xref: /dragonfly/sys/kern/vfs_aio.c (revision a68e0df0)
1 /*
2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. John S. Dyson's name may not be used to endorse or promote products
10  *    derived from this software without specific prior written permission.
11  *
12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
13  * bad that happens because of using this software isn't the responsibility
14  * of the author.  This software is distributed AS-IS.
15  *
16  * $FreeBSD: src/sys/kern/vfs_aio.c,v 1.70.2.28 2003/05/29 06:15:35 alc Exp $
17  * $DragonFly: src/sys/kern/vfs_aio.c,v 1.42 2007/07/20 17:21:52 dillon Exp $
18  */
19 
20 /*
21  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
22  */
23 
24 #include <sys/param.h>
25 #include <sys/systm.h>
26 #include <sys/buf.h>
27 #include <sys/sysproto.h>
28 #include <sys/filedesc.h>
29 #include <sys/kernel.h>
30 #include <sys/fcntl.h>
31 #include <sys/file.h>
32 #include <sys/lock.h>
33 #include <sys/unistd.h>
34 #include <sys/proc.h>
35 #include <sys/resourcevar.h>
36 #include <sys/signalvar.h>
37 #include <sys/protosw.h>
38 #include <sys/socketvar.h>
39 #include <sys/sysctl.h>
40 #include <sys/vnode.h>
41 #include <sys/conf.h>
42 #include <sys/event.h>
43 
44 #include <vm/vm.h>
45 #include <vm/vm_extern.h>
46 #include <vm/pmap.h>
47 #include <vm/vm_map.h>
48 #include <vm/vm_zone.h>
49 #include <sys/aio.h>
50 
51 #include <sys/file2.h>
52 #include <sys/buf2.h>
53 #include <sys/sysref2.h>
54 #include <sys/thread2.h>
55 #include <sys/mplock2.h>
56 
57 #include <machine/limits.h>
58 #include "opt_vfs_aio.h"
59 
60 #ifdef VFS_AIO
61 
62 /*
63  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
64  * overflow.
65  */
66 static	long jobrefid;
67 
68 #define JOBST_NULL		0x0
69 #define JOBST_JOBQGLOBAL	0x2
70 #define JOBST_JOBRUNNING	0x3
71 #define JOBST_JOBFINISHED	0x4
72 #define	JOBST_JOBQBUF		0x5
73 #define	JOBST_JOBBFINISHED	0x6
74 
75 #ifndef MAX_AIO_PER_PROC
76 #define MAX_AIO_PER_PROC	32
77 #endif
78 
79 #ifndef MAX_AIO_QUEUE_PER_PROC
80 #define MAX_AIO_QUEUE_PER_PROC	256 /* Bigger than AIO_LISTIO_MAX */
81 #endif
82 
83 #ifndef MAX_AIO_PROCS
84 #define MAX_AIO_PROCS		32
85 #endif
86 
87 #ifndef MAX_AIO_QUEUE
88 #define	MAX_AIO_QUEUE		1024 /* Bigger than AIO_LISTIO_MAX */
89 #endif
90 
91 #ifndef TARGET_AIO_PROCS
92 #define TARGET_AIO_PROCS	4
93 #endif
94 
95 #ifndef MAX_BUF_AIO
96 #define MAX_BUF_AIO		16
97 #endif
98 
99 #ifndef AIOD_TIMEOUT_DEFAULT
100 #define	AIOD_TIMEOUT_DEFAULT	(10 * hz)
101 #endif
102 
103 #ifndef AIOD_LIFETIME_DEFAULT
104 #define AIOD_LIFETIME_DEFAULT	(30 * hz)
105 #endif
106 
107 SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
108 
109 static int max_aio_procs = MAX_AIO_PROCS;
110 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
111 	CTLFLAG_RW, &max_aio_procs, 0,
112 	"Maximum number of kernel threads to use for handling async IO");
113 
114 static int num_aio_procs = 0;
115 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
116 	CTLFLAG_RD, &num_aio_procs, 0,
117 	"Number of presently active kernel threads for async IO");
118 
119 /*
120  * The code will adjust the actual number of AIO processes towards this
121  * number when it gets a chance.
122  */
123 static int target_aio_procs = TARGET_AIO_PROCS;
124 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
125 	0, "Preferred number of ready kernel threads for async IO");
126 
127 static int max_queue_count = MAX_AIO_QUEUE;
128 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
129     "Maximum number of aio requests to queue, globally");
130 
131 static int num_queue_count = 0;
132 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
133     "Number of queued aio requests");
134 
135 static int num_buf_aio = 0;
136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
137     "Number of aio requests presently handled by the buf subsystem");
138 
139 /* Number of async I/O thread in the process of being started */
140 /* XXX This should be local to _aio_aqueue() */
141 static int num_aio_resv_start = 0;
142 
143 static int aiod_timeout;
144 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
145     "Timeout value for synchronous aio operations");
146 
147 static int aiod_lifetime;
148 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
149     "Maximum lifetime for idle aiod");
150 
151 static int max_aio_per_proc = MAX_AIO_PER_PROC;
152 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
153     0, "Maximum active aio requests per process (stored in the process)");
154 
155 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
157     &max_aio_queue_per_proc, 0,
158     "Maximum queued aio requests per process (stored in the process)");
159 
160 static int max_buf_aio = MAX_BUF_AIO;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
162     "Maximum buf aio requests per process (stored in the process)");
163 
164 /*
165  * AIO process info
166  */
167 #define AIOP_FREE	0x1			/* proc on free queue */
168 #define AIOP_SCHED	0x2			/* proc explicitly scheduled */
169 
170 struct aioproclist {
171 	int aioprocflags;			/* AIO proc flags */
172 	TAILQ_ENTRY(aioproclist) list;		/* List of processes */
173 	struct proc *aioproc;			/* The AIO thread */
174 };
175 
176 /*
177  * data-structure for lio signal management
178  */
179 struct aio_liojob {
180 	int	lioj_flags;
181 	int	lioj_buffer_count;
182 	int	lioj_buffer_finished_count;
183 	int	lioj_queue_count;
184 	int	lioj_queue_finished_count;
185 	struct	sigevent lioj_signal;	/* signal on all I/O done */
186 	TAILQ_ENTRY(aio_liojob) lioj_list;
187 	struct	kaioinfo *lioj_ki;
188 };
189 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
190 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
191 
192 /*
193  * per process aio data structure
194  */
195 struct kaioinfo {
196 	int	kaio_flags;		/* per process kaio flags */
197 	int	kaio_maxactive_count;	/* maximum number of AIOs */
198 	int	kaio_active_count;	/* number of currently used AIOs */
199 	int	kaio_qallowed_count;	/* maxiumu size of AIO queue */
200 	int	kaio_queue_count;	/* size of AIO queue */
201 	int	kaio_ballowed_count;	/* maximum number of buffers */
202 	int	kaio_queue_finished_count; /* number of daemon jobs finished */
203 	int	kaio_buffer_count;	/* number of physio buffers */
204 	int	kaio_buffer_finished_count; /* count of I/O done */
205 	struct 	proc *kaio_p;		/* process that uses this kaio block */
206 	TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */
207 	TAILQ_HEAD(,aiocblist) kaio_jobqueue;	/* job queue for process */
208 	TAILQ_HEAD(,aiocblist) kaio_jobdone;	/* done queue for process */
209 	TAILQ_HEAD(,aiocblist) kaio_bufqueue;	/* buffer job queue for process */
210 	TAILQ_HEAD(,aiocblist) kaio_bufdone;	/* buffer done queue for process */
211 	TAILQ_HEAD(,aiocblist) kaio_sockqueue;	/* queue for aios waiting on sockets */
212 };
213 
214 #define KAIO_RUNDOWN	0x1	/* process is being run down */
215 #define KAIO_WAKEUP	0x2	/* wakeup process when there is a significant event */
216 
217 static TAILQ_HEAD(,aioproclist) aio_freeproc, aio_activeproc;
218 static TAILQ_HEAD(,aiocblist) aio_jobs;			/* Async job list */
219 static TAILQ_HEAD(,aiocblist) aio_bufjobs;		/* Phys I/O job list */
220 static TAILQ_HEAD(,aiocblist) aio_freejobs;		/* Pool of free jobs */
221 
222 static void	aio_init_aioinfo(struct proc *p);
223 static void	aio_onceonly(void *);
224 static int	aio_free_entry(struct aiocblist *aiocbe);
225 static void	aio_process(struct aiocblist *aiocbe);
226 static int	aio_newproc(void);
227 static int	aio_aqueue(struct aiocb *job, int type);
228 static void	aio_physwakeup(struct bio *bio);
229 static int	aio_fphysio(struct aiocblist *aiocbe);
230 static int	aio_qphysio(struct proc *p, struct aiocblist *iocb);
231 static void	aio_daemon(void *uproc, struct trapframe *frame);
232 static void	process_signal(void *aioj);
233 
234 SYSINIT(aio, SI_SUB_VFS, SI_ORDER_ANY, aio_onceonly, NULL);
235 
236 /*
237  * Zones for:
238  * 	kaio	Per process async io info
239  *	aiop	async io thread data
240  *	aiocb	async io jobs
241  *	aiol	list io job pointer - internal to aio_suspend XXX
242  *	aiolio	list io jobs
243  */
244 static vm_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
245 
246 /*
247  * Startup initialization
248  */
249 static void
250 aio_onceonly(void *na)
251 {
252 	TAILQ_INIT(&aio_freeproc);
253 	TAILQ_INIT(&aio_activeproc);
254 	TAILQ_INIT(&aio_jobs);
255 	TAILQ_INIT(&aio_bufjobs);
256 	TAILQ_INIT(&aio_freejobs);
257 	kaio_zone = zinit("AIO", sizeof(struct kaioinfo), 0, 0, 1);
258 	aiop_zone = zinit("AIOP", sizeof(struct aioproclist), 0, 0, 1);
259 	aiocb_zone = zinit("AIOCB", sizeof(struct aiocblist), 0, 0, 1);
260 	aiol_zone = zinit("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t), 0, 0, 1);
261 	aiolio_zone = zinit("AIOLIO", sizeof(struct aio_liojob), 0, 0, 1);
262 	aiod_timeout = AIOD_TIMEOUT_DEFAULT;
263 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
264 	jobrefid = 1;
265 }
266 
267 /*
268  * Init the per-process aioinfo structure.  The aioinfo limits are set
269  * per-process for user limit (resource) management.
