->p_aioinfo;
412 	if (ki == NULL)
413 		return;
414 
415 	ki->kaio_flags |= LIOJ_SIGNAL_POSTED;
416 	while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count >
417 	    ki->kaio_buffer_finished_count)) {
418 		ki->kaio_flags |= KAIO_RUNDOWN;
419 		if (tsleep(p, 0, "kaiowt", aiod_timeout))
420 			break;
421 	}
422 
423 	/*
424 	 * Move any aio ops that are waiting on socket I/O to the normal job
425 	 * queues so they are cleaned up with any others.
426 	 */
427 	s = splnet();
428 	for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe =
429 	    aiocbn) {
430 		aiocbn = TAILQ_NEXT(aiocbe, plist);
431 		fp = aiocbe->fd_file;
432 		if (fp != NULL) {
433 			so = (struct socket *)fp->f_data;
434 			TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list);
435 			if (TAILQ_EMPTY(&so->so_aiojobq)) {
436 				so->so_snd.sb_flags &= ~SB_AIO;
437 				so->so_rcv.sb_flags &= ~SB_AIO;
438 			}
439 		}
440 		TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist);
441 		TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list);
442 		TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist);
443 	}
444 	splx(s);
445 
446 restart1:
447 	for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) {
448 		aiocbn = TAILQ_NEXT(aiocbe, plist);
449 		if (aio_free_entry(aiocbe))
450 			goto restart1;
451 	}
452 
453 restart2:
454 	for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe =
455 	    aiocbn) {
456 		aiocbn = TAILQ_NEXT(aiocbe, plist);
457 		if (aio_free_entry(aiocbe))
458 			goto restart2;
459 	}
460 
461 /*
462  * Note the use of lots of splbio here, trying to avoid splbio for long chains
463  * of I/O.  Probably unnecessary.
464  */
465 restart3:
466 	s = splbio();
467 	while (TAILQ_FIRST(&ki->kaio_bufqueue)) {
468 		ki->kaio_flags |= KAIO_WAKEUP;
469 		tsleep(p, 0, "aioprn", 0);
470 		splx(s);
471 		goto restart3;
472 	}
473 	splx(s);
474 
475 restart4:
476 	s = splbio();
477 	for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) {
478 		aiocbn = TAILQ_NEXT(aiocbe, plist);
479 		if (aio_free_entry(aiocbe)) {
480 			splx(s);
481 			goto restart4;
482 		}
483 	}
484 	splx(s);
485 
486         /*
487          * If we've slept, jobs might have moved from one queue to another.
488          * Retry rundown if we didn't manage to empty the queues.
489          */
490         if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL ||
491 	    TAILQ_FIRST(&ki->kaio_jobqueue) != NULL ||
492 	    TAILQ_FIRST(&ki->kaio_bufqueue) != NULL ||
493 	    TAILQ_FIRST(&ki->kaio_bufdone) != NULL)
494 		goto restart1;
495 
496 	for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) {
497 		ljn = TAILQ_NEXT(lj, lioj_list);
498 		if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count ==
499 		    0)) {
500 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
501 			zfree(aiolio_zone, lj);
502 		} else {
503 #ifdef DIAGNOSTIC
504 			printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, "
505 			    "QF:%d\n", lj->lioj_buffer_count,
506 			    lj->lioj_buffer_finished_count,
507 			    lj->lioj_queue_count,
508 			    lj->lioj_queue_finished_count);
509 #endif
510 		}
511 	}
512 
513 	zfree(kaio_zone, ki);
514 	p->p_aioinfo = NULL;
515 #endif /* VFS_AIO */
516 }
517 
518 #ifdef VFS_AIO
519 /*
520  * Select a job to run (called by an AIO daemon).
521  */
522 static struct aiocblist *
523 aio_selectjob(struct aioproclist *aiop)
524 {
525 	int s;
526 	struct aiocblist *aiocbe;
527 	struct kaioinfo *ki;
528 	struct proc *userp;
529 
530 	s = splnet();
531 	for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe =
532 	    TAILQ_NEXT(aiocbe, list)) {
533 		userp = aiocbe->userproc;
534 		ki = userp->p_aioinfo;
535 
536 		if (ki->kaio_active_count < ki->kaio_maxactive_count) {
537 			TAILQ_REMOVE(&aio_jobs, aiocbe, list);
538 			splx(s);
539 			return aiocbe;
540 		}
541 	}
542 	splx(s);
543 
544 	return NULL;
545 }
546 
547 /*
548  * The AIO processing activity.  This is the code that does the I/O request for
549  * the non-physio version of the operations.  The normal vn operations are used,
550  * and this code should work in all instances for every type of file, including
551  * pipes, sockets, fifos, and regular files.
552  */
553 static void
554 aio_process(struct aiocblist *aiocbe)
555 {
556 	struct thread *mytd;
557 	struct aiocb *cb;
558 	struct file *fp;
559 	struct uio auio;
560 	struct iovec aiov;
561 	int cnt;
562 	int error;
563 	int oublock_st, oublock_end;
564 	int inblock_st, inblock_end;
565 
566 	mytd = curthread;
567 	cb = &aiocbe->uaiocb;
568 	fp = aiocbe->fd_file;
569 
570 	aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
571 	aiov.iov_len = cb->aio_nbytes;
572 
573 	auio.uio_iov = &aiov;
574 	auio.uio_iovcnt = 1;
575 	auio.uio_offset = cb->aio_offset;
576 	auio.uio_resid = cb->aio_nbytes;
577 	cnt = cb->aio_nbytes;
578 	auio.uio_segflg = UIO_USERSPACE;
579 	auio.uio_td = mytd;
580 
581 	inblock_st = mytd->td_proc->p_stats->p_ru.ru_inblock;
582 	oublock_st = mytd->td_proc->p_stats->p_ru.ru_oublock;
583 	/*
584 	 * _aio_aqueue() acquires a reference to the file that is
585 	 * released in aio_free_entry().
586 	 */
587 	if (cb->aio_lio_opcode == LIO_READ) {
588 		auio.uio_rw = UIO_READ;
589 		error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, mytd);
590 	} else {
591 		auio.uio_rw = UIO_WRITE;
592 		error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, mytd);
593 	}
594 	inblock_end = mytd->td_proc->p_stats->p_ru.ru_inblock;
595 	oublock_end = mytd->td_proc->p_stats->p_ru.ru_oublock;
596 
597 	aiocbe->inputcharge = inblock_end - inblock_st;
598 	aiocbe->outputcharge = oublock_end - oublock_st;
599 
600 	if ((error) && (auio.uio_resid != cnt)) {
601 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
602 			error = 0;
603 		if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE))
604 			psignal(aiocbe->userproc, SIGPIPE);
605 	}
606 
607 	cnt -= auio.uio_resid;
608 	cb->_aiocb_private.error = error;
609 	cb->_aiocb_private.status = cnt;
610 }
611 
612 /*
613  * The AIO daemon, most of the actual work is done in aio_process,
614  * but the setup (and address space mgmt) is done in this routine.
615  *
616  * The MP lock is held on entry.
617  */
618 static void
619 aio_daemon(void *uproc)
620 {
621 	int s;
622 	struct aio_liojob *lj;
623 	struct aiocb *cb;
624 	struct aiocblist *aiocbe;
625 	struct aioproclist *aiop;
626 	struct kaioinfo *ki;
627 	struct proc *curcp, *mycp, *userp;
628 	struct vmspace *myvm, *tmpvm;
629 	struct ucred *cr;
630 
631 	/*
632 	 * Local copies of curproc (cp) and vmspace (myvm)
633 	 */
634 	mycp = curproc;
635 	myvm = mycp->p_vmspace;
636 
637 	if (mycp->p_textvp) {
638 		vrele(mycp->p_textvp);
639 		mycp->p_textvp = NULL;
640 	}
641 
642 	/*
643 	 * Allocate and ready the aio control info.  There is one aiop structure
644 	 * per daemon.
