xref: /dragonfly/sys/kern/vfs_bio.c (revision 333227be)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.32 2004/11/09 17:36:41 dillon Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <vm/vm_page2.h>
60 
61 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
62 
63 struct	bio_ops bioops;		/* I/O operation notification */
64 
65 struct buf *buf;		/* buffer header pool */
66 struct swqueue bswlist;
67 
68 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
69 		vm_offset_t to);
70 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
71 		vm_offset_t to);
72 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
73 			       int pageno, vm_page_t m);
74 static void vfs_clean_pages(struct buf * bp);
75 static void vfs_setdirty(struct buf *bp);
76 static void vfs_vmio_release(struct buf *bp);
77 static void vfs_backgroundwritedone(struct buf *bp);
78 static int flushbufqueues(void);
79 
80 static int bd_request;
81 
82 static void buf_daemon (void);
83 /*
84  * bogus page -- for I/O to/from partially complete buffers
85  * this is a temporary solution to the problem, but it is not
86  * really that bad.  it would be better to split the buffer
87  * for input in the case of buffers partially already in memory,
88  * but the code is intricate enough already.
89  */
90 vm_page_t bogus_page;
91 int vmiodirenable = TRUE;
92 int runningbufspace;
93 struct lwkt_token buftimetoken;  /* Interlock on setting prio and timo */
94 
95 static vm_offset_t bogus_offset;
96 
97 static int bufspace, maxbufspace,
98 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
99 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
100 static int needsbuffer;
101 static int lorunningspace, hirunningspace, runningbufreq;
102 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
103 static int numfreebuffers, lofreebuffers, hifreebuffers;
104 static int getnewbufcalls;
105 static int getnewbufrestarts;
106 
107 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
108 	&numdirtybuffers, 0, "");
109 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
110 	&lodirtybuffers, 0, "");
111 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
112 	&hidirtybuffers, 0, "");
113 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
114 	&numfreebuffers, 0, "");
115 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
116 	&lofreebuffers, 0, "");
117 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
118 	&hifreebuffers, 0, "");
119 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
120 	&runningbufspace, 0, "");
121 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
122 	&lorunningspace, 0, "");
123 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
124 	&hirunningspace, 0, "");
125 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
126 	&maxbufspace, 0, "");
127 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
128 	&hibufspace, 0, "");
129 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
130 	&lobufspace, 0, "");
131 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132 	&bufspace, 0, "");
133 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
134 	&maxbufmallocspace, 0, "");
135 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
136 	&bufmallocspace, 0, "");
137 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
138 	&getnewbufcalls, 0, "");
139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
140 	&getnewbufrestarts, 0, "");
141 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
142 	&vmiodirenable, 0, "");
143 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
144 	&bufdefragcnt, 0, "");
145 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
146 	&buffreekvacnt, 0, "");
147 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
148 	&bufreusecnt, 0, "");
149 
150 /*
151  * Disable background writes for now.  There appear to be races in the
152  * flags tests and locking operations as well as races in the completion
153  * code modifying the original bp (origbp) without holding a lock, assuming
154  * splbio protection when there might not be splbio protection.
155  */
156 static int dobkgrdwrite = 0;
157 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
158 	"Do background writes (honoring the BV_BKGRDWRITE flag)?");
159 
160 static int bufhashmask;
161 static int bufhashshift;
162 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
163 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
164 char *buf_wmesg = BUF_WMESG;
165 
166 extern int vm_swap_size;
167 
168 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
169 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
170 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
171 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
172 
173 /*
174  * Buffer hash table code.  Note that the logical block scans linearly, which
175  * gives us some L1 cache locality.
176  */
177 
178 static __inline
179 struct bufhashhdr *
180 bufhash(struct vnode *vnp, daddr_t bn)
181 {
182 	u_int64_t hashkey64;
183 	int hashkey;
184 
185 	/*
186 	 * A variation on the Fibonacci hash that Knuth credits to
187 	 * R. W. Floyd, see Knuth's _Art of Computer Programming,
188 	 * Volume 3 / Sorting and Searching_
189 	 *
190          * We reduce the argument to 32 bits before doing the hash to
191 	 * avoid the need for a slow 64x64 multiply on 32 bit platforms.
192 	 *
193 	 * sizeof(struct vnode) is 168 on i386, so toss some of the lower
194 	 * bits of the vnode address to reduce the key range, which
195 	 * improves the distribution of keys across buckets.
196 	 *
197 	 * The file system cylinder group blocks are very heavily
198 	 * used.  They are located at invervals of fbg, which is
199 	 * on the order of 89 to 94 * 2^10, depending on other
200 	 * filesystem parameters, for a 16k block size.  Smaller block
201 	 * sizes will reduce fpg approximately proportionally.  This
202 	 * will cause the cylinder group index to be hashed using the
203 	 * lower bits of the hash multiplier, which will not distribute
204 	 * the keys as uniformly in a classic Fibonacci hash where a
205 	 * relatively small number of the upper bits of the result
206 	 * are used.  Using 2^16 as a close-enough approximation to
207 	 * fpg, split the hash multiplier in half, with the upper 16
208 	 * bits being the inverse of the golden ratio, and the lower
209 	 * 16 bits being a fraction between 1/3 and 3/7 (closer to
210 	 * 3/7 in this case), that gives good experimental results.
211 	 */
212 	hashkey64 = ((u_int64_t)(uintptr_t)vnp >> 3) + (u_int64_t)bn;
213 	hashkey = (((u_int32_t)(hashkey64 + (hashkey64 >> 32)) * 0x9E376DB1u) >>
214 	    bufhashshift) & bufhashmask;
215 	return(&bufhashtbl[hashkey]);
216 }
217 
218 /*
219  *	numdirtywakeup:
220  *
221  *	If someone is blocked due to there being too many dirty buffers,
222  *	and numdirtybuffers is now reasonable, wake them up.
223  */
224 
225 static __inline void
226 numdirtywakeup(int level)
227 {
228 	if (numdirtybuffers <= level) {
229 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
230 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
231 			wakeup(&needsbuffer);
232 		}
233 	}
234 }
235 
236 /*
237  *	bufspacewakeup:
238  *
239  *	Called when buffer space is potentially available for recovery.
240  *	getnewbuf() will block on this flag when it is unable to free
241  *	sufficient buffer space.  Buffer space becomes recoverable when
242  *	bp's get placed back in the queues.
243  */
244 
245 static __inline void
246 bufspacewakeup(void)
247 {
248 	/*
249 	 * If someone is waiting for BUF space, wake them up.  Even
250 	 * though we haven't freed the kva space yet, the waiting
251 	 * process will be able to now.
252 	 */
253 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
254 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
255 		wakeup(&needsbuffer);
256 	}
257 }
258 
259 /*
260  * runningbufwakeup() - in-progress I/O accounting.
261  *
262  */
263 static __inline void
264 runningbufwakeup(struct buf *bp)
265 {
266 	if (bp->b_runningbufspace) {
267 		runningbufspace -= bp->b_runningbufspace;
268 		bp->b_runningbufspace = 0;
269 		if (runningbufreq && runningbufspace <= lorunningspace) {
270 			runningbufreq = 0;
271 			wakeup(&runningbufreq);
272 		}
273 	}
274 }
275 
276 /*
277  *	bufcountwakeup:
278  *
279  *	Called when a buffer has been added to one of the free queues to
280  *	account for the buffer and to wakeup anyone waiting for free buffers.
281  *	This typically occurs when large amounts of metadata are being handled
282  *	by the buffer cache ( else buffer space runs out first, usually ).
283  */
284 
285 static __inline void
286 bufcountwakeup(void)
287 {
288 	++numfreebuffers;
289 	if (needsbuffer) {
290 		needsbuffer &= ~VFS_BIO_NEED_ANY;
291 		if (numfreebuffers >= hifreebuffers)
292 			needsbuffer &= ~VFS_BIO_NEED_FREE;
293 		wakeup(&needsbuffer);
294 	}
295 }
296 
297 /*
298  *	waitrunningbufspace()
299  *
300  *	runningbufspace is a measure of the amount of I/O currently
301  *	running.  This routine is used in async-write situations to
302  *	prevent creating huge backups of pending writes to a device.
303  *	Only asynchronous writes are governed by this function.
304  *
305  *	Reads will adjust runningbufspace, but will not block based on it.
306  *	The read load has a side effect of reducing the allowed write load.
307  *
308  *	This does NOT turn an async write into a sync write.  It waits
309  *	for earlier writes to complete and generally returns before the
310  *	caller's write has reached the device.
311  */
312 static __inline void
313 waitrunningbufspace(void)
314 {
315 	while (runningbufspace > hirunningspace) {
316 		int s;
317 
318 		s = splbio();	/* fix race against interrupt/biodone() */
319 		++runningbufreq;
320 		tsleep(&runningbufreq, 0, "wdrain", 0);
321 		splx(s);
322 	}
323 }
324 
325 /*
326  *	vfs_buf_test_cache:
327  *
328  *	Called when a buffer is extended.  This function clears the B_CACHE
329  *	bit if the newly extended portion of the buffer does not contain
330  *	valid data.
331  */
332 static __inline__
333 void
334 vfs_buf_test_cache(struct buf *bp,
335 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
336 		  vm_page_t m)
337 {
338 	if (bp->b_flags & B_CACHE) {
339 		int base = (foff + off) & PAGE_MASK;
340 		if (vm_page_is_valid(m, base, size) == 0)
341 			bp->b_flags &= ~B_CACHE;
342 	}
343 }
344 
345 static __inline__
346 void
347 bd_wakeup(int dirtybuflevel)
348 {
349 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
350 		bd_request = 1;
351 		wakeup(&bd_request);
352 	}
353 }
354 
355 /*
356  * bd_speedup - speedup the buffer cache flushing code
357  */
358 
359 static __inline__
360 void
361 bd_speedup(void)
362 {
363 	bd_wakeup(1);
364 }
365 
366 /*
367  * Initialize buffer headers and related structures.
368  */
369 
370 caddr_t
371 bufhashinit(caddr_t vaddr)
372 {
373 	/* first, make a null hash table */
374 	bufhashshift = 29;
375 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
376 		bufhashshift--;
377 	bufhashtbl = (void *)vaddr;
378 	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
379 	--bufhashmask;
380 	return(vaddr);
381 }
382 
383 void
384 bufinit(void)
385 {
386 	struct buf *bp;
387 	int i;
388 
389 	TAILQ_INIT(&bswlist);
390 	LIST_INIT(&invalhash);
391 	lwkt_token_init(&buftimetoken);
392 
393 	for (i = 0; i <= bufhashmask; i++)
394 		LIST_INIT(&bufhashtbl[i]);
395 
396 	/* next, make a null set of free lists */
397 	for (i = 0; i < BUFFER_QUEUES; i++)
398 		TAILQ_INIT(&bufqueues[i]);
399 
400 	/* finally, initialize each buffer header and stick on empty q */
401 	for (i = 0; i < nbuf; i++) {
402 		bp = &buf[i];
403 		bzero(bp, sizeof *bp);
404 		bp->b_flags = B_INVAL;	/* we're just an empty header */
405 		bp->b_dev = NODEV;
406 		bp->b_qindex = QUEUE_EMPTY;
407 		bp->b_xflags = 0;
408 		xio_init(&bp->b_xio);
409 		LIST_INIT(&bp->b_dep);
410 		BUF_LOCKINIT(bp);
411 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
412 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
413 	}
414 
415 	/*
416 	 * maxbufspace is the absolute maximum amount of buffer space we are
417 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
418 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
419 	 * used by most other processes.  The differential is required to
420 	 * ensure that buf_daemon is able to run when other processes might
421 	 * be blocked waiting for buffer space.
422 	 *
423 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
424 	 * this may result in KVM fragmentation which is not handled optimally
425 	 * by the system.
426 	 */
427 	maxbufspace = nbuf * BKVASIZE;
428 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
429 	lobufspace = hibufspace - MAXBSIZE;
430 
431 	lorunningspace = 512 * 1024;
432 	hirunningspace = 1024 * 1024;
433 
434 /*
435  * Limit the amount of malloc memory since it is wired permanently into
436  * the kernel space.  Even though this is accounted for in the buffer
437  * allocation, we don't want the malloced region to grow uncontrolled.
438  * The malloc scheme improves memory utilization significantly on average
439  * (small) directories.
440  */
441 	maxbufmallocspace = hibufspace / 20;
442 
443 /*
444  * Reduce the chance of a deadlock occuring by limiting the number
445  * of delayed-write dirty buffers we allow to stack up.
446  */
447 	hidirtybuffers = nbuf / 4 + 20;
448 	numdirtybuffers = 0;
449 /*
450  * To support extreme low-memory systems, make sure hidirtybuffers cannot
451  * eat up all available buffer space.  This occurs when our minimum cannot
452  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
453  * BKVASIZE'd (8K) buffers.
454  */
455 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
456 		hidirtybuffers >>= 1;
457 	}
458 	lodirtybuffers = hidirtybuffers / 2;
459 
460 /*
461  * Try to keep the number of free buffers in the specified range,
462  * and give special processes (e.g. like buf_daemon) access to an
463  * emergency reserve.
464  */
465 	lofreebuffers = nbuf / 18 + 5;
466 	hifreebuffers = 2 * lofreebuffers;
467 	numfreebuffers = nbuf;
468 
469 /*
470  * Maximum number of async ops initiated per buf_daemon loop.  This is
471  * somewhat of a hack at the moment, we really need to limit ourselves
472  * based on the number of bytes of I/O in-transit that were initiated
473  * from buf_daemon.