270  */
271 static void
272 aio_init_aioinfo(struct proc *p)
273 {
274 	struct kaioinfo *ki;
275 	if (p->p_aioinfo == NULL) {
276 		ki = zalloc(kaio_zone);
277 		p->p_aioinfo = ki;
278 		ki->kaio_flags = 0;
279 		ki->kaio_maxactive_count = max_aio_per_proc;
280 		ki->kaio_active_count = 0;
281 		ki->kaio_qallowed_count = max_aio_queue_per_proc;
282 		ki->kaio_queue_count = 0;
283 		ki->kaio_ballowed_count = max_buf_aio;
284 		ki->kaio_buffer_count = 0;
285 		ki->kaio_buffer_finished_count = 0;
286 		ki->kaio_p = p;
287 		TAILQ_INIT(&ki->kaio_jobdone);
288 		TAILQ_INIT(&ki->kaio_jobqueue);
289 		TAILQ_INIT(&ki->kaio_bufdone);
290 		TAILQ_INIT(&ki->kaio_bufqueue);
291 		TAILQ_INIT(&ki->kaio_liojoblist);
292 		TAILQ_INIT(&ki->kaio_sockqueue);
293 	}
294 
295 	while (num_aio_procs < target_aio_procs)
296 		aio_newproc();
297 }
298 
299 /*
300  * Free a job entry.  Wait for completion if it is currently active, but don't
301  * delay forever.  If we delay, we return a flag that says that we have to
302  * restart the queue scan.
303  */
304 static int
305 aio_free_entry(struct aiocblist *aiocbe)
306 {
307 	struct kaioinfo *ki;
308 	struct aio_liojob *lj;
309 	struct proc *p;
310 	int error;
311 
312 	if (aiocbe->jobstate == JOBST_NULL)
313 		panic("aio_free_entry: freeing already free job");
314 
315 	p = aiocbe->userproc;
316 	ki = p->p_aioinfo;
317 	lj = aiocbe->lio;
318 	if (ki == NULL)
319 		panic("aio_free_entry: missing p->p_aioinfo");
320 
321 	while (aiocbe->jobstate == JOBST_JOBRUNNING) {
322 		aiocbe->jobflags |= AIOCBLIST_RUNDOWN;
323 		tsleep(aiocbe, 0, "jobwai", 0);
324 	}
325 	if (aiocbe->bp == NULL) {
326 		if (ki->kaio_queue_count <= 0)
327 			panic("aio_free_entry: process queue size <= 0");
328 		if (num_queue_count <= 0)
329 			panic("aio_free_entry: system wide queue size <= 0");
330 
331 		if (lj) {
332 			lj->lioj_queue_count--;
333 			if (aiocbe->jobflags & AIOCBLIST_DONE)
334 				lj->lioj_queue_finished_count--;
335 		}
336 		ki->kaio_queue_count--;
337 		if (aiocbe->jobflags & AIOCBLIST_DONE)
338 			ki->kaio_queue_finished_count--;
339 		num_queue_count--;
340 	} else {
341 		if (lj) {
342 			lj->lioj_buffer_count--;
343 			if (aiocbe->jobflags & AIOCBLIST_DONE)
344 				lj->lioj_buffer_finished_count--;
345 		}
346 		if (aiocbe->jobflags & AIOCBLIST_DONE)
347 			ki->kaio_buffer_finished_count--;
348 		ki->kaio_buffer_count--;
349 		num_buf_aio--;
350 	}
351 
352 	/* aiocbe is going away, we need to destroy any knotes */
353 	/* XXX lwp knote wants a thread, but only cares about the process */
354 	knote_remove(&aiocbe->klist);
355 
356 	if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN)
357 	    && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) {
358 		ki->kaio_flags &= ~KAIO_WAKEUP;
359 		wakeup(p);
360 	}
361 
362 	if (aiocbe->jobstate == JOBST_JOBQBUF) {
363 		if ((error = aio_fphysio(aiocbe)) != 0)
364 			return error;
365 		if (aiocbe->jobstate != JOBST_JOBBFINISHED)
366 			panic("aio_free_entry: invalid physio finish-up state");
367 		crit_enter();
368 		TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
369 		crit_exit();
370 	} else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) {
371 		crit_enter();
372 		TAILQ_REMOVE(&aio_jobs, aiocbe, list);
373 		TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
374 		crit_exit();
375 	} else if (aiocbe->jobstate == JOBST_JOBFINISHED)
376 		TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist);
377 	else if (aiocbe->jobstate == JOBST_JOBBFINISHED) {
378 		crit_enter();
379 		TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
380 		crit_exit();
381 		if (aiocbe->bp) {
382 			vunmapbuf(aiocbe->bp);
383 			relpbuf(aiocbe->bp, NULL);
384 			aiocbe->bp = NULL;
385 		}
386 	}
387 	if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) {
388 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
389 		zfree(aiolio_zone, lj);
390 	}
391 	aiocbe->jobstate = JOBST_NULL;
392 	callout_stop(&aiocbe->timeout);
393 	fdrop(aiocbe->fd_file);
394 	TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
395 	return 0;
396 }
397 #endif /* VFS_AIO */
398 
399 /*
400  * Rundown the jobs for a given process.
401  */
402 void
403 aio_proc_rundown(struct proc *p)
404 {
405 #ifndef VFS_AIO
406 	return;
407 #else
408 	struct kaioinfo *ki;
409 	struct aio_liojob *lj, *ljn;
410 	struct aiocblist *aiocbe, *aiocbn;
411 	struct file *fp;
412 	struct socket *so;
413 
414 	ki = p->p_aioinfo;
415 	if (ki == NULL)
416 		return;
417 
418 	ki->kaio_flags |= LIOJ_SIGNAL_POSTED;
419 	while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count >
420 	    ki->kaio_buffer_finished_count)) {
421 		ki->kaio_flags |= KAIO_RUNDOWN;
422 		if (tsleep(p, 0, "kaiowt", aiod_timeout))
423 			break;
424 	}
425 
426 	/*
427 	 * Move any aio ops that are waiting on socket I/O to the normal job
428 	 * queues so they are cleaned up with any others.
429 	 */
430 	crit_enter();
431 	for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe =
432 	    aiocbn) {
433 		aiocbn = TAILQ_NEXT(aiocbe, plist);
434 		fp = aiocbe->fd_file;
435 		if (fp != NULL) {
436 			so = (struct socket *)fp->f_data;
437 			TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list);
438 			if (TAILQ_EMPTY(&so->so_aiojobq)) {
439 				so->so_snd.ssb_flags &= ~SSB_AIO;
440 				so->so_rcv.ssb_flags &= ~SSB_AIO;
441 			}
442 		}
443 		TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist);
444 		TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list);
445 		TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist);
446 	}
447 	crit_exit();
448 
449 restart1:
450 	for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) {
451 		aiocbn = TAILQ_NEXT(aiocbe, plist);
452 		if (aio_free_entry(aiocbe))
453 			goto restart1;
454 	}
455 
456 restart2:
457 	for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe =
458 	    aiocbn) {
459 		aiocbn = TAILQ_NEXT(aiocbe, plist);
460 		if (aio_free_entry(aiocbe))
461 			goto restart2;
462 	}
463 
464 restart3:
465 	crit_enter();
466 	while (TAILQ_FIRST(&ki->kaio_bufqueue)) {
467 		ki->kaio_flags |= KAIO_WAKEUP;
468 		tsleep(p, 0, "aioprn", 0);
469 		crit_exit();
470 		goto restart3;
471 	}
472 	crit_exit();
473 
474 restart4:
475 	crit_enter();
476 	for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) {
477 		aiocbn = TAILQ_NEXT(aiocbe, plist);
478 		if (aio_free_entry(aiocbe)) {
479 			crit_exit();
480 			goto restart4;
481 		}
482 	}
483 	crit_exit();
484 
485         /*
486          * If we've slept, jobs might have moved from one queue to another.
487          * Retry rundown if we didn't manage to empty the queues.
488          */
489         if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL ||
490 	    TAILQ_FIRST(&ki->kaio_jobqueue) != NULL ||
491 	    TAILQ_FIRST(&ki->kaio_bufqueue) != NULL ||
492 	    TAILQ_FIRST(&ki->kaio_bufdone) != NULL)
493 		goto restart1;
494 
495 	for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) {
496 		ljn = TAILQ_NEXT(lj, lioj_list);
497 		if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count ==
498 		    0)) {
499 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
500 			zfree(aiolio_zone, lj);
501 		} else {
502 #ifdef DIAGNOSTIC
503 			kprintf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, "
504 			    "QF:%d\n", lj->lioj_buffer_count,
505 			    lj->lioj_buffer_finished_count,
506 			    lj->lioj_queue_count,
507 			    lj->lioj_queue_finished_count);
508 #endif
509 		}
510 	}
511 
512 	zfree(kaio_zone, ki);
513 	p->p_aioinfo = NULL;
514 #endif /* VFS_AIO */
515 }
516 
517 #ifdef VFS_AIO
518 /*
519  * Select a job to run (called by an AIO daemon).