645 	 */
646 	aiop = zalloc(aiop_zone);
647 	aiop->aioproc = mycp;
648 	aiop->aioprocflags |= AIOP_FREE;
649 
650 	s = splnet();
651 
652 	/*
653 	 * Place thread (lightweight process) onto the AIO free thread list.
654 	 */
655 	if (TAILQ_EMPTY(&aio_freeproc))
656 		wakeup(&aio_freeproc);
657 	TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
658 
659 	splx(s);
660 
661 	/* Make up a name for the daemon. */
662 	strcpy(mycp->p_comm, "aiod");
663 
664 	/*
665 	 * Get rid of our current filedescriptors.  AIOD's don't need any
666 	 * filedescriptors, except as temporarily inherited from the client.
667 	 * Credentials are also cloned, and made equivalent to "root".
668 	 */
669 	fdfree(mycp);
670 	mycp->p_fd = NULL;
671 	cr = cratom(&mycp->p_ucred);
672 	cr->cr_uid = 0;
673 	uifree(cr->cr_uidinfo);
674 	cr->cr_uidinfo = uifind(0);
675 	cr->cr_ngroups = 1;
676 	cr->cr_groups[0] = 1;
677 
678 	/* The daemon resides in its own pgrp. */
679 	enterpgrp(mycp, mycp->p_pid, 1);
680 
681 	/* Mark special process type. */
682 	mycp->p_flag |= P_SYSTEM | P_KTHREADP;
683 
684 	/*
685 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
686 	 * and creating too many daemons.)
687 	 */
688 	wakeup(mycp);
689 
690 	for (;;) {
691 		/*
692 		 * curcp is the current daemon process context.
693 		 * userp is the current user process context.
694 		 */
695 		curcp = mycp;
696 
697 		/*
698 		 * Take daemon off of free queue
699 		 */
700 		if (aiop->aioprocflags & AIOP_FREE) {
701 			s = splnet();
702 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
703 			TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
704 			aiop->aioprocflags &= ~AIOP_FREE;
705 			splx(s);
706 		}
707 		aiop->aioprocflags &= ~AIOP_SCHED;
708 
709 		/*
710 		 * Check for jobs.
711 		 */
712 		while ((aiocbe = aio_selectjob(aiop)) != NULL) {
713 			cb = &aiocbe->uaiocb;
714 			userp = aiocbe->userproc;
715 
716 			aiocbe->jobstate = JOBST_JOBRUNNING;
717 
718 			/*
719 			 * Connect to process address space for user program.
720 			 */
721 			if (userp != curcp) {
722 				/*
723 				 * Save the current address space that we are
724 				 * connected to.
725 				 */
726 				tmpvm = mycp->p_vmspace;
727 
728 				/*
729 				 * Point to the new user address space, and
730 				 * refer to it.
731 				 */
732 				mycp->p_vmspace = userp->p_vmspace;
733 				mycp->p_vmspace->vm_refcnt++;
734 
735 				/* Activate the new mapping. */
736 				pmap_activate(mycp);
737 
738 				/*
739 				 * If the old address space wasn't the daemons
740 				 * own address space, then we need to remove the
741 				 * daemon's reference from the other process
742 				 * that it was acting on behalf of.
743 				 */
744 				if (tmpvm != myvm) {
745 					vmspace_free(tmpvm);
746 				}
747 				curcp = userp;
748 			}
749 
750 			ki = userp->p_aioinfo;
751 			lj = aiocbe->lio;
752 
753 			/* Account for currently active jobs. */
754 			ki->kaio_active_count++;
755 
756 			/* Do the I/O function. */
757 			aio_process(aiocbe);
758 
759 			/* Decrement the active job count. */
760 			ki->kaio_active_count--;
761 
762 			/*
763 			 * Increment the completion count for wakeup/signal
764 			 * comparisons.
765 			 */
766 			aiocbe->jobflags |= AIOCBLIST_DONE;
767 			ki->kaio_queue_finished_count++;
768 			if (lj)
769 				lj->lioj_queue_finished_count++;
770 			if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags
771 			    & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) {
772 				ki->kaio_flags &= ~KAIO_WAKEUP;
773 				wakeup(userp);
774 			}
775 
776 			s = splbio();
777 			if (lj && (lj->lioj_flags &
778 			    (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) {
779 				if ((lj->lioj_queue_finished_count ==
780 				    lj->lioj_queue_count) &&
781 				    (lj->lioj_buffer_finished_count ==
782 				    lj->lioj_buffer_count)) {
783 						psignal(userp,
784 						    lj->lioj_signal.sigev_signo);
785 						lj->lioj_flags |=
786 						    LIOJ_SIGNAL_POSTED;
787 				}
788 			}
789 			splx(s);
790 
791 			aiocbe->jobstate = JOBST_JOBFINISHED;
792 
793 			s = splnet();
794 			TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
795 			TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist);
796 			splx(s);
797 			KNOTE(&aiocbe->klist, 0);
798 
799 			if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) {
800 				wakeup(aiocbe);
801 				aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN;
802 			}
803 
804 			if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
805 				psignal(userp, cb->aio_sigevent.sigev_signo);
806 			}
807 		}
808 
809 		/*
810 		 * Disconnect from user address space.
811 		 */
812 		if (curcp != mycp) {
813 			/* Get the user address space to disconnect from. */
814 			tmpvm = mycp->p_vmspace;
815 
816 			/* Get original address space for daemon. */
817 			mycp->p_vmspace = myvm;
818 
819 			/* Activate the daemon's address space. */
820 			pmap_activate(mycp);
821 #ifdef DIAGNOSTIC
822 			if (tmpvm == myvm) {
823 				printf("AIOD: vmspace problem -- %d\n",
824 				    mycp->p_pid);
825 			}
826 #endif
827 			/* Remove our vmspace reference. */
828 			vmspace_free(tmpvm);
829 
830 			curcp = mycp;
831 		}
832 
833 		/*
834 		 * If we are the first to be put onto the free queue, wakeup
835 		 * anyone waiting for a daemon.
836 		 */
837 		s = splnet();
838 		TAILQ_REMOVE(&aio_activeproc, aiop, list);
839 		if (TAILQ_EMPTY(&aio_freeproc))
840 			wakeup(&aio_freeproc);
841 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
842 		aiop->aioprocflags |= AIOP_FREE;
843 		splx(s);
844 
845 		/*
846 		 * If daemon is inactive for a long time, allow it to exit,
847 		 * thereby freeing resources.
848 		 */
849 		if (((aiop->aioprocflags & AIOP_SCHED) == 0) && tsleep(mycp,
850 		    0, "aiordy", aiod_lifetime)) {
851 			s = splnet();
852 			if (TAILQ_EMPTY(&aio_jobs)) {
853 				if ((aiop->aioprocflags & AIOP_FREE) &&
854 				    (num_aio_procs > target_aio_procs)) {
855 					TAILQ_REMOVE(&aio_freeproc, aiop, list);
856 					splx(s);
857 					zfree(aiop_zone, aiop);
858 					num_aio_procs--;
859 #ifdef DIAGNOSTIC
860 					if (mycp->p_vmspace->vm_refcnt <= 1) {
861 						printf("AIOD: bad vm refcnt for"
862 						    " exiting daemon: %d\n",
863 						    mycp->p_vmspace->vm_refcnt);
864 					}
865 #endif
866 					exit1(0);
867 				}
868 			}
869 			splx(s);
870 		}
871 	}
872 }
873 
874 /*
875  * Create a new AIO daemon.  This is mostly a kernel-thread fork routine.  The
876  * AIO daemon modifies its environment itself.