474  */
475 
476 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
477 	bogus_page = vm_page_alloc(kernel_object,
478 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
479 			VM_ALLOC_NORMAL);
480 	vmstats.v_wire_count++;
481 
482 }
483 
484 /*
485  * bfreekva() - free the kva allocation for a buffer.
486  *
487  *	Must be called at splbio() or higher as this is the only locking for
488  *	buffer_map.
489  *
490  *	Since this call frees up buffer space, we call bufspacewakeup().
491  */
492 static void
493 bfreekva(struct buf * bp)
494 {
495 	int count;
496 
497 	if (bp->b_kvasize) {
498 		++buffreekvacnt;
499 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
500 		vm_map_lock(buffer_map);
501 		bufspace -= bp->b_kvasize;
502 		vm_map_delete(buffer_map,
503 		    (vm_offset_t) bp->b_kvabase,
504 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
505 		    &count
506 		);
507 		vm_map_unlock(buffer_map);
508 		vm_map_entry_release(count);
509 		bp->b_kvasize = 0;
510 		bufspacewakeup();
511 	}
512 }
513 
514 /*
515  *	bremfree:
516  *
517  *	Remove the buffer from the appropriate free list.
518  */
519 void
520 bremfree(struct buf * bp)
521 {
522 	int s = splbio();
523 	int old_qindex = bp->b_qindex;
524 
525 	if (bp->b_qindex != QUEUE_NONE) {
526 		KASSERT(BUF_REFCNTNB(bp) == 1,
527 				("bremfree: bp %p not locked",bp));
528 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
529 		bp->b_qindex = QUEUE_NONE;
530 	} else {
531 		if (BUF_REFCNTNB(bp) <= 1)
532 			panic("bremfree: removing a buffer not on a queue");
533 	}
534 
535 	/*
536 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
537 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
538 	 * the buffer was free and we must decrement numfreebuffers.
539 	 */
540 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
541 		switch(old_qindex) {
542 		case QUEUE_DIRTY:
543 		case QUEUE_CLEAN:
544 		case QUEUE_EMPTY:
545 		case QUEUE_EMPTYKVA:
546 			--numfreebuffers;
547 			break;
548 		default:
549 			break;
550 		}
551 	}
552 	splx(s);
553 }
554 
555 
556 /*
557  * Get a buffer with the specified data.  Look in the cache first.  We
558  * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
559  * is set, the buffer is valid and we do not have to do anything ( see
560  * getblk() ).
561  */
562 int
563 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp)
564 {
565 	struct buf *bp;
566 
567 	bp = getblk(vp, blkno, size, 0, 0);
568 	*bpp = bp;
569 
570 	/* if not found in cache, do some I/O */
571 	if ((bp->b_flags & B_CACHE) == 0) {
572 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
573 		bp->b_flags |= B_READ;
574 		bp->b_flags &= ~(B_ERROR | B_INVAL);
575 		vfs_busy_pages(bp, 0);
576 		VOP_STRATEGY(vp, bp);
577 		return (biowait(bp));
578 	}
579 	return (0);
580 }
581 
582 /*
583  * Operates like bread, but also starts asynchronous I/O on
584  * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
585  * to initiating I/O . If B_CACHE is set, the buffer is valid
586  * and we do not have to do anything.
587  */
588 int
589 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno,
590 	int *rabsize, int cnt, struct buf ** bpp)
591 {
592 	struct buf *bp, *rabp;
593 	int i;
594 	int rv = 0, readwait = 0;
595 
596 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
597 
598 	/* if not found in cache, do some I/O */
599 	if ((bp->b_flags & B_CACHE) == 0) {
600 		bp->b_flags |= B_READ;
601 		bp->b_flags &= ~(B_ERROR | B_INVAL);
602 		vfs_busy_pages(bp, 0);
603 		VOP_STRATEGY(vp, bp);
604 		++readwait;
605 	}
606 
607 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
608 		if (inmem(vp, *rablkno))
609 			continue;
610 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
611 
612 		if ((rabp->b_flags & B_CACHE) == 0) {
613 			rabp->b_flags |= B_READ | B_ASYNC;
614 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
615 			vfs_busy_pages(rabp, 0);
616 			BUF_KERNPROC(rabp);
617 			VOP_STRATEGY(vp, rabp);
618 		} else {
619 			brelse(rabp);
620 		}
621 	}
622 
623 	if (readwait) {
624 		rv = biowait(bp);
625 	}
626 	return (rv);
627 }
628 
629 /*
630  * Write, release buffer on completion.  (Done by iodone
631  * if async).  Do not bother writing anything if the buffer
632  * is invalid.
633  *
634  * Note that we set B_CACHE here, indicating that buffer is
635  * fully valid and thus cacheable.  This is true even of NFS
636  * now so we set it generally.  This could be set either here
637  * or in biodone() since the I/O is synchronous.  We put it
638  * here.
639  */
640 int
641 bwrite(struct buf * bp)
642 {
643 	int oldflags, s;
644 	struct buf *newbp;
645 
646 	if (bp->b_flags & B_INVAL) {
647 		brelse(bp);
648 		return (0);
649 	}
650 
651 	oldflags = bp->b_flags;
652 
653 	if (BUF_REFCNTNB(bp) == 0)
654 		panic("bwrite: buffer is not busy???");
655 	s = splbio();
656 	/*
657 	 * If a background write is already in progress, delay
658 	 * writing this block if it is asynchronous. Otherwise
659 	 * wait for the background write to complete.
660 	 */
661 	if (bp->b_xflags & BX_BKGRDINPROG) {
662 		if (bp->b_flags & B_ASYNC) {
663 			splx(s);
664 			bdwrite(bp);
665 			return (0);
666 		}
667 		bp->b_xflags |= BX_BKGRDWAIT;
668 		tsleep(&bp->b_xflags, 0, "biord", 0);
669 		if (bp->b_xflags & BX_BKGRDINPROG)
670 			panic("bwrite: still writing");
671 	}
672 
673 	/* Mark the buffer clean */
674 	bundirty(bp);
675 
676 	/*
677 	 * If this buffer is marked for background writing and we
678 	 * do not have to wait for it, make a copy and write the
679 	 * copy so as to leave this buffer ready for further use.
680 	 *
681 	 * This optimization eats a lot of memory.  If we have a page
682 	 * or buffer shortfull we can't do it.
683 	 */
684 	if (dobkgrdwrite &&
685 	    (bp->b_xflags & BX_BKGRDWRITE) &&
686 	    (bp->b_flags & B_ASYNC) &&
687 	    !vm_page_count_severe() &&
688 	    !buf_dirty_count_severe()) {
689 		if (bp->b_flags & B_CALL)
690 			panic("bwrite: need chained iodone");
691 
692 		/* get a new block */
693 		newbp = geteblk(bp->b_bufsize);
694 
695 		/* set it to be identical to the old block */
696 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
697 		bgetvp(bp->b_vp, newbp);
698 		newbp->b_lblkno = bp->b_lblkno;
699 		newbp->b_blkno = bp->b_blkno;
700 		newbp->b_offset = bp->b_offset;
701 		newbp->b_iodone = vfs_backgroundwritedone;
702 		newbp->b_flags |= B_ASYNC | B_CALL;
703 		newbp->b_flags &= ~B_INVAL;
704 
705 		/* move over the dependencies */
706 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
707 			(*bioops.io_movedeps)(bp, newbp);
708 
709 		/*
710 		 * Initiate write on the copy, release the original to
711 		 * the B_LOCKED queue so that it cannot go away until
712 		 * the background write completes. If not locked it could go
713 		 * away and then be reconstituted while it was being written.
714 		 * If the reconstituted buffer were written, we could end up
715 		 * with two background copies being written at the same time.
716 		 */
717 		bp->b_xflags |= BX_BKGRDINPROG;
718 		bp->b_flags |= B_LOCKED;
719 		bqrelse(bp);
720 		bp = newbp;
721 	}
722 
723 	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
724 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
725 
726 	bp->b_vp->v_numoutput++;
727 	vfs_busy_pages(bp, 1);
728 
729 	/*
730 	 * Normal bwrites pipeline writes
731 	 */
732 	bp->b_runningbufspace = bp->b_bufsize;
733 	runningbufspace += bp->b_runningbufspace;
734 
735 	splx(s);
736 	if (oldflags & B_ASYNC)
737 		BUF_KERNPROC(bp);
738 	VOP_STRATEGY(bp->b_vp, bp);
739 
740 	if ((oldflags & B_ASYNC) == 0) {
741 		int rtval = biowait(bp);
742 		brelse(bp);
743 		return (rtval);
744 	} else if ((oldflags & B_NOWDRAIN) == 0) {
745 		/*
746 		 * don't allow the async write to saturate the I/O
747 		 * system.  Deadlocks can occur only if a device strategy
748 		 * routine (like in VN) turns around and issues another
749 		 * high-level write, in which case B_NOWDRAIN is expected
750 		 * to be set.   Otherwise we will not deadlock here because
751 		 * we are blocking waiting for I/O that is already in-progress
752 		 * to complete.
753 		 */
754 		waitrunningbufspace();
755 	}
756 
757 	return (0);
758 }
759 
760 /*
761  * Complete a background write started from bwrite.
762  */
763 static void
764 vfs_backgroundwritedone(struct buf *bp)
765 {
766 	struct buf *origbp;
767 
768 	/*
769 	 * Find the original buffer that we are writing.
770 	 */
771 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
772 		panic("backgroundwritedone: lost buffer");
773 	/*
774 	 * Process dependencies then return any unfinished ones.
775 	 */
776 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
777 		(*bioops.io_complete)(bp);
778 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
779 		(*bioops.io_movedeps)(bp, origbp);
780 	/*
781 	 * Clear the BX_BKGRDINPROG flag in the original buffer
782 	 * and awaken it if it is waiting for the write to complete.
783 	 * If BX_BKGRDINPROG is not set in the original buffer it must
784 	 * have been released and re-instantiated - which is not legal.
785 	 */
786 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
787 	origbp->b_xflags &= ~BX_BKGRDINPROG;
788 	if (origbp->b_xflags & BX_BKGRDWAIT) {
789 		origbp->b_xflags &= ~BX_BKGRDWAIT;
790 		wakeup(&origbp->b_xflags);
791 	}
792 	/*
793 	 * Clear the B_LOCKED flag and remove it from the locked
794 	 * queue if it currently resides there.
795 	 */
796 	origbp->b_flags &= ~B_LOCKED;
797 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
798 		bremfree(origbp);
799 		bqrelse(origbp);
800 	}
801 	/*
802 	 * This buffer is marked B_NOCACHE, so when it is released
803 	 * by biodone, it will be tossed. We mark it with B_READ
804 	 * to avoid biodone doing a second vwakeup.
805 	 */
806 	bp->b_flags |= B_NOCACHE | B_READ;
807 	bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE);
808 	bp->b_iodone = 0;
809 	biodone(bp);
810 }
811 
812 /*
813  * Delayed write. (Buffer is marked dirty).  Do not bother writing
814  * anything if the buffer is marked invalid.
815  *
816  * Note that since the buffer must be completely valid, we can safely
817  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
818  * biodone() in order to prevent getblk from writing the buffer
819  * out synchronously.
820  */
821 void
822 bdwrite(struct buf *bp)
823 {
824 	if (BUF_REFCNTNB(bp) == 0)
825 		panic("bdwrite: buffer is not busy");
826 
827 	if (bp->b_flags & B_INVAL) {
828 		brelse(bp);
829 		return;
830 	}
831 	bdirty(bp);
832 
833 	/*
834 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
835 	 * true even of NFS now.
836 	 */
837 	bp->b_flags |= B_CACHE;
838 
839 	/*
840 	 * This bmap keeps the system from needing to do the bmap later,
841 	 * perhaps when the system is attempting to do a sync.  Since it
842 	 * is likely that the indirect block -- or whatever other datastructure
843 	 * that the filesystem needs is still in memory now, it is a good
844 	 * thing to do this.  Note also, that if the pageout daemon is
845 	 * requesting a sync -- there might not be enough memory to do
846 	 * the bmap then...  So, this is important to do.
847 	 */
848 	if (bp->b_lblkno == bp->b_blkno) {
849 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
850 	}
851 
852 	/*
853 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
854 	 */
855 	vfs_setdirty(bp);
856 
857 	/*
858 	 * We need to do this here to satisfy the vnode_pager and the
859 	 * pageout daemon, so that it thinks that the pages have been
860 	 * "cleaned".  Note that since the pages are in a delayed write
861 	 * buffer -- the VFS layer "will" see that the pages get written
862 	 * out on the next sync, or perhaps the cluster will be completed.
863 	 */
864 	vfs_clean_pages(bp);
865 	bqrelse(bp);
866 
867 	/*
868 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
869 	 * buffers (midpoint between our recovery point and our stall
870 	 * point).
871 	 */
872 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
873 
874 	/*
875 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
876 	 * due to the softdep code.
877 	 */
878 }
879 
880 /*
881  *	bdirty:
882  *
883  *	Turn buffer into delayed write request.  We must clear B_READ and
884  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
885  *	itself to properly update it in the dirty/clean lists.  We mark it
886  *	B_DONE to ensure that any asynchronization of the buffer properly
887  *	clears B_DONE ( else a panic will occur later ).
888  *
889  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
890  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
891  *	should only be called if the buffer is known-good.
892  *
893  *	Since the buffer is not on a queue, we do not update the numfreebuffers
894  *	count.
895  *
896  *	Must be called at splbio().
897  *	The buffer must be on QUEUE_NONE.