520  */
521 static struct aiocblist *
522 aio_selectjob(struct aioproclist *aiop)
523 {
524 	struct aiocblist *aiocbe;
525 	struct kaioinfo *ki;
526 	struct proc *userp;
527 
528 	crit_enter();
529 	for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe =
530 	    TAILQ_NEXT(aiocbe, list)) {
531 		userp = aiocbe->userproc;
532 		ki = userp->p_aioinfo;
533 
534 		if (ki->kaio_active_count < ki->kaio_maxactive_count) {
535 			TAILQ_REMOVE(&aio_jobs, aiocbe, list);
536 			crit_exit();
537 			return aiocbe;
538 		}
539 	}
540 	crit_exit();
541 
542 	return NULL;
543 }
544 
545 /*
546  * The AIO processing activity.  This is the code that does the I/O request for
547  * the non-physio version of the operations.  The normal vn operations are used,
548  * and this code should work in all instances for every type of file, including
549  * pipes, sockets, fifos, and regular files.
550  */
551 static void
552 aio_process(struct aiocblist *aiocbe)
553 {
554 	struct thread *mytd;
555 	struct aiocb *cb;
556 	struct file *fp;
557 	struct uio auio;
558 	struct iovec aiov;
559 	int cnt;
560 	int error;
561 	int oublock_st, oublock_end;
562 	int inblock_st, inblock_end;
563 
564 	mytd = curthread;
565 	cb = &aiocbe->uaiocb;
566 	fp = aiocbe->fd_file;
567 
568 	aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
569 	aiov.iov_len = cb->aio_nbytes;
570 
571 	auio.uio_iov = &aiov;
572 	auio.uio_iovcnt = 1;
573 	auio.uio_offset = cb->aio_offset;
574 	auio.uio_resid = cb->aio_nbytes;
575 	cnt = cb->aio_nbytes;
576 	auio.uio_segflg = UIO_USERSPACE;
577 	auio.uio_td = mytd;
578 
579 	inblock_st = mytd->td_lwp->lwp_ru.ru_inblock;
580 	oublock_st = mytd->td_lwp->lwp_ru.ru_oublock;
581 	/*
582 	 * _aio_aqueue() acquires a reference to the file that is
583 	 * released in aio_free_entry().
584 	 */
585 	if (cb->aio_lio_opcode == LIO_READ) {
586 		auio.uio_rw = UIO_READ;
587 		error = fo_read(fp, &auio, fp->f_cred, O_FOFFSET);
588 	} else {
589 		auio.uio_rw = UIO_WRITE;
590 		error = fo_write(fp, &auio, fp->f_cred, O_FOFFSET);
591 	}
592 	inblock_end = mytd->td_lwp->lwp_ru.ru_inblock;
593 	oublock_end = mytd->td_lwp->lwp_ru.ru_oublock;
594 
595 	aiocbe->inputcharge = inblock_end - inblock_st;
596 	aiocbe->outputcharge = oublock_end - oublock_st;
597 
598 	if ((error) && (auio.uio_resid != cnt)) {
599 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
600 			error = 0;
601 		if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE))
602 			ksignal(aiocbe->userproc, SIGPIPE);
603 	}
604 
605 	cnt -= auio.uio_resid;
606 	cb->_aiocb_private.error = error;
607 	cb->_aiocb_private.status = cnt;
608 }
609 
610 /*
611  * The AIO daemon, most of the actual work is done in aio_process,
612  * but the setup (and address space mgmt) is done in this routine.
613  *
614  * The MP lock is held on entry.
615  */
616 static void
617 aio_daemon(void *uproc, struct trapframe *frame)
618 {
619 	struct aio_liojob *lj;
620 	struct aiocb *cb;
621 	struct aiocblist *aiocbe;
622 	struct aioproclist *aiop;
623 	struct kaioinfo *ki;
624 	struct proc *mycp, *userp;
625 	struct vmspace *curvm;
626 	struct lwp *mylwp;
627 	struct ucred *cr;
628 
629 	mylwp = curthread->td_lwp;
630 	mycp = mylwp->lwp_proc;
631 
632 	if (mycp->p_textvp) {
633 		vrele(mycp->p_textvp);
634 		mycp->p_textvp = NULL;
635 	}
636 
637 	/*
638 	 * Allocate and ready the aio control info.  There is one aiop structure
639 	 * per daemon.
640 	 */
641 	aiop = zalloc(aiop_zone);
642 	aiop->aioproc = mycp;
643 	aiop->aioprocflags |= AIOP_FREE;
644 
645 	crit_enter();
646 
647 	/*
648 	 * Place thread (lightweight process) onto the AIO free thread list.
649 	 */
650 	if (TAILQ_EMPTY(&aio_freeproc))
651 		wakeup(&aio_freeproc);
652 	TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
653 
654 	crit_exit();
655 
656 	/* Make up a name for the daemon. */
657 	strcpy(mycp->p_comm, "aiod");
658 
659 	/*
660 	 * Get rid of our current filedescriptors.  AIOD's don't need any
661 	 * filedescriptors, except as temporarily inherited from the client.
662 	 * Credentials are also cloned, and made equivalent to "root".
663 	 */
664 	fdfree(mycp, NULL);
665 	cr = cratom(&mycp->p_ucred);
666 	cr->cr_uid = 0;
667 	uireplace(&cr->cr_uidinfo, uifind(0));
668 	cr->cr_ngroups = 1;
669 	cr->cr_groups[0] = 1;
670 
671 	/* The daemon resides in its own pgrp. */
672 	enterpgrp(mycp, mycp->p_pid, 1);
673 
674 	/* Mark special process type. */
675 	mycp->p_flag |= P_SYSTEM | P_KTHREADP;
676 
677 	/*
678 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
679 	 * and creating too many daemons.)
680 	 */
681 	wakeup(mycp);
682 	curvm = NULL;
683 
684 	for (;;) {
685 		/*
686 		 * Take daemon off of free queue
687 		 */
688 		if (aiop->aioprocflags & AIOP_FREE) {
689 			crit_enter();
690 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
691 			TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
692 			aiop->aioprocflags &= ~AIOP_FREE;
693 			crit_exit();
694 		}
695 		aiop->aioprocflags &= ~AIOP_SCHED;
696 
697 		/*
698 		 * Check for jobs.
699 		 */
700 		while ((aiocbe = aio_selectjob(aiop)) != NULL) {
701 			cb = &aiocbe->uaiocb;
702 			userp = aiocbe->userproc;
703 
704 			aiocbe->jobstate = JOBST_JOBRUNNING;
705 
706 			/*
707 			 * Connect to process address space for user program.
708 			 */
709 			if (curvm != userp->p_vmspace) {
710 				pmap_setlwpvm(mylwp, userp->p_vmspace);
711 				if (curvm)
712 					sysref_put(&curvm->vm_sysref);
713 				curvm = userp->p_vmspace;
714 				sysref_get(&curvm->vm_sysref);
715 			}
716 
717 			ki = userp->p_aioinfo;
718 			lj = aiocbe->lio;
719 
720 			/* Account for currently active jobs. */
721 			ki->kaio_active_count++;
722 
723 			/* Do the I/O function. */
724 			aio_process(aiocbe);
725 
726 			/* Decrement the active job count. */
727 			ki->kaio_active_count--;
728 
729 			/*
730 			 * Increment the completion count for wakeup/signal
731 			 * comparisons.
732 			 */
733 			aiocbe->jobflags |= AIOCBLIST_DONE;
734 			ki->kaio_queue_finished_count++;
735 			if (lj)
736 				lj->lioj_queue_finished_count++;
737 			if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags
738 			    & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) {
739 				ki->kaio_flags &= ~KAIO_WAKEUP;
740 				wakeup(userp);
741 			}
742 
743 			crit_enter();
744 			if (lj && (lj->lioj_flags &
745 			    (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) {
746 				if ((lj->lioj_queue_finished_count ==
747 				    lj->lioj_queue_count) &&
748 				    (lj->lioj_buffer_finished_count ==
749 				    lj->lioj_buffer_count)) {
750 						ksignal(userp,
751 						    lj->lioj_signal.sigev_signo);
752 						lj->lioj_flags |=
753 						    LIOJ_SIGNAL_POSTED;
754 				}
755 			}
756 			crit_exit();
757 
758 			aiocbe->jobstate = JOBST_JOBFINISHED;
759 
760 			crit_enter();
761 			TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
762 			TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist);
763 			crit_exit();
764 			KNOTE(&aiocbe->klist, 0);
765 
766 			if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) {
767 				wakeup(aiocbe);
768 				aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN;
769 			}
770 
771 			if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
772 				ksignal(userp, cb->aio_sigevent.sigev_signo);
773 			}
774 		}
775 
776 		/*
777 		 * Disconnect from user address space.
778 		 */
779 		if (curvm) {
780 			/* swap our original address space back in */
781 			pmap_setlwpvm(mylwp, mycp->p_vmspace);
782 			sysref_put(&curvm->vm_sysref);
783 			curvm = NULL;
784 		}
785 
786 		/*
787 		 * If we are the first to be put onto the free queue, wakeup
788 		 * anyone waiting for a daemon.
