xref: /dragonfly/sys/kern/vfs_bio.c (revision 86fe9e07)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.30 2004/07/14 03:43:58 hmp Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <sys/buf2.h>
57 #include <vm/vm_page2.h>
58 
59 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
60 
61 struct	bio_ops bioops;		/* I/O operation notification */
62 
63 struct buf *buf;		/* buffer header pool */
64 struct swqueue bswlist;
65 
66 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
67 		vm_offset_t to);
68 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
69 		vm_offset_t to);
70 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
71 			       int pageno, vm_page_t m);
72 static void vfs_clean_pages(struct buf * bp);
73 static void vfs_setdirty(struct buf *bp);
74 static void vfs_vmio_release(struct buf *bp);
75 static void vfs_backgroundwritedone(struct buf *bp);
76 static int flushbufqueues(void);
77 
78 static int bd_request;
79 
80 static void buf_daemon (void);
81 /*
82  * bogus page -- for I/O to/from partially complete buffers
83  * this is a temporary solution to the problem, but it is not
84  * really that bad.  it would be better to split the buffer
85  * for input in the case of buffers partially already in memory,
86  * but the code is intricate enough already.
87  */
88 vm_page_t bogus_page;
89 int vmiodirenable = TRUE;
90 int runningbufspace;
91 struct lwkt_token buftimetoken;  /* Interlock on setting prio and timo */
92 
93 static vm_offset_t bogus_offset;
94 
95 static int bufspace, maxbufspace,
96 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
97 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
98 static int needsbuffer;
99 static int lorunningspace, hirunningspace, runningbufreq;
100 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
101 static int numfreebuffers, lofreebuffers, hifreebuffers;
102 static int getnewbufcalls;
103 static int getnewbufrestarts;
104 
105 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
106 	&numdirtybuffers, 0, "");
107 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
108 	&lodirtybuffers, 0, "");
109 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
110 	&hidirtybuffers, 0, "");
111 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
112 	&numfreebuffers, 0, "");
113 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
114 	&lofreebuffers, 0, "");
115 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
116 	&hifreebuffers, 0, "");
117 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
118 	&runningbufspace, 0, "");
119 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
120 	&lorunningspace, 0, "");
121 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
122 	&hirunningspace, 0, "");
123 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
124 	&maxbufspace, 0, "");
125 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
126 	&hibufspace, 0, "");
127 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
128 	&lobufspace, 0, "");
129 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
130 	&bufspace, 0, "");
131 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
132 	&maxbufmallocspace, 0, "");
133 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
134 	&bufmallocspace, 0, "");
135 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
136 	&getnewbufcalls, 0, "");
137 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
138 	&getnewbufrestarts, 0, "");
139 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
140 	&vmiodirenable, 0, "");
141 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
142 	&bufdefragcnt, 0, "");
143 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
144 	&buffreekvacnt, 0, "");
145 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
146 	&bufreusecnt, 0, "");
147 
148 /*
149  * Disable background writes for now.  There appear to be races in the
150  * flags tests and locking operations as well as races in the completion
151  * code modifying the original bp (origbp) without holding a lock, assuming
152  * splbio protection when there might not be splbio protection.
153  */
154 static int dobkgrdwrite = 0;
155 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
156 	"Do background writes (honoring the BV_BKGRDWRITE flag)?");
157 
158 static int bufhashmask;
159 static int bufhashshift;
160 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
161 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
162 char *buf_wmesg = BUF_WMESG;
163 
164 extern int vm_swap_size;
165 
166 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
167 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
168 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
169 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
170 
171 /*
172  * Buffer hash table code.  Note that the logical block scans linearly, which
173  * gives us some L1 cache locality.
174  */
175 
176 static __inline
177 struct bufhashhdr *
178 bufhash(struct vnode *vnp, daddr_t bn)
179 {
180 	u_int64_t hashkey64;
181 	int hashkey;
182 
183 	/*
184 	 * A variation on the Fibonacci hash that Knuth credits to
185 	 * R. W. Floyd, see Knuth's _Art of Computer Programming,
186 	 * Volume 3 / Sorting and Searching_
187 	 *
188          * We reduce the argument to 32 bits before doing the hash to
189 	 * avoid the need for a slow 64x64 multiply on 32 bit platforms.
190 	 *
191 	 * sizeof(struct vnode) is 168 on i386, so toss some of the lower
192 	 * bits of the vnode address to reduce the key range, which
193 	 * improves the distribution of keys across buckets.
194 	 *
195 	 * The file system cylinder group blocks are very heavily
196 	 * used.  They are located at invervals of fbg, which is
197 	 * on the order of 89 to 94 * 2^10, depending on other
198 	 * filesystem parameters, for a 16k block size.  Smaller block
199 	 * sizes will reduce fpg approximately proportionally.  This
200 	 * will cause the cylinder group index to be hashed using the
201 	 * lower bits of the hash multiplier, which will not distribute
202 	 * the keys as uniformly in a classic Fibonacci hash where a
203 	 * relatively small number of the upper bits of the result
204 	 * are used.  Using 2^16 as a close-enough approximation to
205 	 * fpg, split the hash multiplier in half, with the upper 16
206 	 * bits being the inverse of the golden ratio, and the lower
207 	 * 16 bits being a fraction between 1/3 and 3/7 (closer to
208 	 * 3/7 in this case), that gives good experimental results.
209 	 */
210 	hashkey64 = ((u_int64_t)(uintptr_t)vnp >> 3) + (u_int64_t)bn;
211 	hashkey = (((u_int32_t)(hashkey64 + (hashkey64 >> 32)) * 0x9E376DB1u) >>
212 	    bufhashshift) & bufhashmask;
213 	return(&bufhashtbl[hashkey]);
214 }
215 
216 /*
217  *	numdirtywakeup:
218  *
219  *	If someone is blocked due to there being too many dirty buffers,
220  *	and numdirtybuffers is now reasonable, wake them up.
221  */
222 
223 static __inline void
224 numdirtywakeup(int level)
225 {
226 	if (numdirtybuffers <= level) {
227 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
228 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
229 			wakeup(&needsbuffer);
230 		}
231 	}
232 }
233 
234 /*
235  *	bufspacewakeup:
236  *
237  *	Called when buffer space is potentially available for recovery.
238  *	getnewbuf() will block on this flag when it is unable to free
239  *	sufficient buffer space.  Buffer space becomes recoverable when
240  *	bp's get placed back in the queues.
241  */
242 
243 static __inline void
244 bufspacewakeup(void)
245 {
246 	/*
247 	 * If someone is waiting for BUF space, wake them up.  Even
248 	 * though we haven't freed the kva space yet, the waiting
249 	 * process will be able to now.
250 	 */
251 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
252 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
253 		wakeup(&needsbuffer);
254 	}
255 }
256 
257 /*
258  * runningbufwakeup() - in-progress I/O accounting.
259  *
260  */
261 static __inline void
262 runningbufwakeup(struct buf *bp)
263 {
264 	if (bp->b_runningbufspace) {
265 		runningbufspace -= bp->b_runningbufspace;
266 		bp->b_runningbufspace = 0;
267 		if (runningbufreq && runningbufspace <= lorunningspace) {
268 			runningbufreq = 0;
269 			wakeup(&runningbufreq);
270 		}
271 	}
272 }
273 
274 /*
275  *	bufcountwakeup:
276  *
277  *	Called when a buffer has been added to one of the free queues to
278  *	account for the buffer and to wakeup anyone waiting for free buffers.
279  *	This typically occurs when large amounts of metadata are being handled
280  *	by the buffer cache ( else buffer space runs out first, usually ).
281  */
282 
283 static __inline void
284 bufcountwakeup(void)
285 {
286 	++numfreebuffers;
287 	if (needsbuffer) {
288 		needsbuffer &= ~VFS_BIO_NEED_ANY;
289 		if (numfreebuffers >= hifreebuffers)
290 			needsbuffer &= ~VFS_BIO_NEED_FREE;
291 		wakeup(&needsbuffer);
292 	}
293 }
294 
295 /*
296  *	waitrunningbufspace()
297  *
298  *	runningbufspace is a measure of the amount of I/O currently
299  *	running.  This routine is used in async-write situations to
300  *	prevent creating huge backups of pending writes to a device.
301  *	Only asynchronous writes are governed by this function.
302  *
303  *	Reads will adjust runningbufspace, but will not block based on it.
304  *	The read load has a side effect of reducing the allowed write load.
305  *
306  *	This does NOT turn an async write into a sync write.  It waits
307  *	for earlier writes to complete and generally returns before the
308  *	caller's write has reached the device.
309  */
310 static __inline void
311 waitrunningbufspace(void)
312 {
313 	while (runningbufspace > hirunningspace) {
314 		int s;
315 
316 		s = splbio();	/* fix race against interrupt/biodone() */
317 		++runningbufreq;
318 		tsleep(&runningbufreq, 0, "wdrain", 0);
319 		splx(s);
320 	}
321 }
322 
323 /*
324  *	vfs_buf_test_cache:
325  *
326  *	Called when a buffer is extended.  This function clears the B_CACHE
327  *	bit if the newly extended portion of the buffer does not contain
328  *	valid data.
329  */
330 static __inline__
331 void
332 vfs_buf_test_cache(struct buf *bp,
333 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
334 		  vm_page_t m)
335 {
336 	if (bp->b_flags & B_CACHE) {
337 		int base = (foff + off) & PAGE_MASK;
338 		if (vm_page_is_valid(m, base, size) == 0)
339 			bp->b_flags &= ~B_CACHE;
340 	}
341 }
342 
343 static __inline__
344 void
345 bd_wakeup(int dirtybuflevel)
346 {
347 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
348 		bd_request = 1;
349 		wakeup(&bd_request);
350 	}
351 }
352 
353 /*
354  * bd_speedup - speedup the buffer cache flushing code
355  */
356 
357 static __inline__
358 void
359 bd_speedup(void)
360 {
361 	bd_wakeup(1);
362 }
363 
364 /*
365  * Initialize buffer headers and related structures.
366  */
367 
368 caddr_t
369 bufhashinit(caddr_t vaddr)
370 {
371 	/* first, make a null hash table */
372 	bufhashshift = 29;
373 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
374 		bufhashshift--;
375 	bufhashtbl = (void *)vaddr;
376 	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
377 	--bufhashmask;
378 	return(vaddr);
379 }
380 
381 void
382 bufinit(void)
383 {
384 	struct buf *bp;
385 	int i;
386 
387 	TAILQ_INIT(&bswlist);
388 	LIST_INIT(&invalhash);
389 	lwkt_token_init(&buftimetoken);
390 
391 	for (i = 0; i <= bufhashmask; i++)
392 		LIST_INIT(&bufhashtbl[i]);
393 
394 	/* next, make a null set of free lists */
395 	for (i = 0; i < BUFFER_QUEUES; i++)
396 		TAILQ_INIT(&bufqueues[i]);
397 
398 	/* finally, initialize each buffer header and stick on empty q */
399 	for (i = 0; i < nbuf; i++) {
400 		bp = &buf[i];
401 		bzero(bp, sizeof *bp);
402 		bp->b_flags = B_INVAL;	/* we're just an empty header */
403 		bp->b_dev = NODEV;
404 		bp->b_qindex = QUEUE_EMPTY;
405 		bp->b_xflags = 0;
406 		xio_init(&bp->b_xio);
407 		LIST_INIT(&bp->b_dep);
408 		BUF_LOCKINIT(bp);
409 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
410 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
411 	}
412 
413 	/*
414 	 * maxbufspace is the absolute maximum amount of buffer space we are
415 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
416 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
417 	 * used by most other processes.  The differential is required to
418 	 * ensure that buf_daemon is able to run when other processes might
419 	 * be blocked waiting for buffer space.
420 	 *
421 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
422 	 * this may result in KVM fragmentation which is not handled optimally
423 	 * by the system.
424 	 */
425 	maxbufspace = nbuf * BKVASIZE;
426 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
427 	lobufspace = hibufspace - MAXBSIZE;
428 
429 	lorunningspace = 512 * 1024;
430 	hirunningspace = 1024 * 1024;
431 
432 /*
433  * Limit the amount of malloc memory since it is wired permanently into
434  * the kernel space.  Even though this is accounted for in the buffer
435  * allocation, we don't want the malloced region to grow uncontrolled.
436  * The malloc scheme improves memory utilization significantly on average
437  * (small) directories.
438  */
439 	maxbufmallocspace = hibufspace / 20;
440 
441 /*
442  * Reduce the chance of a deadlock occuring by limiting the number
443  * of delayed-write dirty buffers we allow to stack up.
444  */
445 	hidirtybuffers = nbuf / 4 + 20;
446 	numdirtybuffers = 0;
447 /*
448  * To support extreme low-memory systems, make sure hidirtybuffers cannot
449  * eat up all available buffer space.  This occurs when our minimum cannot
450  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
451  * BKVASIZE'd (8K) buffers.
452  */
453 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
454 		hidirtybuffers >>= 1;
455 	}
456 	lodirtybuffers = hidirtybuffers / 2;
457 
458 /*
459  * Try to keep the number of free buffers in the specified range,
460  * and give special processes (e.g. like buf_daemon) access to an
461  * emergency reserve.
462  */
463 	lofreebuffers = nbuf / 18 + 5;
464 	hifreebuffers = 2 * lofreebuffers;
465 	numfreebuffers = nbuf;
466 
467 /*
468  * Maximum number of async ops initiated per buf_daemon loop.  This is
469  * somewhat of a hack at the moment, we really need to limit ourselves
470  * based on the number of bytes of I/O in-transit that were initiated
471  * from buf_daemon.
