xref: /dragonfly/sys/kern/vfs_bio.c (revision 8a7bdfea)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.100 2008/04/30 04:11:44 dillon Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
61 
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Buffer queues.
69  */
70 enum bufq_type {
71 	BQUEUE_NONE,    	/* not on any queue */
72 	BQUEUE_LOCKED,  	/* locked buffers */
73 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
74 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
75 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
76 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
77 	BQUEUE_EMPTY,    	/* empty buffer headers */
78 
79 	BUFFER_QUEUES		/* number of buffer queues */
80 };
81 
82 typedef enum bufq_type bufq_type_t;
83 
84 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
85 
86 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
87 
88 struct buf *buf;		/* buffer header pool */
89 
90 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
91 		vm_offset_t to);
92 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
93 		vm_offset_t to);
94 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
95 			       int pageno, vm_page_t m);
96 static void vfs_clean_pages(struct buf *bp);
97 static void vfs_setdirty(struct buf *bp);
98 static void vfs_vmio_release(struct buf *bp);
99 static int flushbufqueues(bufq_type_t q);
100 
101 static void buf_daemon(void);
102 static void buf_daemon_hw(void);
103 /*
104  * bogus page -- for I/O to/from partially complete buffers
105  * this is a temporary solution to the problem, but it is not
106  * really that bad.  it would be better to split the buffer
107  * for input in the case of buffers partially already in memory,
108  * but the code is intricate enough already.
109  */
110 vm_page_t bogus_page;
111 int runningbufspace;
112 
113 /*
114  * These are all static, but make the ones we export globals so we do
115  * not need to use compiler magic.
116  */
117 int bufspace, maxbufspace,
118 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
119 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
120 static int lorunningspace, hirunningspace, runningbufreq;
121 int numdirtybuffers, numdirtybuffershw, lodirtybuffers, hidirtybuffers;
122 static int numfreebuffers, lofreebuffers, hifreebuffers;
123 static int getnewbufcalls;
124 static int getnewbufrestarts;
125 
126 static int needsbuffer;		/* locked by needsbuffer_spin */
127 static int bd_request;		/* locked by needsbuffer_spin */
128 static int bd_request_hw;	/* locked by needsbuffer_spin */
129 static struct spinlock needsbuffer_spin;
130 
131 /*
132  * Sysctls for operational control of the buffer cache.
133  */
134 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
135 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
136 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
137 	"High watermark used to trigger explicit flushing of dirty buffers");
138 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
139 	"Low watermark for special reserve in low-memory situations");
140 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
141 	"High watermark for special reserve in low-memory situations");
142 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
143 	"Minimum amount of buffer space required for active I/O");
144 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
145 	"Maximum amount of buffer space to usable for active I/O");
146 /*
147  * Sysctls determining current state of the buffer cache.
148  */
149 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
150 	"Pending number of dirty buffers (all)");
151 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffershw, CTLFLAG_RD, &numdirtybuffershw, 0,
152 	"Pending number of dirty buffers (heavy weight)");
153 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
154 	"Number of free buffers on the buffer cache free list");
155 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
156 	"I/O bytes currently in progress due to asynchronous writes");
157 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
158 	"Hard limit on maximum amount of memory usable for buffer space");
159 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
160 	"Soft limit on maximum amount of memory usable for buffer space");
161 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
162 	"Minimum amount of memory to reserve for system buffer space");
163 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
164 	"Amount of memory available for buffers");
165 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
166 	0, "Maximum amount of memory reserved for buffers using malloc");
167 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
168 	"Amount of memory left for buffers using malloc-scheme");
169 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
170 	"New buffer header acquisition requests");
171 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
172 	0, "New buffer header acquisition restarts");
173 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
174 	"Buffer acquisition restarts due to fragmented buffer map");
175 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
176 	"Amount of time KVA space was deallocated in an arbitrary buffer");
177 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
178 	"Amount of time buffer re-use operations were successful");
179 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
180 	"sizeof(struct buf)");
181 
182 char *buf_wmesg = BUF_WMESG;
183 
184 extern int vm_swap_size;
185 
186 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
187 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
188 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
189 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
190 
191 /*
192  * numdirtywakeup:
193  *
194  *	If someone is blocked due to there being too many dirty buffers,
195  *	and numdirtybuffers is now reasonable, wake them up.