789 		 */
790 		crit_enter();
791 		TAILQ_REMOVE(&aio_activeproc, aiop, list);
792 		if (TAILQ_EMPTY(&aio_freeproc))
793 			wakeup(&aio_freeproc);
794 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
795 		aiop->aioprocflags |= AIOP_FREE;
796 		crit_exit();
797 
798 		/*
799 		 * If daemon is inactive for a long time, allow it to exit,
800 		 * thereby freeing resources.
801 		 */
802 		if (((aiop->aioprocflags & AIOP_SCHED) == 0) && tsleep(mycp,
803 		    0, "aiordy", aiod_lifetime)) {
804 			crit_enter();
805 			if (TAILQ_EMPTY(&aio_jobs)) {
806 				if ((aiop->aioprocflags & AIOP_FREE) &&
807 				    (num_aio_procs > target_aio_procs)) {
808 					TAILQ_REMOVE(&aio_freeproc, aiop, list);
809 					crit_exit();
810 					zfree(aiop_zone, aiop);
811 					num_aio_procs--;
812 #ifdef DIAGNOSTIC
813 					if (mycp->p_vmspace->vm_sysref.refcnt <= 1) {
814 						kprintf("AIOD: bad vm refcnt for"
815 						    " exiting daemon: %d\n",
816 						    mycp->p_vmspace->vm_sysref.refcnt);
817 					}
818 #endif
819 					exit1(0);
820 				}
821 			}
822 			crit_exit();
823 		}
824 	}
825 }
826 
827 /*
828  * Create a new AIO daemon.  This is mostly a kernel-thread fork routine.  The
829  * AIO daemon modifies its environment itself.
830  */
831 static int
832 aio_newproc(void)
833 {
834 	int error;
835 	struct lwp *lp, *nlp;
836 	struct proc *np;
837 
838 	lp = &lwp0;
839 	error = fork1(lp, RFPROC|RFMEM|RFNOWAIT, &np);
840 	if (error)
841 		return error;
842 	nlp = ONLY_LWP_IN_PROC(np);
843 	cpu_set_fork_handler(nlp, aio_daemon, curproc);
844 	start_forked_proc(lp, np);
845 
846 	/*
847 	 * Wait until daemon is started, but continue on just in case to
848 	 * handle error conditions.
849 	 */
850 	error = tsleep(np, 0, "aiosta", aiod_timeout);
851 	num_aio_procs++;
852 
853 	return error;
854 }
855 
856 /*
857  * Try the high-performance, low-overhead physio method for eligible
858  * VCHR devices.  This method doesn't use an aio helper thread, and
859  * thus has very low overhead.
860  *
861  * Assumes that the caller, _aio_aqueue(), has incremented the file
862  * structure's reference count, preventing its deallocation for the
863  * duration of this call.
864  */
865 static int
866 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
867 {
868 	int error;
869 	struct aiocb *cb;
870 	struct file *fp;
871 	struct buf *bp;
872 	struct vnode *vp;
873 	struct kaioinfo *ki;
874 	struct aio_liojob *lj;
875 	int notify;
876 
877 	cb = &aiocbe->uaiocb;
878 	fp = aiocbe->fd_file;
879 
880 	if (fp->f_type != DTYPE_VNODE)
881 		return (-1);
882 
883 	vp = (struct vnode *)fp->f_data;
884 
885 	/*
886 	 * If its not a disk, we don't want to return a positive error.
887 	 * It causes the aio code to not fall through to try the thread
888 	 * way when you're talking to a regular file.
889 	 */
890 	if (!vn_isdisk(vp, &error)) {
891 		if (error == ENOTBLK)
892 			return (-1);
893 		else
894 			return (error);
895 	}
896 
897  	if (cb->aio_nbytes % vp->v_rdev->si_bsize_phys)
898 		return (-1);
899 
900 	if (cb->aio_nbytes >
901 	    MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
902 		return (-1);
903 
904 	ki = p->p_aioinfo;
905 	if (ki->kaio_buffer_count >= ki->kaio_ballowed_count)
906 		return (-1);
907 
908 	ki->kaio_buffer_count++;
909 
910 	lj = aiocbe->lio;
911 	if (lj)
912 		lj->lioj_buffer_count++;
913 
914 	/* Create and build a buffer header for a transfer. */
915 	bp = getpbuf(NULL);
916 	BUF_KERNPROC(bp);
917 
918 	/*
919 	 * Get a copy of the kva from the physical buffer.
920 	 */
921 	bp->b_bio1.bio_caller_info1.ptr = p;
922 	error = 0;
923 
924 	bp->b_cmd = (cb->aio_lio_opcode == LIO_WRITE) ?
925 		    BUF_CMD_WRITE : BUF_CMD_READ;
926 	bp->b_bio1.bio_done = aio_physwakeup;
927 	bp->b_bio1.bio_flags |= BIO_SYNC;
928 	bp->b_bio1.bio_offset = cb->aio_offset;
929 
930 	/* Bring buffer into kernel space. */
931 	if (vmapbuf(bp, __DEVOLATILE(char *, cb->aio_buf), cb->aio_nbytes) < 0) {
932 		error = EFAULT;
933 		goto doerror;
934 	}
935 
936 	crit_enter();
937 
938 	aiocbe->bp = bp;
939 	bp->b_bio1.bio_caller_info2.ptr = aiocbe;
940 	TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list);
941 	TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
942 	aiocbe->jobstate = JOBST_JOBQBUF;
943 	cb->_aiocb_private.status = cb->aio_nbytes;
944 	num_buf_aio++;
945 	bp->b_error = 0;
946 
947 	crit_exit();
948 
949 	/*
950 	 * Perform the transfer.  vn_strategy must be used even though we
951 	 * know we have a device in order to deal with requests which exceed
952 	 * device DMA limitations.
953 	 */
954 	vn_strategy(vp, &bp->b_bio1);
955 
956 	notify = 0;
957 	crit_enter();
958 
959 #if 0
960 	/*
961 	 * If we had an error invoking the request, or an error in processing
962 	 * the request before we have returned, we process it as an error in
963 	 * transfer.  Note that such an I/O error is not indicated immediately,
964 	 * but is returned using the aio_error mechanism.  In this case,
965 	 * aio_suspend will return immediately.
966 	 */
967 	if (bp->b_error || (bp->b_flags & B_ERROR)) {
968 		struct aiocb *job = aiocbe->uuaiocb;
969 
970 		aiocbe->uaiocb._aiocb_private.status = 0;
971 		suword(&job->_aiocb_private.status, 0);
972 		aiocbe->uaiocb._aiocb_private.error = bp->b_error;
973 		suword(&job->_aiocb_private.error, bp->b_error);
974 
975 		ki->kaio_buffer_finished_count++;
976 
977 		if (aiocbe->jobstate != JOBST_JOBBFINISHED) {
978 			aiocbe->jobstate = JOBST_JOBBFINISHED;
979 			aiocbe->jobflags |= AIOCBLIST_DONE;
980 			TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
981 			TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
982 			TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
983 			notify = 1;
984 		}
985 	}
986 #endif
987 	crit_exit();
988 	if (notify)
989 		KNOTE(&aiocbe->klist, 0);
990 	return 0;
991 
992 doerror:
993 	ki->kaio_buffer_count--;
994 	if (lj)
995 		lj->lioj_buffer_count--;
996 	aiocbe->bp = NULL;
997 	relpbuf(bp, NULL);
998 	return error;
999 }
1000 
1001 /*
1002  * This waits/tests physio completion.
1003  */
1004 static int
1005 aio_fphysio(struct aiocblist *iocb)
1006 {
1007 	struct buf *bp;
1008 	int error;
1009 
1010 	bp = iocb->bp;
1011 
1012 	error = biowait_timeout(&bp->b_bio1, "physstr", aiod_timeout);
1013 	if (error == EWOULDBLOCK)
1014 		return EINPROGRESS;
1015 
1016 	/* Release mapping into kernel space. */
1017 	vunmapbuf(bp);
1018 	iocb->bp = 0;
1019 
1020 	error = 0;
1021 
1022 	/* Check for an error. */
1023 	if (bp->b_flags & B_ERROR)
1024 		error = bp->b_error;
1025 
1026 	relpbuf(bp, NULL);
1027 	return (error);
1028 }
1029 #endif /* VFS_AIO */
1030 
1031 /*
1032  * Wake up aio requests that may be serviceable now.
1033  */
1034 void
1035 aio_swake(struct socket *so, struct signalsockbuf *ssb)
1036 {
1037 #ifndef VFS_AIO
1038 	return;
1039 #else
1040 	struct aiocblist *cb,*cbn;
1041 	struct proc *p;
1042 	struct kaioinfo *ki = NULL;
1043 	int opcode, wakecount = 0;
1044 	struct aioproclist *aiop;
1045 
1046 	if (ssb == &so->so_snd) {
1047 		opcode = LIO_WRITE;
1048 		so->so_snd.ssb_flags &= ~SSB_AIO;
1049 	} else {
1050 		opcode = LIO_READ;
1051 		so->so_rcv.ssb_flags &= ~SSB_AIO;
1052 	}
1053 
1054 	for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) {
1055 		cbn = TAILQ_NEXT(cb, list);
1056 		if (opcode == cb->uaiocb.aio_lio_opcode) {
1057 			p = cb->userproc;
1058 			ki = p->p_aioinfo;
1059 			TAILQ_REMOVE(&so->so_aiojobq, cb, list);
1060 			TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist);
1061 			TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
1062 			TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist);
1063 			wakecount++;
1064 			if (cb->jobstate != JOBST_JOBQGLOBAL)
1065 				panic("invalid queue value");
1066 		}
1067 	}
1068 
1069 	while (wakecount--) {
1070 		if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) {
1071 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1072 			TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
1073 			aiop->aioprocflags &= ~AIOP_FREE;
1074 			wakeup(aiop->aioproc);
1075 		}
1076 	}
1077 #endif /* VFS_AIO */
1078 }
1079 
1080 #ifdef VFS_AIO
1081 /*
1082  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
1083  * technique is done in this code.