898  */
899 void
900 bdirty(struct buf *bp)
901 {
902 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
903 	bp->b_flags &= ~(B_READ|B_RELBUF);
904 
905 	if ((bp->b_flags & B_DELWRI) == 0) {
906 		bp->b_flags |= B_DONE | B_DELWRI;
907 		reassignbuf(bp, bp->b_vp);
908 		++numdirtybuffers;
909 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
910 	}
911 }
912 
913 /*
914  *	bundirty:
915  *
916  *	Clear B_DELWRI for buffer.
917  *
918  *	Since the buffer is not on a queue, we do not update the numfreebuffers
919  *	count.
920  *
921  *	Must be called at splbio().
922  *	The buffer must be on QUEUE_NONE.
923  */
924 
925 void
926 bundirty(struct buf *bp)
927 {
928 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
929 
930 	if (bp->b_flags & B_DELWRI) {
931 		bp->b_flags &= ~B_DELWRI;
932 		reassignbuf(bp, bp->b_vp);
933 		--numdirtybuffers;
934 		numdirtywakeup(lodirtybuffers);
935 	}
936 	/*
937 	 * Since it is now being written, we can clear its deferred write flag.
938 	 */
939 	bp->b_flags &= ~B_DEFERRED;
940 }
941 
942 /*
943  *	bawrite:
944  *
945  *	Asynchronous write.  Start output on a buffer, but do not wait for
946  *	it to complete.  The buffer is released when the output completes.
947  *
948  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
949  *	B_INVAL buffers.  Not us.
950  */
951 void
952 bawrite(struct buf * bp)
953 {
954 	bp->b_flags |= B_ASYNC;
955 	(void) VOP_BWRITE(bp->b_vp, bp);
956 }
957 
958 /*
959  *	bowrite:
960  *
961  *	Ordered write.  Start output on a buffer, and flag it so that the
962  *	device will write it in the order it was queued.  The buffer is
963  *	released when the output completes.  bwrite() ( or the VOP routine
964  *	anyway ) is responsible for handling B_INVAL buffers.
965  */
966 int
967 bowrite(struct buf * bp)
968 {
969 	bp->b_flags |= B_ORDERED | B_ASYNC;
970 	return (VOP_BWRITE(bp->b_vp, bp));
971 }
972 
973 /*
974  *	bwillwrite:
975  *
976  *	Called prior to the locking of any vnodes when we are expecting to
977  *	write.  We do not want to starve the buffer cache with too many
978  *	dirty buffers so we block here.  By blocking prior to the locking
979  *	of any vnodes we attempt to avoid the situation where a locked vnode
980  *	prevents the various system daemons from flushing related buffers.
981  */
982 
983 void
984 bwillwrite(void)
985 {
986 	if (numdirtybuffers >= hidirtybuffers) {
987 		int s;
988 
989 		s = splbio();
990 		while (numdirtybuffers >= hidirtybuffers) {
991 			bd_wakeup(1);
992 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
993 			tsleep(&needsbuffer, 0, "flswai", 0);
994 		}
995 		splx(s);
996 	}
997 }
998 
999 /*
1000  * Return true if we have too many dirty buffers.
1001  */
1002 int
1003 buf_dirty_count_severe(void)
1004 {
1005 	return(numdirtybuffers >= hidirtybuffers);
1006 }
1007 
1008 /*
1009  *	brelse:
1010  *
1011  *	Release a busy buffer and, if requested, free its resources.  The
1012  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1013  *	to be accessed later as a cache entity or reused for other purposes.
1014  */
1015 void
1016 brelse(struct buf * bp)
1017 {
1018 	int s;
1019 
1020 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1021 
1022 	s = splbio();
1023 
1024 	if (bp->b_flags & B_LOCKED)
1025 		bp->b_flags &= ~B_ERROR;
1026 
1027 	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
1028 		/*
1029 		 * Failed write, redirty.  Must clear B_ERROR to prevent
1030 		 * pages from being scrapped.  If B_INVAL is set then
1031 		 * this case is not run and the next case is run to
1032 		 * destroy the buffer.  B_INVAL can occur if the buffer
1033 		 * is outside the range supported by the underlying device.
1034 		 */
1035 		bp->b_flags &= ~B_ERROR;
1036 		bdirty(bp);
1037 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
1038 	    (bp->b_bufsize <= 0)) {
1039 		/*
1040 		 * Either a failed I/O or we were asked to free or not
1041 		 * cache the buffer.
1042 		 */
1043 		bp->b_flags |= B_INVAL;
1044 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1045 			(*bioops.io_deallocate)(bp);
1046 		if (bp->b_flags & B_DELWRI) {
1047 			--numdirtybuffers;
1048 			numdirtywakeup(lodirtybuffers);
1049 		}
1050 		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
1051 		if ((bp->b_flags & B_VMIO) == 0) {
1052 			if (bp->b_bufsize)
1053 				allocbuf(bp, 0);
1054 			if (bp->b_vp)
1055 				brelvp(bp);
1056 		}
1057 	}
1058 
1059 	/*
1060 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1061 	 * is called with B_DELWRI set, the underlying pages may wind up
1062 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1063 	 * because pages associated with a B_DELWRI bp are marked clean.
1064 	 *
1065 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1066 	 * if B_DELWRI is set.
1067 	 *
1068 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1069 	 * on pages to return pages to the VM page queues.
1070 	 */
1071 	if (bp->b_flags & B_DELWRI)
1072 		bp->b_flags &= ~B_RELBUF;
1073 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1074 		bp->b_flags |= B_RELBUF;
1075 
1076 	/*
1077 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1078 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1079 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1080 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1081 	 *
1082 	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1083 	 * invalidated.  B_ERROR cannot be set for a failed write unless the
1084 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1085 	 *
1086 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1087 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1088 	 * the commit state and we cannot afford to lose the buffer. If the
1089 	 * buffer has a background write in progress, we need to keep it
1090 	 * around to prevent it from being reconstituted and starting a second
1091 	 * background write.
1092 	 */
1093 	if ((bp->b_flags & B_VMIO)
1094 	    && !(bp->b_vp->v_tag == VT_NFS &&
1095 		 !vn_isdisk(bp->b_vp, NULL) &&
1096 		 (bp->b_flags & B_DELWRI))
1097 	    ) {
1098 
1099 		int i, j, resid;
1100 		vm_page_t m;
1101 		off_t foff;
1102 		vm_pindex_t poff;
1103 		vm_object_t obj;
1104 		struct vnode *vp;
1105 
1106 		vp = bp->b_vp;
1107 
1108 		/*
1109 		 * Get the base offset and length of the buffer.  Note that
1110 		 * in the VMIO case if the buffer block size is not
1111 		 * page-aligned then b_data pointer may not be page-aligned.
1112 		 * But our b_xio.xio_pages array *IS* page aligned.
1113 		 *
1114 		 * block sizes less then DEV_BSIZE (usually 512) are not
1115 		 * supported due to the page granularity bits (m->valid,
1116 		 * m->dirty, etc...).
1117 		 *
1118 		 * See man buf(9) for more information
1119 		 */
1120 
1121 		resid = bp->b_bufsize;
1122 		foff = bp->b_offset;
1123 
1124 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1125 			m = bp->b_xio.xio_pages[i];
1126 			vm_page_flag_clear(m, PG_ZERO);
1127 			/*
1128 			 * If we hit a bogus page, fixup *all* of them
1129 			 * now.  Note that we left these pages wired
1130 			 * when we removed them so they had better exist,
1131 			 * and they cannot be ripped out from under us so
1132 			 * no splvm() protection is necessary.
1133 			 */
1134 			if (m == bogus_page) {
1135 				VOP_GETVOBJECT(vp, &obj);
1136 				poff = OFF_TO_IDX(bp->b_offset);
1137 
1138 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1139 					vm_page_t mtmp;
1140 
1141 					mtmp = bp->b_xio.xio_pages[j];
1142 					if (mtmp == bogus_page) {
1143 						mtmp = vm_page_lookup(obj, poff + j);
1144 						if (!mtmp) {
1145 							panic("brelse: page missing");
1146 						}
1147 						bp->b_xio.xio_pages[j] = mtmp;
1148 					}
1149 				}
1150 
1151 				if ((bp->b_flags & B_INVAL) == 0) {
1152 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1153 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1154 				}
1155 				m = bp->b_xio.xio_pages[i];
1156 			}
1157 
1158 			/*
1159 			 * Invalidate the backing store if B_NOCACHE is set
1160 			 * (e.g. used with vinvalbuf()).  If this is NFS
1161 			 * we impose a requirement that the block size be
1162 			 * a multiple of PAGE_SIZE and create a temporary
1163 			 * hack to basically invalidate the whole page.  The
1164 			 * problem is that NFS uses really odd buffer sizes
1165 			 * especially when tracking piecemeal writes and
1166 			 * it also vinvalbuf()'s a lot, which would result
1167 			 * in only partial page validation and invalidation
1168 			 * here.  If the file page is mmap()'d, however,
1169 			 * all the valid bits get set so after we invalidate
1170 			 * here we would end up with weird m->valid values
1171 			 * like 0xfc.  nfs_getpages() can't handle this so
1172 			 * we clear all the valid bits for the NFS case
1173 			 * instead of just some of them.
1174 			 *
1175 			 * The real bug is the VM system having to set m->valid
1176 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1177 			 * itself is an artifact of the whole 512-byte
1178 			 * granular mess that exists to support odd block
1179 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1180 			 * A complete rewrite is required.
1181 			 */
1182 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1183 				int poffset = foff & PAGE_MASK;
1184 				int presid;
1185 
1186 				presid = PAGE_SIZE - poffset;
1187 				if (bp->b_vp->v_tag == VT_NFS &&
1188 				    bp->b_vp->v_type == VREG) {
1189 					; /* entire page */
1190 				} else if (presid > resid) {
1191 					presid = resid;
1192 				}
1193 				KASSERT(presid >= 0, ("brelse: extra page"));
1194 				vm_page_set_invalid(m, poffset, presid);
1195 			}
1196 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1197 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1198 		}
1199 
1200 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1201 			vfs_vmio_release(bp);
1202 
1203 	} else if (bp->b_flags & B_VMIO) {
1204 
1205 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1206 			vfs_vmio_release(bp);
1207 
1208 	}
1209 
1210 	if (bp->b_qindex != QUEUE_NONE)
1211 		panic("brelse: free buffer onto another queue???");
1212 	if (BUF_REFCNTNB(bp) > 1) {
1213 		/* Temporary panic to verify exclusive locking */
1214 		/* This panic goes away when we allow shared refs */
1215 		panic("brelse: multiple refs");
1216 		/* do not release to free list */
1217 		BUF_UNLOCK(bp);
1218 		splx(s);
1219 		return;
1220 	}
1221 
1222 	/* enqueue */
1223 
1224 	/* buffers with no memory */
1225 	if (bp->b_bufsize == 0) {
1226 		bp->b_flags |= B_INVAL;
1227 		bp->b_xflags &= ~BX_BKGRDWRITE;
1228 		if (bp->b_xflags & BX_BKGRDINPROG)
1229 			panic("losing buffer 1");
1230 		if (bp->b_kvasize) {
1231 			bp->b_qindex = QUEUE_EMPTYKVA;
1232 		} else {
1233 			bp->b_qindex = QUEUE_EMPTY;
1234 		}
1235 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1236 		LIST_REMOVE(bp, b_hash);
1237 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1238 		bp->b_dev = NODEV;
1239 	/* buffers with junk contents */
1240 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1241 		bp->b_flags |= B_INVAL;
1242 		bp->b_xflags &= ~BX_BKGRDWRITE;
1243 		if (bp->b_xflags & BX_BKGRDINPROG)
1244 			panic("losing buffer 2");
1245 		bp->b_qindex = QUEUE_CLEAN;
1246 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1247 		LIST_REMOVE(bp, b_hash);
1248 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1249 		bp->b_dev = NODEV;
1250 
1251 	/* buffers that are locked */
1252 	} else if (bp->b_flags & B_LOCKED) {
1253 		bp->b_qindex = QUEUE_LOCKED;
1254 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1255 
1256 	/* remaining buffers */
1257 	} else {
1258 		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1259 		case B_DELWRI | B_AGE:
1260 		    bp->b_qindex = QUEUE_DIRTY;
1261 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1262 		    break;
1263 		case B_DELWRI:
1264 		    bp->b_qindex = QUEUE_DIRTY;
1265 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1266 		    break;
1267 		case B_AGE:
1268 		    bp->b_qindex = QUEUE_CLEAN;
1269 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1270 		    break;
1271 		default:
1272 		    bp->b_qindex = QUEUE_CLEAN;
1273 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1274 		    break;
1275 		}
1276 	}
1277 
1278 	/*
1279 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1280 	 * on the correct queue.
1281 	 */
1282 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1283 		bundirty(bp);
1284 
1285 	/*
1286 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1287 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1288 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1289 	 * if B_INVAL is set ).
1290 	 */
1291 
1292 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1293 		bufcountwakeup();
1294 
1295 	/*
1296 	 * Something we can maybe free or reuse
1297 	 */
1298 	if (bp->b_bufsize || bp->b_kvasize)
1299 		bufspacewakeup();
1300 
1301 	/* unlock */
1302 	BUF_UNLOCK(bp);
1303 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1304 			B_DIRECT | B_NOWDRAIN);
1305 	splx(s);
1306 }
1307 
1308 /*
1309  * Release a buffer back to the appropriate queue but do not try to free
1310  * it.  The buffer is expected to be used again soon.
1311  *
1312  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1313  * biodone() to requeue an async I/O on completion.  It is also used when
1314  * known good buffers need to be requeued but we think we may need the data
1315  * again soon.
1316  *
1317  * XXX we should be able to leave the B_RELBUF hint set on completion.