196  */
197 static __inline void
198 numdirtywakeup(void)
199 {
200 	if (numdirtybuffers <= (lodirtybuffers + hidirtybuffers) / 2) {
201 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
202 			spin_lock_wr(&needsbuffer_spin);
203 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
204 			spin_unlock_wr(&needsbuffer_spin);
205 			wakeup(&needsbuffer);
206 		}
207 	}
208 }
209 
210 /*
211  * bufspacewakeup:
212  *
213  *	Called when buffer space is potentially available for recovery.
214  *	getnewbuf() will block on this flag when it is unable to free
215  *	sufficient buffer space.  Buffer space becomes recoverable when
216  *	bp's get placed back in the queues.
217  */
218 
219 static __inline void
220 bufspacewakeup(void)
221 {
222 	/*
223 	 * If someone is waiting for BUF space, wake them up.  Even
224 	 * though we haven't freed the kva space yet, the waiting
225 	 * process will be able to now.
226 	 */
227 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
228 		spin_lock_wr(&needsbuffer_spin);
229 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
230 		spin_unlock_wr(&needsbuffer_spin);
231 		wakeup(&needsbuffer);
232 	}
233 }
234 
235 /*
236  * runningbufwakeup:
237  *
238  *	Accounting for I/O in progress.
239  *
240  */
241 static __inline void
242 runningbufwakeup(struct buf *bp)
243 {
244 	if (bp->b_runningbufspace) {
245 		runningbufspace -= bp->b_runningbufspace;
246 		bp->b_runningbufspace = 0;
247 		if (runningbufreq && runningbufspace <= lorunningspace) {
248 			runningbufreq = 0;
249 			wakeup(&runningbufreq);
250 		}
251 	}
252 }
253 
254 /*
255  * bufcountwakeup:
256  *
257  *	Called when a buffer has been added to one of the free queues to
258  *	account for the buffer and to wakeup anyone waiting for free buffers.
259  *	This typically occurs when large amounts of metadata are being handled
260  *	by the buffer cache ( else buffer space runs out first, usually ).
261  */
262 
263 static __inline void
264 bufcountwakeup(void)
265 {
266 	++numfreebuffers;
267 	if (needsbuffer) {
268 		spin_lock_wr(&needsbuffer_spin);
269 		needsbuffer &= ~VFS_BIO_NEED_ANY;
270 		if (numfreebuffers >= hifreebuffers)
271 			needsbuffer &= ~VFS_BIO_NEED_FREE;
272 		spin_unlock_wr(&needsbuffer_spin);
273 		wakeup(&needsbuffer);
274 	}
275 }
276 
277 /*
278  * waitrunningbufspace()
279  *
280  *	runningbufspace is a measure of the amount of I/O currently
281  *	running.  This routine is used in async-write situations to
282  *	prevent creating huge backups of pending writes to a device.
283  *	Only asynchronous writes are governed by this function.
284  *
285  *	Reads will adjust runningbufspace, but will not block based on it.
286  *	The read load has a side effect of reducing the allowed write load.
287  *
288  *	This does NOT turn an async write into a sync write.  It waits
289  *	for earlier writes to complete and generally returns before the
290  *	caller's write has reached the device.
291  */
292 static __inline void
293 waitrunningbufspace(void)
294 {
295 	if (runningbufspace > hirunningspace) {
296 		crit_enter();
297 		while (runningbufspace > hirunningspace) {
298 			++runningbufreq;
299 			tsleep(&runningbufreq, 0, "wdrain", 0);
300 		}
301 		crit_exit();
302 	}
303 }
304 
305 /*
306  * vfs_buf_test_cache:
307  *
308  *	Called when a buffer is extended.  This function clears the B_CACHE
309  *	bit if the newly extended portion of the buffer does not contain
310  *	valid data.
311  */
312 static __inline__
313 void
314 vfs_buf_test_cache(struct buf *bp,
315 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
316 		  vm_page_t m)
317 {
318 	if (bp->b_flags & B_CACHE) {
319 		int base = (foff + off) & PAGE_MASK;
320 		if (vm_page_is_valid(m, base, size) == 0)
321 			bp->b_flags &= ~B_CACHE;
322 	}
323 }
324 
325 /*
326  * bd_wakeup:
327  *
328  *	Wake up the buffer daemon if the number of outstanding dirty buffers
329  *	is above specified threshold 'dirtybuflevel'.
330  *
331  *	The buffer daemons are explicitly woken up when (a) the pending number
332  *	of dirty buffers exceeds the recovery and stall mid-point value,
333  *	(b) during bwillwrite() or (c) buf freelist was exhausted.
334  *
335  *	The buffer daemons will generally not stop flushing until the dirty
336  *	buffer count goes below lodirtybuffers.