1084  */
1085 static int
1086 _aio_aqueue(struct aiocb *job, struct aio_liojob *lj, int type)
1087 {
1088 	struct proc *p = curproc;
1089 	struct file *fp;
1090 	unsigned int fd;
1091 	struct socket *so;
1092 	int error;
1093 	int opcode, user_opcode;
1094 	struct aiocblist *aiocbe;
1095 	struct aioproclist *aiop;
1096 	struct kaioinfo *ki;
1097 	struct kevent kev;
1098 	struct kqueue *kq;
1099 	struct file *kq_fp;
1100 	int fflags;
1101 
1102 	if ((aiocbe = TAILQ_FIRST(&aio_freejobs)) != NULL)
1103 		TAILQ_REMOVE(&aio_freejobs, aiocbe, list);
1104 	else
1105 		aiocbe = zalloc (aiocb_zone);
1106 
1107 	aiocbe->inputcharge = 0;
1108 	aiocbe->outputcharge = 0;
1109 	callout_init(&aiocbe->timeout);
1110 	SLIST_INIT(&aiocbe->klist);
1111 
1112 	suword(&job->_aiocb_private.status, -1);
1113 	suword(&job->_aiocb_private.error, 0);
1114 	suword(&job->_aiocb_private.kernelinfo, -1);
1115 
1116 	error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb));
1117 	if (error) {
1118 		suword(&job->_aiocb_private.error, error);
1119 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1120 		return error;
1121 	}
1122 	if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL &&
1123 	    !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
1124 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1125 		return EINVAL;
1126 	}
1127 
1128 	/* Save userspace address of the job info. */
1129 	aiocbe->uuaiocb = job;
1130 
1131 	/* Get the opcode. */
1132 	user_opcode = aiocbe->uaiocb.aio_lio_opcode;
1133 	if (type != LIO_NOP)
1134 		aiocbe->uaiocb.aio_lio_opcode = type;
1135 	opcode = aiocbe->uaiocb.aio_lio_opcode;
1136 
1137 	/*
1138 	 * Range check file descriptor.
1139 	 */
1140 	fflags = (opcode == LIO_WRITE) ? FWRITE : FREAD;
1141 	fd = aiocbe->uaiocb.aio_fildes;
1142 	fp = holdfp(p->p_fd, fd, fflags);
1143 	if (fp == NULL) {
1144 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1145 		if (type == 0)
1146 			suword(&job->_aiocb_private.error, EBADF);
1147 		return EBADF;
1148 	}
1149 
1150 	aiocbe->fd_file = fp;
1151 
1152 	if (aiocbe->uaiocb.aio_offset == -1LL) {
1153 		error = EINVAL;
1154 		goto aqueue_fail;
1155 	}
1156 	error = suword(&job->_aiocb_private.kernelinfo, jobrefid);
1157 	if (error) {
1158 		error = EINVAL;
1159 		goto aqueue_fail;
1160 	}
1161 	aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid;
1162 	if (jobrefid == LONG_MAX)
1163 		jobrefid = 1;
1164 	else
1165 		jobrefid++;
1166 
1167 	if (opcode == LIO_NOP) {
1168 		fdrop(fp);
1169 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1170 		if (type == 0) {
1171 			suword(&job->_aiocb_private.error, 0);
1172 			suword(&job->_aiocb_private.status, 0);
1173 			suword(&job->_aiocb_private.kernelinfo, 0);
1174 		}
1175 		return 0;
1176 	}
1177 	if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) {
1178 		if (type == 0)
1179 			suword(&job->_aiocb_private.status, 0);
1180 		error = EINVAL;
1181 		goto aqueue_fail;
1182 	}
1183 
1184 	if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) {
1185 		kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
1186 		kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1187 	}
1188 	else {
1189 		/*
1190 		 * This method for requesting kevent-based notification won't
1191 		 * work on the alpha, since we're passing in a pointer
1192 		 * via aio_lio_opcode, which is an int.  Use the SIGEV_KEVENT-
1193 		 * based method instead.
1194 		 */
1195 		if (user_opcode == LIO_NOP || user_opcode == LIO_READ ||
1196 		    user_opcode == LIO_WRITE)
1197 			goto no_kqueue;
1198 
1199 		error = copyin((struct kevent *)(uintptr_t)user_opcode,
1200 		    &kev, sizeof(kev));
1201 		if (error)
1202 			goto aqueue_fail;
1203 	}
1204 	kq_fp = holdfp(p->p_fd, (int)kev.ident, -1);
1205 	if (kq_fp == NULL || kq_fp->f_type != DTYPE_KQUEUE) {
1206 		if (kq_fp) {
1207 			fdrop(kq_fp);
1208 			kq_fp = NULL;
1209 		}
1210 		error = EBADF;
1211 		goto aqueue_fail;
1212 	}
1213 	kq = (struct kqueue *)kq_fp->f_data;
1214 	kev.ident = (uintptr_t)aiocbe->uuaiocb;
1215 	kev.filter = EVFILT_AIO;
1216 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
1217 	kev.data = (intptr_t)aiocbe;
1218 	error = kqueue_register(kq, &kev);
1219 	fdrop(kq_fp);
1220 aqueue_fail:
1221 	if (error) {
1222 		fdrop(fp);
1223 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1224 		if (type == 0)
1225 			suword(&job->_aiocb_private.error, error);
1226 		goto done;
1227 	}
1228 no_kqueue:
1229 
1230 	suword(&job->_aiocb_private.error, EINPROGRESS);
1231 	aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
1232 	aiocbe->userproc = p;
1233 	aiocbe->jobflags = 0;
1234 	aiocbe->lio = lj;
1235 	ki = p->p_aioinfo;
1236 
1237 	if (fp->f_type == DTYPE_SOCKET) {
1238 		/*
1239 		 * Alternate queueing for socket ops: Reach down into the
1240 		 * descriptor to get the socket data.  Then check to see if the
1241 		 * socket is ready to be read or written (based on the requested
1242 		 * operation).
1243 		 *
1244 		 * If it is not ready for io, then queue the aiocbe on the
1245 		 * socket, and set the flags so we get a call when ssb_notify()
1246 		 * happens.
1247 		 */
1248 		so = (struct socket *)fp->f_data;
1249 		crit_enter();
1250 		if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
1251 		    LIO_WRITE) && (!sowriteable(so)))) {
1252 			TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
1253 			TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist);
1254 			if (opcode == LIO_READ)
1255 				so->so_rcv.ssb_flags |= SSB_AIO;
1256 			else
1257 				so->so_snd.ssb_flags |= SSB_AIO;
1258 			aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */
1259 			ki->kaio_queue_count++;
1260 			num_queue_count++;
1261 			crit_exit();
1262 			error = 0;
1263 			goto done;
1264 		}
1265 		crit_exit();
1266 	}
1267 
1268 	if ((error = aio_qphysio(p, aiocbe)) == 0)
1269 		goto done;
1270 	if (error > 0) {
1271 		suword(&job->_aiocb_private.status, 0);
1272 		aiocbe->uaiocb._aiocb_private.error = error;
1273 		suword(&job->_aiocb_private.error, error);
1274 		goto done;
1275 	}
1276 
1277 	/* No buffer for daemon I/O. */
1278 	aiocbe->bp = NULL;
1279 
1280 	ki->kaio_queue_count++;
1281 	if (lj)
1282 		lj->lioj_queue_count++;
1283 	crit_enter();
1284 	TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
1285 	TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
1286 	crit_exit();
1287 	aiocbe->jobstate = JOBST_JOBQGLOBAL;
1288 
1289 	num_queue_count++;
1290 	error = 0;
1291 
1292 	/*
1293 	 * If we don't have a free AIO process, and we are below our quota, then
1294 	 * start one.  Otherwise, depend on the subsequent I/O completions to
1295 	 * pick-up this job.  If we don't successfully create the new process
1296 	 * (thread) due to resource issues, we return an error for now (EAGAIN),
1297 	 * which is likely not the correct thing to do.
1298 	 */
1299 	crit_enter();
1300 retryproc:
1301 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1302 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1303 		TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
1304 		aiop->aioprocflags &= ~AIOP_FREE;
1305 		wakeup(aiop->aioproc);
1306 	} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
1307 	    ((ki->kaio_active_count + num_aio_resv_start) <
1308 	    ki->kaio_maxactive_count)) {
1309 		num_aio_resv_start++;
1310 		if ((error = aio_newproc()) == 0) {
1311 			num_aio_resv_start--;
1312 			goto retryproc;
1313 		}
1314 		num_aio_resv_start--;
1315 	}
1316 	crit_exit();
1317 done:
1318 	return error;
1319 }
1320 
1321 /*
1322  * This routine queues an AIO request, checking for quotas.
1323  */
1324 static int
1325 aio_aqueue(struct aiocb *job, int type)
1326 {
1327 	struct proc *p = curproc;
1328 	struct kaioinfo *ki;
1329 
1330 	if (p->p_aioinfo == NULL)
1331 		aio_init_aioinfo(p);
1332 
1333 	if (num_queue_count >= max_queue_count)
1334 		return EAGAIN;
1335 
1336 	ki = p->p_aioinfo;
1337 	if (ki->kaio_queue_count >= ki->kaio_qallowed_count)
1338 		return EAGAIN;
1339 
1340 	return _aio_aqueue(job, NULL, type);
1341 }
1342 #endif /* VFS_AIO */
1343 
1344 /*
1345  * Support the aio_return system call, as a side-effect, kernel resources are
1346  * released.