877  */
878 static int
879 aio_newproc()
880 {
881 	int error;
882 	struct proc *p, *np;
883 
884 	p = &proc0;
885 	error = fork1(p, RFPROC|RFMEM|RFNOWAIT, &np);
886 	if (error)
887 		return error;
888 	cpu_set_fork_handler(np, aio_daemon, curproc);
889 	start_forked_proc(p, np);
890 
891 	/*
892 	 * Wait until daemon is started, but continue on just in case to
893 	 * handle error conditions.
894 	 */
895 	error = tsleep(np, 0, "aiosta", aiod_timeout);
896 	num_aio_procs++;
897 
898 	return error;
899 }
900 
901 /*
902  * Try the high-performance, low-overhead physio method for eligible
903  * VCHR devices.  This method doesn't use an aio helper thread, and
904  * thus has very low overhead.
905  *
906  * Assumes that the caller, _aio_aqueue(), has incremented the file
907  * structure's reference count, preventing its deallocation for the
908  * duration of this call.
909  */
910 static int
911 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
912 {
913 	int error;
914 	struct aiocb *cb;
915 	struct file *fp;
916 	struct buf *bp;
917 	struct vnode *vp;
918 	struct kaioinfo *ki;
919 	struct aio_liojob *lj;
920 	int s;
921 	int notify;
922 
923 	cb = &aiocbe->uaiocb;
924 	fp = aiocbe->fd_file;
925 
926 	if (fp->f_type != DTYPE_VNODE)
927 		return (-1);
928 
929 	vp = (struct vnode *)fp->f_data;
930 
931 	/*
932 	 * If its not a disk, we don't want to return a positive error.
933 	 * It causes the aio code to not fall through to try the thread
934 	 * way when you're talking to a regular file.
935 	 */
936 	if (!vn_isdisk(vp, &error)) {
937 		if (error == ENOTBLK)
938 			return (-1);
939 		else
940 			return (error);
941 	}
942 
943  	if (cb->aio_nbytes % vp->v_rdev->si_bsize_phys)
944 		return (-1);
945 
946 	if (cb->aio_nbytes >
947 	    MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
948 		return (-1);
949 
950 	ki = p->p_aioinfo;
951 	if (ki->kaio_buffer_count >= ki->kaio_ballowed_count)
952 		return (-1);
953 
954 	ki->kaio_buffer_count++;
955 
956 	lj = aiocbe->lio;
957 	if (lj)
958 		lj->lioj_buffer_count++;
959 
960 	/* Create and build a buffer header for a transfer. */
961 	bp = (struct buf *)getpbuf(NULL);
962 	BUF_KERNPROC(bp);
963 
964 	/*
965 	 * Get a copy of the kva from the physical buffer.
966 	 */
967 	bp->b_caller1 = p;
968 	bp->b_dev = vp->v_rdev;
969 	error = 0;
970 
971 	bp->b_bcount = cb->aio_nbytes;
972 	bp->b_bufsize = cb->aio_nbytes;
973 	bp->b_flags = B_PHYS | B_CALL | (cb->aio_lio_opcode == LIO_WRITE ?
974 	    B_WRITE : B_READ);
975 	bp->b_iodone = aio_physwakeup;
976 	bp->b_saveaddr = bp->b_data;
977 	bp->b_data = (void *)(uintptr_t)cb->aio_buf;
978 	bp->b_blkno = btodb(cb->aio_offset);
979 
980 	/* Bring buffer into kernel space. */
981 	if (vmapbuf(bp) < 0) {
982 		error = EFAULT;
983 		goto doerror;
984 	}
985 
986 	s = splbio();
987 	aiocbe->bp = bp;
988 	bp->b_spc = (void *)aiocbe;
989 	TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list);
990 	TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
991 	aiocbe->jobstate = JOBST_JOBQBUF;
992 	cb->_aiocb_private.status = cb->aio_nbytes;
993 	num_buf_aio++;
994 	bp->b_error = 0;
995 
996 	splx(s);
997 
998 	/* Perform transfer. */
999 	BUF_STRATEGY(bp, 0);
1000 
1001 	notify = 0;
1002 	s = splbio();
1003 
1004 	/*
1005 	 * If we had an error invoking the request, or an error in processing
1006 	 * the request before we have returned, we process it as an error in
1007 	 * transfer.  Note that such an I/O error is not indicated immediately,
1008 	 * but is returned using the aio_error mechanism.  In this case,
1009 	 * aio_suspend will return immediately.
1010 	 */
1011 	if (bp->b_error || (bp->b_flags & B_ERROR)) {
1012 		struct aiocb *job = aiocbe->uuaiocb;
1013 
1014 		aiocbe->uaiocb._aiocb_private.status = 0;
1015 		suword(&job->_aiocb_private.status, 0);
1016 		aiocbe->uaiocb._aiocb_private.error = bp->b_error;
1017 		suword(&job->_aiocb_private.error, bp->b_error);
1018 
1019 		ki->kaio_buffer_finished_count++;
1020 
1021 		if (aiocbe->jobstate != JOBST_JOBBFINISHED) {
1022 			aiocbe->jobstate = JOBST_JOBBFINISHED;
1023 			aiocbe->jobflags |= AIOCBLIST_DONE;
1024 			TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
1025 			TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
1026 			TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
1027 			notify = 1;
1028 		}
1029 	}
1030 	splx(s);
1031 	if (notify)
1032 		KNOTE(&aiocbe->klist, 0);
1033 	return 0;
1034 
1035 doerror:
1036 	ki->kaio_buffer_count--;
1037 	if (lj)
1038 		lj->lioj_buffer_count--;
1039 	aiocbe->bp = NULL;
1040 	relpbuf(bp, NULL);
1041 	return error;
1042 }
1043 
1044 /*
1045  * This waits/tests physio completion.
1046  */
1047 static int
1048 aio_fphysio(struct aiocblist *iocb)
1049 {
1050 	int s;
1051 	struct buf *bp;
1052 	int error;
1053 
1054 	bp = iocb->bp;
1055 
1056 	s = splbio();
1057 	while ((bp->b_flags & B_DONE) == 0) {
1058 		if (tsleep(bp, 0, "physstr", aiod_timeout)) {
1059 			if ((bp->b_flags & B_DONE) == 0) {
1060 				splx(s);
1061 				return EINPROGRESS;
1062 			} else
1063 				break;
1064 		}
1065 	}
1066 	splx(s);
1067 
1068 	/* Release mapping into kernel space. */
1069 	vunmapbuf(bp);
1070 	iocb->bp = 0;
1071 
1072 	error = 0;
1073 
1074 	/* Check for an error. */
1075 	if (bp->b_flags & B_ERROR)
1076 		error = bp->b_error;
1077 
1078 	relpbuf(bp, NULL);
1079 	return (error);
1080 }
1081 #endif /* VFS_AIO */
1082 
1083 /*
1084  * Wake up aio requests that may be serviceable now.