337  */
338 static __inline__
339 void
340 bd_wakeup(int dirtybuflevel)
341 {
342 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
343 		spin_lock_wr(&needsbuffer_spin);
344 		bd_request = 1;
345 		spin_unlock_wr(&needsbuffer_spin);
346 		wakeup(&bd_request);
347 	}
348 	if (bd_request_hw == 0 && numdirtybuffershw >= dirtybuflevel) {
349 		spin_lock_wr(&needsbuffer_spin);
350 		bd_request_hw = 1;
351 		spin_unlock_wr(&needsbuffer_spin);
352 		wakeup(&bd_request_hw);
353 	}
354 }
355 
356 /*
357  * bd_speedup:
358  *
359  *	Speed up the buffer cache flushing process.
360  */
361 
362 static __inline__
363 void
364 bd_speedup(void)
365 {
366 	bd_wakeup(1);
367 }
368 
369 /*
370  * bufinit:
371  *
372  *	Load time initialisation of the buffer cache, called from machine
373  *	dependant initialization code.
374  */
375 void
376 bufinit(void)
377 {
378 	struct buf *bp;
379 	vm_offset_t bogus_offset;
380 	int i;
381 
382 	spin_init(&needsbuffer_spin);
383 
384 	/* next, make a null set of free lists */
385 	for (i = 0; i < BUFFER_QUEUES; i++)
386 		TAILQ_INIT(&bufqueues[i]);
387 
388 	/* finally, initialize each buffer header and stick on empty q */
389 	for (i = 0; i < nbuf; i++) {
390 		bp = &buf[i];
391 		bzero(bp, sizeof *bp);
392 		bp->b_flags = B_INVAL;	/* we're just an empty header */
393 		bp->b_cmd = BUF_CMD_DONE;
394 		bp->b_qindex = BQUEUE_EMPTY;
395 		initbufbio(bp);
396 		xio_init(&bp->b_xio);
397 		buf_dep_init(bp);
398 		BUF_LOCKINIT(bp);
399 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
400 	}
401 
402 	/*
403 	 * maxbufspace is the absolute maximum amount of buffer space we are
404 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
405 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
406 	 * used by most other processes.  The differential is required to
407 	 * ensure that buf_daemon is able to run when other processes might
408 	 * be blocked waiting for buffer space.
409 	 *
410 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
411 	 * this may result in KVM fragmentation which is not handled optimally
412 	 * by the system.
413 	 */
414 	maxbufspace = nbuf * BKVASIZE;
415 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
416 	lobufspace = hibufspace - MAXBSIZE;
417 
418 	lorunningspace = 512 * 1024;
419 	hirunningspace = 1024 * 1024;
420 
421 /*
422  * Limit the amount of malloc memory since it is wired permanently into
423  * the kernel space.  Even though this is accounted for in the buffer
424  * allocation, we don't want the malloced region to grow uncontrolled.
425  * The malloc scheme improves memory utilization significantly on average
426  * (small) directories.
427  */
428 	maxbufmallocspace = hibufspace / 20;
429 
430 /*
431  * Reduce the chance of a deadlock occuring by limiting the number
432  * of delayed-write dirty buffers we allow to stack up.
433  */
434 	hidirtybuffers = nbuf / 4 + 20;
435 	numdirtybuffers = 0;
436 	numdirtybuffershw = 0;
437 /*
438  * To support extreme low-memory systems, make sure hidirtybuffers cannot
439  * eat up all available buffer space.  This occurs when our minimum cannot
440  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
441  * BKVASIZE'd (8K) buffers.
442  */
443 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
444 		hidirtybuffers >>= 1;
445 	}
446 	lodirtybuffers = hidirtybuffers / 2;
447 
448 /*
449  * Try to keep the number of free buffers in the specified range,
450  * and give special processes (e.g. like buf_daemon) access to an
451  * emergency reserve.
452  */
453 	lofreebuffers = nbuf / 18 + 5;
454 	hifreebuffers = 2 * lofreebuffers;
455 	numfreebuffers = nbuf;
456 
457 /*
458  * Maximum number of async ops initiated per buf_daemon loop.  This is
459  * somewhat of a hack at the moment, we really need to limit ourselves
460  * based on the number of bytes of I/O in-transit that were initiated
461  * from buf_daemon.