1347  *
1348  * MPALMOSTSAFE
1349  */
1350 int
1351 sys_aio_return(struct aio_return_args *uap)
1352 {
1353 #ifndef VFS_AIO
1354 	return (ENOSYS);
1355 #else
1356 	struct proc *p = curproc;
1357 	struct lwp *lp = curthread->td_lwp;
1358 	long jobref;
1359 	struct aiocblist *cb, *ncb;
1360 	struct aiocb *ujob;
1361 	struct kaioinfo *ki;
1362 	int error;
1363 
1364 	ki = p->p_aioinfo;
1365 	if (ki == NULL)
1366 		return EINVAL;
1367 
1368 	ujob = uap->aiocbp;
1369 
1370 	jobref = fuword(&ujob->_aiocb_private.kernelinfo);
1371 	if (jobref == -1 || jobref == 0)
1372 		return EINVAL;
1373 
1374 	get_mplock();
1375 	TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1376 		if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
1377 		    jobref) {
1378 			if (ujob == cb->uuaiocb) {
1379 				uap->sysmsg_result =
1380 				    cb->uaiocb._aiocb_private.status;
1381 			} else {
1382 				uap->sysmsg_result = EFAULT;
1383 			}
1384 			if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
1385 				lp->lwp_ru.ru_oublock += cb->outputcharge;
1386 				cb->outputcharge = 0;
1387 			} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
1388 				lp->lwp_ru.ru_inblock += cb->inputcharge;
1389 				cb->inputcharge = 0;
1390 			}
1391 			aio_free_entry(cb);
1392 			error = 0;
1393 			goto done;
1394 		}
1395 	}
1396 	crit_enter();
1397 	for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) {
1398 		ncb = TAILQ_NEXT(cb, plist);
1399 		if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo)
1400 		    == jobref) {
1401 			crit_exit();
1402 			if (ujob == cb->uuaiocb) {
1403 				uap->sysmsg_result =
1404 				    cb->uaiocb._aiocb_private.status;
1405 			} else {
1406 				uap->sysmsg_result = EFAULT;
1407 			}
1408 			aio_free_entry(cb);
1409 			error = 0;
1410 			goto done;
1411 		}
1412 	}
1413 	crit_exit();
1414 	error = EINVAL;
1415 done:
1416 	rel_mplock();
1417 	return (error);
1418 #endif /* VFS_AIO */
1419 }
1420 
1421 /*
1422  * Allow a process to wakeup when any of the I/O requests are completed.
1423  *
1424  * MPALMOSTSAFE
1425  */
1426 int
1427 sys_aio_suspend(struct aio_suspend_args *uap)
1428 {
1429 #ifndef VFS_AIO
1430 	return ENOSYS;
1431 #else
1432 	struct proc *p = curproc;
1433 	struct timeval atv;
1434 	struct timespec ts;
1435 	struct aiocb *const *cbptr, *cbp;
1436 	struct kaioinfo *ki;
1437 	struct aiocblist *cb;
1438 	int i;
1439 	int njoblist;
1440 	int error, timo;
1441 	long *ijoblist;
1442 	struct aiocb **ujoblist;
1443 
1444 	if ((u_int)uap->nent > AIO_LISTIO_MAX)
1445 		return EINVAL;
1446 
1447 	timo = 0;
1448 	if (uap->timeout) {
1449 		/* Get timespec struct. */
1450 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
1451 			return error;
1452 
1453 		if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
1454 			return (EINVAL);
1455 
1456 		TIMESPEC_TO_TIMEVAL(&atv, &ts);
1457 		if (itimerfix(&atv))
1458 			return (EINVAL);
1459 		timo = tvtohz_high(&atv);
1460 	}
1461 
1462 	ki = p->p_aioinfo;
1463 	if (ki == NULL)
1464 		return EAGAIN;
1465 
1466 	get_mplock();
1467 
1468 	njoblist = 0;
1469 	ijoblist = zalloc(aiol_zone);
1470 	ujoblist = zalloc(aiol_zone);
1471 	cbptr = uap->aiocbp;
1472 
1473 	for (i = 0; i < uap->nent; i++) {
1474 		cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
1475 		if (cbp == 0)
1476 			continue;
1477 		ujoblist[njoblist] = cbp;
1478 		ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo);
1479 		njoblist++;
1480 	}
1481 
1482 	if (njoblist == 0) {
1483 		zfree(aiol_zone, ijoblist);
1484 		zfree(aiol_zone, ujoblist);
1485 		error = 0;
1486 		goto done;
1487 	}
1488 
1489 	error = 0;
1490 	for (;;) {
1491 		TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1492 			for (i = 0; i < njoblist; i++) {
1493 				if (((intptr_t)
1494 				    cb->uaiocb._aiocb_private.kernelinfo) ==
1495 				    ijoblist[i]) {
1496 					if (ujoblist[i] != cb->uuaiocb)
1497 						error = EINVAL;
1498 					zfree(aiol_zone, ijoblist);
1499 					zfree(aiol_zone, ujoblist);
1500 					goto done;
1501 				}
1502 			}
1503 		}
1504 
1505 		crit_enter();
1506 		for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb =
1507 		    TAILQ_NEXT(cb, plist)) {
1508 			for (i = 0; i < njoblist; i++) {
1509 				if (((intptr_t)
1510 				    cb->uaiocb._aiocb_private.kernelinfo) ==
1511 				    ijoblist[i]) {
1512 					crit_exit();
1513 					if (ujoblist[i] != cb->uuaiocb)
1514 						error = EINVAL;
1515 					zfree(aiol_zone, ijoblist);
1516 					zfree(aiol_zone, ujoblist);
1517 					goto done;
1518 				}
1519 			}
1520 		}
1521 
1522 		ki->kaio_flags |= KAIO_WAKEUP;
1523 		error = tsleep(p, PCATCH, "aiospn", timo);
1524 		crit_exit();
1525 
1526 		if (error == ERESTART || error == EINTR) {
1527 			zfree(aiol_zone, ijoblist);
1528 			zfree(aiol_zone, ujoblist);
1529 			error = EINTR;
1530 			goto done;
1531 		} else if (error == EWOULDBLOCK) {
1532 			zfree(aiol_zone, ijoblist);
1533 			zfree(aiol_zone, ujoblist);
1534 			error = EAGAIN;
1535 			goto done;
1536 		}
1537 	}
1538 
1539 /* NOTREACHED */
1540 	error = EINVAL;
1541 done:
1542 	rel_mplock();
1543 	return (error);
1544 #endif /* VFS_AIO */
1545 }
1546 
1547 /*
1548  * aio_cancel cancels any non-physio aio operations not currently in
1549  * progress.
1550  *
1551  * MPALMOSTSAFE
1552  */
1553 int
1554 sys_aio_cancel(struct aio_cancel_args *uap)
1555 {
1556 #ifndef VFS_AIO
1557 	return ENOSYS;
1558 #else
1559 	struct proc *p = curproc;
1560 	struct kaioinfo *ki;
1561 	struct aiocblist *cbe, *cbn;
1562 	struct file *fp;
1563 	struct socket *so;
1564 	struct proc *po;
1565 	int error;
1566 	int cancelled=0;
1567 	int notcancelled=0;
1568 	struct vnode *vp;
1569 
1570 	fp = holdfp(p->p_fd, uap->fd, -1);
1571 	if (fp == NULL)
1572 		return (EBADF);
1573 
1574 	get_mplock();
1575 
1576         if (fp->f_type == DTYPE_VNODE) {
1577 		vp = (struct vnode *)fp->f_data;
1578 
1579 		if (vn_isdisk(vp,&error)) {
1580 			uap->sysmsg_result = AIO_NOTCANCELED;
1581 			error = 0;
1582 			goto done2;
1583 		}
1584 	} else if (fp->f_type == DTYPE_SOCKET) {
1585 		so = (struct socket *)fp->f_data;
1586 
1587 		crit_enter();
1588 
1589 		for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) {
1590 			cbn = TAILQ_NEXT(cbe, list);
1591 			if ((uap->aiocbp == NULL) ||
1592 				(uap->aiocbp == cbe->uuaiocb) ) {
1593 				po = cbe->userproc;
1594 				ki = po->p_aioinfo;
1595 				TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
1596 				TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist);
1597 				TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist);
1598 				if (ki->kaio_flags & KAIO_WAKEUP) {
1599 					wakeup(po);
1600 				}
1601 				cbe->jobstate = JOBST_JOBFINISHED;
1602 				cbe->uaiocb._aiocb_private.status=-1;
1603 				cbe->uaiocb._aiocb_private.error=ECANCELED;
1604 				cancelled++;
1605 /* XXX cancelled, knote? */
1606 			        if (cbe->uaiocb.aio_sigevent.sigev_notify ==
1607 				    SIGEV_SIGNAL)
1608 					ksignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo);
1609 				if (uap->aiocbp)
1610 					break;
1611 			}
1612 		}
1613 		crit_exit();
1614 
1615 		if ((cancelled) && (uap->aiocbp)) {
1616 			uap->sysmsg_result = AIO_CANCELED;
1617 			error = 0;
1618 			goto done2;
1619 		}
1620 	}
1621 	ki=p->p_aioinfo;
1622 	if (ki == NULL)
1623 		goto done;
1624 	crit_enter();
1625 
1626 	for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) {
1627 		cbn = TAILQ_NEXT(cbe, plist);
1628 
1629 		if ((uap->fd == cbe->uaiocb.aio_fildes) &&
1630 		    ((uap->aiocbp == NULL ) ||
1631 		     (uap->aiocbp == cbe->uuaiocb))) {
1632 
1633 			if (cbe->jobstate == JOBST_JOBQGLOBAL) {
1634 				TAILQ_REMOVE(&aio_jobs, cbe, list);
1635                                 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
1636                                 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe,
1637                                     plist);
1638 				cancelled++;
1639 				ki->kaio_queue_finished_count++;
1640 				cbe->jobstate = JOBST_JOBFINISHED;
1641 				cbe->uaiocb._aiocb_private.status = -1;
1642 				cbe->uaiocb._aiocb_private.error = ECANCELED;
1643 /* XXX cancelled, knote? */
1644 			        if (cbe->uaiocb.aio_sigevent.sigev_notify ==
1645 				    SIGEV_SIGNAL)
1646 					ksignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo);
1647 			} else {
1648 				notcancelled++;
1649 			}
1650 		}
1651 	}
1652 	crit_exit();
1653 done:
1654 	if (notcancelled)
1655 		uap->sysmsg_result = AIO_NOTCANCELED;
1656 	else if (cancelled)
1657 		uap->sysmsg_result = AIO_CANCELED;
1658 	else
1659 		uap->sysmsg_result = AIO_ALLDONE;
1660 	error = 0;
1661 done2:
1662 	rel_mplock();
1663 	fdrop(fp);
1664 	return error;
1665 #endif /* VFS_AIO */
1666 }
1667 
1668 /*
1669  * aio_error is implemented in the kernel level for compatibility purposes only.