472  */
473 
474 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
475 	bogus_page = vm_page_alloc(kernel_object,
476 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
477 			VM_ALLOC_NORMAL);
478 	vmstats.v_wire_count++;
479 
480 }
481 
482 /*
483  * bfreekva() - free the kva allocation for a buffer.
484  *
485  *	Must be called at splbio() or higher as this is the only locking for
486  *	buffer_map.
487  *
488  *	Since this call frees up buffer space, we call bufspacewakeup().
489  */
490 static void
491 bfreekva(struct buf * bp)
492 {
493 	int count;
494 
495 	if (bp->b_kvasize) {
496 		++buffreekvacnt;
497 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
498 		vm_map_lock(buffer_map);
499 		bufspace -= bp->b_kvasize;
500 		vm_map_delete(buffer_map,
501 		    (vm_offset_t) bp->b_kvabase,
502 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
503 		    &count
504 		);
505 		vm_map_unlock(buffer_map);
506 		vm_map_entry_release(count);
507 		bp->b_kvasize = 0;
508 		bufspacewakeup();
509 	}
510 }
511 
512 /*
513  *	bremfree:
514  *
515  *	Remove the buffer from the appropriate free list.
516  */
517 void
518 bremfree(struct buf * bp)
519 {
520 	int s = splbio();
521 	int old_qindex = bp->b_qindex;
522 
523 	if (bp->b_qindex != QUEUE_NONE) {
524 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
525 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
526 		bp->b_qindex = QUEUE_NONE;
527 	} else {
528 		if (BUF_REFCNT(bp) <= 1)
529 			panic("bremfree: removing a buffer not on a queue");
530 	}
531 
532 	/*
533 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
534 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
535 	 * the buffer was free and we must decrement numfreebuffers.
536 	 */
537 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
538 		switch(old_qindex) {
539 		case QUEUE_DIRTY:
540 		case QUEUE_CLEAN:
541 		case QUEUE_EMPTY:
542 		case QUEUE_EMPTYKVA:
543 			--numfreebuffers;
544 			break;
545 		default:
546 			break;
547 		}
548 	}
549 	splx(s);
550 }
551 
552 
553 /*
554  * Get a buffer with the specified data.  Look in the cache first.  We
555  * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
556  * is set, the buffer is valid and we do not have to do anything ( see
557  * getblk() ).
558  */
559 int
560 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp)
561 {
562 	struct buf *bp;
563 
564 	bp = getblk(vp, blkno, size, 0, 0);
565 	*bpp = bp;
566 
567 	/* if not found in cache, do some I/O */
568 	if ((bp->b_flags & B_CACHE) == 0) {
569 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
570 		bp->b_flags |= B_READ;
571 		bp->b_flags &= ~(B_ERROR | B_INVAL);
572 		vfs_busy_pages(bp, 0);
573 		VOP_STRATEGY(vp, bp);
574 		return (biowait(bp));
575 	}
576 	return (0);
577 }
578 
579 /*
580  * Operates like bread, but also starts asynchronous I/O on
581  * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
582  * to initiating I/O . If B_CACHE is set, the buffer is valid
583  * and we do not have to do anything.
584  */
585 int
586 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno,
587 	int *rabsize, int cnt, struct buf ** bpp)
588 {
589 	struct buf *bp, *rabp;
590 	int i;
591 	int rv = 0, readwait = 0;
592 
593 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
594 
595 	/* if not found in cache, do some I/O */
596 	if ((bp->b_flags & B_CACHE) == 0) {
597 		bp->b_flags |= B_READ;
598 		bp->b_flags &= ~(B_ERROR | B_INVAL);
599 		vfs_busy_pages(bp, 0);
600 		VOP_STRATEGY(vp, bp);
601 		++readwait;
602 	}
603 
604 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
605 		if (inmem(vp, *rablkno))
606 			continue;
607 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
608 
609 		if ((rabp->b_flags & B_CACHE) == 0) {
610 			rabp->b_flags |= B_READ | B_ASYNC;
611 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
612 			vfs_busy_pages(rabp, 0);
613 			BUF_KERNPROC(rabp);
614 			VOP_STRATEGY(vp, rabp);
615 		} else {
616 			brelse(rabp);
617 		}
618 	}
619 
620 	if (readwait) {
621 		rv = biowait(bp);
622 	}
623 	return (rv);
624 }
625 
626 /*
627  * Write, release buffer on completion.  (Done by iodone
628  * if async).  Do not bother writing anything if the buffer
629  * is invalid.
630  *
631  * Note that we set B_CACHE here, indicating that buffer is
632  * fully valid and thus cacheable.  This is true even of NFS
633  * now so we set it generally.  This could be set either here
634  * or in biodone() since the I/O is synchronous.  We put it
635  * here.
636  */
637 int
638 bwrite(struct buf * bp)
639 {
640 	int oldflags, s;
641 	struct buf *newbp;
642 
643 	if (bp->b_flags & B_INVAL) {
644 		brelse(bp);
645 		return (0);
646 	}
647 
648 	oldflags = bp->b_flags;
649 
650 	if (BUF_REFCNT(bp) == 0)
651 		panic("bwrite: buffer is not busy???");
652 	s = splbio();
653 	/*
654 	 * If a background write is already in progress, delay
655 	 * writing this block if it is asynchronous. Otherwise
656 	 * wait for the background write to complete.
657 	 */
658 	if (bp->b_xflags & BX_BKGRDINPROG) {
659 		if (bp->b_flags & B_ASYNC) {
660 			splx(s);
661 			bdwrite(bp);
662 			return (0);
663 		}
664 		bp->b_xflags |= BX_BKGRDWAIT;
665 		tsleep(&bp->b_xflags, 0, "biord", 0);
666 		if (bp->b_xflags & BX_BKGRDINPROG)
667 			panic("bwrite: still writing");
668 	}
669 
670 	/* Mark the buffer clean */
671 	bundirty(bp);
672 
673 	/*
674 	 * If this buffer is marked for background writing and we
675 	 * do not have to wait for it, make a copy and write the
676 	 * copy so as to leave this buffer ready for further use.
677 	 *
678 	 * This optimization eats a lot of memory.  If we have a page
679 	 * or buffer shortfull we can't do it.
680 	 */
681 	if (dobkgrdwrite &&
682 	    (bp->b_xflags & BX_BKGRDWRITE) &&
683 	    (bp->b_flags & B_ASYNC) &&
684 	    !vm_page_count_severe() &&
685 	    !buf_dirty_count_severe()) {
686 		if (bp->b_flags & B_CALL)
687 			panic("bwrite: need chained iodone");
688 
689 		/* get a new block */
690 		newbp = geteblk(bp->b_bufsize);
691 
692 		/* set it to be identical to the old block */
693 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
694 		bgetvp(bp->b_vp, newbp);
695 		newbp->b_lblkno = bp->b_lblkno;
696 		newbp->b_blkno = bp->b_blkno;
697 		newbp->b_offset = bp->b_offset;
698 		newbp->b_iodone = vfs_backgroundwritedone;
699 		newbp->b_flags |= B_ASYNC | B_CALL;
700 		newbp->b_flags &= ~B_INVAL;
701 
702 		/* move over the dependencies */
703 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
704 			(*bioops.io_movedeps)(bp, newbp);
705 
706 		/*
707 		 * Initiate write on the copy, release the original to
708 		 * the B_LOCKED queue so that it cannot go away until
709 		 * the background write completes. If not locked it could go
710 		 * away and then be reconstituted while it was being written.
711 		 * If the reconstituted buffer were written, we could end up
712 		 * with two background copies being written at the same time.
713 		 */
714 		bp->b_xflags |= BX_BKGRDINPROG;
715 		bp->b_flags |= B_LOCKED;
716 		bqrelse(bp);
717 		bp = newbp;
718 	}
719 
720 	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
721 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
722 
723 	bp->b_vp->v_numoutput++;
724 	vfs_busy_pages(bp, 1);
725 
726 	/*
727 	 * Normal bwrites pipeline writes
728 	 */
729 	bp->b_runningbufspace = bp->b_bufsize;
730 	runningbufspace += bp->b_runningbufspace;
731 
732 	splx(s);
733 	if (oldflags & B_ASYNC)
734 		BUF_KERNPROC(bp);
735 	VOP_STRATEGY(bp->b_vp, bp);
736 
737 	if ((oldflags & B_ASYNC) == 0) {
738 		int rtval = biowait(bp);
739 		brelse(bp);
740 		return (rtval);
741 	} else if ((oldflags & B_NOWDRAIN) == 0) {
742 		/*
743 		 * don't allow the async write to saturate the I/O
744 		 * system.  Deadlocks can occur only if a device strategy
745 		 * routine (like in VN) turns around and issues another
746 		 * high-level write, in which case B_NOWDRAIN is expected
747 		 * to be set.   Otherwise we will not deadlock here because
748 		 * we are blocking waiting for I/O that is already in-progress
749 		 * to complete.
750 		 */
751 		waitrunningbufspace();
752 	}
753 
754 	return (0);
755 }
756 
757 /*
758  * Complete a background write started from bwrite.
759  */
760 static void
761 vfs_backgroundwritedone(struct buf *bp)
762 {
763 	struct buf *origbp;
764 
765 	/*
766 	 * Find the original buffer that we are writing.
767 	 */
768 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
769 		panic("backgroundwritedone: lost buffer");
770 	/*
771 	 * Process dependencies then return any unfinished ones.
772 	 */
773 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
774 		(*bioops.io_complete)(bp);
775 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
776 		(*bioops.io_movedeps)(bp, origbp);
777 	/*
778 	 * Clear the BX_BKGRDINPROG flag in the original buffer
779 	 * and awaken it if it is waiting for the write to complete.
780 	 * If BX_BKGRDINPROG is not set in the original buffer it must
781 	 * have been released and re-instantiated - which is not legal.
782 	 */
783 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
784 	origbp->b_xflags &= ~BX_BKGRDINPROG;
785 	if (origbp->b_xflags & BX_BKGRDWAIT) {
786 		origbp->b_xflags &= ~BX_BKGRDWAIT;
787 		wakeup(&origbp->b_xflags);
788 	}
789 	/*
790 	 * Clear the B_LOCKED flag and remove it from the locked
791 	 * queue if it currently resides there.
792 	 */
793 	origbp->b_flags &= ~B_LOCKED;
794 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
795 		bremfree(origbp);
796 		bqrelse(origbp);
797 	}
798 	/*
799 	 * This buffer is marked B_NOCACHE, so when it is released
800 	 * by biodone, it will be tossed. We mark it with B_READ
801 	 * to avoid biodone doing a second vwakeup.
802 	 */
803 	bp->b_flags |= B_NOCACHE | B_READ;
804 	bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE);
805 	bp->b_iodone = 0;
806 	biodone(bp);
807 }
808 
809 /*
810  * Delayed write. (Buffer is marked dirty).  Do not bother writing
811  * anything if the buffer is marked invalid.
812  *
813  * Note that since the buffer must be completely valid, we can safely
814  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
815  * biodone() in order to prevent getblk from writing the buffer
816  * out synchronously.
817  */
818 void
819 bdwrite(struct buf *bp)
820 {
821 	if (BUF_REFCNT(bp) == 0)
822 		panic("bdwrite: buffer is not busy");
823 
824 	if (bp->b_flags & B_INVAL) {
825 		brelse(bp);
826 		return;
827 	}
828 	bdirty(bp);
829 
830 	/*
831 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
832 	 * true even of NFS now.
833 	 */
834 	bp->b_flags |= B_CACHE;
835 
836 	/*
837 	 * This bmap keeps the system from needing to do the bmap later,
838 	 * perhaps when the system is attempting to do a sync.  Since it
839 	 * is likely that the indirect block -- or whatever other datastructure
840 	 * that the filesystem needs is still in memory now, it is a good
841 	 * thing to do this.  Note also, that if the pageout daemon is
842 	 * requesting a sync -- there might not be enough memory to do
843 	 * the bmap then...  So, this is important to do.
844 	 */
845 	if (bp->b_lblkno == bp->b_blkno) {
846 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
847 	}
848 
849 	/*
850 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
851 	 */
852 	vfs_setdirty(bp);
853 
854 	/*
855 	 * We need to do this here to satisfy the vnode_pager and the
856 	 * pageout daemon, so that it thinks that the pages have been
857 	 * "cleaned".  Note that since the pages are in a delayed write
858 	 * buffer -- the VFS layer "will" see that the pages get written
859 	 * out on the next sync, or perhaps the cluster will be completed.
860 	 */
861 	vfs_clean_pages(bp);
862 	bqrelse(bp);
863 
864 	/*
865 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
866 	 * buffers (midpoint between our recovery point and our stall
867 	 * point).
868 	 */
869 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
870 
871 	/*
872 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
873 	 * due to the softdep code.
874 	 */
875 }
876 
877 /*
878  *	bdirty:
879  *
880  *	Turn buffer into delayed write request.  We must clear B_READ and
881  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
882  *	itself to properly update it in the dirty/clean lists.  We mark it
883  *	B_DONE to ensure that any asynchronization of the buffer properly
884  *	clears B_DONE ( else a panic will occur later ).
885  *
886  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
887  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
888  *	should only be called if the buffer is known-good.
889  *
890  *	Since the buffer is not on a queue, we do not update the numfreebuffers
891  *	count.
892  *
893  *	Must be called at splbio().
894  *	The buffer must be on QUEUE_NONE.