462  */
463 
464 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
465 	bogus_page = vm_page_alloc(&kernel_object,
466 				   (bogus_offset >> PAGE_SHIFT),
467 				   VM_ALLOC_NORMAL);
468 	vmstats.v_wire_count++;
469 
470 }
471 
472 /*
473  * Initialize the embedded bio structures
474  */
475 void
476 initbufbio(struct buf *bp)
477 {
478 	bp->b_bio1.bio_buf = bp;
479 	bp->b_bio1.bio_prev = NULL;
480 	bp->b_bio1.bio_offset = NOOFFSET;
481 	bp->b_bio1.bio_next = &bp->b_bio2;
482 	bp->b_bio1.bio_done = NULL;
483 
484 	bp->b_bio2.bio_buf = bp;
485 	bp->b_bio2.bio_prev = &bp->b_bio1;
486 	bp->b_bio2.bio_offset = NOOFFSET;
487 	bp->b_bio2.bio_next = NULL;
488 	bp->b_bio2.bio_done = NULL;
489 }
490 
491 /*
492  * Reinitialize the embedded bio structures as well as any additional
493  * translation cache layers.
494  */
495 void
496 reinitbufbio(struct buf *bp)
497 {
498 	struct bio *bio;
499 
500 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
501 		bio->bio_done = NULL;
502 		bio->bio_offset = NOOFFSET;
503 	}
504 }
505 
506 /*
507  * Push another BIO layer onto an existing BIO and return it.  The new
508  * BIO layer may already exist, holding cached translation data.
509  */
510 struct bio *
511 push_bio(struct bio *bio)
512 {
513 	struct bio *nbio;
514 
515 	if ((nbio = bio->bio_next) == NULL) {
516 		int index = bio - &bio->bio_buf->b_bio_array[0];
517 		if (index >= NBUF_BIO - 1) {
518 			panic("push_bio: too many layers bp %p\n",
519 				bio->bio_buf);
520 		}
521 		nbio = &bio->bio_buf->b_bio_array[index + 1];
522 		bio->bio_next = nbio;
523 		nbio->bio_prev = bio;
524 		nbio->bio_buf = bio->bio_buf;
525 		nbio->bio_offset = NOOFFSET;
526 		nbio->bio_done = NULL;
527 		nbio->bio_next = NULL;
528 	}
529 	KKASSERT(nbio->bio_done == NULL);
530 	return(nbio);
531 }
532 
533 void
534 pop_bio(struct bio *bio)
535 {
536 	/* NOP */
537 }
538 
539 void
540 clearbiocache(struct bio *bio)
541 {
542 	while (bio) {
543 		bio->bio_offset = NOOFFSET;
544 		bio = bio->bio_next;
545 	}
546 }
547 
548 /*
549  * bfreekva:
550  *
551  *	Free the KVA allocation for buffer 'bp'.
552  *
553  *	Must be called from a critical section as this is the only locking for
554  *	buffer_map.
555  *
556  *	Since this call frees up buffer space, we call bufspacewakeup().
557  */
558 static void
559 bfreekva(struct buf *bp)
560 {
561 	int count;
562 
563 	if (bp->b_kvasize) {
564 		++buffreekvacnt;
565 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
566 		vm_map_lock(&buffer_map);
567 		bufspace -= bp->b_kvasize;
568 		vm_map_delete(&buffer_map,
569 		    (vm_offset_t) bp->b_kvabase,
570 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
571 		    &count
572 		);
573 		vm_map_unlock(&buffer_map);
574 		vm_map_entry_release(count);
575 		bp->b_kvasize = 0;
576 		bufspacewakeup();
577 	}
578 }
579 
580 /*
581  * bremfree:
582  *
583  *	Remove the buffer from the appropriate free list.
584  */
585 void
586 bremfree(struct buf *bp)
587 {
588 	int old_qindex;
589 
590 	crit_enter();
591 	old_qindex = bp->b_qindex;
592 
593 	if (bp->b_qindex != BQUEUE_NONE) {
594 		KASSERT(BUF_REFCNTNB(bp) == 1,
595 				("bremfree: bp %p not locked",bp));
596 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
597 		bp->b_qindex = BQUEUE_NONE;
598 	} else {
599 		if (BUF_REFCNTNB(bp) <= 1)
600 			panic("bremfree: removing a buffer not on a queue");
601 	}
602 
603 	/*
604 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
605 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
606 	 * the buffer was free and we must decrement numfreebuffers.