1085  */
1086 void
1087 aio_swake(struct socket *so, struct sockbuf *sb)
1088 {
1089 #ifndef VFS_AIO
1090 	return;
1091 #else
1092 	struct aiocblist *cb,*cbn;
1093 	struct proc *p;
1094 	struct kaioinfo *ki = NULL;
1095 	int opcode, wakecount = 0;
1096 	struct aioproclist *aiop;
1097 
1098 	if (sb == &so->so_snd) {
1099 		opcode = LIO_WRITE;
1100 		so->so_snd.sb_flags &= ~SB_AIO;
1101 	} else {
1102 		opcode = LIO_READ;
1103 		so->so_rcv.sb_flags &= ~SB_AIO;
1104 	}
1105 
1106 	for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) {
1107 		cbn = TAILQ_NEXT(cb, list);
1108 		if (opcode == cb->uaiocb.aio_lio_opcode) {
1109 			p = cb->userproc;
1110 			ki = p->p_aioinfo;
1111 			TAILQ_REMOVE(&so->so_aiojobq, cb, list);
1112 			TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist);
1113 			TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
1114 			TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist);
1115 			wakecount++;
1116 			if (cb->jobstate != JOBST_JOBQGLOBAL)
1117 				panic("invalid queue value");
1118 		}
1119 	}
1120 
1121 	while (wakecount--) {
1122 		if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) {
1123 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1124 			TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
1125 			aiop->aioprocflags &= ~AIOP_FREE;
1126 			wakeup(aiop->aioproc);
1127 		}
1128 	}
1129 #endif /* VFS_AIO */
1130 }
1131 
1132 #ifdef VFS_AIO
1133 /*
1134  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
1135  * technique is done in this code.
1136  */
1137 static int
1138 _aio_aqueue(struct aiocb *job, struct aio_liojob *lj, int type)
1139 {
1140 	struct proc *p = curproc;
1141 	struct filedesc *fdp;
1142 	struct file *fp;
1143 	unsigned int fd;
1144 	struct socket *so;
1145 	int s;
1146 	int error;
1147 	int opcode, user_opcode;
1148 	struct aiocblist *aiocbe;
1149 	struct aioproclist *aiop;
1150 	struct kaioinfo *ki;
1151 	struct kevent kev;
1152 	struct kqueue *kq;
1153 	struct file *kq_fp;
1154 
1155 	if ((aiocbe = TAILQ_FIRST(&aio_freejobs)) != NULL)
1156 		TAILQ_REMOVE(&aio_freejobs, aiocbe, list);
1157 	else
1158 		aiocbe = zalloc (aiocb_zone);
1159 
1160 	aiocbe->inputcharge = 0;
1161 	aiocbe->outputcharge = 0;
1162 	callout_handle_init(&aiocbe->timeouthandle);
1163 	SLIST_INIT(&aiocbe->klist);
1164 
1165 	suword(&job->_aiocb_private.status, -1);
1166 	suword(&job->_aiocb_private.error, 0);
1167 	suword(&job->_aiocb_private.kernelinfo, -1);
1168 
1169 	error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb));
1170 	if (error) {
1171 		suword(&job->_aiocb_private.error, error);
1172 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1173 		return error;
1174 	}
1175 	if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL &&
1176 	    !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
1177 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1178 		return EINVAL;
1179 	}
1180 
1181 	/* Save userspace address of the job info. */
1182 	aiocbe->uuaiocb = job;
1183 
1184 	/* Get the opcode. */
1185 	user_opcode = aiocbe->uaiocb.aio_lio_opcode;
1186 	if (type != LIO_NOP)
1187 		aiocbe->uaiocb.aio_lio_opcode = type;
1188 	opcode = aiocbe->uaiocb.aio_lio_opcode;
1189 
1190 	/* Get the fd info for process. */
1191 	fdp = p->p_fd;
1192 
1193 	/*
1194 	 * Range check file descriptor.
1195 	 */
1196 	fd = aiocbe->uaiocb.aio_fildes;
1197 	if (fd >= fdp->fd_nfiles) {
1198 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1199 		if (type == 0)
1200 			suword(&job->_aiocb_private.error, EBADF);
1201 		return EBADF;
1202 	}
1203 
1204 	fp = aiocbe->fd_file = fdp->fd_ofiles[fd];
1205 	if ((fp == NULL) || ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) ==
1206 	    0))) {
1207 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1208 		if (type == 0)
1209 			suword(&job->_aiocb_private.error, EBADF);
1210 		return EBADF;
1211 	}
1212 	fhold(fp);
1213 
1214 	if (aiocbe->uaiocb.aio_offset == -1LL) {
1215 		error = EINVAL;
1216 		goto aqueue_fail;
1217 	}
1218 	error = suword(&job->_aiocb_private.kernelinfo, jobrefid);
1219 	if (error) {
1220 		error = EINVAL;
1221 		goto aqueue_fail;
1222 	}
1223 	aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid;
1224 	if (jobrefid == LONG_MAX)
1225 		jobrefid = 1;
1226 	else
1227 		jobrefid++;
1228 
1229 	if (opcode == LIO_NOP) {
1230 		fdrop(fp, p->p_thread);
1231 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1232 		if (type == 0) {
1233 			suword(&job->_aiocb_private.error, 0);
1234 			suword(&job->_aiocb_private.status, 0);
1235 			suword(&job->_aiocb_private.kernelinfo, 0);
1236 		}
1237 		return 0;
1238 	}
1239 	if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) {
1240 		if (type == 0)
1241 			suword(&job->_aiocb_private.status, 0);
1242 		error = EINVAL;
1243 		goto aqueue_fail;
1244 	}
1245 
1246 	if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) {
1247 		kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
1248 		kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr;
1249 	}
1250 	else {
1251 		/*
1252 		 * This method for requesting kevent-based notification won't
1253 		 * work on the alpha, since we're passing in a pointer
1254 		 * via aio_lio_opcode, which is an int.  Use the SIGEV_KEVENT-
1255 		 * based method instead.
1256 		 */
1257 		if (user_opcode == LIO_NOP || user_opcode == LIO_READ ||
1258 		    user_opcode == LIO_WRITE)
1259 			goto no_kqueue;
1260 
1261 		error = copyin((struct kevent *)(uintptr_t)user_opcode,
1262 		    &kev, sizeof(kev));
1263 		if (error)
1264 			goto aqueue_fail;
1265 	}
1266 	if ((u_int)kev.ident >= fdp->fd_nfiles ||
1267 	    (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL ||
1268 	    (kq_fp->f_type != DTYPE_KQUEUE)) {
1269 		error = EBADF;
1270 		goto aqueue_fail;
1271 	}
1272 	kq = (struct kqueue *)kq_fp->f_data;
1273 	kev.ident = (uintptr_t)aiocbe->uuaiocb;
1274 	kev.filter = EVFILT_AIO;
1275 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
1276 	kev.data = (intptr_t)aiocbe;
1277 	error = kqueue_register(kq, &kev, p->p_thread);
1278 aqueue_fail:
1279 	if (error) {
1280 		fdrop(fp, p->p_thread);
1281 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1282 		if (type == 0)
1283 			suword(&job->_aiocb_private.error, error);
1284 		goto done;
1285 	}
1286 no_kqueue:
1287 
1288 	suword(&job->_aiocb_private.error, EINPROGRESS);
1289 	aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
1290 	aiocbe->userproc = p;
1291 	aiocbe->jobflags = 0;
1292 	aiocbe->lio = lj;
1293 	ki = p->p_aioinfo;
1294 
1295 	if (fp->f_type == DTYPE_SOCKET) {
1296 		/*
1297 		 * Alternate queueing for socket ops: Reach down into the
1298 		 * descriptor to get the socket data.  Then check to see if the
1299 		 * socket is ready to be read or written (based on the requested
1300 		 * operation).
1301 		 *
1302 		 * If it is not ready for io, then queue the aiocbe on the
1303 		 * socket, and set the flags so we get a call when sbnotify()
1304 		 * happens.