895  */
896 void
897 bdirty(struct buf *bp)
898 {
899 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
900 	bp->b_flags &= ~(B_READ|B_RELBUF);
901 
902 	if ((bp->b_flags & B_DELWRI) == 0) {
903 		bp->b_flags |= B_DONE | B_DELWRI;
904 		reassignbuf(bp, bp->b_vp);
905 		++numdirtybuffers;
906 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
907 	}
908 }
909 
910 /*
911  *	bundirty:
912  *
913  *	Clear B_DELWRI for buffer.
914  *
915  *	Since the buffer is not on a queue, we do not update the numfreebuffers
916  *	count.
917  *
918  *	Must be called at splbio().
919  *	The buffer must be on QUEUE_NONE.
920  */
921 
922 void
923 bundirty(struct buf *bp)
924 {
925 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
926 
927 	if (bp->b_flags & B_DELWRI) {
928 		bp->b_flags &= ~B_DELWRI;
929 		reassignbuf(bp, bp->b_vp);
930 		--numdirtybuffers;
931 		numdirtywakeup(lodirtybuffers);
932 	}
933 	/*
934 	 * Since it is now being written, we can clear its deferred write flag.
935 	 */
936 	bp->b_flags &= ~B_DEFERRED;
937 }
938 
939 /*
940  *	bawrite:
941  *
942  *	Asynchronous write.  Start output on a buffer, but do not wait for
943  *	it to complete.  The buffer is released when the output completes.
944  *
945  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
946  *	B_INVAL buffers.  Not us.
947  */
948 void
949 bawrite(struct buf * bp)
950 {
951 	bp->b_flags |= B_ASYNC;
952 	(void) VOP_BWRITE(bp->b_vp, bp);
953 }
954 
955 /*
956  *	bowrite:
957  *
958  *	Ordered write.  Start output on a buffer, and flag it so that the
959  *	device will write it in the order it was queued.  The buffer is
960  *	released when the output completes.  bwrite() ( or the VOP routine
961  *	anyway ) is responsible for handling B_INVAL buffers.
962  */
963 int
964 bowrite(struct buf * bp)
965 {
966 	bp->b_flags |= B_ORDERED | B_ASYNC;
967 	return (VOP_BWRITE(bp->b_vp, bp));
968 }
969 
970 /*
971  *	bwillwrite:
972  *
973  *	Called prior to the locking of any vnodes when we are expecting to
974  *	write.  We do not want to starve the buffer cache with too many
975  *	dirty buffers so we block here.  By blocking prior to the locking
976  *	of any vnodes we attempt to avoid the situation where a locked vnode
977  *	prevents the various system daemons from flushing related buffers.
978  */
979 
980 void
981 bwillwrite(void)
982 {
983 	if (numdirtybuffers >= hidirtybuffers) {
984 		int s;
985 
986 		s = splbio();
987 		while (numdirtybuffers >= hidirtybuffers) {
988 			bd_wakeup(1);
989 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
990 			tsleep(&needsbuffer, 0, "flswai", 0);
991 		}
992 		splx(s);
993 	}
994 }
995 
996 /*
997  * Return true if we have too many dirty buffers.
998  */
999 int
1000 buf_dirty_count_severe(void)
1001 {
1002 	return(numdirtybuffers >= hidirtybuffers);
1003 }
1004 
1005 /*
1006  *	brelse:
1007  *
1008  *	Release a busy buffer and, if requested, free its resources.  The
1009  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1010  *	to be accessed later as a cache entity or reused for other purposes.
1011  */
1012 void
1013 brelse(struct buf * bp)
1014 {
1015 	int s;
1016 
1017 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1018 
1019 	s = splbio();
1020 
1021 	if (bp->b_flags & B_LOCKED)
1022 		bp->b_flags &= ~B_ERROR;
1023 
1024 	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
1025 		/*
1026 		 * Failed write, redirty.  Must clear B_ERROR to prevent
1027 		 * pages from being scrapped.  If B_INVAL is set then
1028 		 * this case is not run and the next case is run to
1029 		 * destroy the buffer.  B_INVAL can occur if the buffer
1030 		 * is outside the range supported by the underlying device.
1031 		 */
1032 		bp->b_flags &= ~B_ERROR;
1033 		bdirty(bp);
1034 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
1035 	    (bp->b_bufsize <= 0)) {
1036 		/*
1037 		 * Either a failed I/O or we were asked to free or not
1038 		 * cache the buffer.
1039 		 */
1040 		bp->b_flags |= B_INVAL;
1041 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1042 			(*bioops.io_deallocate)(bp);
1043 		if (bp->b_flags & B_DELWRI) {
1044 			--numdirtybuffers;
1045 			numdirtywakeup(lodirtybuffers);
1046 		}
1047 		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
1048 		if ((bp->b_flags & B_VMIO) == 0) {
1049 			if (bp->b_bufsize)
1050 				allocbuf(bp, 0);
1051 			if (bp->b_vp)
1052 				brelvp(bp);
1053 		}
1054 	}
1055 
1056 	/*
1057 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1058 	 * is called with B_DELWRI set, the underlying pages may wind up
1059 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1060 	 * because pages associated with a B_DELWRI bp are marked clean.
1061 	 *
1062 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1063 	 * if B_DELWRI is set.
1064 	 *
1065 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1066 	 * on pages to return pages to the VM page queues.
1067 	 */
1068 	if (bp->b_flags & B_DELWRI)
1069 		bp->b_flags &= ~B_RELBUF;
1070 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1071 		bp->b_flags |= B_RELBUF;
1072 
1073 	/*
1074 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1075 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1076 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1077 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1078 	 *
1079 	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1080 	 * invalidated.  B_ERROR cannot be set for a failed write unless the
1081 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1082 	 *
1083 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1084 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1085 	 * the commit state and we cannot afford to lose the buffer. If the
1086 	 * buffer has a background write in progress, we need to keep it
1087 	 * around to prevent it from being reconstituted and starting a second
1088 	 * background write.
1089 	 */
1090 	if ((bp->b_flags & B_VMIO)
1091 	    && !(bp->b_vp->v_tag == VT_NFS &&
1092 		 !vn_isdisk(bp->b_vp, NULL) &&
1093 		 (bp->b_flags & B_DELWRI))
1094 	    ) {
1095 
1096 		int i, j, resid;
1097 		vm_page_t m;
1098 		off_t foff;
1099 		vm_pindex_t poff;
1100 		vm_object_t obj;
1101 		struct vnode *vp;
1102 
1103 		vp = bp->b_vp;
1104 
1105 		/*
1106 		 * Get the base offset and length of the buffer.  Note that
1107 		 * in the VMIO case if the buffer block size is not
1108 		 * page-aligned then b_data pointer may not be page-aligned.
1109 		 * But our b_xio.xio_pages array *IS* page aligned.
1110 		 *
1111 		 * block sizes less then DEV_BSIZE (usually 512) are not
1112 		 * supported due to the page granularity bits (m->valid,
1113 		 * m->dirty, etc...).
1114 		 *
1115 		 * See man buf(9) for more information
1116 		 */
1117 
1118 		resid = bp->b_bufsize;
1119 		foff = bp->b_offset;
1120 
1121 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1122 			m = bp->b_xio.xio_pages[i];
1123 			vm_page_flag_clear(m, PG_ZERO);
1124 			/*
1125 			 * If we hit a bogus page, fixup *all* of them
1126 			 * now.  Note that we left these pages wired
1127 			 * when we removed them so they had better exist,
1128 			 * and they cannot be ripped out from under us so
1129 			 * no splvm() protection is necessary.
1130 			 */
1131 			if (m == bogus_page) {
1132 				VOP_GETVOBJECT(vp, &obj);
1133 				poff = OFF_TO_IDX(bp->b_offset);
1134 
1135 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1136 					vm_page_t mtmp;
1137 
1138 					mtmp = bp->b_xio.xio_pages[j];
1139 					if (mtmp == bogus_page) {
1140 						mtmp = vm_page_lookup(obj, poff + j);
1141 						if (!mtmp) {
1142 							panic("brelse: page missing");
1143 						}
1144 						bp->b_xio.xio_pages[j] = mtmp;
1145 					}
1146 				}
1147 
1148 				if ((bp->b_flags & B_INVAL) == 0) {
1149 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1150 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1151 				}
1152 				m = bp->b_xio.xio_pages[i];
1153 			}
1154 
1155 			/*
1156 			 * Invalidate the backing store if B_NOCACHE is set
1157 			 * (e.g. used with vinvalbuf()).  If this is NFS
1158 			 * we impose a requirement that the block size be
1159 			 * a multiple of PAGE_SIZE and create a temporary
1160 			 * hack to basically invalidate the whole page.  The
1161 			 * problem is that NFS uses really odd buffer sizes
1162 			 * especially when tracking piecemeal writes and
1163 			 * it also vinvalbuf()'s a lot, which would result
1164 			 * in only partial page validation and invalidation
1165 			 * here.  If the file page is mmap()'d, however,
1166 			 * all the valid bits get set so after we invalidate
1167 			 * here we would end up with weird m->valid values
1168 			 * like 0xfc.  nfs_getpages() can't handle this so
1169 			 * we clear all the valid bits for the NFS case
1170 			 * instead of just some of them.
1171 			 *
1172 			 * The real bug is the VM system having to set m->valid
1173 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1174 			 * itself is an artifact of the whole 512-byte
1175 			 * granular mess that exists to support odd block
1176 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1177 			 * A complete rewrite is required.
1178 			 */
1179 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1180 				int poffset = foff & PAGE_MASK;
1181 				int presid;
1182 
1183 				presid = PAGE_SIZE - poffset;
1184 				if (bp->b_vp->v_tag == VT_NFS &&
1185 				    bp->b_vp->v_type == VREG) {
1186 					; /* entire page */
1187 				} else if (presid > resid) {
1188 					presid = resid;
1189 				}
1190 				KASSERT(presid >= 0, ("brelse: extra page"));
1191 				vm_page_set_invalid(m, poffset, presid);
1192 			}
1193 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1194 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1195 		}
1196 
1197 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1198 			vfs_vmio_release(bp);
1199 
1200 	} else if (bp->b_flags & B_VMIO) {
1201 
1202 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1203 			vfs_vmio_release(bp);
1204 
1205 	}
1206 
1207 	if (bp->b_qindex != QUEUE_NONE)
1208 		panic("brelse: free buffer onto another queue???");
1209 	if (BUF_REFCNT(bp) > 1) {
1210 		/* Temporary panic to verify exclusive locking */
1211 		/* This panic goes away when we allow shared refs */
1212 		panic("brelse: multiple refs");
1213 		/* do not release to free list */
1214 		BUF_UNLOCK(bp);
1215 		splx(s);
1216 		return;
1217 	}
1218 
1219 	/* enqueue */
1220 
1221 	/* buffers with no memory */
1222 	if (bp->b_bufsize == 0) {
1223 		bp->b_flags |= B_INVAL;
1224 		bp->b_xflags &= ~BX_BKGRDWRITE;
1225 		if (bp->b_xflags & BX_BKGRDINPROG)
1226 			panic("losing buffer 1");
1227 		if (bp->b_kvasize) {
1228 			bp->b_qindex = QUEUE_EMPTYKVA;
1229 		} else {
1230 			bp->b_qindex = QUEUE_EMPTY;
1231 		}
1232 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1233 		LIST_REMOVE(bp, b_hash);
1234 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1235 		bp->b_dev = NODEV;
1236 	/* buffers with junk contents */
1237 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1238 		bp->b_flags |= B_INVAL;
1239 		bp->b_xflags &= ~BX_BKGRDWRITE;
1240 		if (bp->b_xflags & BX_BKGRDINPROG)
1241 			panic("losing buffer 2");
1242 		bp->b_qindex = QUEUE_CLEAN;
1243 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1244 		LIST_REMOVE(bp, b_hash);
1245 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1246 		bp->b_dev = NODEV;
1247 
1248 	/* buffers that are locked */
1249 	} else if (bp->b_flags & B_LOCKED) {
1250 		bp->b_qindex = QUEUE_LOCKED;
1251 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1252 
1253 	/* remaining buffers */
1254 	} else {
1255 		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1256 		case B_DELWRI | B_AGE:
1257 		    bp->b_qindex = QUEUE_DIRTY;
1258 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1259 		    break;
1260 		case B_DELWRI:
1261 		    bp->b_qindex = QUEUE_DIRTY;
1262 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1263 		    break;
1264 		case B_AGE:
1265 		    bp->b_qindex = QUEUE_CLEAN;
1266 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1267 		    break;
1268 		default:
1269 		    bp->b_qindex = QUEUE_CLEAN;
1270 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1271 		    break;
1272 		}
1273 	}
1274 
1275 	/*
1276 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1277 	 * on the correct queue.
1278 	 */
1279 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1280 		bundirty(bp);
1281 
1282 	/*
1283 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1284 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1285 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1286 	 * if B_INVAL is set ).
1287 	 */
1288 
1289 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1290 		bufcountwakeup();
1291 
1292 	/*
1293 	 * Something we can maybe free or reuse
1294 	 */
1295 	if (bp->b_bufsize || bp->b_kvasize)
1296 		bufspacewakeup();
1297 
1298 	/* unlock */
1299 	BUF_UNLOCK(bp);
1300 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1301 			B_DIRECT | B_NOWDRAIN);
1302 	splx(s);
1303 }
1304 
1305 /*
1306  * Release a buffer back to the appropriate queue but do not try to free
1307  * it.  The buffer is expected to be used again soon.
1308  *
1309  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1310  * biodone() to requeue an async I/O on completion.  It is also used when
1311  * known good buffers need to be requeued but we think we may need the data
1312  * again soon.
1313  *
1314  * XXX we should be able to leave the B_RELBUF hint set on completion.