1318  */
1319 void
1320 bqrelse(struct buf * bp)
1321 {
1322 	int s;
1323 
1324 	s = splbio();
1325 
1326 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1327 
1328 	if (bp->b_qindex != QUEUE_NONE)
1329 		panic("bqrelse: free buffer onto another queue???");
1330 	if (BUF_REFCNTNB(bp) > 1) {
1331 		/* do not release to free list */
1332 		panic("bqrelse: multiple refs");
1333 		BUF_UNLOCK(bp);
1334 		splx(s);
1335 		return;
1336 	}
1337 	if (bp->b_flags & B_LOCKED) {
1338 		bp->b_flags &= ~B_ERROR;
1339 		bp->b_qindex = QUEUE_LOCKED;
1340 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1341 		/* buffers with stale but valid contents */
1342 	} else if (bp->b_flags & B_DELWRI) {
1343 		bp->b_qindex = QUEUE_DIRTY;
1344 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1345 	} else if (vm_page_count_severe()) {
1346 		/*
1347 		 * We are too low on memory, we have to try to free the
1348 		 * buffer (most importantly: the wired pages making up its
1349 		 * backing store) *now*.
1350 		 */
1351 		splx(s);
1352 		brelse(bp);
1353 		return;
1354 	} else {
1355 		bp->b_qindex = QUEUE_CLEAN;
1356 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1357 	}
1358 
1359 	if ((bp->b_flags & B_LOCKED) == 0 &&
1360 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1361 		bufcountwakeup();
1362 	}
1363 
1364 	/*
1365 	 * Something we can maybe free or reuse.
1366 	 */
1367 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1368 		bufspacewakeup();
1369 
1370 	/* unlock */
1371 	BUF_UNLOCK(bp);
1372 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1373 	splx(s);
1374 }
1375 
1376 static void
1377 vfs_vmio_release(struct buf *bp)
1378 {
1379 	int i, s;
1380 	vm_page_t m;
1381 
1382 	s = splvm();
1383 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1384 		m = bp->b_xio.xio_pages[i];
1385 		bp->b_xio.xio_pages[i] = NULL;
1386 		/*
1387 		 * In order to keep page LRU ordering consistent, put
1388 		 * everything on the inactive queue.
1389 		 */
1390 		vm_page_unwire(m, 0);
1391 		/*
1392 		 * We don't mess with busy pages, it is
1393 		 * the responsibility of the process that
1394 		 * busied the pages to deal with them.
1395 		 */
1396 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1397 			continue;
1398 
1399 		if (m->wire_count == 0) {
1400 			vm_page_flag_clear(m, PG_ZERO);
1401 			/*
1402 			 * Might as well free the page if we can and it has
1403 			 * no valid data.  We also free the page if the
1404 			 * buffer was used for direct I/O.
1405 			 */
1406 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1407 				vm_page_busy(m);
1408 				vm_page_protect(m, VM_PROT_NONE);
1409 				vm_page_free(m);
1410 			} else if (bp->b_flags & B_DIRECT) {
1411 				vm_page_try_to_free(m);
1412 			} else if (vm_page_count_severe()) {
1413 				vm_page_try_to_cache(m);
1414 			}
1415 		}
1416 	}
1417 	splx(s);
1418 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1419 	if (bp->b_bufsize) {
1420 		bufspacewakeup();
1421 		bp->b_bufsize = 0;
1422 	}
1423 	bp->b_xio.xio_npages = 0;
1424 	bp->b_flags &= ~B_VMIO;
1425 	if (bp->b_vp)
1426 		brelvp(bp);
1427 }
1428 
1429 /*
1430  * Check to see if a block is currently memory resident.
1431  */
1432 struct buf *
1433 gbincore(struct vnode * vp, daddr_t blkno)
1434 {
1435 	struct buf *bp;
1436 	struct bufhashhdr *bh;
1437 
1438 	bh = bufhash(vp, blkno);
1439 
1440 	/* Search hash chain */
1441 	LIST_FOREACH(bp, bh, b_hash) {
1442 		/* hit */
1443 		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1444 		    (bp->b_flags & B_INVAL) == 0) {
1445 			break;
1446 		}
1447 	}
1448 	return (bp);
1449 }
1450 
1451 /*
1452  *	vfs_bio_awrite:
1453  *
1454  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1455  *	This is much better then the old way of writing only one buffer at
1456  *	a time.  Note that we may not be presented with the buffers in the
1457  *	correct order, so we search for the cluster in both directions.
1458  */
1459 int
1460 vfs_bio_awrite(struct buf * bp)
1461 {
1462 	int i;
1463 	int j;
1464 	daddr_t lblkno = bp->b_lblkno;
1465 	struct vnode *vp = bp->b_vp;
1466 	int s;
1467 	int ncl;
1468 	struct buf *bpa;
1469 	int nwritten;
1470 	int size;
1471 	int maxcl;
1472 
1473 	s = splbio();
1474 	/*
1475 	 * right now we support clustered writing only to regular files.  If
1476 	 * we find a clusterable block we could be in the middle of a cluster
1477 	 * rather then at the beginning.
1478 	 */
1479 	if ((vp->v_type == VREG) &&
1480 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1481 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1482 
1483 		size = vp->v_mount->mnt_stat.f_iosize;
1484 		maxcl = MAXPHYS / size;
1485 
1486 		for (i = 1; i < maxcl; i++) {
1487 			if ((bpa = gbincore(vp, lblkno + i)) &&
1488 			    BUF_REFCNT(bpa) == 0 &&
1489 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1490 			    (B_DELWRI | B_CLUSTEROK)) &&
1491 			    (bpa->b_bufsize == size)) {
1492 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1493 				    (bpa->b_blkno !=
1494 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1495 					break;
1496 			} else {
1497 				break;
1498 			}
1499 		}
1500 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1501 			if ((bpa = gbincore(vp, lblkno - j)) &&
1502 			    BUF_REFCNT(bpa) == 0 &&
1503 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1504 			    (B_DELWRI | B_CLUSTEROK)) &&
1505 			    (bpa->b_bufsize == size)) {
1506 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1507 				    (bpa->b_blkno !=
1508 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1509 					break;
1510 			} else {
1511 				break;
1512 			}
1513 		}
1514 		--j;
1515 		ncl = i + j;
1516 		/*
1517 		 * this is a possible cluster write
1518 		 */
1519 		if (ncl != 1) {
1520 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1521 			splx(s);
1522 			return nwritten;
1523 		}
1524 	}
1525 
1526 	BUF_LOCK(bp, LK_EXCLUSIVE);
1527 	bremfree(bp);
1528 	bp->b_flags |= B_ASYNC;
1529 
1530 	splx(s);
1531 	/*
1532 	 * default (old) behavior, writing out only one block
1533 	 *
1534 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1535 	 */
1536 	nwritten = bp->b_bufsize;
1537 	(void) VOP_BWRITE(bp->b_vp, bp);
1538 
1539 	return nwritten;
1540 }
1541 
1542 /*
1543  *	getnewbuf:
1544  *
1545  *	Find and initialize a new buffer header, freeing up existing buffers
1546  *	in the bufqueues as necessary.  The new buffer is returned locked.
1547  *
1548  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1549  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1550  *
1551  *	We block if:
1552  *		We have insufficient buffer headers
1553  *		We have insufficient buffer space
1554  *		buffer_map is too fragmented ( space reservation fails )
1555  *		If we have to flush dirty buffers ( but we try to avoid this )
1556  *
1557  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1558  *	Instead we ask the buf daemon to do it for us.  We attempt to
1559  *	avoid piecemeal wakeups of the pageout daemon.
1560  */
1561 
1562 static struct buf *
1563 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1564 {
1565 	struct buf *bp;
1566 	struct buf *nbp;
1567 	int defrag = 0;
1568 	int nqindex;
1569 	static int flushingbufs;
1570 
1571 	/*
1572 	 * We can't afford to block since we might be holding a vnode lock,
1573 	 * which may prevent system daemons from running.  We deal with
1574 	 * low-memory situations by proactively returning memory and running
1575 	 * async I/O rather then sync I/O.
1576 	 */
1577 
1578 	++getnewbufcalls;
1579 	--getnewbufrestarts;
1580 restart:
1581 	++getnewbufrestarts;
1582 
1583 	/*
1584 	 * Setup for scan.  If we do not have enough free buffers,
1585 	 * we setup a degenerate case that immediately fails.  Note
1586 	 * that if we are specially marked process, we are allowed to
1587 	 * dip into our reserves.
1588 	 *
1589 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1590 	 *
1591 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1592 	 * However, there are a number of cases (defragging, reusing, ...)
1593 	 * where we cannot backup.
1594 	 */
1595 	nqindex = QUEUE_EMPTYKVA;
1596 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1597 
1598 	if (nbp == NULL) {
1599 		/*
1600 		 * If no EMPTYKVA buffers and we are either
1601 		 * defragging or reusing, locate a CLEAN buffer
1602 		 * to free or reuse.  If bufspace useage is low
1603 		 * skip this step so we can allocate a new buffer.
1604 		 */
1605 		if (defrag || bufspace >= lobufspace) {
1606 			nqindex = QUEUE_CLEAN;
1607 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1608 		}
1609 
1610 		/*
1611 		 * If we could not find or were not allowed to reuse a
1612 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1613 		 * buffer.  We can only use an EMPTY buffer if allocating
1614 		 * its KVA would not otherwise run us out of buffer space.
1615 		 */
1616 		if (nbp == NULL && defrag == 0 &&
1617 		    bufspace + maxsize < hibufspace) {
1618 			nqindex = QUEUE_EMPTY;
1619 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1620 		}
1621 	}
1622 
1623 	/*
1624 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1625 	 * depending.
1626 	 */
1627 
1628 	while ((bp = nbp) != NULL) {
1629 		int qindex = nqindex;
1630 
1631 		/*
1632 		 * Calculate next bp ( we can only use it if we do not block
1633 		 * or do other fancy things ).
1634 		 */
1635 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1636 			switch(qindex) {
1637 			case QUEUE_EMPTY:
1638 				nqindex = QUEUE_EMPTYKVA;
1639 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1640 					break;
1641 				/* fall through */
1642 			case QUEUE_EMPTYKVA:
1643 				nqindex = QUEUE_CLEAN;
1644 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1645 					break;
1646 				/* fall through */
1647 			case QUEUE_CLEAN:
1648 				/*
1649 				 * nbp is NULL.
1650 				 */
1651 				break;
1652 			}
1653 		}
1654 
1655 		/*
1656 		 * Sanity Checks
1657 		 */
1658 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1659 
1660 		/*
1661 		 * Note: we no longer distinguish between VMIO and non-VMIO
1662 		 * buffers.
1663 		 */
1664 
1665 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1666 
1667 		/*
1668 		 * If we are defragging then we need a buffer with
1669 		 * b_kvasize != 0.  XXX this situation should no longer
1670 		 * occur, if defrag is non-zero the buffer's b_kvasize
1671 		 * should also be non-zero at this point.  XXX
1672 		 */
1673 		if (defrag && bp->b_kvasize == 0) {
1674 			printf("Warning: defrag empty buffer %p\n", bp);
1675 			continue;
1676 		}
1677 
1678 		/*
1679 		 * Start freeing the bp.  This is somewhat involved.  nbp
1680 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1681 		 */
1682 
1683 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1684 			panic("getnewbuf: locked buf");
1685 		bremfree(bp);
1686 
1687 		if (qindex == QUEUE_CLEAN) {
1688 			if (bp->b_flags & B_VMIO) {
1689 				bp->b_flags &= ~B_ASYNC;
1690 				vfs_vmio_release(bp);
1691 			}
1692 			if (bp->b_vp)
1693 				brelvp(bp);
1694 		}
1695 
1696 		/*
1697 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1698 		 * the scan from this point on.
1699 		 *
1700 		 * Get the rest of the buffer freed up.  b_kva* is still
1701 		 * valid after this operation.
1702 		 */
1703 
1704 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1705 			(*bioops.io_deallocate)(bp);
1706 		if (bp->b_xflags & BX_BKGRDINPROG)
1707 			panic("losing buffer 3");
1708 		LIST_REMOVE(bp, b_hash);
1709 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1710 
1711 		/*
1712 		 * spl protection not required when scrapping a buffer's
1713 		 * contents because it is already wired.
1714 		 */
1715 		if (bp->b_bufsize)
1716 			allocbuf(bp, 0);
1717 
1718 		bp->b_flags = 0;
1719 		bp->b_xflags = 0;
1720 		bp->b_dev = NODEV;
1721 		bp->b_vp = NULL;
1722 		bp->b_blkno = bp->b_lblkno = 0;
1723 		bp->b_offset = NOOFFSET;
1724 		bp->b_iodone = 0;
1725 		bp->b_error = 0;
1726 		bp->b_resid = 0;
1727 		bp->b_bcount = 0;
1728 		bp->b_xio.xio_npages = 0;
1729 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1730 
1731 		LIST_INIT(&bp->b_dep);
1732 
1733 		/*
1734 		 * If we are defragging then free the buffer.
1735 		 */
1736 		if (defrag) {
1737 			bp->b_flags |= B_INVAL;
1738 			bfreekva(bp);
1739 			brelse(bp);
1740 			defrag = 0;
1741 			goto restart;
1742 		}
1743 
1744 		/*
1745 		 * If we are overcomitted then recover the buffer and its
1746 		 * KVM space.  This occurs in rare situations when multiple
1747 		 * processes are blocked in getnewbuf() or allocbuf().