1305 		 */
1306 		so = (struct socket *)fp->f_data;
1307 		s = splnet();
1308 		if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
1309 		    LIO_WRITE) && (!sowriteable(so)))) {
1310 			TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
1311 			TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist);
1312 			if (opcode == LIO_READ)
1313 				so->so_rcv.sb_flags |= SB_AIO;
1314 			else
1315 				so->so_snd.sb_flags |= SB_AIO;
1316 			aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */
1317 			ki->kaio_queue_count++;
1318 			num_queue_count++;
1319 			splx(s);
1320 			error = 0;
1321 			goto done;
1322 		}
1323 		splx(s);
1324 	}
1325 
1326 	if ((error = aio_qphysio(p, aiocbe)) == 0)
1327 		goto done;
1328 	if (error > 0) {
1329 		suword(&job->_aiocb_private.status, 0);
1330 		aiocbe->uaiocb._aiocb_private.error = error;
1331 		suword(&job->_aiocb_private.error, error);
1332 		goto done;
1333 	}
1334 
1335 	/* No buffer for daemon I/O. */
1336 	aiocbe->bp = NULL;
1337 
1338 	ki->kaio_queue_count++;
1339 	if (lj)
1340 		lj->lioj_queue_count++;
1341 	s = splnet();
1342 	TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
1343 	TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
1344 	splx(s);
1345 	aiocbe->jobstate = JOBST_JOBQGLOBAL;
1346 
1347 	num_queue_count++;
1348 	error = 0;
1349 
1350 	/*
1351 	 * If we don't have a free AIO process, and we are below our quota, then
1352 	 * start one.  Otherwise, depend on the subsequent I/O completions to
1353 	 * pick-up this job.  If we don't sucessfully create the new process
1354 	 * (thread) due to resource issues, we return an error for now (EAGAIN),
1355 	 * which is likely not the correct thing to do.
1356 	 */
1357 	s = splnet();
1358 retryproc:
1359 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1360 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1361 		TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
1362 		aiop->aioprocflags &= ~AIOP_FREE;
1363 		wakeup(aiop->aioproc);
1364 	} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
1365 	    ((ki->kaio_active_count + num_aio_resv_start) <
1366 	    ki->kaio_maxactive_count)) {
1367 		num_aio_resv_start++;
1368 		if ((error = aio_newproc()) == 0) {
1369 			num_aio_resv_start--;
1370 			goto retryproc;
1371 		}
1372 		num_aio_resv_start--;
1373 	}
1374 	splx(s);
1375 done:
1376 	return error;
1377 }
1378 
1379 /*
1380  * This routine queues an AIO request, checking for quotas.
1381  */
1382 static int
1383 aio_aqueue(struct aiocb *job, int type)
1384 {
1385 	struct proc *p = curproc;
1386 	struct kaioinfo *ki;
1387 
1388 	if (p->p_aioinfo == NULL)
1389 		aio_init_aioinfo(p);
1390 
1391 	if (num_queue_count >= max_queue_count)
1392 		return EAGAIN;
1393 
1394 	ki = p->p_aioinfo;
1395 	if (ki->kaio_queue_count >= ki->kaio_qallowed_count)
1396 		return EAGAIN;
1397 
1398 	return _aio_aqueue(job, NULL, type);
1399 }
1400 #endif /* VFS_AIO */
1401 
1402 /*
1403  * Support the aio_return system call, as a side-effect, kernel resources are
1404  * released.
1405  */
1406 int
1407 aio_return(struct aio_return_args *uap)
1408 {
1409 #ifndef VFS_AIO
1410 	return ENOSYS;
1411 #else
1412 	struct proc *p = curproc;
1413 	int s;
1414 	long jobref;
1415 	struct aiocblist *cb, *ncb;
1416 	struct aiocb *ujob;
1417 	struct kaioinfo *ki;
1418 
1419 	ki = p->p_aioinfo;
1420 	if (ki == NULL)
1421 		return EINVAL;
1422 
1423 	ujob = uap->aiocbp;
1424 
1425 	jobref = fuword(&ujob->_aiocb_private.kernelinfo);
1426 	if (jobref == -1 || jobref == 0)
1427 		return EINVAL;
1428 
1429 	TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1430 		if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
1431 		    jobref) {
1432 			if (ujob == cb->uuaiocb) {
1433 				uap->sysmsg_result =
1434 				    cb->uaiocb._aiocb_private.status;
1435 			} else
1436 				uap->sysmsg_result = EFAULT;
1437 			if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
1438 				p->p_stats->p_ru.ru_oublock +=
1439 				    cb->outputcharge;
1440 				cb->outputcharge = 0;
1441 			} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
1442 				p->p_stats->p_ru.ru_inblock += cb->inputcharge;
1443 				cb->inputcharge = 0;
1444 			}
1445 			aio_free_entry(cb);
1446 			return 0;
1447 		}
1448 	}
1449 	s = splbio();
1450 	for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) {
1451 		ncb = TAILQ_NEXT(cb, plist);
1452 		if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo)
1453 		    == jobref) {
1454 			splx(s);
1455 			if (ujob == cb->uuaiocb) {
1456 				uap->sysmsg_result =
1457 				    cb->uaiocb._aiocb_private.status;
1458 			} else
1459 				uap->sysmsg_result = EFAULT;
1460 			aio_free_entry(cb);
1461 			return 0;
1462 		}
1463 	}
1464 	splx(s);
1465 
1466 	return (EINVAL);
1467 #endif /* VFS_AIO */
1468 }
1469 
1470 /*
1471  * Allow a process to wakeup when any of the I/O requests are completed.