1315  */
1316 void
1317 bqrelse(struct buf * bp)
1318 {
1319 	int s;
1320 
1321 	s = splbio();
1322 
1323 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1324 
1325 	if (bp->b_qindex != QUEUE_NONE)
1326 		panic("bqrelse: free buffer onto another queue???");
1327 	if (BUF_REFCNT(bp) > 1) {
1328 		/* do not release to free list */
1329 		panic("bqrelse: multiple refs");
1330 		BUF_UNLOCK(bp);
1331 		splx(s);
1332 		return;
1333 	}
1334 	if (bp->b_flags & B_LOCKED) {
1335 		bp->b_flags &= ~B_ERROR;
1336 		bp->b_qindex = QUEUE_LOCKED;
1337 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1338 		/* buffers with stale but valid contents */
1339 	} else if (bp->b_flags & B_DELWRI) {
1340 		bp->b_qindex = QUEUE_DIRTY;
1341 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1342 	} else if (vm_page_count_severe()) {
1343 		/*
1344 		 * We are too low on memory, we have to try to free the
1345 		 * buffer (most importantly: the wired pages making up its
1346 		 * backing store) *now*.
1347 		 */
1348 		splx(s);
1349 		brelse(bp);
1350 		return;
1351 	} else {
1352 		bp->b_qindex = QUEUE_CLEAN;
1353 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1354 	}
1355 
1356 	if ((bp->b_flags & B_LOCKED) == 0 &&
1357 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1358 		bufcountwakeup();
1359 	}
1360 
1361 	/*
1362 	 * Something we can maybe free or reuse.
1363 	 */
1364 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1365 		bufspacewakeup();
1366 
1367 	/* unlock */
1368 	BUF_UNLOCK(bp);
1369 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1370 	splx(s);
1371 }
1372 
1373 static void
1374 vfs_vmio_release(struct buf *bp)
1375 {
1376 	int i, s;
1377 	vm_page_t m;
1378 
1379 	s = splvm();
1380 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1381 		m = bp->b_xio.xio_pages[i];
1382 		bp->b_xio.xio_pages[i] = NULL;
1383 		/*
1384 		 * In order to keep page LRU ordering consistent, put
1385 		 * everything on the inactive queue.
1386 		 */
1387 		vm_page_unwire(m, 0);
1388 		/*
1389 		 * We don't mess with busy pages, it is
1390 		 * the responsibility of the process that
1391 		 * busied the pages to deal with them.
1392 		 */
1393 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1394 			continue;
1395 
1396 		if (m->wire_count == 0) {
1397 			vm_page_flag_clear(m, PG_ZERO);
1398 			/*
1399 			 * Might as well free the page if we can and it has
1400 			 * no valid data.  We also free the page if the
1401 			 * buffer was used for direct I/O.
1402 			 */
1403 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1404 				vm_page_busy(m);
1405 				vm_page_protect(m, VM_PROT_NONE);
1406 				vm_page_free(m);
1407 			} else if (bp->b_flags & B_DIRECT) {
1408 				vm_page_try_to_free(m);
1409 			} else if (vm_page_count_severe()) {
1410 				vm_page_try_to_cache(m);
1411 			}
1412 		}
1413 	}
1414 	splx(s);
1415 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1416 	if (bp->b_bufsize) {
1417 		bufspacewakeup();
1418 		bp->b_bufsize = 0;
1419 	}
1420 	bp->b_xio.xio_npages = 0;
1421 	bp->b_flags &= ~B_VMIO;
1422 	if (bp->b_vp)
1423 		brelvp(bp);
1424 }
1425 
1426 /*
1427  * Check to see if a block is currently memory resident.
1428  */
1429 struct buf *
1430 gbincore(struct vnode * vp, daddr_t blkno)
1431 {
1432 	struct buf *bp;
1433 	struct bufhashhdr *bh;
1434 
1435 	bh = bufhash(vp, blkno);
1436 
1437 	/* Search hash chain */
1438 	LIST_FOREACH(bp, bh, b_hash) {
1439 		/* hit */
1440 		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1441 		    (bp->b_flags & B_INVAL) == 0) {
1442 			break;
1443 		}
1444 	}
1445 	return (bp);
1446 }
1447 
1448 /*
1449  *	vfs_bio_awrite:
1450  *
1451  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1452  *	This is much better then the old way of writing only one buffer at
1453  *	a time.  Note that we may not be presented with the buffers in the
1454  *	correct order, so we search for the cluster in both directions.
1455  */
1456 int
1457 vfs_bio_awrite(struct buf * bp)
1458 {
1459 	int i;
1460 	int j;
1461 	daddr_t lblkno = bp->b_lblkno;
1462 	struct vnode *vp = bp->b_vp;
1463 	int s;
1464 	int ncl;
1465 	struct buf *bpa;
1466 	int nwritten;
1467 	int size;
1468 	int maxcl;
1469 
1470 	s = splbio();
1471 	/*
1472 	 * right now we support clustered writing only to regular files.  If
1473 	 * we find a clusterable block we could be in the middle of a cluster
1474 	 * rather then at the beginning.
1475 	 */
1476 	if ((vp->v_type == VREG) &&
1477 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1478 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1479 
1480 		size = vp->v_mount->mnt_stat.f_iosize;
1481 		maxcl = MAXPHYS / size;
1482 
1483 		for (i = 1; i < maxcl; i++) {
1484 			if ((bpa = gbincore(vp, lblkno + i)) &&
1485 			    BUF_REFCNT(bpa) == 0 &&
1486 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1487 			    (B_DELWRI | B_CLUSTEROK)) &&
1488 			    (bpa->b_bufsize == size)) {
1489 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1490 				    (bpa->b_blkno !=
1491 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1492 					break;
1493 			} else {
1494 				break;
1495 			}
1496 		}
1497 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1498 			if ((bpa = gbincore(vp, lblkno - j)) &&
1499 			    BUF_REFCNT(bpa) == 0 &&
1500 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1501 			    (B_DELWRI | B_CLUSTEROK)) &&
1502 			    (bpa->b_bufsize == size)) {
1503 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1504 				    (bpa->b_blkno !=
1505 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1506 					break;
1507 			} else {
1508 				break;
1509 			}
1510 		}
1511 		--j;
1512 		ncl = i + j;
1513 		/*
1514 		 * this is a possible cluster write
1515 		 */
1516 		if (ncl != 1) {
1517 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1518 			splx(s);
1519 			return nwritten;
1520 		}
1521 	}
1522 
1523 	BUF_LOCK(bp, LK_EXCLUSIVE);
1524 	bremfree(bp);
1525 	bp->b_flags |= B_ASYNC;
1526 
1527 	splx(s);
1528 	/*
1529 	 * default (old) behavior, writing out only one block
1530 	 *
1531 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1532 	 */
1533 	nwritten = bp->b_bufsize;
1534 	(void) VOP_BWRITE(bp->b_vp, bp);
1535 
1536 	return nwritten;
1537 }
1538 
1539 /*
1540  *	getnewbuf:
1541  *
1542  *	Find and initialize a new buffer header, freeing up existing buffers
1543  *	in the bufqueues as necessary.  The new buffer is returned locked.
1544  *
1545  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1546  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1547  *
1548  *	We block if:
1549  *		We have insufficient buffer headers
1550  *		We have insufficient buffer space
1551  *		buffer_map is too fragmented ( space reservation fails )
1552  *		If we have to flush dirty buffers ( but we try to avoid this )
1553  *
1554  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1555  *	Instead we ask the buf daemon to do it for us.  We attempt to
1556  *	avoid piecemeal wakeups of the pageout daemon.
1557  */
1558 
1559 static struct buf *
1560 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1561 {
1562 	struct buf *bp;
1563 	struct buf *nbp;
1564 	int defrag = 0;
1565 	int nqindex;
1566 	static int flushingbufs;
1567 
1568 	/*
1569 	 * We can't afford to block since we might be holding a vnode lock,
1570 	 * which may prevent system daemons from running.  We deal with
1571 	 * low-memory situations by proactively returning memory and running
1572 	 * async I/O rather then sync I/O.
1573 	 */
1574 
1575 	++getnewbufcalls;
1576 	--getnewbufrestarts;
1577 restart:
1578 	++getnewbufrestarts;
1579 
1580 	/*
1581 	 * Setup for scan.  If we do not have enough free buffers,
1582 	 * we setup a degenerate case that immediately fails.  Note
1583 	 * that if we are specially marked process, we are allowed to
1584 	 * dip into our reserves.
1585 	 *
1586 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1587 	 *
1588 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1589 	 * However, there are a number of cases (defragging, reusing, ...)
1590 	 * where we cannot backup.
1591 	 */
1592 	nqindex = QUEUE_EMPTYKVA;
1593 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1594 
1595 	if (nbp == NULL) {
1596 		/*
1597 		 * If no EMPTYKVA buffers and we are either
1598 		 * defragging or reusing, locate a CLEAN buffer
1599 		 * to free or reuse.  If bufspace useage is low
1600 		 * skip this step so we can allocate a new buffer.
1601 		 */
1602 		if (defrag || bufspace >= lobufspace) {
1603 			nqindex = QUEUE_CLEAN;
1604 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1605 		}
1606 
1607 		/*
1608 		 * If we could not find or were not allowed to reuse a
1609 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1610 		 * buffer.  We can only use an EMPTY buffer if allocating
1611 		 * its KVA would not otherwise run us out of buffer space.
1612 		 */
1613 		if (nbp == NULL && defrag == 0 &&
1614 		    bufspace + maxsize < hibufspace) {
1615 			nqindex = QUEUE_EMPTY;
1616 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1617 		}
1618 	}
1619 
1620 	/*
1621 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1622 	 * depending.
1623 	 */
1624 
1625 	while ((bp = nbp) != NULL) {
1626 		int qindex = nqindex;
1627 
1628 		/*
1629 		 * Calculate next bp ( we can only use it if we do not block
1630 		 * or do other fancy things ).
1631 		 */
1632 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1633 			switch(qindex) {
1634 			case QUEUE_EMPTY:
1635 				nqindex = QUEUE_EMPTYKVA;
1636 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1637 					break;
1638 				/* fall through */
1639 			case QUEUE_EMPTYKVA:
1640 				nqindex = QUEUE_CLEAN;
1641 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1642 					break;
1643 				/* fall through */
1644 			case QUEUE_CLEAN:
1645 				/*
1646 				 * nbp is NULL.
1647 				 */
1648 				break;
1649 			}
1650 		}
1651 
1652 		/*
1653 		 * Sanity Checks
1654 		 */
1655 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1656 
1657 		/*
1658 		 * Note: we no longer distinguish between VMIO and non-VMIO
1659 		 * buffers.
1660 		 */
1661 
1662 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1663 
1664 		/*
1665 		 * If we are defragging then we need a buffer with
1666 		 * b_kvasize != 0.  XXX this situation should no longer
1667 		 * occur, if defrag is non-zero the buffer's b_kvasize
1668 		 * should also be non-zero at this point.  XXX
1669 		 */
1670 		if (defrag && bp->b_kvasize == 0) {
1671 			printf("Warning: defrag empty buffer %p\n", bp);
1672 			continue;
1673 		}
1674 
1675 		/*
1676 		 * Start freeing the bp.  This is somewhat involved.  nbp
1677 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1678 		 */
1679 
1680 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1681 			panic("getnewbuf: locked buf");
1682 		bremfree(bp);
1683 
1684 		if (qindex == QUEUE_CLEAN) {
1685 			if (bp->b_flags & B_VMIO) {
1686 				bp->b_flags &= ~B_ASYNC;
1687 				vfs_vmio_release(bp);
1688 			}
1689 			if (bp->b_vp)
1690 				brelvp(bp);
1691 		}
1692 
1693 		/*
1694 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1695 		 * the scan from this point on.
1696 		 *
1697 		 * Get the rest of the buffer freed up.  b_kva* is still
1698 		 * valid after this operation.
1699 		 */
1700 
1701 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1702 			(*bioops.io_deallocate)(bp);
1703 		if (bp->b_xflags & BX_BKGRDINPROG)
1704 			panic("losing buffer 3");
1705 		LIST_REMOVE(bp, b_hash);
1706 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1707 
1708 		/*
1709 		 * spl protection not required when scrapping a buffer's
1710 		 * contents because it is already wired.
1711 		 */
1712 		if (bp->b_bufsize)
1713 			allocbuf(bp, 0);
1714 
1715 		bp->b_flags = 0;
1716 		bp->b_xflags = 0;
1717 		bp->b_dev = NODEV;
1718 		bp->b_vp = NULL;
1719 		bp->b_blkno = bp->b_lblkno = 0;
1720 		bp->b_offset = NOOFFSET;
1721 		bp->b_iodone = 0;
1722 		bp->b_error = 0;
1723 		bp->b_resid = 0;
1724 		bp->b_bcount = 0;
1725 		bp->b_xio.xio_npages = 0;
1726 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1727 
1728 		LIST_INIT(&bp->b_dep);
1729 
1730 		/*
1731 		 * If we are defragging then free the buffer.
1732 		 */
1733 		if (defrag) {
1734 			bp->b_flags |= B_INVAL;
1735 			bfreekva(bp);
1736 			brelse(bp);
1737 			defrag = 0;
1738 			goto restart;
1739 		}
1740 
1741 		/*
1742 		 * If we are overcomitted then recover the buffer and its
1743 		 * KVM space.  This occurs in rare situations when multiple
1744 		 * processes are blocked in getnewbuf() or allocbuf().