1748 		 */
1749 		if (bufspace >= hibufspace)
1750 			flushingbufs = 1;
1751 		if (flushingbufs && bp->b_kvasize != 0) {
1752 			bp->b_flags |= B_INVAL;
1753 			bfreekva(bp);
1754 			brelse(bp);
1755 			goto restart;
1756 		}
1757 		if (bufspace < lobufspace)
1758 			flushingbufs = 0;
1759 		break;
1760 	}
1761 
1762 	/*
1763 	 * If we exhausted our list, sleep as appropriate.  We may have to
1764 	 * wakeup various daemons and write out some dirty buffers.
1765 	 *
1766 	 * Generally we are sleeping due to insufficient buffer space.
1767 	 */
1768 
1769 	if (bp == NULL) {
1770 		int flags;
1771 		char *waitmsg;
1772 
1773 		if (defrag) {
1774 			flags = VFS_BIO_NEED_BUFSPACE;
1775 			waitmsg = "nbufkv";
1776 		} else if (bufspace >= hibufspace) {
1777 			waitmsg = "nbufbs";
1778 			flags = VFS_BIO_NEED_BUFSPACE;
1779 		} else {
1780 			waitmsg = "newbuf";
1781 			flags = VFS_BIO_NEED_ANY;
1782 		}
1783 
1784 		bd_speedup();	/* heeeelp */
1785 
1786 		needsbuffer |= flags;
1787 		while (needsbuffer & flags) {
1788 			if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1789 				return (NULL);
1790 		}
1791 	} else {
1792 		/*
1793 		 * We finally have a valid bp.  We aren't quite out of the
1794 		 * woods, we still have to reserve kva space.  In order
1795 		 * to keep fragmentation sane we only allocate kva in
1796 		 * BKVASIZE chunks.
1797 		 */
1798 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1799 
1800 		if (maxsize != bp->b_kvasize) {
1801 			vm_offset_t addr = 0;
1802 			int count;
1803 
1804 			bfreekva(bp);
1805 
1806 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1807 			vm_map_lock(buffer_map);
1808 
1809 			if (vm_map_findspace(buffer_map,
1810 				    vm_map_min(buffer_map), maxsize,
1811 				    maxsize, &addr)) {
1812 				/*
1813 				 * Uh oh.  Buffer map is to fragmented.  We
1814 				 * must defragment the map.
1815 				 */
1816 				vm_map_unlock(buffer_map);
1817 				vm_map_entry_release(count);
1818 				++bufdefragcnt;
1819 				defrag = 1;
1820 				bp->b_flags |= B_INVAL;
1821 				brelse(bp);
1822 				goto restart;
1823 			}
1824 			if (addr) {
1825 				vm_map_insert(buffer_map, &count,
1826 					NULL, 0,
1827 					addr, addr + maxsize,
1828 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1829 
1830 				bp->b_kvabase = (caddr_t) addr;
1831 				bp->b_kvasize = maxsize;
1832 				bufspace += bp->b_kvasize;
1833 				++bufreusecnt;
1834 			}
1835 			vm_map_unlock(buffer_map);
1836 			vm_map_entry_release(count);
1837 		}
1838 		bp->b_data = bp->b_kvabase;
1839 	}
1840 	return(bp);
1841 }
1842 
1843 /*
1844  *	buf_daemon:
1845  *
1846  *	buffer flushing daemon.  Buffers are normally flushed by the
1847  *	update daemon but if it cannot keep up this process starts to
1848  *	take the load in an attempt to prevent getnewbuf() from blocking.
1849  */
1850 
1851 static struct thread *bufdaemonthread;
1852 
1853 static struct kproc_desc buf_kp = {
1854 	"bufdaemon",
1855 	buf_daemon,
1856 	&bufdaemonthread
1857 };
1858 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1859 
1860 static void
1861 buf_daemon()
1862 {
1863 	int s;
1864 
1865 	/*
1866 	 * This process needs to be suspended prior to shutdown sync.
1867 	 */
1868 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1869 	    bufdaemonthread, SHUTDOWN_PRI_LAST);
1870 
1871 	/*
1872 	 * This process is allowed to take the buffer cache to the limit
1873 	 */
1874 	s = splbio();
1875 
1876 	for (;;) {
1877 		kproc_suspend_loop();
1878 
1879 		/*
1880 		 * Do the flush.  Limit the amount of in-transit I/O we
1881 		 * allow to build up, otherwise we would completely saturate
1882 		 * the I/O system.  Wakeup any waiting processes before we
1883 		 * normally would so they can run in parallel with our drain.
1884 		 */
1885 		while (numdirtybuffers > lodirtybuffers) {
1886 			if (flushbufqueues() == 0)
1887 				break;
1888 			waitrunningbufspace();
1889 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1890 		}
1891 
1892 		/*
1893 		 * Only clear bd_request if we have reached our low water
1894 		 * mark.  The buf_daemon normally waits 5 seconds and
1895 		 * then incrementally flushes any dirty buffers that have
1896 		 * built up, within reason.
1897 		 *
1898 		 * If we were unable to hit our low water mark and couldn't
1899 		 * find any flushable buffers, we sleep half a second.
1900 		 * Otherwise we loop immediately.
1901 		 */
1902 		if (numdirtybuffers <= lodirtybuffers) {
1903 			/*
1904 			 * We reached our low water mark, reset the
1905 			 * request and sleep until we are needed again.
1906 			 * The sleep is just so the suspend code works.
1907 			 */
1908 			bd_request = 0;
1909 			tsleep(&bd_request, 0, "psleep", hz);
1910 		} else {
1911 			/*
1912 			 * We couldn't find any flushable dirty buffers but
1913 			 * still have too many dirty buffers, we
1914 			 * have to sleep and try again.  (rare)
1915 			 */
1916 			tsleep(&bd_request, 0, "qsleep", hz / 2);
1917 		}
1918 	}
1919 }
1920 
1921 /*
1922  *	flushbufqueues:
1923  *
1924  *	Try to flush a buffer in the dirty queue.  We must be careful to
1925  *	free up B_INVAL buffers instead of write them, which NFS is
1926  *	particularly sensitive to.
1927  */
1928 
1929 static int
1930 flushbufqueues(void)
1931 {
1932 	struct buf *bp;
1933 	int r = 0;
1934 
1935 	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1936 
1937 	while (bp) {
1938 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1939 		if ((bp->b_flags & B_DELWRI) != 0 &&
1940 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1941 			if (bp->b_flags & B_INVAL) {
1942 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1943 					panic("flushbufqueues: locked buf");
1944 				bremfree(bp);
1945 				brelse(bp);
1946 				++r;
1947 				break;
1948 			}
1949 			if (LIST_FIRST(&bp->b_dep) != NULL &&
1950 			    bioops.io_countdeps &&
1951 			    (bp->b_flags & B_DEFERRED) == 0 &&
1952 			    (*bioops.io_countdeps)(bp, 0)) {
1953 				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1954 				    bp, b_freelist);
1955 				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1956 				    bp, b_freelist);
1957 				bp->b_flags |= B_DEFERRED;
1958 				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1959 				continue;
1960 			}
1961 			vfs_bio_awrite(bp);
1962 			++r;
1963 			break;
1964 		}
1965 		bp = TAILQ_NEXT(bp, b_freelist);
1966 	}
1967 	return (r);
1968 }
1969 
1970 /*
1971  * Check to see if a block is currently memory resident.
1972  */
1973 struct buf *
1974 incore(struct vnode * vp, daddr_t blkno)
1975 {
1976 	struct buf *bp;
1977 
1978 	crit_enter();
1979 	bp = gbincore(vp, blkno);
1980 	crit_exit();
1981 	return (bp);
1982 }
1983 
1984 /*
1985  * Returns true if no I/O is needed to access the associated VM object.
1986  * This is like incore except it also hunts around in the VM system for
1987  * the data.
1988  *
1989  * Note that we ignore vm_page_free() races from interrupts against our
1990  * lookup, since if the caller is not protected our return value will not
1991  * be any more valid then otherwise once we splx().
1992  */
1993 int
1994 inmem(struct vnode * vp, daddr_t blkno)
1995 {
1996 	vm_object_t obj;
1997 	vm_offset_t toff, tinc, size;
1998 	vm_page_t m;
1999 	vm_ooffset_t off;
2000 
2001 	if (incore(vp, blkno))
2002 		return 1;
2003 	if (vp->v_mount == NULL)
2004 		return 0;
2005 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2006  		return 0;
2007 
2008 	size = PAGE_SIZE;
2009 	if (size > vp->v_mount->mnt_stat.f_iosize)
2010 		size = vp->v_mount->mnt_stat.f_iosize;
2011 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2012 
2013 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2014 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2015 		if (!m)
2016 			return 0;
2017 		tinc = size;
2018 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2019 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2020 		if (vm_page_is_valid(m,
2021 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2022 			return 0;
2023 	}
2024 	return 1;
2025 }
2026 
2027 /*
2028  *	vfs_setdirty:
2029  *
2030  *	Sets the dirty range for a buffer based on the status of the dirty
2031  *	bits in the pages comprising the buffer.
2032  *
2033  *	The range is limited to the size of the buffer.
2034  *
2035  *	This routine is primarily used by NFS, but is generalized for the
2036  *	B_VMIO case.
2037  */
2038 static void
2039 vfs_setdirty(struct buf *bp)
2040 {
2041 	int i;
2042 	vm_object_t object;
2043 
2044 	/*
2045 	 * Degenerate case - empty buffer
2046 	 */
2047 
2048 	if (bp->b_bufsize == 0)
2049 		return;
2050 
2051 	/*
2052 	 * We qualify the scan for modified pages on whether the
2053 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2054 	 * is not cleared simply by protecting pages off.
2055 	 */
2056 
2057 	if ((bp->b_flags & B_VMIO) == 0)
2058 		return;
2059 
2060 	object = bp->b_xio.xio_pages[0]->object;
2061 
2062 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2063 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2064 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2065 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2066 
2067 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2068 		vm_offset_t boffset;
2069 		vm_offset_t eoffset;
2070 
2071 		/*
2072 		 * test the pages to see if they have been modified directly
2073 		 * by users through the VM system.
2074 		 */
2075 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2076 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2077 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2078 		}
2079 
2080 		/*
2081 		 * Calculate the encompassing dirty range, boffset and eoffset,
2082 		 * (eoffset - boffset) bytes.
2083 		 */
2084 
2085 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2086 			if (bp->b_xio.xio_pages[i]->dirty)
2087 				break;
2088 		}
2089 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2090 
2091 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2092 			if (bp->b_xio.xio_pages[i]->dirty) {
2093 				break;
2094 			}
2095 		}
2096 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2097 
2098 		/*
2099 		 * Fit it to the buffer.
2100 		 */
2101 
2102 		if (eoffset > bp->b_bcount)
2103 			eoffset = bp->b_bcount;
2104 
2105 		/*
2106 		 * If we have a good dirty range, merge with the existing
2107 		 * dirty range.
2108 		 */
2109 
2110 		if (boffset < eoffset) {
2111 			if (bp->b_dirtyoff > boffset)
2112 				bp->b_dirtyoff = boffset;
2113 			if (bp->b_dirtyend < eoffset)
2114 				bp->b_dirtyend = eoffset;
2115 		}
2116 	}
2117 }
2118 
2119 /*
2120  *	getblk:
2121  *
2122  *	Get a block given a specified block and offset into a file/device.
2123  *	The buffers B_DONE bit will be cleared on return, making it almost
2124  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2125  *	return.  The caller should clear B_INVAL prior to initiating a
2126  *	READ.
2127  *
2128  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2129  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2130  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2131  *	without doing any of those things the system will likely believe
2132  *	the buffer to be valid (especially if it is not B_VMIO), and the
2133  *	next getblk() will return the buffer with B_CACHE set.
2134  *
2135  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2136  *	an existing buffer.
2137  *
2138  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2139  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2140  *	and then cleared based on the backing VM.  If the previous buffer is
2141  *	non-0-sized but invalid, B_CACHE will be cleared.
2142  *
2143  *	If getblk() must create a new buffer, the new buffer is returned with
2144  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2145  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2146  *	backing VM.
2147  *
2148  *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2149  *	B_CACHE bit is clear.
2150  *
2151  *	What this means, basically, is that the caller should use B_CACHE to
2152  *	determine whether the buffer is fully valid or not and should clear
2153  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2154  *	the buffer by loading its data area with something, the caller needs
2155  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2156  *	the caller should set B_CACHE ( as an optimization ), else the caller
2157  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2158  *	a write attempt or if it was a successfull read.  If the caller
2159  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2160  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2161  */
2162 struct buf *
2163 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2164 {
2165 	struct buf *bp;
2166 	int s;
2167 	struct bufhashhdr *bh;
2168 
2169 	if (size > MAXBSIZE)
2170 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2171 
2172 	s = splbio();
2173 loop:
2174 	/*
2175 	 * Block if we are low on buffers.   Certain processes are allowed
2176 	 * to completely exhaust the buffer cache.
2177          *
2178          * If this check ever becomes a bottleneck it may be better to
2179          * move it into the else, when gbincore() fails.  At the moment
2180          * it isn't a problem.
2181 	 *
2182 	 * XXX remove, we cannot afford to block anywhere if holding a vnode
2183 	 * lock in low-memory situation, so take it to the max.
2184          */
2185 	if (numfreebuffers == 0) {
2186 		if (!curproc)
2187 			return NULL;
2188 		needsbuffer |= VFS_BIO_NEED_ANY;
2189 		tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2190 	}
2191 
2192 	if ((bp = gbincore(vp, blkno))) {
2193 		/*
2194 		 * Buffer is in-core.  If the buffer is not busy, it must
2195 		 * be on a queue.