1472  */
1473 int
1474 aio_suspend(struct aio_suspend_args *uap)
1475 {
1476 #ifndef VFS_AIO
1477 	return ENOSYS;
1478 #else
1479 	struct proc *p = curproc;
1480 	struct timeval atv;
1481 	struct timespec ts;
1482 	struct aiocb *const *cbptr, *cbp;
1483 	struct kaioinfo *ki;
1484 	struct aiocblist *cb;
1485 	int i;
1486 	int njoblist;
1487 	int error, s, timo;
1488 	long *ijoblist;
1489 	struct aiocb **ujoblist;
1490 
1491 	if (uap->nent > AIO_LISTIO_MAX)
1492 		return EINVAL;
1493 
1494 	timo = 0;
1495 	if (uap->timeout) {
1496 		/* Get timespec struct. */
1497 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
1498 			return error;
1499 
1500 		if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
1501 			return (EINVAL);
1502 
1503 		TIMESPEC_TO_TIMEVAL(&atv, &ts);
1504 		if (itimerfix(&atv))
1505 			return (EINVAL);
1506 		timo = tvtohz(&atv);
1507 	}
1508 
1509 	ki = p->p_aioinfo;
1510 	if (ki == NULL)
1511 		return EAGAIN;
1512 
1513 	njoblist = 0;
1514 	ijoblist = zalloc(aiol_zone);
1515 	ujoblist = zalloc(aiol_zone);
1516 	cbptr = uap->aiocbp;
1517 
1518 	for (i = 0; i < uap->nent; i++) {
1519 		cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
1520 		if (cbp == 0)
1521 			continue;
1522 		ujoblist[njoblist] = cbp;
1523 		ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo);
1524 		njoblist++;
1525 	}
1526 
1527 	if (njoblist == 0) {
1528 		zfree(aiol_zone, ijoblist);
1529 		zfree(aiol_zone, ujoblist);
1530 		return 0;
1531 	}
1532 
1533 	error = 0;
1534 	for (;;) {
1535 		TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1536 			for (i = 0; i < njoblist; i++) {
1537 				if (((intptr_t)
1538 				    cb->uaiocb._aiocb_private.kernelinfo) ==
1539 				    ijoblist[i]) {
1540 					if (ujoblist[i] != cb->uuaiocb)
1541 						error = EINVAL;
1542 					zfree(aiol_zone, ijoblist);
1543 					zfree(aiol_zone, ujoblist);
1544 					return error;
1545 				}
1546 			}
1547 		}
1548 
1549 		s = splbio();
1550 		for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb =
1551 		    TAILQ_NEXT(cb, plist)) {
1552 			for (i = 0; i < njoblist; i++) {
1553 				if (((intptr_t)
1554 				    cb->uaiocb._aiocb_private.kernelinfo) ==
1555 				    ijoblist[i]) {
1556 					splx(s);
1557 					if (ujoblist[i] != cb->uuaiocb)
1558 						error = EINVAL;
1559 					zfree(aiol_zone, ijoblist);
1560 					zfree(aiol_zone, ujoblist);
1561 					return error;
1562 				}
1563 			}
1564 		}
1565 
1566 		ki->kaio_flags |= KAIO_WAKEUP;
1567 		error = tsleep(p, PCATCH, "aiospn", timo);
1568 		splx(s);
1569 
1570 		if (error == ERESTART || error == EINTR) {
1571 			zfree(aiol_zone, ijoblist);
1572 			zfree(aiol_zone, ujoblist);
1573 			return EINTR;
1574 		} else if (error == EWOULDBLOCK) {
1575 			zfree(aiol_zone, ijoblist);
1576 			zfree(aiol_zone, ujoblist);
1577 			return EAGAIN;
1578 		}
1579 	}
1580 
1581 /* NOTREACHED */
1582 	return EINVAL;
1583 #endif /* VFS_AIO */
1584 }
1585 
1586 /*
1587  * aio_cancel cancels any non-physio aio operations not currently in
1588  * progress.
1589  */
1590 int
1591 aio_cancel(struct aio_cancel_args *uap)
1592 {
1593 #ifndef VFS_AIO
1594 	return ENOSYS;
1595 #else
1596 	struct proc *p = curproc;
1597 	struct kaioinfo *ki;
1598 	struct aiocblist *cbe, *cbn;
1599 	struct file *fp;
1600 	struct filedesc *fdp;
1601 	struct socket *so;
1602 	struct proc *po;
1603 	int s,error;
1604 	int cancelled=0;
1605 	int notcancelled=0;
1606 	struct vnode *vp;
1607 
1608 	fdp = p->p_fd;
1609 	if ((u_int)uap->fd >= fdp->fd_nfiles ||
1610 	    (fp = fdp->fd_ofiles[uap->fd]) == NULL)
1611 		return (EBADF);
1612 
1613         if (fp->f_type == DTYPE_VNODE) {
1614 		vp = (struct vnode *)fp->f_data;
1615 
1616 		if (vn_isdisk(vp,&error)) {
1617 			uap->sysmsg_result = AIO_NOTCANCELED;
1618         	        return 0;
1619 		}
1620 	} else if (fp->f_type == DTYPE_SOCKET) {
1621 		so = (struct socket *)fp->f_data;
1622 
1623 		s = splnet();
1624 
1625 		for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) {
1626 			cbn = TAILQ_NEXT(cbe, list);
1627 			if ((uap->aiocbp == NULL) ||
1628 				(uap->aiocbp == cbe->uuaiocb) ) {
1629 				po = cbe->userproc;
1630 				ki = po->p_aioinfo;
1631 				TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
1632 				TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist);
1633 				TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist);
1634 				if (ki->kaio_flags & KAIO_WAKEUP) {
1635 					wakeup(po);
1636 				}
1637 				cbe->jobstate = JOBST_JOBFINISHED;
1638 				cbe->uaiocb._aiocb_private.status=-1;
1639 				cbe->uaiocb._aiocb_private.error=ECANCELED;
1640 				cancelled++;
1641 /* XXX cancelled, knote? */
1642 			        if (cbe->uaiocb.aio_sigevent.sigev_notify ==
1643 				    SIGEV_SIGNAL)
1644 					psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo);
1645 				if (uap->aiocbp)
1646 					break;
1647 			}
1648 		}
1649 		splx(s);
1650 
1651 		if ((cancelled) && (uap->aiocbp)) {
1652 			uap->sysmsg_result = AIO_CANCELED;
1653 			return 0;
1654 		}
1655 	}
1656 	ki=p->p_aioinfo;
1657 	if (ki == NULL)
1658 		goto done;
1659 	s = splnet();
1660 
1661 	for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) {
1662 		cbn = TAILQ_NEXT(cbe, plist);
1663 
1664 		if ((uap->fd == cbe->uaiocb.aio_fildes) &&
1665 		    ((uap->aiocbp == NULL ) ||
1666 		     (uap->aiocbp == cbe->uuaiocb))) {
1667 
1668 			if (cbe->jobstate == JOBST_JOBQGLOBAL) {
1669 				TAILQ_REMOVE(&aio_jobs, cbe, list);
1670                                 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
1671                                 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe,
1672                                     plist);
1673 				cancelled++;
1674 				ki->kaio_queue_finished_count++;
1675 				cbe->jobstate = JOBST_JOBFINISHED;
1676 				cbe->uaiocb._aiocb_private.status = -1;
1677 				cbe->uaiocb._aiocb_private.error = ECANCELED;
1678 /* XXX cancelled, knote? */
1679 			        if (cbe->uaiocb.aio_sigevent.sigev_notify ==
1680 				    SIGEV_SIGNAL)
1681 					psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo);
1682 			} else {
1683 				notcancelled++;
1684 			}
1685 		}
1686 	}
1687 	splx(s);
1688 done:
1689 	if (notcancelled) {
1690 		uap->sysmsg_result = AIO_NOTCANCELED;
1691 		return 0;
1692 	}
1693 	if (cancelled) {
1694 		uap->sysmsg_result = AIO_CANCELED;
1695 		return 0;
1696 	}
1697 	uap->sysmsg_result = AIO_ALLDONE;
1698 
1699 	return 0;
1700 #endif /* VFS_AIO */
1701 }
1702 
1703 /*
1704  * aio_error is implemented in the kernel level for compatibility purposes only.
1705  * For a user mode async implementation, it would be best to do it in a userland
1706  * subroutine.
1707  */
1708 int
1709 aio_error(struct aio_error_args *uap)
1710 {
1711 #ifndef VFS_AIO
1712 	return ENOSYS;
1713 #else
1714 	struct proc *p = curproc;
1715 	int s;
1716 	struct aiocblist *cb;
1717 	struct kaioinfo *ki;
1718 	long jobref;
1719 
1720 	ki = p->p_aioinfo;
1721 	if (ki == NULL)
1722 		return EINVAL;
1723 
1724 	jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo);
1725 	if ((jobref == -1) || (jobref == 0))
1726 		return EINVAL;
1727 
1728 	TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1729 		if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1730 		    jobref) {
1731 			uap->sysmsg_result = cb->uaiocb._aiocb_private.error;
1732 			return 0;
1733 		}
1734 	}
1735 
1736 	s = splnet();
1737 
1738 	for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb,
1739 	    plist)) {
1740 		if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1741 		    jobref) {
1742 			uap->sysmsg_result = EINPROGRESS;
1743 			splx(s);
1744 			return 0;
1745 		}
1746 	}
1747 
1748 	for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb,
1749 	    plist)) {
1750 		if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1751 		    jobref) {
1752 			uap->sysmsg_result = EINPROGRESS;
1753 			splx(s);
1754 			return 0;
1755 		}
1756 	}
1757 	splx(s);
1758 
1759 	s = splbio();
1760 	for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb,
1761 	    plist)) {
1762 		if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1763 		    jobref) {
1764 			uap->sysmsg_result = cb->uaiocb._aiocb_private.error;
1765 			splx(s);
1766 			return 0;
1767 		}
1768 	}
1769 
1770 	for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb,
1771 	    plist)) {
1772 		if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1773 		    jobref) {
1774 			uap->sysmsg_result = EINPROGRESS;
1775 			splx(s);
1776 			return 0;
1777 		}
1778 	}
1779 	splx(s);
1780 
1781 #if (0)
1782 	/*
1783 	 * Hack for lio.