1745 		 */
1746 		if (bufspace >= hibufspace)
1747 			flushingbufs = 1;
1748 		if (flushingbufs && bp->b_kvasize != 0) {
1749 			bp->b_flags |= B_INVAL;
1750 			bfreekva(bp);
1751 			brelse(bp);
1752 			goto restart;
1753 		}
1754 		if (bufspace < lobufspace)
1755 			flushingbufs = 0;
1756 		break;
1757 	}
1758 
1759 	/*
1760 	 * If we exhausted our list, sleep as appropriate.  We may have to
1761 	 * wakeup various daemons and write out some dirty buffers.
1762 	 *
1763 	 * Generally we are sleeping due to insufficient buffer space.
1764 	 */
1765 
1766 	if (bp == NULL) {
1767 		int flags;
1768 		char *waitmsg;
1769 
1770 		if (defrag) {
1771 			flags = VFS_BIO_NEED_BUFSPACE;
1772 			waitmsg = "nbufkv";
1773 		} else if (bufspace >= hibufspace) {
1774 			waitmsg = "nbufbs";
1775 			flags = VFS_BIO_NEED_BUFSPACE;
1776 		} else {
1777 			waitmsg = "newbuf";
1778 			flags = VFS_BIO_NEED_ANY;
1779 		}
1780 
1781 		bd_speedup();	/* heeeelp */
1782 
1783 		needsbuffer |= flags;
1784 		while (needsbuffer & flags) {
1785 			if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1786 				return (NULL);
1787 		}
1788 	} else {
1789 		/*
1790 		 * We finally have a valid bp.  We aren't quite out of the
1791 		 * woods, we still have to reserve kva space.  In order
1792 		 * to keep fragmentation sane we only allocate kva in
1793 		 * BKVASIZE chunks.
1794 		 */
1795 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1796 
1797 		if (maxsize != bp->b_kvasize) {
1798 			vm_offset_t addr = 0;
1799 			int count;
1800 
1801 			bfreekva(bp);
1802 
1803 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1804 			vm_map_lock(buffer_map);
1805 
1806 			if (vm_map_findspace(buffer_map,
1807 				    vm_map_min(buffer_map), maxsize,
1808 				    maxsize, &addr)) {
1809 				/*
1810 				 * Uh oh.  Buffer map is to fragmented.  We
1811 				 * must defragment the map.
1812 				 */
1813 				vm_map_unlock(buffer_map);
1814 				vm_map_entry_release(count);
1815 				++bufdefragcnt;
1816 				defrag = 1;
1817 				bp->b_flags |= B_INVAL;
1818 				brelse(bp);
1819 				goto restart;
1820 			}
1821 			if (addr) {
1822 				vm_map_insert(buffer_map, &count,
1823 					NULL, 0,
1824 					addr, addr + maxsize,
1825 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1826 
1827 				bp->b_kvabase = (caddr_t) addr;
1828 				bp->b_kvasize = maxsize;
1829 				bufspace += bp->b_kvasize;
1830 				++bufreusecnt;
1831 			}
1832 			vm_map_unlock(buffer_map);
1833 			vm_map_entry_release(count);
1834 		}
1835 		bp->b_data = bp->b_kvabase;
1836 	}
1837 	return(bp);
1838 }
1839 
1840 /*
1841  *	buf_daemon:
1842  *
1843  *	buffer flushing daemon.  Buffers are normally flushed by the
1844  *	update daemon but if it cannot keep up this process starts to
1845  *	take the load in an attempt to prevent getnewbuf() from blocking.
1846  */
1847 
1848 static struct thread *bufdaemonthread;
1849 
1850 static struct kproc_desc buf_kp = {
1851 	"bufdaemon",
1852 	buf_daemon,
1853 	&bufdaemonthread
1854 };
1855 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1856 
1857 static void
1858 buf_daemon()
1859 {
1860 	int s;
1861 
1862 	/*
1863 	 * This process needs to be suspended prior to shutdown sync.
1864 	 */
1865 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1866 	    bufdaemonthread, SHUTDOWN_PRI_LAST);
1867 
1868 	/*
1869 	 * This process is allowed to take the buffer cache to the limit
1870 	 */
1871 	s = splbio();
1872 
1873 	for (;;) {
1874 		kproc_suspend_loop();
1875 
1876 		/*
1877 		 * Do the flush.  Limit the amount of in-transit I/O we
1878 		 * allow to build up, otherwise we would completely saturate
1879 		 * the I/O system.  Wakeup any waiting processes before we
1880 		 * normally would so they can run in parallel with our drain.
1881 		 */
1882 		while (numdirtybuffers > lodirtybuffers) {
1883 			if (flushbufqueues() == 0)
1884 				break;
1885 			waitrunningbufspace();
1886 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1887 		}
1888 
1889 		/*
1890 		 * Only clear bd_request if we have reached our low water
1891 		 * mark.  The buf_daemon normally waits 5 seconds and
1892 		 * then incrementally flushes any dirty buffers that have
1893 		 * built up, within reason.
1894 		 *
1895 		 * If we were unable to hit our low water mark and couldn't
1896 		 * find any flushable buffers, we sleep half a second.
1897 		 * Otherwise we loop immediately.
1898 		 */
1899 		if (numdirtybuffers <= lodirtybuffers) {
1900 			/*
1901 			 * We reached our low water mark, reset the
1902 			 * request and sleep until we are needed again.
1903 			 * The sleep is just so the suspend code works.
1904 			 */
1905 			bd_request = 0;
1906 			tsleep(&bd_request, 0, "psleep", hz);
1907 		} else {
1908 			/*
1909 			 * We couldn't find any flushable dirty buffers but
1910 			 * still have too many dirty buffers, we
1911 			 * have to sleep and try again.  (rare)
1912 			 */
1913 			tsleep(&bd_request, 0, "qsleep", hz / 2);
1914 		}
1915 	}
1916 }
1917 
1918 /*
1919  *	flushbufqueues:
1920  *
1921  *	Try to flush a buffer in the dirty queue.  We must be careful to
1922  *	free up B_INVAL buffers instead of write them, which NFS is
1923  *	particularly sensitive to.
1924  */
1925 
1926 static int
1927 flushbufqueues(void)
1928 {
1929 	struct buf *bp;
1930 	int r = 0;
1931 
1932 	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1933 
1934 	while (bp) {
1935 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1936 		if ((bp->b_flags & B_DELWRI) != 0 &&
1937 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1938 			if (bp->b_flags & B_INVAL) {
1939 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1940 					panic("flushbufqueues: locked buf");
1941 				bremfree(bp);
1942 				brelse(bp);
1943 				++r;
1944 				break;
1945 			}
1946 			if (LIST_FIRST(&bp->b_dep) != NULL &&
1947 			    bioops.io_countdeps &&
1948 			    (bp->b_flags & B_DEFERRED) == 0 &&
1949 			    (*bioops.io_countdeps)(bp, 0)) {
1950 				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1951 				    bp, b_freelist);
1952 				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1953 				    bp, b_freelist);
1954 				bp->b_flags |= B_DEFERRED;
1955 				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1956 				continue;
1957 			}
1958 			vfs_bio_awrite(bp);
1959 			++r;
1960 			break;
1961 		}
1962 		bp = TAILQ_NEXT(bp, b_freelist);
1963 	}
1964 	return (r);
1965 }
1966 
1967 /*
1968  * Check to see if a block is currently memory resident.
1969  */
1970 struct buf *
1971 incore(struct vnode * vp, daddr_t blkno)
1972 {
1973 	struct buf *bp;
1974 
1975 	int s = splbio();
1976 	bp = gbincore(vp, blkno);
1977 	splx(s);
1978 	return (bp);
1979 }
1980 
1981 /*
1982  * Returns true if no I/O is needed to access the associated VM object.
1983  * This is like incore except it also hunts around in the VM system for
1984  * the data.
1985  *
1986  * Note that we ignore vm_page_free() races from interrupts against our
1987  * lookup, since if the caller is not protected our return value will not
1988  * be any more valid then otherwise once we splx().
1989  */
1990 int
1991 inmem(struct vnode * vp, daddr_t blkno)
1992 {
1993 	vm_object_t obj;
1994 	vm_offset_t toff, tinc, size;
1995 	vm_page_t m;
1996 	vm_ooffset_t off;
1997 
1998 	if (incore(vp, blkno))
1999 		return 1;
2000 	if (vp->v_mount == NULL)
2001 		return 0;
2002 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2003  		return 0;
2004 
2005 	size = PAGE_SIZE;
2006 	if (size > vp->v_mount->mnt_stat.f_iosize)
2007 		size = vp->v_mount->mnt_stat.f_iosize;
2008 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2009 
2010 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2011 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2012 		if (!m)
2013 			return 0;
2014 		tinc = size;
2015 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2016 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2017 		if (vm_page_is_valid(m,
2018 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2019 			return 0;
2020 	}
2021 	return 1;
2022 }
2023 
2024 /*
2025  *	vfs_setdirty:
2026  *
2027  *	Sets the dirty range for a buffer based on the status of the dirty
2028  *	bits in the pages comprising the buffer.
2029  *
2030  *	The range is limited to the size of the buffer.
2031  *
2032  *	This routine is primarily used by NFS, but is generalized for the
2033  *	B_VMIO case.
2034  */
2035 static void
2036 vfs_setdirty(struct buf *bp)
2037 {
2038 	int i;
2039 	vm_object_t object;
2040 
2041 	/*
2042 	 * Degenerate case - empty buffer
2043 	 */
2044 
2045 	if (bp->b_bufsize == 0)
2046 		return;
2047 
2048 	/*
2049 	 * We qualify the scan for modified pages on whether the
2050 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2051 	 * is not cleared simply by protecting pages off.
2052 	 */
2053 
2054 	if ((bp->b_flags & B_VMIO) == 0)
2055 		return;
2056 
2057 	object = bp->b_xio.xio_pages[0]->object;
2058 
2059 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2060 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2061 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2062 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2063 
2064 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2065 		vm_offset_t boffset;
2066 		vm_offset_t eoffset;
2067 
2068 		/*
2069 		 * test the pages to see if they have been modified directly
2070 		 * by users through the VM system.
2071 		 */
2072 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2073 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2074 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2075 		}
2076 
2077 		/*
2078 		 * Calculate the encompassing dirty range, boffset and eoffset,
2079 		 * (eoffset - boffset) bytes.
2080 		 */
2081 
2082 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2083 			if (bp->b_xio.xio_pages[i]->dirty)
2084 				break;
2085 		}
2086 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2087 
2088 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2089 			if (bp->b_xio.xio_pages[i]->dirty) {
2090 				break;
2091 			}
2092 		}
2093 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2094 
2095 		/*
2096 		 * Fit it to the buffer.
2097 		 */
2098 
2099 		if (eoffset > bp->b_bcount)
2100 			eoffset = bp->b_bcount;
2101 
2102 		/*
2103 		 * If we have a good dirty range, merge with the existing
2104 		 * dirty range.
2105 		 */
2106 
2107 		if (boffset < eoffset) {
2108 			if (bp->b_dirtyoff > boffset)
2109 				bp->b_dirtyoff = boffset;
2110 			if (bp->b_dirtyend < eoffset)
2111 				bp->b_dirtyend = eoffset;
2112 		}
2113 	}
2114 }
2115 
2116 /*
2117  *	getblk:
2118  *
2119  *	Get a block given a specified block and offset into a file/device.
2120  *	The buffers B_DONE bit will be cleared on return, making it almost
2121  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2122  *	return.  The caller should clear B_INVAL prior to initiating a
2123  *	READ.
2124  *
2125  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2126  *	an existing buffer.
2127  *
2128  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2129  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2130  *	and then cleared based on the backing VM.  If the previous buffer is
2131  *	non-0-sized but invalid, B_CACHE will be cleared.
2132  *
2133  *	If getblk() must create a new buffer, the new buffer is returned with
2134  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2135  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2136  *	backing VM.
2137  *
2138  *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2139  *	B_CACHE bit is clear.
2140  *
2141  *	What this means, basically, is that the caller should use B_CACHE to
2142  *	determine whether the buffer is fully valid or not and should clear
2143  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2144  *	the buffer by loading its data area with something, the caller needs
2145  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2146  *	the caller should set B_CACHE ( as an optimization ), else the caller
2147  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2148  *	a write attempt or if it was a successfull read.  If the caller
2149  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2150  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2151  */
2152 struct buf *
2153 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2154 {
2155 	struct buf *bp;
2156 	int s;
2157 	struct bufhashhdr *bh;
2158 
2159 	if (size > MAXBSIZE)
2160 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2161 
2162 	s = splbio();
2163 loop:
2164 	/*
2165 	 * Block if we are low on buffers.   Certain processes are allowed
2166 	 * to completely exhaust the buffer cache.
2167          *
2168          * If this check ever becomes a bottleneck it may be better to
2169          * move it into the else, when gbincore() fails.  At the moment
2170          * it isn't a problem.
2171 	 *
2172 	 * XXX remove, we cannot afford to block anywhere if holding a vnode
2173 	 * lock in low-memory situation, so take it to the max.
2174          */
2175 	if (numfreebuffers == 0) {
2176 		if (!curproc)
2177 			return NULL;
2178 		needsbuffer |= VFS_BIO_NEED_ANY;
2179 		tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2180 	}
2181 
2182 	if ((bp = gbincore(vp, blkno))) {
2183 		/*
2184 		 * Buffer is in-core.  If the buffer is not busy, it must
2185 		 * be on a queue.
2186 		 */
2187 
2188 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2189 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2190 			    "getblk", slpflag, slptimeo) == ENOLCK)
2191 				goto loop;
2192 			splx(s);
2193 			return (struct buf *) NULL;
2194 		}
2195 
2196 		/*
2197 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2198 		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2199 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2200 		 * backing VM cache.