607 	 */
608 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
609 		switch(old_qindex) {
610 		case BQUEUE_DIRTY:
611 		case BQUEUE_DIRTY_HW:
612 		case BQUEUE_CLEAN:
613 		case BQUEUE_EMPTY:
614 		case BQUEUE_EMPTYKVA:
615 			--numfreebuffers;
616 			break;
617 		default:
618 			break;
619 		}
620 	}
621 	crit_exit();
622 }
623 
624 
625 /*
626  * bread:
627  *
628  *	Get a buffer with the specified data.  Look in the cache first.  We
629  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
630  *	is set, the buffer is valid and we do not have to do anything ( see
631  *	getblk() ).
632  */
633 int
634 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
635 {
636 	struct buf *bp;
637 
638 	bp = getblk(vp, loffset, size, 0, 0);
639 	*bpp = bp;
640 
641 	/* if not found in cache, do some I/O */
642 	if ((bp->b_flags & B_CACHE) == 0) {
643 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
644 		bp->b_flags &= ~(B_ERROR | B_INVAL);
645 		bp->b_cmd = BUF_CMD_READ;
646 		vfs_busy_pages(vp, bp);
647 		vn_strategy(vp, &bp->b_bio1);
648 		return (biowait(bp));
649 	}
650 	return (0);
651 }
652 
653 /*
654  * breadn:
655  *
656  *	Operates like bread, but also starts asynchronous I/O on
657  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
658  *	to initiating I/O . If B_CACHE is set, the buffer is valid
659  *	and we do not have to do anything.
660  */
661 int
662 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
663 	int *rabsize, int cnt, struct buf **bpp)
664 {
665 	struct buf *bp, *rabp;
666 	int i;
667 	int rv = 0, readwait = 0;
668 
669 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
670 
671 	/* if not found in cache, do some I/O */
672 	if ((bp->b_flags & B_CACHE) == 0) {
673 		bp->b_flags &= ~(B_ERROR | B_INVAL);
674 		bp->b_cmd = BUF_CMD_READ;
675 		vfs_busy_pages(vp, bp);
676 		vn_strategy(vp, &bp->b_bio1);
677 		++readwait;
678 	}
679 
680 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
681 		if (inmem(vp, *raoffset))
682 			continue;
683 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
684 
685 		if ((rabp->b_flags & B_CACHE) == 0) {
686 			rabp->b_flags |= B_ASYNC;
687 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
688 			rabp->b_cmd = BUF_CMD_READ;
689 			vfs_busy_pages(vp, rabp);
690 			BUF_KERNPROC(rabp);
691 			vn_strategy(vp, &rabp->b_bio1);
692 		} else {
693 			brelse(rabp);
694 		}
695 	}
696 
697 	if (readwait) {
698 		rv = biowait(bp);
699 	}
700 	return (rv);
701 }
702 
703 /*
704  * bwrite:
705  *
706  *	Write, release buffer on completion.  (Done by iodone
707  *	if async).  Do not bother writing anything if the buffer
708  *	is invalid.
709  *
710  *	Note that we set B_CACHE here, indicating that buffer is
711  *	fully valid and thus cacheable.  This is true even of NFS
712  *	now so we set it generally.  This could be set either here
713  *	or in biodone() since the I/O is synchronous.  We put it
714  *	here.
715  */
716 int
717 bwrite(struct buf *bp)
718 {
719 	int oldflags;
720 
721 	if (bp->b_flags & B_INVAL) {
722 		brelse(bp);
723 		return (0);
724 	}
725 
726 	oldflags = bp->b_flags;
727 
728 	if (BUF_REFCNTNB(bp) == 0)
729 		panic("bwrite: buffer is not busy???");
730 	crit_enter();
731 
732 	/* Mark the buffer clean */
733 	bundirty(bp);
734 
735 	bp->b_flags &= ~B_ERROR;
736 	bp->b_flags |= B_CACHE;
737 	bp->b_cmd = BUF_CMD_WRITE;
738 	vfs_busy_pages(bp->b_vp, bp);
739 
740 	/*
741 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
742 	 * valid for vnode-backed buffers.
743 	 */
744 	bp->b_runningbufspace = bp->b_bufsize;
745 	runningbufspace += bp->b_runningbufspace;
746 
747 	crit_exit();
748 	if (oldflags & B_ASYNC)
749 		BUF_KERNPROC(bp);
750 	vn_strategy(bp->b_vp, &bp->b_bio1);
751 
752 	if ((oldflags & B_ASYNC) == 0) {
753 		int rtval = biowait(bp);
754 		brelse(bp);
755 		return (rtval);
756 	}
757 	return (0);
758 }
759 
760 /*
761  * bdwrite:
762  *
763  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
764  *	anything if the buffer is marked invalid.