1784 	 */
1785 	status = fuword(&uap->aiocbp->_aiocb_private.status);
1786 	if (status == -1)
1787 		return fuword(&uap->aiocbp->_aiocb_private.error);
1788 #endif
1789 	return EINVAL;
1790 #endif /* VFS_AIO */
1791 }
1792 
1793 /* syscall - asynchronous read from a file (REALTIME) */
1794 int
1795 aio_read(struct aio_read_args *uap)
1796 {
1797 #ifndef VFS_AIO
1798 	return ENOSYS;
1799 #else
1800 	return aio_aqueue(uap->aiocbp, LIO_READ);
1801 #endif /* VFS_AIO */
1802 }
1803 
1804 /* syscall - asynchronous write to a file (REALTIME) */
1805 int
1806 aio_write(struct aio_write_args *uap)
1807 {
1808 #ifndef VFS_AIO
1809 	return ENOSYS;
1810 #else
1811 	return aio_aqueue(uap->aiocbp, LIO_WRITE);
1812 #endif /* VFS_AIO */
1813 }
1814 
1815 /* syscall - XXX undocumented */
1816 int
1817 lio_listio(struct lio_listio_args *uap)
1818 {
1819 #ifndef VFS_AIO
1820 	return ENOSYS;
1821 #else
1822 	struct proc *p = curproc;
1823 	int nent, nentqueued;
1824 	struct aiocb *iocb, * const *cbptr;
1825 	struct aiocblist *cb;
1826 	struct kaioinfo *ki;
1827 	struct aio_liojob *lj;
1828 	int error, runningcode;
1829 	int nerror;
1830 	int i;
1831 	int s;
1832 
1833 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
1834 		return EINVAL;
1835 
1836 	nent = uap->nent;
1837 	if (nent > AIO_LISTIO_MAX)
1838 		return EINVAL;
1839 
1840 	if (p->p_aioinfo == NULL)
1841 		aio_init_aioinfo(p);
1842 
1843 	if ((nent + num_queue_count) > max_queue_count)
1844 		return EAGAIN;
1845 
1846 	ki = p->p_aioinfo;
1847 	if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count)
1848 		return EAGAIN;
1849 
1850 	lj = zalloc(aiolio_zone);
1851 	if (!lj)
1852 		return EAGAIN;
1853 
1854 	lj->lioj_flags = 0;
1855 	lj->lioj_buffer_count = 0;
1856 	lj->lioj_buffer_finished_count = 0;
1857 	lj->lioj_queue_count = 0;
1858 	lj->lioj_queue_finished_count = 0;
1859 	lj->lioj_ki = ki;
1860 
1861 	/*
1862 	 * Setup signal.
1863 	 */
1864 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
1865 		error = copyin(uap->sig, &lj->lioj_signal,
1866 		    sizeof(lj->lioj_signal));
1867 		if (error) {
1868 			zfree(aiolio_zone, lj);
1869 			return error;
1870 		}
1871 		if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
1872 			zfree(aiolio_zone, lj);
1873 			return EINVAL;
1874 		}
1875 		lj->lioj_flags |= LIOJ_SIGNAL;
1876 		lj->lioj_flags &= ~LIOJ_SIGNAL_POSTED;
1877 	} else
1878 		lj->lioj_flags &= ~LIOJ_SIGNAL;
1879 
1880 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
1881 	/*
1882 	 * Get pointers to the list of I/O requests.
1883 	 */
1884 	nerror = 0;
1885 	nentqueued = 0;
1886 	cbptr = uap->acb_list;
1887 	for (i = 0; i < uap->nent; i++) {
1888 		iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
1889 		if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) {
1890 			error = _aio_aqueue(iocb, lj, 0);
1891 			if (error == 0)
1892 				nentqueued++;
1893 			else
1894 				nerror++;
1895 		}
1896 	}
1897 
1898 	/*
1899 	 * If we haven't queued any, then just return error.
1900 	 */
1901 	if (nentqueued == 0)
1902 		return 0;
1903 
1904 	/*
1905 	 * Calculate the appropriate error return.
1906 	 */
1907 	runningcode = 0;
1908 	if (nerror)
1909 		runningcode = EIO;
1910 
1911 	if (uap->mode == LIO_WAIT) {
1912 		int command, found, jobref;
1913 
1914 		for (;;) {
1915 			found = 0;
1916 			for (i = 0; i < uap->nent; i++) {
1917 				/*
1918 				 * Fetch address of the control buf pointer in
1919 				 * user space.
1920 				 */
1921 				iocb = (struct aiocb *)
1922 				    (intptr_t)fuword(&cbptr[i]);
1923 				if (((intptr_t)iocb == -1) || ((intptr_t)iocb
1924 				    == 0))
1925 					continue;
1926 
1927 				/*
1928 				 * Fetch the associated command from user space.
1929 				 */
1930 				command = fuword(&iocb->aio_lio_opcode);
1931 				if (command == LIO_NOP) {
1932 					found++;
1933 					continue;
1934 				}
1935 
1936 				jobref = fuword(&iocb->_aiocb_private.kernelinfo);
1937 
1938 				TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1939 					if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo)
1940 					    == jobref) {
1941 						if (cb->uaiocb.aio_lio_opcode
1942 						    == LIO_WRITE) {
1943 							p->p_stats->p_ru.ru_oublock
1944 							    +=
1945 							    cb->outputcharge;
1946 							cb->outputcharge = 0;
1947 						} else if (cb->uaiocb.aio_lio_opcode
1948 						    == LIO_READ) {
1949 							p->p_stats->p_ru.ru_inblock
1950 							    += cb->inputcharge;
1951 							cb->inputcharge = 0;
1952 						}
1953 						found++;
1954 						break;
1955 					}
1956 				}
1957 
1958 				s = splbio();
1959 				TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) {
1960 					if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo)
1961 					    == jobref) {
1962 						found++;
1963 						break;
1964 					}
1965 				}
1966 				splx(s);
1967 			}
1968 
1969 			/*
1970 			 * If all I/Os have been disposed of, then we can
1971 			 * return.
1972 			 */
1973 			if (found == nentqueued)
1974 				return runningcode;
1975 
1976 			ki->kaio_flags |= KAIO_WAKEUP;
1977 			error = tsleep(p, PCATCH, "aiospn", 0);
1978 
1979 			if (error == EINTR)
1980 				return EINTR;
1981 			else if (error == EWOULDBLOCK)
1982 				return EAGAIN;
1983 		}
1984 	}
1985 
1986 	return runningcode;
1987 #endif /* VFS_AIO */
1988 }
1989 
1990 #ifdef VFS_AIO
1991 /*
1992  * This is a weird hack so that we can post a signal.  It is safe to do so from
1993  * a timeout routine, but *not* from an interrupt routine.