1670  * For a user mode async implementation, it would be best to do it in a userland
1671  * subroutine.
1672  *
1673  * MPALMOSTSAFE
1674  */
1675 int
1676 sys_aio_error(struct aio_error_args *uap)
1677 {
1678 #ifndef VFS_AIO
1679 	return ENOSYS;
1680 #else
1681 	struct proc *p = curproc;
1682 	struct aiocblist *cb;
1683 	struct kaioinfo *ki;
1684 	long jobref;
1685 	int error;
1686 
1687 	ki = p->p_aioinfo;
1688 	if (ki == NULL)
1689 		return EINVAL;
1690 
1691 	jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo);
1692 	if ((jobref == -1) || (jobref == 0))
1693 		return EINVAL;
1694 
1695 	get_mplock();
1696 	error = 0;
1697 
1698 	TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1699 		if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1700 		    jobref) {
1701 			uap->sysmsg_result = cb->uaiocb._aiocb_private.error;
1702 			goto done;
1703 		}
1704 	}
1705 
1706 	crit_enter();
1707 
1708 	for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb,
1709 	    plist)) {
1710 		if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1711 		    jobref) {
1712 			uap->sysmsg_result = EINPROGRESS;
1713 			crit_exit();
1714 			goto done;
1715 		}
1716 	}
1717 
1718 	for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb,
1719 	    plist)) {
1720 		if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1721 		    jobref) {
1722 			uap->sysmsg_result = EINPROGRESS;
1723 			crit_exit();
1724 			goto done;
1725 		}
1726 	}
1727 	crit_exit();
1728 
1729 	crit_enter();
1730 	for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb,
1731 	    plist)) {
1732 		if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1733 		    jobref) {
1734 			uap->sysmsg_result = cb->uaiocb._aiocb_private.error;
1735 			crit_exit();
1736 			goto done;
1737 		}
1738 	}
1739 
1740 	for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb,
1741 	    plist)) {
1742 		if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1743 		    jobref) {
1744 			uap->sysmsg_result = EINPROGRESS;
1745 			crit_exit();
1746 			goto done;
1747 		}
1748 	}
1749 	crit_exit();
1750 	error = EINVAL;
1751 done:
1752 	rel_mplock();
1753 	return (error);
1754 #endif /* VFS_AIO */
1755 }
1756 
1757 /*
1758  * syscall - asynchronous read from a file (REALTIME)
1759  *
1760  * MPALMOSTSAFE
1761  */
1762 int
1763 sys_aio_read(struct aio_read_args *uap)
1764 {
1765 #ifndef VFS_AIO
1766 	return ENOSYS;
1767 #else
1768 	int error;
1769 
1770 	get_mplock();
1771 	error =  aio_aqueue(uap->aiocbp, LIO_READ);
1772 	rel_mplock();
1773 	return (error);
1774 #endif /* VFS_AIO */
1775 }
1776 
1777 /*
1778  * syscall - asynchronous write to a file (REALTIME)
1779  *
1780  * MPALMOSTSAFE
1781  */
1782 int
1783 sys_aio_write(struct aio_write_args *uap)
1784 {
1785 #ifndef VFS_AIO
1786 	return ENOSYS;
1787 #else
1788 	int error;
1789 
1790 	get_mplock();
1791 	error = aio_aqueue(uap->aiocbp, LIO_WRITE);
1792 	rel_mplock();
1793 	return (error);
1794 #endif /* VFS_AIO */
1795 }
1796 
1797 /*
1798  * syscall - XXX undocumented
1799  *
1800  * MPALMOSTSAFE
1801  */
1802 int
1803 sys_lio_listio(struct lio_listio_args *uap)
1804 {
1805 #ifndef VFS_AIO
1806 	return ENOSYS;
1807 #else
1808 	struct proc *p = curproc;
1809 	struct lwp *lp = curthread->td_lwp;
1810 	int nent, nentqueued;
1811 	struct aiocb *iocb, * const *cbptr;
1812 	struct aiocblist *cb;
1813 	struct kaioinfo *ki;
1814 	struct aio_liojob *lj;
1815 	int error, runningcode;
1816 	int nerror;
1817 	int i;
1818 
1819 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
1820 		return EINVAL;
1821 
1822 	nent = uap->nent;
1823 	if (nent > AIO_LISTIO_MAX)
1824 		return EINVAL;
1825 
1826 	get_mplock();
1827 
1828 	if (p->p_aioinfo == NULL)
1829 		aio_init_aioinfo(p);
1830 
1831 	if ((nent + num_queue_count) > max_queue_count) {
1832 		error = EAGAIN;
1833 		goto done;
1834 	}
1835 
1836 	ki = p->p_aioinfo;
1837 	if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) {
1838 		error = EAGAIN;
1839 		goto done;
1840 	}
1841 
1842 	lj = zalloc(aiolio_zone);
1843 	if (lj == NULL) {
1844 		error = EAGAIN;
1845 		goto done;
1846 	}
1847 
1848 	lj->lioj_flags = 0;
1849 	lj->lioj_buffer_count = 0;
1850 	lj->lioj_buffer_finished_count = 0;
1851 	lj->lioj_queue_count = 0;
1852 	lj->lioj_queue_finished_count = 0;
1853 	lj->lioj_ki = ki;
1854 
1855 	/*
1856 	 * Setup signal.
1857 	 */
1858 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
1859 		error = copyin(uap->sig, &lj->lioj_signal,
1860 		    sizeof(lj->lioj_signal));
1861 		if (error) {
1862 			zfree(aiolio_zone, lj);
1863 			goto done;
1864 		}
1865 		if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
1866 			zfree(aiolio_zone, lj);
1867 			error = EINVAL;
1868 			goto done;
1869 		}
1870 		lj->lioj_flags |= LIOJ_SIGNAL;
1871 		lj->lioj_flags &= ~LIOJ_SIGNAL_POSTED;
1872 	} else
1873 		lj->lioj_flags &= ~LIOJ_SIGNAL;
1874 
1875 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
1876 	/*
1877 	 * Get pointers to the list of I/O requests.
1878 	 */
1879 	nerror = 0;
1880 	nentqueued = 0;
1881 	cbptr = uap->acb_list;
1882 	for (i = 0; i < uap->nent; i++) {
1883 		iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
1884 		if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) {
1885 			error = _aio_aqueue(iocb, lj, 0);
1886 			if (error == 0)
1887 				nentqueued++;
1888 			else
1889 				nerror++;
1890 		}
1891 	}
1892 
1893 	/*
1894 	 * If we haven't queued any, then just return error.
1895 	 */
1896 	if (nentqueued == 0) {
1897 		error = 0;
1898 		goto done;
1899 	}
1900 
1901 	/*
1902 	 * Calculate the appropriate error return.
1903 	 */
1904 	runningcode = 0;
1905 	if (nerror)
1906 		runningcode = EIO;
1907 
1908 	if (uap->mode == LIO_WAIT) {
1909 		int command, found, jobref;
1910 
1911 		for (;;) {
1912 			found = 0;
1913 			for (i = 0; i < uap->nent; i++) {
1914 				/*
1915 				 * Fetch address of the control buf pointer in
1916 				 * user space.
1917 				 */
1918 				iocb = (struct aiocb *)
1919 				    (intptr_t)fuword(&cbptr[i]);
1920 				if (((intptr_t)iocb == -1) || ((intptr_t)iocb
1921 				    == 0))
1922 					continue;
1923 
1924 				/*
1925 				 * Fetch the associated command from user space.