765  *
766  *	Note that since the buffer must be completely valid, we can safely
767  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
768  *	biodone() in order to prevent getblk from writing the buffer
769  *	out synchronously.
770  */
771 void
772 bdwrite(struct buf *bp)
773 {
774 	if (BUF_REFCNTNB(bp) == 0)
775 		panic("bdwrite: buffer is not busy");
776 
777 	if (bp->b_flags & B_INVAL) {
778 		brelse(bp);
779 		return;
780 	}
781 	bdirty(bp);
782 
783 	/*
784 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
785 	 * true even of NFS now.
786 	 */
787 	bp->b_flags |= B_CACHE;
788 
789 	/*
790 	 * This bmap keeps the system from needing to do the bmap later,
791 	 * perhaps when the system is attempting to do a sync.  Since it
792 	 * is likely that the indirect block -- or whatever other datastructure
793 	 * that the filesystem needs is still in memory now, it is a good
794 	 * thing to do this.  Note also, that if the pageout daemon is
795 	 * requesting a sync -- there might not be enough memory to do
796 	 * the bmap then...  So, this is important to do.
797 	 */
798 	if (bp->b_bio2.bio_offset == NOOFFSET) {
799 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
800 			 NULL, NULL);
801 	}
802 
803 	/*
804 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
805 	 */
806 	vfs_setdirty(bp);
807 
808 	/*
809 	 * We need to do this here to satisfy the vnode_pager and the
810 	 * pageout daemon, so that it thinks that the pages have been
811 	 * "cleaned".  Note that since the pages are in a delayed write
812 	 * buffer -- the VFS layer "will" see that the pages get written
813 	 * out on the next sync, or perhaps the cluster will be completed.
814 	 */
815 	vfs_clean_pages(bp);
816 	bqrelse(bp);
817 
818 	/*
819 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
820 	 * buffers (midpoint between our recovery point and our stall
821 	 * point).
822 	 */
823 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
824 
825 	/*
826 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
827 	 * due to the softdep code.
828 	 */
829 }
830 
831 /*
832  * bdirty:
833  *
834  *	Turn buffer into delayed write request by marking it B_DELWRI.
835  *	B_RELBUF and B_NOCACHE must be cleared.
836  *
837  *	We reassign the buffer to itself to properly update it in the
838  *	dirty/clean lists.
839  *
840  *	Since the buffer is not on a queue, we do not update the
841  *	numfreebuffers count.
842  *
843  *	Must be called from a critical section.
844  *	The buffer must be on BQUEUE_NONE.
845  */
846 void
847 bdirty(struct buf *bp)
848 {
849 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
850 	if (bp->b_flags & B_NOCACHE) {
851 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
852 		bp->b_flags &= ~B_NOCACHE;
853 	}
854 	if (bp->b_flags & B_INVAL) {
855 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
856 	}
857 	bp->b_flags &= ~B_RELBUF;
858 
859 	if ((bp->b_flags & B_DELWRI) == 0) {
860 		bp->b_flags |= B_DELWRI;
861 		reassignbuf(bp);
862 		++numdirtybuffers;
863 		if (bp->b_flags & B_HEAVY)
864 			++numdirtybuffershw;
865 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
866 	}
867 }
868 
869 /*
870  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
871  * needs to be flushed with a different buf_daemon thread to avoid
872  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
873  */
874 void
875 bheavy(struct buf *bp)
876 {
877 	if ((bp->b_flags & B_HEAVY) == 0) {
878 		bp->b_flags |= B_HEAVY;
879 		if (bp->b_flags & B_DELWRI)
880 			++numdirtybuffershw;
881 	}
882 }
883 
884 /*
885  * bundirty:
886  *
887  *	Clear B_DELWRI for buffer.
888  *
889  *	Since the buffer is not on a queue, we do not update the numfreebuffers
890  *	count.
891  *
892  *	Must be called from a critical section.
893  *
894  *	The buffer is typically on BQUEUE_NONE but there is one case in
895  *	brelse() that calls this function after placing the buffer on
896  *	a different queue.
897  */
898 
899 void
900 bundirty(struct buf *bp)
901 {
902 	if (bp->b_flags & B_DELWRI) {
903 		bp->b_flags &= ~B_DELWRI;
904 		reassignbuf(bp);
905 		--numdirtybuffers;
906 		if (bp->b_flags & B_HEAVY)
907 			--numdirtybuffershw;
908 		numdirtywakeup();
909 	}
910 	/*
911 	 * Since it is now being written, we can clear its deferred write flag.