1994  */
1995 static void
1996 process_signal(void *aioj)
1997 {
1998 	struct aiocblist *aiocbe = aioj;
1999 	struct aio_liojob *lj = aiocbe->lio;
2000 	struct aiocb *cb = &aiocbe->uaiocb;
2001 
2002 	if ((lj) && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) &&
2003 	    (lj->lioj_queue_count == lj->lioj_queue_finished_count)) {
2004 		psignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo);
2005 		lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2006 	}
2007 
2008 	if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL)
2009 		psignal(aiocbe->userproc, cb->aio_sigevent.sigev_signo);
2010 }
2011 
2012 /*
2013  * Interrupt handler for physio, performs the necessary process wakeups, and
2014  * signals.
2015  */
2016 static void
2017 aio_physwakeup(struct buf *bp)
2018 {
2019 	struct aiocblist *aiocbe;
2020 	struct proc *p;
2021 	struct kaioinfo *ki;
2022 	struct aio_liojob *lj;
2023 
2024 	wakeup(bp);
2025 
2026 	aiocbe = (struct aiocblist *)bp->b_spc;
2027 	if (aiocbe) {
2028 		p = bp->b_caller1;
2029 
2030 		aiocbe->jobstate = JOBST_JOBBFINISHED;
2031 		aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
2032 		aiocbe->uaiocb._aiocb_private.error = 0;
2033 		aiocbe->jobflags |= AIOCBLIST_DONE;
2034 
2035 		if (bp->b_flags & B_ERROR)
2036 			aiocbe->uaiocb._aiocb_private.error = bp->b_error;
2037 
2038 		lj = aiocbe->lio;
2039 		if (lj) {
2040 			lj->lioj_buffer_finished_count++;
2041 
2042 			/*
2043 			 * wakeup/signal if all of the interrupt jobs are done.
2044 			 */
2045 			if (lj->lioj_buffer_finished_count ==
2046 			    lj->lioj_buffer_count) {
2047 				/*
2048 				 * Post a signal if it is called for.
2049 				 */
2050 				if ((lj->lioj_flags &
2051 				    (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) ==
2052 				    LIOJ_SIGNAL) {
2053 					lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2054 					aiocbe->timeouthandle =
2055 						timeout(process_signal,
2056 							aiocbe, 0);
2057 				}
2058 			}
2059 		}
2060 
2061 		ki = p->p_aioinfo;
2062 		if (ki) {
2063 			ki->kaio_buffer_finished_count++;
2064 			TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
2065 			TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
2066 			TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
2067 
2068 			KNOTE(&aiocbe->klist, 0);
2069 			/* Do the wakeup. */
2070 			if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) {
2071 				ki->kaio_flags &= ~KAIO_WAKEUP;
2072 				wakeup(p);
2073 			}
2074 		}
2075 
2076 		if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL)
2077 			aiocbe->timeouthandle =
2078 				timeout(process_signal, aiocbe, 0);
2079 	}
2080 }
2081 #endif /* VFS_AIO */
2082 
2083 /* syscall - wait for the next completion of an aio request */
2084 int
2085 aio_waitcomplete(struct aio_waitcomplete_args *uap)
2086 {
2087 #ifndef VFS_AIO
2088 	return ENOSYS;
2089 #else
2090 	struct proc *p = curproc;
2091 	struct timeval atv;
2092 	struct timespec ts;
2093 	struct kaioinfo *ki;
2094 	struct aiocblist *cb = NULL;
2095 	int error, s, timo;
2096 
2097 	suword(uap->aiocbp, (int)NULL);
2098 
2099 	timo = 0;
2100 	if (uap->timeout) {
2101 		/* Get timespec struct. */
2102 		error = copyin(uap->timeout, &ts, sizeof(ts));
2103 		if (error)
2104 			return error;
2105 
2106 		if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000))
2107 			return (EINVAL);
2108 
2109 		TIMESPEC_TO_TIMEVAL(&atv, &ts);
2110 		if (itimerfix(&atv))
2111 			return (EINVAL);
2112 		timo = tvtohz(&atv);
2113 	}
2114 
2115 	ki = p->p_aioinfo;
2116 	if (ki == NULL)
2117 		return EAGAIN;
2118 
2119 	for (;;) {
2120 		if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) {
2121 			suword(uap->aiocbp, (uintptr_t)cb->uuaiocb);
2122 			uap->sysmsg_result = cb->uaiocb._aiocb_private.status;
2123 			if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
2124 				p->p_stats->p_ru.ru_oublock +=
2125 				    cb->outputcharge;
2126 				cb->outputcharge = 0;
2127 			} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
2128 				p->p_stats->p_ru.ru_inblock += cb->inputcharge;
2129 				cb->inputcharge = 0;
2130 			}
2131 			aio_free_entry(cb);
2132 			return cb->uaiocb._aiocb_private.error;
2133 		}
2134 
2135 		s = splbio();
2136  		if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) {
2137 			splx(s);
2138 			suword(uap->aiocbp, (uintptr_t)cb->uuaiocb);
2139 			uap->sysmsg_result = cb->uaiocb._aiocb_private.status;
2140 			aio_free_entry(cb);
2141 			return cb->uaiocb._aiocb_private.error;
2142 		}
2143 
2144 		ki->kaio_flags |= KAIO_WAKEUP;
2145 		error = tsleep(p, PCATCH, "aiowc", timo);
2146 		splx(s);
2147 
2148 		if (error == ERESTART)
2149 			return EINTR;
2150 		else if (error < 0)
2151 			return error;
2152 		else if (error == EINTR)
2153 			return EINTR;
2154 		else if (error == EWOULDBLOCK)
2155 			return EAGAIN;
2156 	}
2157 #endif /* VFS_AIO */
2158 }
2159 
2160 #ifndef VFS_AIO
2161 static int
2162 filt_aioattach(struct knote *kn)
2163 {
2164 
2165 	return (ENXIO);
2166 }
2167 
2168 struct filterops aio_filtops =
2169 	{ 0, filt_aioattach, NULL, NULL };
2170 
2171 #else
2172 /* kqueue attach function */
2173 static int
2174 filt_aioattach(struct knote *kn)
2175 {
2176 	struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2177 
2178 	/*
2179 	 * The aiocbe pointer must be validated before using it, so
2180 	 * registration is restricted to the kernel; the user cannot
2181 	 * set EV_FLAG1.
2182 	 */
2183 	if ((kn->kn_flags & EV_FLAG1) == 0)
2184 		return (EPERM);
2185 	kn->kn_flags &= ~EV_FLAG1;
2186 
2187 	SLIST_INSERT_HEAD(&aiocbe->klist, kn, kn_selnext);
2188 
2189 	return (0);
2190 }
2191 
2192 /* kqueue detach function */
2193 static void
2194 filt_aiodetach(struct knote *kn)
2195 {
2196 	struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2197 
2198 	SLIST_REMOVE(&aiocbe->klist, kn, knote, kn_selnext);
2199 }
2200 
2201 /* kqueue filter function */
2202 /*ARGSUSED*/
2203 static int
2204 filt_aio(struct knote *kn, long hint)
2205 {
2206 	struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2207 
2208 	kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
2209 	if (aiocbe->jobstate != JOBST_JOBFINISHED &&
2210 	    aiocbe->jobstate != JOBST_JOBBFINISHED)
2211 		return (0);
2212 	kn->kn_flags |= EV_EOF;
2213 	return (1);
2214 }
2215 
2216 struct filterops aio_filtops =
2217 	{ 0, filt_aioattach, filt_aiodetach, filt_aio };
2218 #endif /* VFS_AIO */
2219