2201 		 */
2202 		if (bp->b_flags & B_INVAL)
2203 			bp->b_flags &= ~B_CACHE;
2204 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2205 			bp->b_flags |= B_CACHE;
2206 		bremfree(bp);
2207 
2208 		/*
2209 		 * check for size inconsistancies for non-VMIO case.
2210 		 */
2211 
2212 		if (bp->b_bcount != size) {
2213 			if ((bp->b_flags & B_VMIO) == 0 ||
2214 			    (size > bp->b_kvasize)) {
2215 				if (bp->b_flags & B_DELWRI) {
2216 					bp->b_flags |= B_NOCACHE;
2217 					VOP_BWRITE(bp->b_vp, bp);
2218 				} else {
2219 					if ((bp->b_flags & B_VMIO) &&
2220 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2221 						bp->b_flags |= B_RELBUF;
2222 						brelse(bp);
2223 					} else {
2224 						bp->b_flags |= B_NOCACHE;
2225 						VOP_BWRITE(bp->b_vp, bp);
2226 					}
2227 				}
2228 				goto loop;
2229 			}
2230 		}
2231 
2232 		/*
2233 		 * If the size is inconsistant in the VMIO case, we can resize
2234 		 * the buffer.  This might lead to B_CACHE getting set or
2235 		 * cleared.  If the size has not changed, B_CACHE remains
2236 		 * unchanged from its previous state.
2237 		 */
2238 
2239 		if (bp->b_bcount != size)
2240 			allocbuf(bp, size);
2241 
2242 		KASSERT(bp->b_offset != NOOFFSET,
2243 		    ("getblk: no buffer offset"));
2244 
2245 		/*
2246 		 * A buffer with B_DELWRI set and B_CACHE clear must
2247 		 * be committed before we can return the buffer in
2248 		 * order to prevent the caller from issuing a read
2249 		 * ( due to B_CACHE not being set ) and overwriting
2250 		 * it.
2251 		 *
2252 		 * Most callers, including NFS and FFS, need this to
2253 		 * operate properly either because they assume they
2254 		 * can issue a read if B_CACHE is not set, or because
2255 		 * ( for example ) an uncached B_DELWRI might loop due
2256 		 * to softupdates re-dirtying the buffer.  In the latter
2257 		 * case, B_CACHE is set after the first write completes,
2258 		 * preventing further loops.
2259 		 *
2260 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2261 		 * above while extending the buffer, we cannot allow the
2262 		 * buffer to remain with B_CACHE set after the write
2263 		 * completes or it will represent a corrupt state.  To
2264 		 * deal with this we set B_NOCACHE to scrap the buffer
2265 		 * after the write.
2266 		 *
2267 		 * We might be able to do something fancy, like setting
2268 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2269 		 * so the below call doesn't set B_CACHE, but that gets real
2270 		 * confusing.  This is much easier.
2271 		 */
2272 
2273 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2274 			bp->b_flags |= B_NOCACHE;
2275 			VOP_BWRITE(bp->b_vp, bp);
2276 			goto loop;
2277 		}
2278 
2279 		splx(s);
2280 		bp->b_flags &= ~B_DONE;
2281 	} else {
2282 		/*
2283 		 * Buffer is not in-core, create new buffer.  The buffer
2284 		 * returned by getnewbuf() is locked.  Note that the returned
2285 		 * buffer is also considered valid (not marked B_INVAL).
2286 		 */
2287 		int bsize, maxsize, vmio;
2288 		off_t offset;
2289 
2290 		if (vn_isdisk(vp, NULL))
2291 			bsize = DEV_BSIZE;
2292 		else if (vp->v_mountedhere)
2293 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2294 		else if (vp->v_mount)
2295 			bsize = vp->v_mount->mnt_stat.f_iosize;
2296 		else
2297 			bsize = size;
2298 
2299 		offset = (off_t)blkno * bsize;
2300 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2301 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2302 		maxsize = imax(maxsize, bsize);
2303 
2304 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2305 			if (slpflag || slptimeo) {
2306 				splx(s);
2307 				return NULL;
2308 			}
2309 			goto loop;
2310 		}
2311 
2312 		/*
2313 		 * This code is used to make sure that a buffer is not
2314 		 * created while the getnewbuf routine is blocked.
2315 		 * This can be a problem whether the vnode is locked or not.
2316 		 * If the buffer is created out from under us, we have to
2317 		 * throw away the one we just created.  There is now window
2318 		 * race because we are safely running at splbio() from the
2319 		 * point of the duplicate buffer creation through to here,
2320 		 * and we've locked the buffer.
2321 		 */
2322 		if (gbincore(vp, blkno)) {
2323 			bp->b_flags |= B_INVAL;
2324 			brelse(bp);
2325 			goto loop;
2326 		}
2327 
2328 		/*
2329 		 * Insert the buffer into the hash, so that it can
2330 		 * be found by incore.
2331 		 */
2332 		bp->b_blkno = bp->b_lblkno = blkno;
2333 		bp->b_offset = offset;
2334 
2335 		bgetvp(vp, bp);
2336 		LIST_REMOVE(bp, b_hash);
2337 		bh = bufhash(vp, blkno);
2338 		LIST_INSERT_HEAD(bh, bp, b_hash);
2339 
2340 		/*
2341 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2342 		 * buffer size starts out as 0, B_CACHE will be set by
2343 		 * allocbuf() for the VMIO case prior to it testing the
2344 		 * backing store for validity.
2345 		 */
2346 
2347 		if (vmio) {
2348 			bp->b_flags |= B_VMIO;
2349 #if defined(VFS_BIO_DEBUG)
2350 			if (vn_canvmio(vp) != TRUE)
2351 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2352 #endif
2353 		} else {
2354 			bp->b_flags &= ~B_VMIO;
2355 		}
2356 
2357 		allocbuf(bp, size);
2358 
2359 		splx(s);
2360 		bp->b_flags &= ~B_DONE;
2361 	}
2362 	return (bp);
2363 }
2364 
2365 /*
2366  * Get an empty, disassociated buffer of given size.  The buffer is initially
2367  * set to B_INVAL.
2368  *
2369  * spl protection is not required for the allocbuf() call because races are
2370  * impossible here.
2371  */
2372 struct buf *
2373 geteblk(int size)
2374 {
2375 	struct buf *bp;
2376 	int s;
2377 	int maxsize;
2378 
2379 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2380 
2381 	s = splbio();
2382 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2383 	splx(s);
2384 	allocbuf(bp, size);
2385 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2386 	return (bp);
2387 }
2388 
2389 
2390 /*
2391  * This code constitutes the buffer memory from either anonymous system
2392  * memory (in the case of non-VMIO operations) or from an associated
2393  * VM object (in the case of VMIO operations).  This code is able to
2394  * resize a buffer up or down.
2395  *
2396  * Note that this code is tricky, and has many complications to resolve
2397  * deadlock or inconsistant data situations.  Tread lightly!!!
2398  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2399  * the caller.  Calling this code willy nilly can result in the loss of data.
2400  *
2401  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2402  * B_CACHE for the non-VMIO case.
2403  *
2404  * This routine does not need to be called at splbio() but you must own the
2405  * buffer.
2406  */
2407 int
2408 allocbuf(struct buf *bp, int size)
2409 {
2410 	int newbsize, mbsize;
2411 	int i;
2412 
2413 	if (BUF_REFCNT(bp) == 0)
2414 		panic("allocbuf: buffer not busy");
2415 
2416 	if (bp->b_kvasize < size)
2417 		panic("allocbuf: buffer too small");
2418 
2419 	if ((bp->b_flags & B_VMIO) == 0) {
2420 		caddr_t origbuf;
2421 		int origbufsize;
2422 		/*
2423 		 * Just get anonymous memory from the kernel.  Don't
2424 		 * mess with B_CACHE.
2425 		 */
2426 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2427 #if !defined(NO_B_MALLOC)
2428 		if (bp->b_flags & B_MALLOC)
2429 			newbsize = mbsize;
2430 		else
2431 #endif
2432 			newbsize = round_page(size);
2433 
2434 		if (newbsize < bp->b_bufsize) {
2435 #if !defined(NO_B_MALLOC)
2436 			/*
2437 			 * malloced buffers are not shrunk
2438 			 */
2439 			if (bp->b_flags & B_MALLOC) {
2440 				if (newbsize) {
2441 					bp->b_bcount = size;
2442 				} else {
2443 					free(bp->b_data, M_BIOBUF);
2444 					if (bp->b_bufsize) {
2445 						bufmallocspace -= bp->b_bufsize;
2446 						bufspacewakeup();
2447 						bp->b_bufsize = 0;
2448 					}
2449 					bp->b_data = bp->b_kvabase;
2450 					bp->b_bcount = 0;
2451 					bp->b_flags &= ~B_MALLOC;
2452 				}
2453 				return 1;
2454 			}
2455 #endif
2456 			vm_hold_free_pages(
2457 			    bp,
2458 			    (vm_offset_t) bp->b_data + newbsize,
2459 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2460 		} else if (newbsize > bp->b_bufsize) {
2461 #if !defined(NO_B_MALLOC)
2462 			/*
2463 			 * We only use malloced memory on the first allocation.
2464 			 * and revert to page-allocated memory when the buffer
2465 			 * grows.
2466 			 */
2467 			if ( (bufmallocspace < maxbufmallocspace) &&
2468 				(bp->b_bufsize == 0) &&
2469 				(mbsize <= PAGE_SIZE/2)) {
2470 
2471 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2472 				bp->b_bufsize = mbsize;
2473 				bp->b_bcount = size;
2474 				bp->b_flags |= B_MALLOC;
2475 				bufmallocspace += mbsize;
2476 				return 1;
2477 			}
2478 #endif
2479 			origbuf = NULL;
2480 			origbufsize = 0;
2481 #if !defined(NO_B_MALLOC)
2482 			/*
2483 			 * If the buffer is growing on its other-than-first allocation,
2484 			 * then we revert to the page-allocation scheme.
2485 			 */
2486 			if (bp->b_flags & B_MALLOC) {
2487 				origbuf = bp->b_data;
2488 				origbufsize = bp->b_bufsize;
2489 				bp->b_data = bp->b_kvabase;
2490 				if (bp->b_bufsize) {
2491 					bufmallocspace -= bp->b_bufsize;
2492 					bufspacewakeup();
2493 					bp->b_bufsize = 0;
2494 				}
2495 				bp->b_flags &= ~B_MALLOC;
2496 				newbsize = round_page(newbsize);
2497 			}
2498 #endif
2499 			vm_hold_load_pages(
2500 			    bp,
2501 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2502 			    (vm_offset_t) bp->b_data + newbsize);
2503 #if !defined(NO_B_MALLOC)
2504 			if (origbuf) {
2505 				bcopy(origbuf, bp->b_data, origbufsize);
2506 				free(origbuf, M_BIOBUF);
2507 			}
2508 #endif
2509 		}
2510 	} else {
2511 		vm_page_t m;
2512 		int desiredpages;
2513 
2514 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2515 		desiredpages = (size == 0) ? 0 :
2516 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2517 
2518 #if !defined(NO_B_MALLOC)
2519 		if (bp->b_flags & B_MALLOC)
2520 			panic("allocbuf: VMIO buffer can't be malloced");
2521 #endif
2522 		/*
2523 		 * Set B_CACHE initially if buffer is 0 length or will become
2524 		 * 0-length.
2525 		 */
2526 		if (size == 0 || bp->b_bufsize == 0)
2527 			bp->b_flags |= B_CACHE;
2528 
2529 		if (newbsize < bp->b_bufsize) {
2530 			/*
2531 			 * DEV_BSIZE aligned new buffer size is less then the
2532 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2533 			 * if we have to remove any pages.
2534 			 */
2535 			if (desiredpages < bp->b_xio.xio_npages) {
2536 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2537 					/*
2538 					 * the page is not freed here -- it
2539 					 * is the responsibility of
2540 					 * vnode_pager_setsize
2541 					 */
2542 					m = bp->b_xio.xio_pages[i];
2543 					KASSERT(m != bogus_page,
2544 					    ("allocbuf: bogus page found"));
2545 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2546 						;
2547 
2548 					bp->b_xio.xio_pages[i] = NULL;
2549 					vm_page_unwire(m, 0);
2550 				}
2551 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2552 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2553 				bp->b_xio.xio_npages = desiredpages;
2554 			}
2555 		} else if (size > bp->b_bcount) {
2556 			/*
2557 			 * We are growing the buffer, possibly in a
2558 			 * byte-granular fashion.
2559 			 */
2560 			struct vnode *vp;
2561 			vm_object_t obj;
2562 			vm_offset_t toff;
2563 			vm_offset_t tinc;
2564 			int s;
2565 
2566 			/*
2567 			 * Step 1, bring in the VM pages from the object,
2568 			 * allocating them if necessary.  We must clear
2569 			 * B_CACHE if these pages are not valid for the
2570 			 * range covered by the buffer.
2571 			 *
2572 			 * spl protection is required to protect against
2573 			 * interrupts unbusying and freeing pages between
2574 			 * our vm_page_lookup() and our busycheck/wiring
2575 			 * call.
2576 			 */
2577 			vp = bp->b_vp;
2578 			VOP_GETVOBJECT(vp, &obj);
2579 
2580 			s = splbio();
2581 			while (bp->b_xio.xio_npages < desiredpages) {
2582 				vm_page_t m;
2583 				vm_pindex_t pi;
2584 
2585 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_xio.xio_npages;
2586 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2587 					/*
2588 					 * note: must allocate system pages
2589 					 * since blocking here could intefere
2590 					 * with paging I/O, no matter which
2591 					 * process we are.