2196 		 */
2197 
2198 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2199 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2200 			    "getblk", slpflag, slptimeo) == ENOLCK)
2201 				goto loop;
2202 			splx(s);
2203 			return (struct buf *) NULL;
2204 		}
2205 
2206 		/*
2207 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2208 		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2209 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2210 		 * backing VM cache.
2211 		 */
2212 		if (bp->b_flags & B_INVAL)
2213 			bp->b_flags &= ~B_CACHE;
2214 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2215 			bp->b_flags |= B_CACHE;
2216 		bremfree(bp);
2217 
2218 		/*
2219 		 * check for size inconsistancies for non-VMIO case.
2220 		 */
2221 
2222 		if (bp->b_bcount != size) {
2223 			if ((bp->b_flags & B_VMIO) == 0 ||
2224 			    (size > bp->b_kvasize)) {
2225 				if (bp->b_flags & B_DELWRI) {
2226 					bp->b_flags |= B_NOCACHE;
2227 					VOP_BWRITE(bp->b_vp, bp);
2228 				} else {
2229 					if ((bp->b_flags & B_VMIO) &&
2230 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2231 						bp->b_flags |= B_RELBUF;
2232 						brelse(bp);
2233 					} else {
2234 						bp->b_flags |= B_NOCACHE;
2235 						VOP_BWRITE(bp->b_vp, bp);
2236 					}
2237 				}
2238 				goto loop;
2239 			}
2240 		}
2241 
2242 		/*
2243 		 * If the size is inconsistant in the VMIO case, we can resize
2244 		 * the buffer.  This might lead to B_CACHE getting set or
2245 		 * cleared.  If the size has not changed, B_CACHE remains
2246 		 * unchanged from its previous state.
2247 		 */
2248 
2249 		if (bp->b_bcount != size)
2250 			allocbuf(bp, size);
2251 
2252 		KASSERT(bp->b_offset != NOOFFSET,
2253 		    ("getblk: no buffer offset"));
2254 
2255 		/*
2256 		 * A buffer with B_DELWRI set and B_CACHE clear must
2257 		 * be committed before we can return the buffer in
2258 		 * order to prevent the caller from issuing a read
2259 		 * ( due to B_CACHE not being set ) and overwriting
2260 		 * it.
2261 		 *
2262 		 * Most callers, including NFS and FFS, need this to
2263 		 * operate properly either because they assume they
2264 		 * can issue a read if B_CACHE is not set, or because
2265 		 * ( for example ) an uncached B_DELWRI might loop due
2266 		 * to softupdates re-dirtying the buffer.  In the latter
2267 		 * case, B_CACHE is set after the first write completes,
2268 		 * preventing further loops.
2269 		 *
2270 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2271 		 * above while extending the buffer, we cannot allow the
2272 		 * buffer to remain with B_CACHE set after the write
2273 		 * completes or it will represent a corrupt state.  To
2274 		 * deal with this we set B_NOCACHE to scrap the buffer
2275 		 * after the write.
2276 		 *
2277 		 * We might be able to do something fancy, like setting
2278 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2279 		 * so the below call doesn't set B_CACHE, but that gets real
2280 		 * confusing.  This is much easier.
2281 		 */
2282 
2283 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2284 			bp->b_flags |= B_NOCACHE;
2285 			VOP_BWRITE(bp->b_vp, bp);
2286 			goto loop;
2287 		}
2288 
2289 		splx(s);
2290 		bp->b_flags &= ~B_DONE;
2291 	} else {
2292 		/*
2293 		 * Buffer is not in-core, create new buffer.  The buffer
2294 		 * returned by getnewbuf() is locked.  Note that the returned
2295 		 * buffer is also considered valid (not marked B_INVAL).
2296 		 */
2297 		int bsize, maxsize, vmio;
2298 		off_t offset;
2299 
2300 		if (vn_isdisk(vp, NULL))
2301 			bsize = DEV_BSIZE;
2302 		else if (vp->v_mountedhere)
2303 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2304 		else if (vp->v_mount)
2305 			bsize = vp->v_mount->mnt_stat.f_iosize;
2306 		else
2307 			bsize = size;
2308 
2309 		offset = (off_t)blkno * bsize;
2310 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2311 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2312 		maxsize = imax(maxsize, bsize);
2313 
2314 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2315 			if (slpflag || slptimeo) {
2316 				splx(s);
2317 				return NULL;
2318 			}
2319 			goto loop;
2320 		}
2321 
2322 		/*
2323 		 * This code is used to make sure that a buffer is not
2324 		 * created while the getnewbuf routine is blocked.
2325 		 * This can be a problem whether the vnode is locked or not.
2326 		 * If the buffer is created out from under us, we have to
2327 		 * throw away the one we just created.  There is now window
2328 		 * race because we are safely running at splbio() from the
2329 		 * point of the duplicate buffer creation through to here,
2330 		 * and we've locked the buffer.
2331 		 */
2332 		if (gbincore(vp, blkno)) {
2333 			bp->b_flags |= B_INVAL;
2334 			brelse(bp);
2335 			goto loop;
2336 		}
2337 
2338 		/*
2339 		 * Insert the buffer into the hash, so that it can
2340 		 * be found by incore.
2341 		 */
2342 		bp->b_blkno = bp->b_lblkno = blkno;
2343 		bp->b_offset = offset;
2344 
2345 		bgetvp(vp, bp);
2346 		LIST_REMOVE(bp, b_hash);
2347 		bh = bufhash(vp, blkno);
2348 		LIST_INSERT_HEAD(bh, bp, b_hash);
2349 
2350 		/*
2351 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2352 		 * buffer size starts out as 0, B_CACHE will be set by
2353 		 * allocbuf() for the VMIO case prior to it testing the
2354 		 * backing store for validity.
2355 		 */
2356 
2357 		if (vmio) {
2358 			bp->b_flags |= B_VMIO;
2359 #if defined(VFS_BIO_DEBUG)
2360 			if (vn_canvmio(vp) != TRUE)
2361 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2362 #endif
2363 		} else {
2364 			bp->b_flags &= ~B_VMIO;
2365 		}
2366 
2367 		allocbuf(bp, size);
2368 
2369 		splx(s);
2370 		bp->b_flags &= ~B_DONE;
2371 	}
2372 	return (bp);
2373 }
2374 
2375 /*
2376  * Get an empty, disassociated buffer of given size.  The buffer is initially
2377  * set to B_INVAL.
2378  *
2379  * spl protection is not required for the allocbuf() call because races are
2380  * impossible here.
2381  */
2382 struct buf *
2383 geteblk(int size)
2384 {
2385 	struct buf *bp;
2386 	int s;
2387 	int maxsize;
2388 
2389 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2390 
2391 	s = splbio();
2392 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2393 	splx(s);
2394 	allocbuf(bp, size);
2395 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2396 	return (bp);
2397 }
2398 
2399 
2400 /*
2401  * This code constitutes the buffer memory from either anonymous system
2402  * memory (in the case of non-VMIO operations) or from an associated
2403  * VM object (in the case of VMIO operations).  This code is able to
2404  * resize a buffer up or down.
2405  *
2406  * Note that this code is tricky, and has many complications to resolve
2407  * deadlock or inconsistant data situations.  Tread lightly!!!
2408  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2409  * the caller.  Calling this code willy nilly can result in the loss of data.
2410  *
2411  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2412  * B_CACHE for the non-VMIO case.
2413  *
2414  * This routine does not need to be called at splbio() but you must own the
2415  * buffer.
2416  */
2417 int
2418 allocbuf(struct buf *bp, int size)
2419 {
2420 	int newbsize, mbsize;
2421 	int i;
2422 
2423 	if (BUF_REFCNT(bp) == 0)
2424 		panic("allocbuf: buffer not busy");
2425 
2426 	if (bp->b_kvasize < size)
2427 		panic("allocbuf: buffer too small");
2428 
2429 	if ((bp->b_flags & B_VMIO) == 0) {
2430 		caddr_t origbuf;
2431 		int origbufsize;
2432 		/*
2433 		 * Just get anonymous memory from the kernel.  Don't
2434 		 * mess with B_CACHE.
2435 		 */
2436 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2437 #if !defined(NO_B_MALLOC)
2438 		if (bp->b_flags & B_MALLOC)
2439 			newbsize = mbsize;
2440 		else
2441 #endif
2442 			newbsize = round_page(size);
2443 
2444 		if (newbsize < bp->b_bufsize) {
2445 #if !defined(NO_B_MALLOC)
2446 			/*
2447 			 * malloced buffers are not shrunk
2448 			 */
2449 			if (bp->b_flags & B_MALLOC) {
2450 				if (newbsize) {
2451 					bp->b_bcount = size;
2452 				} else {
2453 					free(bp->b_data, M_BIOBUF);
2454 					if (bp->b_bufsize) {
2455 						bufmallocspace -= bp->b_bufsize;
2456 						bufspacewakeup();
2457 						bp->b_bufsize = 0;
2458 					}
2459 					bp->b_data = bp->b_kvabase;
2460 					bp->b_bcount = 0;
2461 					bp->b_flags &= ~B_MALLOC;
2462 				}
2463 				return 1;
2464 			}
2465 #endif
2466 			vm_hold_free_pages(
2467 			    bp,
2468 			    (vm_offset_t) bp->b_data + newbsize,
2469 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2470 		} else if (newbsize > bp->b_bufsize) {
2471 #if !defined(NO_B_MALLOC)
2472 			/*
2473 			 * We only use malloced memory on the first allocation.
2474 			 * and revert to page-allocated memory when the buffer
2475 			 * grows.
2476 			 */
2477 			if ( (bufmallocspace < maxbufmallocspace) &&
2478 				(bp->b_bufsize == 0) &&
2479 				(mbsize <= PAGE_SIZE/2)) {
2480 
2481 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2482 				bp->b_bufsize = mbsize;
2483 				bp->b_bcount = size;
2484 				bp->b_flags |= B_MALLOC;
2485 				bufmallocspace += mbsize;
2486 				return 1;
2487 			}
2488 #endif
2489 			origbuf = NULL;
2490 			origbufsize = 0;
2491 #if !defined(NO_B_MALLOC)
2492 			/*
2493 			 * If the buffer is growing on its other-than-first allocation,
2494 			 * then we revert to the page-allocation scheme.
2495 			 */
2496 			if (bp->b_flags & B_MALLOC) {
2497 				origbuf = bp->b_data;
2498 				origbufsize = bp->b_bufsize;
2499 				bp->b_data = bp->b_kvabase;
2500 				if (bp->b_bufsize) {
2501 					bufmallocspace -= bp->b_bufsize;
2502 					bufspacewakeup();
2503 					bp->b_bufsize = 0;
2504 				}
2505 				bp->b_flags &= ~B_MALLOC;
2506 				newbsize = round_page(newbsize);
2507 			}
2508 #endif
2509 			vm_hold_load_pages(
2510 			    bp,
2511 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2512 			    (vm_offset_t) bp->b_data + newbsize);
2513 #if !defined(NO_B_MALLOC)
2514 			if (origbuf) {
2515 				bcopy(origbuf, bp->b_data, origbufsize);
2516 				free(origbuf, M_BIOBUF);
2517 			}
2518 #endif
2519 		}
2520 	} else {
2521 		vm_page_t m;
2522 		int desiredpages;
2523 
2524 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2525 		desiredpages = (size == 0) ? 0 :
2526 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2527 
2528 #if !defined(NO_B_MALLOC)
2529 		if (bp->b_flags & B_MALLOC)
2530 			panic("allocbuf: VMIO buffer can't be malloced");
2531 #endif
2532 		/*
2533 		 * Set B_CACHE initially if buffer is 0 length or will become
2534 		 * 0-length.
2535 		 */
2536 		if (size == 0 || bp->b_bufsize == 0)
2537 			bp->b_flags |= B_CACHE;
2538 
2539 		if (newbsize < bp->b_bufsize) {
2540 			/*
2541 			 * DEV_BSIZE aligned new buffer size is less then the
2542 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2543 			 * if we have to remove any pages.
2544 			 */
2545 			if (desiredpages < bp->b_xio.xio_npages) {
2546 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2547 					/*
2548 					 * the page is not freed here -- it
2549 					 * is the responsibility of
2550 					 * vnode_pager_setsize
2551 					 */
2552 					m = bp->b_xio.xio_pages[i];
2553 					KASSERT(m != bogus_page,
2554 					    ("allocbuf: bogus page found"));
2555 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2556 						;
2557 
2558 					bp->b_xio.xio_pages[i] = NULL;
2559 					vm_page_unwire(m, 0);
2560 				}
2561 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2562 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2563 				bp->b_xio.xio_npages = desiredpages;
2564 			}
2565 		} else if (size > bp->b_bcount) {
2566 			/*
2567 			 * We are growing the buffer, possibly in a
2568 			 * byte-granular fashion.
2569 			 */
2570 			struct vnode *vp;
2571 			vm_object_t obj;
2572 			vm_offset_t toff;
2573 			vm_offset_t tinc;
2574 
2575 			/*
2576 			 * Step 1, bring in the VM pages from the object,
2577 			 * allocating them if necessary.  We must clear
2578 			 * B_CACHE if these pages are not valid for the
2579 			 * range covered by the buffer.
2580 			 *
2581 			 * spl protection is required to protect against
2582 			 * interrupts unbusying and freeing pages between
2583 			 * our vm_page_lookup() and our busycheck/wiring
2584 			 * call.