912 	 */
913 	bp->b_flags &= ~B_DEFERRED;
914 }
915 
916 /*
917  * bawrite:
918  *
919  *	Asynchronous write.  Start output on a buffer, but do not wait for
920  *	it to complete.  The buffer is released when the output completes.
921  *
922  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
923  *	B_INVAL buffers.  Not us.
924  */
925 void
926 bawrite(struct buf *bp)
927 {
928 	bp->b_flags |= B_ASYNC;
929 	bwrite(bp);
930 }
931 
932 /*
933  * bowrite:
934  *
935  *	Ordered write.  Start output on a buffer, and flag it so that the
936  *	device will write it in the order it was queued.  The buffer is
937  *	released when the output completes.  bwrite() ( or the VOP routine
938  *	anyway ) is responsible for handling B_INVAL buffers.
939  */
940 int
941 bowrite(struct buf *bp)
942 {
943 	bp->b_flags |= B_ORDERED | B_ASYNC;
944 	return (bwrite(bp));
945 }
946 
947 /*
948  * bwillwrite:
949  *
950  *	Called prior to the locking of any vnodes when we are expecting to
951  *	write.  We do not want to starve the buffer cache with too many
952  *	dirty buffers so we block here.  By blocking prior to the locking
953  *	of any vnodes we attempt to avoid the situation where a locked vnode
954  *	prevents the various system daemons from flushing related buffers.
955  */
956 void
957 bwillwrite(void)
958 {
959 	if (numdirtybuffers >= hidirtybuffers / 2) {
960 		bd_wakeup(1);
961 		while (numdirtybuffers >= hidirtybuffers) {
962 			bd_wakeup(1);
963 			spin_lock_wr(&needsbuffer_spin);
964 			if (numdirtybuffers >= hidirtybuffers) {
965 				needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
966 				msleep(&needsbuffer, &needsbuffer_spin, 0,
967 				       "flswai", 0);
968 			}
969 			spin_unlock_wr(&needsbuffer_spin);
970 		}
971 	}
972 #if 0
973 	/* FUTURE - maybe */
974 	else if (numdirtybuffershw > hidirtybuffers / 2) {
975 		bd_wakeup(1);
976 
977 		while (numdirtybuffershw > hidirtybuffers) {
978 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
979 			tsleep(&needsbuffer, slpflags, "newbuf",
980 			       slptimeo);
981 		}
982 	}
983 #endif
984 }
985 
986 /*
987  * buf_dirty_count_severe:
988  *
989  *	Return true if we have too many dirty buffers.
990  */
991 int
992 buf_dirty_count_severe(void)
993 {
994 	return(numdirtybuffers >= hidirtybuffers);
995 }
996 
997 /*
998  * brelse:
999  *
1000  *	Release a busy buffer and, if requested, free its resources.  The
1001  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1002  *	to be accessed later as a cache entity or reused for other purposes.
1003  */
1004 void
1005 brelse(struct buf *bp)
1006 {
1007 #ifdef INVARIANTS
1008 	int saved_flags = bp->b_flags;
1009 #endif
1010 
1011 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1012 
1013 	crit_enter();
1014 
1015 	/*
1016 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1017 	 * its backing store.  Clear B_DELWRI.
1018 	 *
1019 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1020 	 * to destroy the buffer and backing store and (2) when the caller
1021 	 * wants to destroy the buffer and backing store after a write
1022 	 * completes.
1023 	 */
1024 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1025 		bundirty(bp);
1026 	}
1027 
1028 	if (bp->b_flags & B_LOCKED)
1029 		bp->b_flags &= ~B_ERROR;
1030 
1031 	/*
1032 	 * If a write error occurs and the caller does not want to throw
1033 	 * away the buffer, redirty the buffer.  This will also clear
1034 	 * B_NOCACHE.
1035 	 */
1036 	if (bp->b_cmd == BUF_CMD_WRITE &&
1037 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
1038 		/*
1039 		 * Failed write, redirty.  Must clear B_ERROR to prevent
1040 		 * pages from being scrapped.  If B_INVAL is set then
1041 		 * this case is not run and the next case is run to
1042 		 * destroy the buffer.  B_INVAL can occur if the buffer
1043 		 * is outside the range supported by the underlying device.
1044 		 */
1045 		bp->b_flags &= ~B_ERROR;
1046 		bdirty(bp);
1047 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1048 		   (bp->b_bufsize <= 0) || bp->b_cmd == BUF_CMD_FREEBLKS) {
1049 		/*
1050 		 * Either a failed I/O or we were asked to free or not
1051 		 * cache the buffer.