1926 				 */
1927 				command = fuword(&iocb->aio_lio_opcode);
1928 				if (command == LIO_NOP) {
1929 					found++;
1930 					continue;
1931 				}
1932 
1933 				jobref = fuword(&iocb->_aiocb_private.kernelinfo);
1934 
1935 				TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1936 					if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo)
1937 					    == jobref) {
1938 						if (cb->uaiocb.aio_lio_opcode
1939 						    == LIO_WRITE) {
1940 							lp->lwp_ru.ru_oublock +=
1941 							    cb->outputcharge;
1942 							cb->outputcharge = 0;
1943 						} else if (cb->uaiocb.aio_lio_opcode
1944 						    == LIO_READ) {
1945 							lp->lwp_ru.ru_inblock +=
1946 							    cb->inputcharge;
1947 							cb->inputcharge = 0;
1948 						}
1949 						found++;
1950 						break;
1951 					}
1952 				}
1953 
1954 				crit_enter();
1955 				TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) {
1956 					if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo)
1957 					    == jobref) {
1958 						found++;
1959 						break;
1960 					}
1961 				}
1962 				crit_exit();
1963 			}
1964 
1965 			/*
1966 			 * If all I/Os have been disposed of, then we can
1967 			 * return.
1968 			 */
1969 			if (found == nentqueued) {
1970 				error = runningcode;
1971 				goto done;
1972 			}
1973 
1974 			ki->kaio_flags |= KAIO_WAKEUP;
1975 			error = tsleep(p, PCATCH, "aiospn", 0);
1976 
1977 			if (error == EINTR) {
1978 				goto done;
1979 			} else if (error == EWOULDBLOCK) {
1980 				error = EAGAIN;
1981 				goto done;
1982 			}
1983 		}
1984 	}
1985 
1986 	error = runningcode;
1987 done:
1988 	rel_mplock();
1989 	return (error);
1990 #endif /* VFS_AIO */
1991 }
1992 
1993 #ifdef VFS_AIO
1994 /*
1995  * This is a weird hack so that we can post a signal.  It is safe to do so from
1996  * a timeout routine, but *not* from an interrupt routine.
1997  */
1998 static void
1999 process_signal(void *aioj)
2000 {
2001 	struct aiocblist *aiocbe = aioj;
2002 	struct aio_liojob *lj = aiocbe->lio;
2003 	struct aiocb *cb = &aiocbe->uaiocb;
2004 
2005 	if ((lj) && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) &&
2006 	    (lj->lioj_queue_count == lj->lioj_queue_finished_count)) {
2007 		ksignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo);
2008 		lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2009 	}
2010 
2011 	if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL)
2012 		ksignal(aiocbe->userproc, cb->aio_sigevent.sigev_signo);
2013 }
2014 
2015 /*
2016  * Interrupt handler for physio, performs the necessary process wakeups, and
2017  * signals.
2018  */
2019 static void
2020 aio_physwakeup(struct bio *bio)
2021 {
2022 	struct buf *bp = bio->bio_buf;
2023 	struct aiocblist *aiocbe;
2024 	struct proc *p;
2025 	struct kaioinfo *ki;
2026 	struct aio_liojob *lj;
2027 
2028 	aiocbe = bio->bio_caller_info2.ptr;
2029 
2030 	if (aiocbe) {
2031 		p = bio->bio_caller_info1.ptr;
2032 
2033 		aiocbe->jobstate = JOBST_JOBBFINISHED;
2034 		aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
2035 		aiocbe->uaiocb._aiocb_private.error = 0;
2036 		aiocbe->jobflags |= AIOCBLIST_DONE;
2037 
2038 		if (bp->b_flags & B_ERROR)
2039 			aiocbe->uaiocb._aiocb_private.error = bp->b_error;
2040 
2041 		lj = aiocbe->lio;
2042 		if (lj) {
2043 			lj->lioj_buffer_finished_count++;
2044 
2045 			/*
2046 			 * wakeup/signal if all of the interrupt jobs are done.
2047 			 */
2048 			if (lj->lioj_buffer_finished_count ==
2049 			    lj->lioj_buffer_count) {
2050 				/*
2051 				 * Post a signal if it is called for.
2052 				 */
2053 				if ((lj->lioj_flags &
2054 				    (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) ==
2055 				    LIOJ_SIGNAL) {
2056 					lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2057 					callout_reset(&aiocbe->timeout, 0,
2058 							process_signal, aiocbe);
2059 				}
2060 			}
2061 		}
2062 
2063 		ki = p->p_aioinfo;
2064 		if (ki) {
2065 			ki->kaio_buffer_finished_count++;
2066 			TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
2067 			TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
2068 			TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
2069 
2070 			KNOTE(&aiocbe->klist, 0);
2071 			/* Do the wakeup. */
2072 			if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) {
2073 				ki->kaio_flags &= ~KAIO_WAKEUP;
2074 				wakeup(p);
2075 			}
2076 		}
2077 
2078 		if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
2079 			callout_reset(&aiocbe->timeout, 0,
2080 					process_signal, aiocbe);
2081 		}
2082 	}
2083 	biodone_sync(bio);
2084 }
2085 #endif /* VFS_AIO */
2086 
2087 /*
2088  * syscall - wait for the next completion of an aio request
2089  *
2090  * MPALMOSTSAFE
2091  */
2092 int
2093 sys_aio_waitcomplete(struct aio_waitcomplete_args *uap)
2094 {
2095 #ifndef VFS_AIO
2096 	return ENOSYS;
2097 #else
2098 	struct proc *p = curproc;
2099 	struct lwp *lp = curthread->td_lwp;
2100 	struct timeval atv;
2101 	struct timespec ts;
2102 	struct kaioinfo *ki;
2103 	struct aiocblist *cb = NULL;
2104 	int error, timo;
2105 
2106 	suword(uap->aiocbp, (int)NULL);
2107 
2108 	timo = 0;
2109 	if (uap->timeout) {
2110 		/* Get timespec struct. */
2111 		error = copyin(uap->timeout, &ts, sizeof(ts));
2112 		if (error)
2113 			return error;
2114 
2115 		if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000))
2116 			return (EINVAL);
2117 
2118 		TIMESPEC_TO_TIMEVAL(&atv, &ts);
2119 		if (itimerfix(&atv))
2120 			return (EINVAL);
2121 		timo = tvtohz_high(&atv);
2122 	}
2123 
2124 	ki = p->p_aioinfo;
2125 	if (ki == NULL)
2126 		return EAGAIN;
2127 
2128 	get_mplock();
2129 
2130 	for (;;) {
2131 		if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) {
2132 			suword(uap->aiocbp, (uintptr_t)cb->uuaiocb);
2133 			uap->sysmsg_result = cb->uaiocb._aiocb_private.status;
2134 			if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
2135 				lp->lwp_ru.ru_oublock +=
2136 				    cb->outputcharge;
2137 				cb->outputcharge = 0;
2138 			} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
2139 				lp->lwp_ru.ru_inblock += cb->inputcharge;
2140 				cb->inputcharge = 0;
2141 			}
2142 			aio_free_entry(cb);
2143 			error = cb->uaiocb._aiocb_private.error;
2144 			break;
2145 		}
2146 
2147 		crit_enter();
2148  		if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) {
2149 			crit_exit();
2150 			suword(uap->aiocbp, (uintptr_t)cb->uuaiocb);
2151 			uap->sysmsg_result = cb->uaiocb._aiocb_private.status;
2152 			aio_free_entry(cb);
2153 			error = cb->uaiocb._aiocb_private.error;
2154 			break;
2155 		}
2156 
2157 		ki->kaio_flags |= KAIO_WAKEUP;
2158 		error = tsleep(p, PCATCH, "aiowc", timo);
2159 		crit_exit();
2160 
2161 		if (error == ERESTART) {
2162 			error = EINTR;
2163 			break;
2164 		}
2165 		if (error < 0)
2166 			break;
2167 		if (error == EINTR)
2168 			break;
2169 		if (error == EWOULDBLOCK) {
2170 			error = EAGAIN;
2171 			break;
2172 		}
2173 	}
2174 	rel_mplock();
2175 	return (error);
2176 #endif /* VFS_AIO */
2177 }
2178 
2179 #ifndef VFS_AIO
2180 static int
2181 filt_aioattach(struct knote *kn)
2182 {
2183 
2184 	return (ENXIO);
2185 }
2186 
2187 struct filterops aio_filtops =
2188 	{ 0, filt_aioattach, NULL, NULL };
2189 
2190 #else
2191 /* kqueue attach function */
2192 static int
2193 filt_aioattach(struct knote *kn)
2194 {
2195 	struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2196 
2197 	/*
2198 	 * The aiocbe pointer must be validated before using it, so
2199 	 * registration is restricted to the kernel; the user cannot
2200 	 * set EV_FLAG1.
2201 	 */
2202 	if ((kn->kn_flags & EV_FLAG1) == 0)
2203 		return (EPERM);
2204 	kn->kn_flags &= ~EV_FLAG1;
2205 
2206 	SLIST_INSERT_HEAD(&aiocbe->klist, kn, kn_selnext);
2207 
2208 	return (0);
2209 }
2210 
2211 /* kqueue detach function */
2212 static void
2213 filt_aiodetach(struct knote *kn)
2214 {
2215 	struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2216 
2217 	SLIST_REMOVE(&aiocbe->klist, kn, knote, kn_selnext);
2218 }
2219 
2220 /* kqueue filter function */
2221 /*ARGSUSED*/
2222 static int
2223 filt_aio(struct knote *kn, long hint)
2224 {
2225 	struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2226 
2227 	kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
2228 	if (aiocbe->jobstate != JOBST_JOBFINISHED &&
2229 	    aiocbe->jobstate != JOBST_JOBBFINISHED)
2230 		return (0);
2231 	kn->kn_flags |= EV_EOF;
2232 	return (1);
2233 }
2234 
2235 struct filterops aio_filtops =
2236 	{ 0, filt_aioattach, filt_aiodetach, filt_aio };
2237 #endif /* VFS_AIO */
2238