2592 					 */
2593 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2594 					if (m == NULL) {
2595 						vm_wait();
2596 						vm_pageout_deficit += desiredpages -
2597 							bp->b_xio.xio_npages;
2598 					} else {
2599 						vm_page_wire(m);
2600 						vm_page_wakeup(m);
2601 						bp->b_flags &= ~B_CACHE;
2602 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2603 						++bp->b_xio.xio_npages;
2604 					}
2605 					continue;
2606 				}
2607 
2608 				/*
2609 				 * We found a page.  If we have to sleep on it,
2610 				 * retry because it might have gotten freed out
2611 				 * from under us.
2612 				 *
2613 				 * We can only test PG_BUSY here.  Blocking on
2614 				 * m->busy might lead to a deadlock:
2615 				 *
2616 				 *  vm_fault->getpages->cluster_read->allocbuf
2617 				 *
2618 				 */
2619 
2620 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2621 					continue;
2622 
2623 				/*
2624 				 * We have a good page.  Should we wakeup the
2625 				 * page daemon?
2626 				 */
2627 				if ((curthread != pagethread) &&
2628 				    ((m->queue - m->pc) == PQ_CACHE) &&
2629 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2630 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2631 					pagedaemon_wakeup();
2632 				}
2633 				vm_page_flag_clear(m, PG_ZERO);
2634 				vm_page_wire(m);
2635 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2636 				++bp->b_xio.xio_npages;
2637 			}
2638 			splx(s);
2639 
2640 			/*
2641 			 * Step 2.  We've loaded the pages into the buffer,
2642 			 * we have to figure out if we can still have B_CACHE
2643 			 * set.  Note that B_CACHE is set according to the
2644 			 * byte-granular range ( bcount and size ), new the
2645 			 * aligned range ( newbsize ).
2646 			 *
2647 			 * The VM test is against m->valid, which is DEV_BSIZE
2648 			 * aligned.  Needless to say, the validity of the data
2649 			 * needs to also be DEV_BSIZE aligned.  Note that this
2650 			 * fails with NFS if the server or some other client
2651 			 * extends the file's EOF.  If our buffer is resized,
2652 			 * B_CACHE may remain set! XXX
2653 			 */
2654 
2655 			toff = bp->b_bcount;
2656 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2657 
2658 			while ((bp->b_flags & B_CACHE) && toff < size) {
2659 				vm_pindex_t pi;
2660 
2661 				if (tinc > (size - toff))
2662 					tinc = size - toff;
2663 
2664 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2665 				    PAGE_SHIFT;
2666 
2667 				vfs_buf_test_cache(
2668 				    bp,
2669 				    bp->b_offset,
2670 				    toff,
2671 				    tinc,
2672 				    bp->b_xio.xio_pages[pi]
2673 				);
2674 				toff += tinc;
2675 				tinc = PAGE_SIZE;
2676 			}
2677 
2678 			/*
2679 			 * Step 3, fixup the KVM pmap.  Remember that
2680 			 * bp->b_data is relative to bp->b_offset, but
2681 			 * bp->b_offset may be offset into the first page.
2682 			 */
2683 
2684 			bp->b_data = (caddr_t)
2685 			    trunc_page((vm_offset_t)bp->b_data);
2686 			pmap_qenter(
2687 			    (vm_offset_t)bp->b_data,
2688 			    bp->b_xio.xio_pages,
2689 			    bp->b_xio.xio_npages
2690 			);
2691 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2692 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2693 		}
2694 	}
2695 	if (newbsize < bp->b_bufsize)
2696 		bufspacewakeup();
2697 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2698 	bp->b_bcount = size;		/* requested buffer size	*/
2699 	return 1;
2700 }
2701 
2702 /*
2703  *	biowait:
2704  *
2705  *	Wait for buffer I/O completion, returning error status.  The buffer
2706  *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2707  *	error and cleared.
2708  */
2709 int
2710 biowait(struct buf * bp)
2711 {
2712 	int s;
2713 
2714 	s = splbio();
2715 	while ((bp->b_flags & B_DONE) == 0) {
2716 #if defined(NO_SCHEDULE_MODS)
2717 		tsleep(bp, 0, "biowait", 0);
2718 #else
2719 		if (bp->b_flags & B_READ)
2720 			tsleep(bp, 0, "biord", 0);
2721 		else
2722 			tsleep(bp, 0, "biowr", 0);
2723 #endif
2724 	}
2725 	splx(s);
2726 	if (bp->b_flags & B_EINTR) {
2727 		bp->b_flags &= ~B_EINTR;
2728 		return (EINTR);
2729 	}
2730 	if (bp->b_flags & B_ERROR) {
2731 		return (bp->b_error ? bp->b_error : EIO);
2732 	} else {
2733 		return (0);
2734 	}
2735 }
2736 
2737 /*
2738  *	biodone:
2739  *
2740  *	Finish I/O on a buffer, optionally calling a completion function.
2741  *	This is usually called from an interrupt so process blocking is
2742  *	not allowed.
2743  *
2744  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2745  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2746  *	assuming B_INVAL is clear.
2747  *
2748  *	For the VMIO case, we set B_CACHE if the op was a read and no
2749  *	read error occured, or if the op was a write.  B_CACHE is never
2750  *	set if the buffer is invalid or otherwise uncacheable.
2751  *
2752  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2753  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2754  *	in the biodone routine.
2755  *
2756  *	b_dev is required to be reinitialized prior to the top level strategy
2757  *	call in a device stack.  To avoid improper reuse, biodone() sets
2758  *	b_dev to NODEV.
2759  */
2760 void
2761 biodone(struct buf *bp)
2762 {
2763 	int s, error;
2764 
2765 	s = splbio();
2766 
2767 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2768 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2769 
2770 	bp->b_flags |= B_DONE;
2771 	bp->b_dev = NODEV;
2772 	runningbufwakeup(bp);
2773 
2774 	if (bp->b_flags & B_FREEBUF) {
2775 		brelse(bp);
2776 		splx(s);
2777 		return;
2778 	}
2779 
2780 	if ((bp->b_flags & B_READ) == 0) {
2781 		vwakeup(bp);
2782 	}
2783 
2784 	/* call optional completion function if requested */
2785 	if (bp->b_flags & B_CALL) {
2786 		bp->b_flags &= ~B_CALL;
2787 		(*bp->b_iodone) (bp);
2788 		splx(s);
2789 		return;
2790 	}
2791 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2792 		(*bioops.io_complete)(bp);
2793 
2794 	if (bp->b_flags & B_VMIO) {
2795 		int i;
2796 		vm_ooffset_t foff;
2797 		vm_page_t m;
2798 		vm_object_t obj;
2799 		int iosize;
2800 		struct vnode *vp = bp->b_vp;
2801 
2802 		error = VOP_GETVOBJECT(vp, &obj);
2803 
2804 #if defined(VFS_BIO_DEBUG)
2805 		if (vp->v_holdcnt == 0) {
2806 			panic("biodone: zero vnode hold count");
2807 		}
2808 
2809 		if (error) {
2810 			panic("biodone: missing VM object");
2811 		}
2812 
2813 		if ((vp->v_flag & VOBJBUF) == 0) {
2814 			panic("biodone: vnode is not setup for merged cache");
2815 		}
2816 #endif
2817 
2818 		foff = bp->b_offset;
2819 		KASSERT(bp->b_offset != NOOFFSET,
2820 		    ("biodone: no buffer offset"));
2821 
2822 		if (error) {
2823 			panic("biodone: no object");
2824 		}
2825 #if defined(VFS_BIO_DEBUG)
2826 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2827 			printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2828 			    obj->paging_in_progress, bp->b_xio.xio_npages);
2829 		}
2830 #endif
2831 
2832 		/*
2833 		 * Set B_CACHE if the op was a normal read and no error
2834 		 * occured.  B_CACHE is set for writes in the b*write()
2835 		 * routines.
2836 		 */
2837 		iosize = bp->b_bcount - bp->b_resid;
2838 		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2839 			bp->b_flags |= B_CACHE;
2840 		}
2841 
2842 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2843 			int bogusflag = 0;
2844 			int resid;
2845 
2846 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2847 			if (resid > iosize)
2848 				resid = iosize;
2849 
2850 			/*
2851 			 * cleanup bogus pages, restoring the originals.  Since
2852 			 * the originals should still be wired, we don't have
2853 			 * to worry about interrupt/freeing races destroying
2854 			 * the VM object association.
2855 			 */
2856 			m = bp->b_xio.xio_pages[i];
2857 			if (m == bogus_page) {
2858 				bogusflag = 1;
2859 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2860 				if (m == NULL)
2861 					panic("biodone: page disappeared");
2862 				bp->b_xio.xio_pages[i] = m;
2863 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2864 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2865 			}
2866 #if defined(VFS_BIO_DEBUG)
2867 			if (OFF_TO_IDX(foff) != m->pindex) {
2868 				printf(
2869 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2870 				    (unsigned long)foff, m->pindex);
2871 			}
2872 #endif
2873 
2874 			/*
2875 			 * In the write case, the valid and clean bits are
2876 			 * already changed correctly ( see bdwrite() ), so we
2877 			 * only need to do this here in the read case.
2878 			 */
2879 			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2880 				vfs_page_set_valid(bp, foff, i, m);
2881 			}
2882 			vm_page_flag_clear(m, PG_ZERO);
2883 
2884 			/*
2885 			 * when debugging new filesystems or buffer I/O methods, this
2886 			 * is the most common error that pops up.  if you see this, you
2887 			 * have not set the page busy flag correctly!!!
2888 			 */
2889 			if (m->busy == 0) {
2890 				printf("biodone: page busy < 0, "
2891 				    "pindex: %d, foff: 0x(%x,%x), "
2892 				    "resid: %d, index: %d\n",
2893 				    (int) m->pindex, (int)(foff >> 32),
2894 						(int) foff & 0xffffffff, resid, i);
2895 				if (!vn_isdisk(vp, NULL))
2896 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2897 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2898 					    (int) bp->b_lblkno,
2899 					    bp->b_flags, bp->b_xio.xio_npages);
2900 				else
2901 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2902 					    (int) bp->b_lblkno,
2903 					    bp->b_flags, bp->b_xio.xio_npages);
2904 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2905 				    m->valid, m->dirty, m->wire_count);
2906 				panic("biodone: page busy < 0");
2907 			}
2908 			vm_page_io_finish(m);
2909 			vm_object_pip_subtract(obj, 1);
2910 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2911 			iosize -= resid;
2912 		}
2913 		if (obj)
2914 			vm_object_pip_wakeupn(obj, 0);
2915 	}
2916 
2917 	/*
2918 	 * For asynchronous completions, release the buffer now. The brelse
2919 	 * will do a wakeup there if necessary - so no need to do a wakeup
2920 	 * here in the async case. The sync case always needs to do a wakeup.
2921 	 */
2922 
2923 	if (bp->b_flags & B_ASYNC) {
2924 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2925 			brelse(bp);
2926 		else
2927 			bqrelse(bp);
2928 	} else {
2929 		wakeup(bp);
2930 	}
2931 	splx(s);
2932 }
2933 
2934 /*
2935  * This routine is called in lieu of iodone in the case of
2936  * incomplete I/O.  This keeps the busy status for pages
2937  * consistant.
2938  */
2939 void
2940 vfs_unbusy_pages(struct buf *bp)
2941 {
2942 	int i;
2943 
2944 	runningbufwakeup(bp);
2945 	if (bp->b_flags & B_VMIO) {
2946 		struct vnode *vp = bp->b_vp;
2947 		vm_object_t obj;
2948 
2949 		VOP_GETVOBJECT(vp, &obj);
2950 
2951 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2952 			vm_page_t m = bp->b_xio.xio_pages[i];
2953 
2954 			/*
2955 			 * When restoring bogus changes the original pages
2956 			 * should still be wired, so we are in no danger of
2957 			 * losing the object association and do not need
2958 			 * spl protection particularly.
2959 			 */
2960 			if (m == bogus_page) {
2961 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2962 				if (!m) {
2963 					panic("vfs_unbusy_pages: page missing");
2964 				}
2965 				bp->b_xio.xio_pages[i] = m;
2966 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2967 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2968 			}
2969 			vm_object_pip_subtract(obj, 1);
2970 			vm_page_flag_clear(m, PG_ZERO);
2971 			vm_page_io_finish(m);
2972 		}
2973 		vm_object_pip_wakeupn(obj, 0);
2974 	}
2975 }
2976 
2977 /*
2978  * vfs_page_set_valid:
2979  *
2980  *	Set the valid bits in a page based on the supplied offset.   The
2981  *	range is restricted to the buffer's size.
2982  *
2983  *	This routine is typically called after a read completes.
2984  */
2985 static void
2986 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2987 {
2988 	vm_ooffset_t soff, eoff;
2989 
2990 	/*
2991 	 * Start and end offsets in buffer.  eoff - soff may not cross a
2992 	 * page boundry or cross the end of the buffer.  The end of the
2993 	 * buffer, in this case, is our file EOF, not the allocation size
2994 	 * of the buffer.
2995 	 */
2996 	soff = off;
2997 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2998 	if (eoff > bp->b_offset + bp->b_bcount)
2999 		eoff = bp->b_offset + bp->b_bcount;
3000 
3001 	/*
3002 	 * Set valid range.  This is typically the entire buffer and thus the
3003 	 * entire page.