2585 			 */
2586 			vp = bp->b_vp;
2587 			VOP_GETVOBJECT(vp, &obj);
2588 
2589 			crit_enter();
2590 			while (bp->b_xio.xio_npages < desiredpages) {
2591 				vm_page_t m;
2592 				vm_pindex_t pi;
2593 
2594 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_xio.xio_npages;
2595 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2596 					/*
2597 					 * note: must allocate system pages
2598 					 * since blocking here could intefere
2599 					 * with paging I/O, no matter which
2600 					 * process we are.
2601 					 */
2602 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2603 					if (m == NULL) {
2604 						vm_wait();
2605 						vm_pageout_deficit += desiredpages -
2606 							bp->b_xio.xio_npages;
2607 					} else {
2608 						vm_page_wire(m);
2609 						vm_page_wakeup(m);
2610 						bp->b_flags &= ~B_CACHE;
2611 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2612 						++bp->b_xio.xio_npages;
2613 					}
2614 					continue;
2615 				}
2616 
2617 				/*
2618 				 * We found a page.  If we have to sleep on it,
2619 				 * retry because it might have gotten freed out
2620 				 * from under us.
2621 				 *
2622 				 * We can only test PG_BUSY here.  Blocking on
2623 				 * m->busy might lead to a deadlock:
2624 				 *
2625 				 *  vm_fault->getpages->cluster_read->allocbuf
2626 				 *
2627 				 */
2628 
2629 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2630 					continue;
2631 
2632 				/*
2633 				 * We have a good page.  Should we wakeup the
2634 				 * page daemon?
2635 				 */
2636 				if ((curthread != pagethread) &&
2637 				    ((m->queue - m->pc) == PQ_CACHE) &&
2638 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2639 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2640 					pagedaemon_wakeup();
2641 				}
2642 				vm_page_flag_clear(m, PG_ZERO);
2643 				vm_page_wire(m);
2644 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2645 				++bp->b_xio.xio_npages;
2646 			}
2647 			crit_exit();
2648 
2649 			/*
2650 			 * Step 2.  We've loaded the pages into the buffer,
2651 			 * we have to figure out if we can still have B_CACHE
2652 			 * set.  Note that B_CACHE is set according to the
2653 			 * byte-granular range ( bcount and size ), new the
2654 			 * aligned range ( newbsize ).
2655 			 *
2656 			 * The VM test is against m->valid, which is DEV_BSIZE
2657 			 * aligned.  Needless to say, the validity of the data
2658 			 * needs to also be DEV_BSIZE aligned.  Note that this
2659 			 * fails with NFS if the server or some other client
2660 			 * extends the file's EOF.  If our buffer is resized,
2661 			 * B_CACHE may remain set! XXX
2662 			 */
2663 
2664 			toff = bp->b_bcount;
2665 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2666 
2667 			while ((bp->b_flags & B_CACHE) && toff < size) {
2668 				vm_pindex_t pi;
2669 
2670 				if (tinc > (size - toff))
2671 					tinc = size - toff;
2672 
2673 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2674 				    PAGE_SHIFT;
2675 
2676 				vfs_buf_test_cache(
2677 				    bp,
2678 				    bp->b_offset,
2679 				    toff,
2680 				    tinc,
2681 				    bp->b_xio.xio_pages[pi]
2682 				);
2683 				toff += tinc;
2684 				tinc = PAGE_SIZE;
2685 			}
2686 
2687 			/*
2688 			 * Step 3, fixup the KVM pmap.  Remember that
2689 			 * bp->b_data is relative to bp->b_offset, but
2690 			 * bp->b_offset may be offset into the first page.
2691 			 */
2692 
2693 			bp->b_data = (caddr_t)
2694 			    trunc_page((vm_offset_t)bp->b_data);
2695 			pmap_qenter(
2696 			    (vm_offset_t)bp->b_data,
2697 			    bp->b_xio.xio_pages,
2698 			    bp->b_xio.xio_npages
2699 			);
2700 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2701 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2702 		}
2703 	}
2704 	if (newbsize < bp->b_bufsize)
2705 		bufspacewakeup();
2706 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2707 	bp->b_bcount = size;		/* requested buffer size	*/
2708 	return 1;
2709 }
2710 
2711 /*
2712  *	biowait:
2713  *
2714  *	Wait for buffer I/O completion, returning error status.  The buffer
2715  *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2716  *	error and cleared.
2717  */
2718 int
2719 biowait(struct buf * bp)
2720 {
2721 	int s;
2722 
2723 	s = splbio();
2724 	while ((bp->b_flags & B_DONE) == 0) {
2725 #if defined(NO_SCHEDULE_MODS)
2726 		tsleep(bp, 0, "biowait", 0);
2727 #else
2728 		if (bp->b_flags & B_READ)
2729 			tsleep(bp, 0, "biord", 0);
2730 		else
2731 			tsleep(bp, 0, "biowr", 0);
2732 #endif
2733 	}
2734 	splx(s);
2735 	if (bp->b_flags & B_EINTR) {
2736 		bp->b_flags &= ~B_EINTR;
2737 		return (EINTR);
2738 	}
2739 	if (bp->b_flags & B_ERROR) {
2740 		return (bp->b_error ? bp->b_error : EIO);
2741 	} else {
2742 		return (0);
2743 	}
2744 }
2745 
2746 /*
2747  *	biodone:
2748  *
2749  *	Finish I/O on a buffer, optionally calling a completion function.
2750  *	This is usually called from an interrupt so process blocking is
2751  *	not allowed.
2752  *
2753  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2754  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2755  *	assuming B_INVAL is clear.
2756  *
2757  *	For the VMIO case, we set B_CACHE if the op was a read and no
2758  *	read error occured, or if the op was a write.  B_CACHE is never
2759  *	set if the buffer is invalid or otherwise uncacheable.
2760  *
2761  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2762  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2763  *	in the biodone routine.
2764  *
2765  *	b_dev is required to be reinitialized prior to the top level strategy
2766  *	call in a device stack.  To avoid improper reuse, biodone() sets
2767  *	b_dev to NODEV.
2768  */
2769 void
2770 biodone(struct buf *bp)
2771 {
2772 	int s, error;
2773 
2774 	s = splbio();
2775 
2776 	KASSERT(BUF_REFCNTNB(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2777 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2778 
2779 	bp->b_flags |= B_DONE;
2780 	bp->b_dev = NODEV;
2781 	runningbufwakeup(bp);
2782 
2783 	if (bp->b_flags & B_FREEBUF) {
2784 		brelse(bp);
2785 		splx(s);
2786 		return;
2787 	}
2788 
2789 	if ((bp->b_flags & B_READ) == 0) {
2790 		vwakeup(bp);
2791 	}
2792 
2793 	/* call optional completion function if requested */
2794 	if (bp->b_flags & B_CALL) {
2795 		bp->b_flags &= ~B_CALL;
2796 		(*bp->b_iodone) (bp);
2797 		splx(s);
2798 		return;
2799 	}
2800 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2801 		(*bioops.io_complete)(bp);
2802 
2803 	if (bp->b_flags & B_VMIO) {
2804 		int i;
2805 		vm_ooffset_t foff;
2806 		vm_page_t m;
2807 		vm_object_t obj;
2808 		int iosize;
2809 		struct vnode *vp = bp->b_vp;
2810 
2811 		error = VOP_GETVOBJECT(vp, &obj);
2812 
2813 #if defined(VFS_BIO_DEBUG)
2814 		if (vp->v_holdcnt == 0) {
2815 			panic("biodone: zero vnode hold count");
2816 		}
2817 
2818 		if (error) {
2819 			panic("biodone: missing VM object");
2820 		}
2821 
2822 		if ((vp->v_flag & VOBJBUF) == 0) {
2823 			panic("biodone: vnode is not setup for merged cache");
2824 		}
2825 #endif
2826 
2827 		foff = bp->b_offset;
2828 		KASSERT(bp->b_offset != NOOFFSET,
2829 		    ("biodone: no buffer offset"));
2830 
2831 		if (error) {
2832 			panic("biodone: no object");
2833 		}
2834 #if defined(VFS_BIO_DEBUG)
2835 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2836 			printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2837 			    obj->paging_in_progress, bp->b_xio.xio_npages);
2838 		}
2839 #endif
2840 
2841 		/*
2842 		 * Set B_CACHE if the op was a normal read and no error
2843 		 * occured.  B_CACHE is set for writes in the b*write()
2844 		 * routines.
2845 		 */
2846 		iosize = bp->b_bcount - bp->b_resid;
2847 		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2848 			bp->b_flags |= B_CACHE;
2849 		}
2850 
2851 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2852 			int bogusflag = 0;
2853 			int resid;
2854 
2855 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2856 			if (resid > iosize)
2857 				resid = iosize;
2858 
2859 			/*
2860 			 * cleanup bogus pages, restoring the originals.  Since
2861 			 * the originals should still be wired, we don't have
2862 			 * to worry about interrupt/freeing races destroying
2863 			 * the VM object association.
2864 			 */
2865 			m = bp->b_xio.xio_pages[i];
2866 			if (m == bogus_page) {
2867 				bogusflag = 1;
2868 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2869 				if (m == NULL)
2870 					panic("biodone: page disappeared");
2871 				bp->b_xio.xio_pages[i] = m;
2872 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2873 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2874 			}
2875 #if defined(VFS_BIO_DEBUG)
2876 			if (OFF_TO_IDX(foff) != m->pindex) {
2877 				printf(
2878 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2879 				    (unsigned long)foff, m->pindex);
2880 			}
2881 #endif
2882 
2883 			/*
2884 			 * In the write case, the valid and clean bits are
2885 			 * already changed correctly ( see bdwrite() ), so we
2886 			 * only need to do this here in the read case.
2887 			 */
2888 			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2889 				vfs_page_set_valid(bp, foff, i, m);
2890 			}
2891 			vm_page_flag_clear(m, PG_ZERO);
2892 
2893 			/*
2894 			 * when debugging new filesystems or buffer I/O methods, this
2895 			 * is the most common error that pops up.  if you see this, you
2896 			 * have not set the page busy flag correctly!!!
2897 			 */
2898 			if (m->busy == 0) {
2899 				printf("biodone: page busy < 0, "
2900 				    "pindex: %d, foff: 0x(%x,%x), "
2901 				    "resid: %d, index: %d\n",
2902 				    (int) m->pindex, (int)(foff >> 32),
2903 						(int) foff & 0xffffffff, resid, i);
2904 				if (!vn_isdisk(vp, NULL))
2905 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2906 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2907 					    (int) bp->b_lblkno,
2908 					    bp->b_flags, bp->b_xio.xio_npages);
2909 				else
2910 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2911 					    (int) bp->b_lblkno,
2912 					    bp->b_flags, bp->b_xio.xio_npages);
2913 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2914 				    m->valid, m->dirty, m->wire_count);
2915 				panic("biodone: page busy < 0");
2916 			}
2917 			vm_page_io_finish(m);
2918 			vm_object_pip_subtract(obj, 1);
2919 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2920 			iosize -= resid;
2921 		}
2922 		if (obj)
2923 			vm_object_pip_wakeupn(obj, 0);
2924 	}
2925 
2926 	/*
2927 	 * For asynchronous completions, release the buffer now. The brelse
2928 	 * will do a wakeup there if necessary - so no need to do a wakeup
2929 	 * here in the async case. The sync case always needs to do a wakeup.
2930 	 */
2931 
2932 	if (bp->b_flags & B_ASYNC) {
2933 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2934 			brelse(bp);
2935 		else
2936 			bqrelse(bp);
2937 	} else {
2938 		wakeup(bp);
2939 	}
2940 	splx(s);
2941 }
2942 
2943 /*
2944  * This routine is called in lieu of iodone in the case of
2945  * incomplete I/O.  This keeps the busy status for pages
2946  * consistant.
2947  */
2948 void
2949 vfs_unbusy_pages(struct buf *bp)
2950 {
2951 	int i;
2952 
2953 	runningbufwakeup(bp);
2954 	if (bp->b_flags & B_VMIO) {
2955 		struct vnode *vp = bp->b_vp;
2956 		vm_object_t obj;
2957 
2958 		VOP_GETVOBJECT(vp, &obj);
2959 
2960 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2961 			vm_page_t m = bp->b_xio.xio_pages[i];
2962 
2963 			/*
2964 			 * When restoring bogus changes the original pages
2965 			 * should still be wired, so we are in no danger of
2966 			 * losing the object association and do not need
2967 			 * spl protection particularly.
2968 			 */
2969 			if (m == bogus_page) {
2970 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2971 				if (!m) {
2972 					panic("vfs_unbusy_pages: page missing");
2973 				}
2974 				bp->b_xio.xio_pages[i] = m;
2975 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2976 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2977 			}
2978 			vm_object_pip_subtract(obj, 1);
2979 			vm_page_flag_clear(m, PG_ZERO);
2980 			vm_page_io_finish(m);
2981 		}
2982 		vm_object_pip_wakeupn(obj, 0);
2983 	}
2984 }
2985 
2986 /*
2987  * vfs_page_set_valid:
2988  *
2989  *	Set the valid bits in a page based on the supplied offset.   The
2990  *	range is restricted to the buffer's size.
2991  *
2992  *	This routine is typically called after a read completes.
2993  */
2994 static void
2995 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2996 {
2997 	vm_ooffset_t soff, eoff;
2998 
2999 	/*
3000 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3001 	 * page boundry or cross the end of the buffer.  The end of the
3002 	 * buffer, in this case, is our file EOF, not the allocation size
3003 	 * of the buffer.
3004 	 */
3005 	soff = off;
3006 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3007 	if (eoff > bp->b_offset + bp->b_bcount)
3008 		eoff = bp->b_offset + bp->b_bcount;
3009 
3010 	/*
3011 	 * Set valid range.  This is typically the entire buffer and thus the
3012 	 * entire page.
3013 	 */
3014 	if (eoff > soff) {
3015 		vm_page_set_validclean(
3016 		    m,
3017 		   (vm_offset_t) (soff & PAGE_MASK),
3018 		   (vm_offset_t) (eoff - soff)
3019 		);
3020 	}
3021 }
3022 
3023 /*
3024  * This routine is called before a device strategy routine.
3025  * It is used to tell the VM system that paging I/O is in
3026  * progress, and treat the pages associated with the buffer
3027  * almost as being PG_BUSY.  Also the object paging_in_progress
3028  * flag is handled to make sure that the object doesn't become
3029  * inconsistant.
3030  *
3031  * Since I/O has not been initiated yet, certain buffer flags
3032  * such as B_ERROR or B_INVAL may be in an inconsistant state
3033  * and should be ignored.
3034  */
3035 void
3036 vfs_busy_pages(struct buf *bp, int clear_modify)
3037 {
3038 	int i, bogus;
3039 
3040 	if (bp->b_flags & B_VMIO) {
3041 		struct vnode *vp = bp->b_vp;
3042 		vm_object_t obj;
3043 		vm_ooffset_t foff;
3044 
3045 		VOP_GETVOBJECT(vp, &obj);
3046 		foff = bp->b_offset;
3047 		KASSERT(bp->b_offset != NOOFFSET,
3048 		    ("vfs_busy_pages: no buffer offset"));
3049 		vfs_setdirty(bp);
3050 
3051 retry:
3052 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3053 			vm_page_t m = bp->b_xio.xio_pages[i];
3054 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3055 				goto retry;
3056 		}
3057 
3058 		bogus = 0;
3059 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3060 			vm_page_t m = bp->b_xio.xio_pages[i];
3061 
3062 			vm_page_flag_clear(m, PG_ZERO);
3063 			if ((bp->b_flags & B_CLUSTER) == 0) {
3064 				vm_object_pip_add(obj, 1);
3065 				vm_page_io_start(m);
3066 			}
3067 
3068 			/*
3069 			 * When readying a buffer for a read ( i.e
3070 			 * clear_modify == 0 ), it is important to do
3071 			 * bogus_page replacement for valid pages in
3072 			 * partially instantiated buffers.  Partially
3073 			 * instantiated buffers can, in turn, occur when
3074 			 * reconstituting a buffer from its VM backing store
3075 			 * base.  We only have to do this if B_CACHE is
3076 			 * clear ( which causes the I/O to occur in the
3077 			 * first place ).  The replacement prevents the read
3078 			 * I/O from overwriting potentially dirty VM-backed
3079 			 * pages.  XXX bogus page replacement is, uh, bogus.
3080 			 * It may not work properly with small-block devices.
3081 			 * We need to find a better way.
3082 			 */
3083 
3084 			vm_page_protect(m, VM_PROT_NONE);
3085 			if (clear_modify)
3086 				vfs_page_set_valid(bp, foff, i, m);
3087 			else if (m->valid == VM_PAGE_BITS_ALL &&
3088 				(bp->b_flags & B_CACHE) == 0) {
3089 				bp->b_xio.xio_pages[i] = bogus_page;
3090 				bogus++;
3091 			}
3092 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3093 		}
3094 		if (bogus)
3095 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3096 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3097 	}
3098 
3099 	/*
3100 	 * This is the easiest place to put the process accounting for the I/O
3101 	 * for now.
3102 	 */
3103 	{
3104 		struct proc *p;
3105 
3106 		if ((p = curthread->td_proc) != NULL) {
3107 			if (bp->b_flags & B_READ)
3108 				p->p_stats->p_ru.ru_inblock++;
3109 			else
3110 				p->p_stats->p_ru.ru_oublock++;
3111 		}
3112 	}
3113 }
3114 
3115 /*
3116  * Tell the VM system that the pages associated with this buffer
3117  * are clean.  This is used for delayed writes where the data is
3118  * going to go to disk eventually without additional VM intevention.
3119  *
3120  * Note that while we only really need to clean through to b_bcount, we
3121  * just go ahead and clean through to b_bufsize.
3122  */
3123 static void
3124 vfs_clean_pages(struct buf *bp)
3125 {
3126 	int i;
3127 
3128 	if (bp->b_flags & B_VMIO) {
3129 		vm_ooffset_t foff;
3130 
3131 		foff = bp->b_offset;
3132 		KASSERT(bp->b_offset != NOOFFSET,
3133 		    ("vfs_clean_pages: no buffer offset"));
3134 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3135 			vm_page_t m = bp->b_xio.xio_pages[i];
3136 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3137 			vm_ooffset_t eoff = noff;
3138 
3139 			if (eoff > bp->b_offset + bp->b_bufsize)
3140 				eoff = bp->b_offset + bp->b_bufsize;
3141 			vfs_page_set_valid(bp, foff, i, m);
3142 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3143 			foff = noff;
3144 		}
3145 	}
3146 }
3147 
3148 /*
3149  *	vfs_bio_set_validclean:
3150  *
3151  *	Set the range within the buffer to valid and clean.  The range is
3152  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3153  *	itself may be offset from the beginning of the first page.
3154  */
3155 
3156 void
3157 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3158 {
3159 	if (bp->b_flags & B_VMIO) {
3160 		int i;
3161 		int n;
3162 
3163 		/*
3164 		 * Fixup base to be relative to beginning of first page.
3165 		 * Set initial n to be the maximum number of bytes in the
3166 		 * first page that can be validated.
3167 		 */
3168 
3169 		base += (bp->b_offset & PAGE_MASK);
3170 		n = PAGE_SIZE - (base & PAGE_MASK);
3171 
3172 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3173 			vm_page_t m = bp->b_xio.xio_pages[i];
3174 
3175 			if (n > size)
3176 				n = size;
3177 
3178 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3179 			base += n;
3180 			size -= n;
3181 			n = PAGE_SIZE;
3182 		}
3183 	}
3184 }
3185 
3186 /*
3187  *	vfs_bio_clrbuf:
3188  *
3189  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3190  *	to clear B_ERROR and B_INVAL.
3191  *
3192  *	Note that while we only theoretically need to clear through b_bcount,
3193  *	we go ahead and clear through b_bufsize.
3194  */
3195 
3196 void
3197 vfs_bio_clrbuf(struct buf *bp)
3198 {
3199 	int i, mask = 0;
3200 	caddr_t sa, ea;
3201 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3202 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3203 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3204 		    (bp->b_offset & PAGE_MASK) == 0) {
3205 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3206 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3207 				bp->b_resid = 0;
3208 				return;
3209 			}
3210 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3211 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3212 				bzero(bp->b_data, bp->b_bufsize);
3213 				bp->b_xio.xio_pages[0]->valid |= mask;
3214 				bp->b_resid = 0;
3215 				return;
3216 			}
3217 		}
3218 		ea = sa = bp->b_data;
3219 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3220 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3221 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3222 			ea = (caddr_t)(vm_offset_t)ulmin(
3223 			    (u_long)(vm_offset_t)ea,
3224 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3225 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3226 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3227 				continue;
3228 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3229 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3230 					bzero(sa, ea - sa);
3231 				}
3232 			} else {
3233 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3234 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3235 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3236 						bzero(sa, DEV_BSIZE);
3237 				}
3238 			}
3239 			bp->b_xio.xio_pages[i]->valid |= mask;
3240 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3241 		}
3242 		bp->b_resid = 0;
3243 	} else {
3244 		clrbuf(bp);
3245 	}
3246 }
3247 
3248 /*
3249  * vm_hold_load_pages and vm_hold_unload pages get pages into
3250  * a buffers address space.  The pages are anonymous and are
3251  * not associated with a file object.
3252  */
3253 void
3254 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3255 {
3256 	vm_offset_t pg;
3257 	vm_page_t p;
3258 	int index;
3259 
3260 	to = round_page(to);
3261 	from = round_page(from);
3262 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3263 
3264 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3265 
3266 tryagain:
3267 
3268 		/*
3269 		 * note: must allocate system pages since blocking here
3270 		 * could intefere with paging I/O, no matter which
3271 		 * process we are.
3272 		 */
3273 		p = vm_page_alloc(kernel_object,
3274 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3275 			VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3276 		if (!p) {
3277 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3278 			vm_wait();
3279 			goto tryagain;
3280 		}
3281 		vm_page_wire(p);
3282 		p->valid = VM_PAGE_BITS_ALL;
3283 		vm_page_flag_clear(p, PG_ZERO);
3284 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3285 		bp->b_xio.xio_pages[index] = p;
3286 		vm_page_wakeup(p);
3287 	}
3288 	bp->b_xio.xio_npages = index;
3289 }
3290 
3291 void
3292 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3293 {
3294 	vm_offset_t pg;
3295 	vm_page_t p;
3296 	int index, newnpages;
3297 
3298 	from = round_page(from);
3299 	to = round_page(to);
3300 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3301 
3302 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3303 		p = bp->b_xio.xio_pages[index];
3304 		if (p && (index < bp->b_xio.xio_npages)) {
3305 			if (p->busy) {
3306 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3307 					bp->b_blkno, bp->b_lblkno);
3308 			}
3309 			bp->b_xio.xio_pages[index] = NULL;
3310 			pmap_kremove(pg);
3311 			vm_page_busy(p);
3312 			vm_page_unwire(p, 0);
3313 			vm_page_free(p);
3314 		}
3315 	}
3316 	bp->b_xio.xio_npages = newnpages;
3317 }
3318 
3319 /*
3320  * Map an IO request into kernel virtual address space.
3321  *
3322  * All requests are (re)mapped into kernel VA space.
3323  * Notice that we use b_bufsize for the size of the buffer
3324  * to be mapped.  b_bcount might be modified by the driver.
3325  */
3326 int
3327 vmapbuf(struct buf *bp)
3328 {
3329 	caddr_t addr, v, kva;
3330 	vm_paddr_t pa;
3331 	int pidx;
3332 	int i;
3333 	struct vm_page *m;
3334 
3335 	if ((bp->b_flags & B_PHYS) == 0)
3336 		panic("vmapbuf");
3337 	if (bp->b_bufsize < 0)
3338 		return (-1);
3339 	for (v = bp->b_saveaddr,
3340 		     addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3341 		     pidx = 0;
3342 	     addr < bp->b_data + bp->b_bufsize;
3343 	     addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3344 		/*
3345 		 * Do the vm_fault if needed; do the copy-on-write thing
3346 		 * when reading stuff off device into memory.
3347 		 */
3348 retry:
3349 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3350 			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3351 		if (i < 0) {
3352 			for (i = 0; i < pidx; ++i) {
3353 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3354 			    bp->b_xio.xio_pages[i] = NULL;
3355 			}
3356 			return(-1);
3357 		}
3358 
3359 		/*
3360 		 * WARNING!  If sparc support is MFCd in the future this will
3361 		 * have to be changed from pmap_kextract() to pmap_extract()
3362 		 * ala -current.
3363 		 */
3364 #ifdef __sparc64__
3365 #error "If MFCing sparc support use pmap_extract"
3366 #endif
3367 		pa = pmap_kextract((vm_offset_t)addr);
3368 		if (pa == 0) {
3369 			printf("vmapbuf: warning, race against user address during I/O");
3370 			goto retry;
3371 		}
3372 		m = PHYS_TO_VM_PAGE(pa);
3373 		vm_page_hold(m);
3374 		bp->b_xio.xio_pages[pidx] = m;
3375 	}
3376 	if (pidx > btoc(MAXPHYS))
3377 		panic("vmapbuf: mapped more than MAXPHYS");
3378 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx);
3379 
3380 	kva = bp->b_saveaddr;
3381 	bp->b_xio.xio_npages = pidx;
3382 	bp->b_saveaddr = bp->b_data;
3383 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3384 	return(0);
3385 }
3386 
3387 /*
3388  * Free the io map PTEs associated with this IO operation.
3389  * We also invalidate the TLB entries and restore the original b_addr.
3390  */
3391 void
3392 vunmapbuf(struct buf *bp)
3393 {
3394 	int pidx;
3395 	int npages;
3396 	vm_page_t *m;
3397 
3398 	if ((bp->b_flags & B_PHYS) == 0)
3399 		panic("vunmapbuf");
3400 
3401 	npages = bp->b_xio.xio_npages;
3402 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3403 		     npages);
3404 	m = bp->b_xio.xio_pages;
3405 	for (pidx = 0; pidx < npages; pidx++)
3406 		vm_page_unhold(*m++);
3407 
3408 	bp->b_data = bp->b_saveaddr;
3409 }
3410 
3411 #include "opt_ddb.h"
3412 #ifdef DDB
3413 #include <ddb/ddb.h>
3414 
3415 DB_SHOW_COMMAND(buffer, db_show_buffer)
3416 {
3417 	/* get args */
3418 	struct buf *bp = (struct buf *)addr;
3419 
3420 	if (!have_addr) {
3421 		db_printf("usage: show buffer <addr>\n");
3422 		return;
3423 	}
3424 
3425 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3426 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3427 		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3428 		  "b_blkno = %d, b_pblkno = %d\n",
3429 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3430 		  major(bp->b_dev), minor(bp->b_dev),
3431 		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3432 	if (bp->b_xio.xio_npages) {
3433 		int i;
3434 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3435 			bp->b_xio.xio_npages);
3436 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3437 			vm_page_t m;
3438 			m = bp->b_xio.xio_pages[i];
3439 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3440 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3441 			if ((i + 1) < bp->b_xio.xio_npages)
3442 				db_printf(",");
3443 		}
3444 		db_printf("\n");
3445 	}
3446 }
3447 #endif /* DDB */
3448