3004 	 */
3005 	if (eoff > soff) {
3006 		vm_page_set_validclean(
3007 		    m,
3008 		   (vm_offset_t) (soff & PAGE_MASK),
3009 		   (vm_offset_t) (eoff - soff)
3010 		);
3011 	}
3012 }
3013 
3014 /*
3015  * This routine is called before a device strategy routine.
3016  * It is used to tell the VM system that paging I/O is in
3017  * progress, and treat the pages associated with the buffer
3018  * almost as being PG_BUSY.  Also the object paging_in_progress
3019  * flag is handled to make sure that the object doesn't become
3020  * inconsistant.
3021  *
3022  * Since I/O has not been initiated yet, certain buffer flags
3023  * such as B_ERROR or B_INVAL may be in an inconsistant state
3024  * and should be ignored.
3025  */
3026 void
3027 vfs_busy_pages(struct buf *bp, int clear_modify)
3028 {
3029 	int i, bogus;
3030 
3031 	if (bp->b_flags & B_VMIO) {
3032 		struct vnode *vp = bp->b_vp;
3033 		vm_object_t obj;
3034 		vm_ooffset_t foff;
3035 
3036 		VOP_GETVOBJECT(vp, &obj);
3037 		foff = bp->b_offset;
3038 		KASSERT(bp->b_offset != NOOFFSET,
3039 		    ("vfs_busy_pages: no buffer offset"));
3040 		vfs_setdirty(bp);
3041 
3042 retry:
3043 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3044 			vm_page_t m = bp->b_xio.xio_pages[i];
3045 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3046 				goto retry;
3047 		}
3048 
3049 		bogus = 0;
3050 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3051 			vm_page_t m = bp->b_xio.xio_pages[i];
3052 
3053 			vm_page_flag_clear(m, PG_ZERO);
3054 			if ((bp->b_flags & B_CLUSTER) == 0) {
3055 				vm_object_pip_add(obj, 1);
3056 				vm_page_io_start(m);
3057 			}
3058 
3059 			/*
3060 			 * When readying a buffer for a read ( i.e
3061 			 * clear_modify == 0 ), it is important to do
3062 			 * bogus_page replacement for valid pages in
3063 			 * partially instantiated buffers.  Partially
3064 			 * instantiated buffers can, in turn, occur when
3065 			 * reconstituting a buffer from its VM backing store
3066 			 * base.  We only have to do this if B_CACHE is
3067 			 * clear ( which causes the I/O to occur in the
3068 			 * first place ).  The replacement prevents the read
3069 			 * I/O from overwriting potentially dirty VM-backed
3070 			 * pages.  XXX bogus page replacement is, uh, bogus.
3071 			 * It may not work properly with small-block devices.
3072 			 * We need to find a better way.
3073 			 */
3074 
3075 			vm_page_protect(m, VM_PROT_NONE);
3076 			if (clear_modify)
3077 				vfs_page_set_valid(bp, foff, i, m);
3078 			else if (m->valid == VM_PAGE_BITS_ALL &&
3079 				(bp->b_flags & B_CACHE) == 0) {
3080 				bp->b_xio.xio_pages[i] = bogus_page;
3081 				bogus++;
3082 			}
3083 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3084 		}
3085 		if (bogus)
3086 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3087 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3088 	}
3089 
3090 	/*
3091 	 * This is the easiest place to put the process accounting for the I/O
3092 	 * for now.
3093 	 */
3094 	{
3095 		struct proc *p;
3096 
3097 		if ((p = curthread->td_proc) != NULL) {
3098 			if (bp->b_flags & B_READ)
3099 				p->p_stats->p_ru.ru_inblock++;
3100 			else
3101 				p->p_stats->p_ru.ru_oublock++;
3102 		}
3103 	}
3104 }
3105 
3106 /*
3107  * Tell the VM system that the pages associated with this buffer
3108  * are clean.  This is used for delayed writes where the data is
3109  * going to go to disk eventually without additional VM intevention.
3110  *
3111  * Note that while we only really need to clean through to b_bcount, we
3112  * just go ahead and clean through to b_bufsize.
3113  */
3114 static void
3115 vfs_clean_pages(struct buf *bp)
3116 {
3117 	int i;
3118 
3119 	if (bp->b_flags & B_VMIO) {
3120 		vm_ooffset_t foff;
3121 
3122 		foff = bp->b_offset;
3123 		KASSERT(bp->b_offset != NOOFFSET,
3124 		    ("vfs_clean_pages: no buffer offset"));
3125 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3126 			vm_page_t m = bp->b_xio.xio_pages[i];
3127 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3128 			vm_ooffset_t eoff = noff;
3129 
3130 			if (eoff > bp->b_offset + bp->b_bufsize)
3131 				eoff = bp->b_offset + bp->b_bufsize;
3132 			vfs_page_set_valid(bp, foff, i, m);
3133 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3134 			foff = noff;
3135 		}
3136 	}
3137 }
3138 
3139 /*
3140  *	vfs_bio_set_validclean:
3141  *
3142  *	Set the range within the buffer to valid and clean.  The range is
3143  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3144  *	itself may be offset from the beginning of the first page.
3145  */
3146 
3147 void
3148 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3149 {
3150 	if (bp->b_flags & B_VMIO) {
3151 		int i;
3152 		int n;
3153 
3154 		/*
3155 		 * Fixup base to be relative to beginning of first page.
3156 		 * Set initial n to be the maximum number of bytes in the
3157 		 * first page that can be validated.
3158 		 */
3159 
3160 		base += (bp->b_offset & PAGE_MASK);
3161 		n = PAGE_SIZE - (base & PAGE_MASK);
3162 
3163 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3164 			vm_page_t m = bp->b_xio.xio_pages[i];
3165 
3166 			if (n > size)
3167 				n = size;
3168 
3169 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3170 			base += n;
3171 			size -= n;
3172 			n = PAGE_SIZE;
3173 		}
3174 	}
3175 }
3176 
3177 /*
3178  *	vfs_bio_clrbuf:
3179  *
3180  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3181  *	to clear B_ERROR and B_INVAL.
3182  *
3183  *	Note that while we only theoretically need to clear through b_bcount,
3184  *	we go ahead and clear through b_bufsize.
3185  */
3186 
3187 void
3188 vfs_bio_clrbuf(struct buf *bp)
3189 {
3190 	int i, mask = 0;
3191 	caddr_t sa, ea;
3192 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3193 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3194 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3195 		    (bp->b_offset & PAGE_MASK) == 0) {
3196 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3197 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3198 				bp->b_resid = 0;
3199 				return;
3200 			}
3201 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3202 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3203 				bzero(bp->b_data, bp->b_bufsize);
3204 				bp->b_xio.xio_pages[0]->valid |= mask;
3205 				bp->b_resid = 0;
3206 				return;
3207 			}
3208 		}
3209 		ea = sa = bp->b_data;
3210 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3211 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3212 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3213 			ea = (caddr_t)(vm_offset_t)ulmin(
3214 			    (u_long)(vm_offset_t)ea,
3215 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3216 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3217 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3218 				continue;
3219 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3220 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3221 					bzero(sa, ea - sa);
3222 				}
3223 			} else {
3224 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3225 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3226 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3227 						bzero(sa, DEV_BSIZE);
3228 				}
3229 			}
3230 			bp->b_xio.xio_pages[i]->valid |= mask;
3231 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3232 		}
3233 		bp->b_resid = 0;
3234 	} else {
3235 		clrbuf(bp);
3236 	}
3237 }
3238 
3239 /*
3240  * vm_hold_load_pages and vm_hold_unload pages get pages into
3241  * a buffers address space.  The pages are anonymous and are
3242  * not associated with a file object.
3243  */
3244 void
3245 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3246 {
3247 	vm_offset_t pg;
3248 	vm_page_t p;
3249 	int index;
3250 
3251 	to = round_page(to);
3252 	from = round_page(from);
3253 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3254 
3255 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3256 
3257 tryagain:
3258 
3259 		/*
3260 		 * note: must allocate system pages since blocking here
3261 		 * could intefere with paging I/O, no matter which
3262 		 * process we are.
3263 		 */
3264 		p = vm_page_alloc(kernel_object,
3265 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3266 			VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3267 		if (!p) {
3268 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3269 			vm_wait();
3270 			goto tryagain;
3271 		}
3272 		vm_page_wire(p);
3273 		p->valid = VM_PAGE_BITS_ALL;
3274 		vm_page_flag_clear(p, PG_ZERO);
3275 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3276 		bp->b_xio.xio_pages[index] = p;
3277 		vm_page_wakeup(p);
3278 	}
3279 	bp->b_xio.xio_npages = index;
3280 }
3281 
3282 void
3283 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3284 {
3285 	vm_offset_t pg;
3286 	vm_page_t p;
3287 	int index, newnpages;
3288 
3289 	from = round_page(from);
3290 	to = round_page(to);
3291 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3292 
3293 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3294 		p = bp->b_xio.xio_pages[index];
3295 		if (p && (index < bp->b_xio.xio_npages)) {
3296 			if (p->busy) {
3297 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3298 					bp->b_blkno, bp->b_lblkno);
3299 			}
3300 			bp->b_xio.xio_pages[index] = NULL;
3301 			pmap_kremove(pg);
3302 			vm_page_busy(p);
3303 			vm_page_unwire(p, 0);
3304 			vm_page_free(p);
3305 		}
3306 	}
3307 	bp->b_xio.xio_npages = newnpages;
3308 }
3309 
3310 /*
3311  * Map an IO request into kernel virtual address space.
3312  *
3313  * All requests are (re)mapped into kernel VA space.
3314  * Notice that we use b_bufsize for the size of the buffer
3315  * to be mapped.  b_bcount might be modified by the driver.
3316  */
3317 int
3318 vmapbuf(struct buf *bp)
3319 {
3320 	caddr_t addr, v, kva;
3321 	vm_paddr_t pa;
3322 	int pidx;
3323 	int i;
3324 	struct vm_page *m;
3325 
3326 	if ((bp->b_flags & B_PHYS) == 0)
3327 		panic("vmapbuf");
3328 	if (bp->b_bufsize < 0)
3329 		return (-1);
3330 	for (v = bp->b_saveaddr,
3331 		     addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3332 		     pidx = 0;
3333 	     addr < bp->b_data + bp->b_bufsize;
3334 	     addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3335 		/*
3336 		 * Do the vm_fault if needed; do the copy-on-write thing
3337 		 * when reading stuff off device into memory.
3338 		 */
3339 retry:
3340 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3341 			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3342 		if (i < 0) {
3343 			for (i = 0; i < pidx; ++i) {
3344 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3345 			    bp->b_xio.xio_pages[i] = NULL;
3346 			}
3347 			return(-1);
3348 		}
3349 
3350 		/*
3351 		 * WARNING!  If sparc support is MFCd in the future this will
3352 		 * have to be changed from pmap_kextract() to pmap_extract()
3353 		 * ala -current.
3354 		 */
3355 #ifdef __sparc64__
3356 #error "If MFCing sparc support use pmap_extract"
3357 #endif
3358 		pa = pmap_kextract((vm_offset_t)addr);
3359 		if (pa == 0) {
3360 			printf("vmapbuf: warning, race against user address during I/O");
3361 			goto retry;
3362 		}
3363 		m = PHYS_TO_VM_PAGE(pa);
3364 		vm_page_hold(m);
3365 		bp->b_xio.xio_pages[pidx] = m;
3366 	}
3367 	if (pidx > btoc(MAXPHYS))
3368 		panic("vmapbuf: mapped more than MAXPHYS");
3369 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx);
3370 
3371 	kva = bp->b_saveaddr;
3372 	bp->b_xio.xio_npages = pidx;
3373 	bp->b_saveaddr = bp->b_data;
3374 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3375 	return(0);
3376 }
3377 
3378 /*
3379  * Free the io map PTEs associated with this IO operation.
3380  * We also invalidate the TLB entries and restore the original b_addr.
3381  */
3382 void
3383 vunmapbuf(struct buf *bp)
3384 {
3385 	int pidx;
3386 	int npages;
3387 	vm_page_t *m;
3388 
3389 	if ((bp->b_flags & B_PHYS) == 0)
3390 		panic("vunmapbuf");
3391 
3392 	npages = bp->b_xio.xio_npages;
3393 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3394 		     npages);
3395 	m = bp->b_xio.xio_pages;
3396 	for (pidx = 0; pidx < npages; pidx++)
3397 		vm_page_unhold(*m++);
3398 
3399 	bp->b_data = bp->b_saveaddr;
3400 }
3401 
3402 #include "opt_ddb.h"
3403 #ifdef DDB
3404 #include <ddb/ddb.h>
3405 
3406 DB_SHOW_COMMAND(buffer, db_show_buffer)
3407 {
3408 	/* get args */
3409 	struct buf *bp = (struct buf *)addr;
3410 
3411 	if (!have_addr) {
3412 		db_printf("usage: show buffer <addr>\n");
3413 		return;
3414 	}
3415 
3416 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3417 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3418 		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3419 		  "b_blkno = %d, b_pblkno = %d\n",
3420 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3421 		  major(bp->b_dev), minor(bp->b_dev),
3422 		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3423 	if (bp->b_xio.xio_npages) {
3424 		int i;
3425 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3426 			bp->b_xio.xio_npages);
3427 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3428 			vm_page_t m;
3429 			m = bp->b_xio.xio_pages[i];
3430 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3431 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3432 			if ((i + 1) < bp->b_xio.xio_npages)
3433 				db_printf(",");
3434 		}
3435 		db_printf("\n");
3436 	}
3437 }
3438 #endif /* DDB */
3439