1052 		 *
1053 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1054 		 * buffer cannot be immediately freed.
1055 		 */
1056 		bp->b_flags |= B_INVAL;
1057 		if (LIST_FIRST(&bp->b_dep) != NULL)
1058 			buf_deallocate(bp);
1059 		if (bp->b_flags & B_DELWRI) {
1060 			--numdirtybuffers;
1061 			if (bp->b_flags & B_HEAVY)
1062 				--numdirtybuffershw;
1063 			numdirtywakeup();
1064 		}
1065 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1066 	}
1067 
1068 	/*
1069 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1070 	 * If vfs_vmio_release() is called with either bit set, the
1071 	 * underlying pages may wind up getting freed causing a previous
1072 	 * write (bdwrite()) to get 'lost' because pages associated with
1073 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1074 	 * B_LOCKED buffer may be mapped by the filesystem.
1075 	 *
1076 	 * If we want to release the buffer ourselves (rather then the
1077 	 * originator asking us to release it), give the originator a
1078 	 * chance to countermand the release by setting B_LOCKED.
1079 	 *
1080 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1081 	 * if B_DELWRI is set.
1082 	 *
1083 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1084 	 * on pages to return pages to the VM page queues.
1085 	 */
1086 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1087 		bp->b_flags &= ~B_RELBUF;
1088 	} else if (vm_page_count_severe()) {
1089 		if (LIST_FIRST(&bp->b_dep) != NULL)
1090 			buf_deallocate(bp);
1091 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1092 			bp->b_flags &= ~B_RELBUF;
1093 		else
1094 			bp->b_flags |= B_RELBUF;
1095 	}
1096 
1097 	/*
1098 	 * At this point destroying the buffer is governed by the B_INVAL
1099 	 * or B_RELBUF flags.
1100 	 */
1101 	bp->b_cmd = BUF_CMD_DONE;
1102 
1103 	/*
1104 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1105 	 * after an I/O may have replaces some of the pages with bogus pages
1106 	 * in order to not destroy dirty pages in a fill-in read.
1107 	 *
1108 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1109 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1110 	 * B_INVAL may still be set, however.
1111 	 *
1112 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1113 	 * but not the backing store.   B_NOCACHE will destroy the backing
1114 	 * store.
1115 	 *
1116 	 * Note that dirty NFS buffers contain byte-granular write ranges
1117 	 * and should not be destroyed w/ B_INVAL even if the backing store
1118 	 * is left intact.
1119 	 */
1120 	if (bp->b_flags & B_VMIO) {
1121 		/*
1122 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1123 		 */
1124 		int i, j, resid;
1125 		vm_page_t m;
1126 		off_t foff;
1127 		vm_pindex_t poff;
1128 		vm_object_t obj;
1129 		struct vnode *vp;
1130 
1131 		vp = bp->b_vp;
1132 
1133 		/*
1134 		 * Get the base offset and length of the buffer.  Note that
1135 		 * in the VMIO case if the buffer block size is not
1136 		 * page-aligned then b_data pointer may not be page-aligned.
1137 		 * But our b_xio.xio_pages array *IS* page aligned.
1138 		 *
1139 		 * block sizes less then DEV_BSIZE (usually 512) are not
1140 		 * supported due to the page granularity bits (m->valid,
1141 		 * m->dirty, etc...).
1142 		 *
1143 		 * See man buf(9) for more information
1144 		 */
1145 
1146 		resid = bp->b_bufsize;
1147 		foff = bp->b_loffset;
1148 
1149 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1150 			m = bp->b_xio.xio_pages[i];
1151 			vm_page_flag_clear(m, PG_ZERO);
1152 			/*
1153 			 * If we hit a bogus page, fixup *all* of them
1154 			 * now.  Note that we left these pages wired
1155 			 * when we removed them so they had better exist,
1156 			 * and they cannot be ripped out from under us so
1157 			 * no critical section protection is necessary.
1158 			 */
1159 			if (m == bogus_page) {
1160 				obj = vp->v_object;
1161 				poff = OFF_TO_IDX(bp->b_loffset);
1162 
1163 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1164 					vm_page_t mtmp;
1165 
1166 					mtmp = bp->b_xio.xio_pages[j];
1167 					if (mtmp == bogus_page) {
1168 						mtmp = vm_page_lookup(obj, poff + j);
1169 						if (!mtmp) {
1170 							panic("brelse: page missing");
1171 						}
1172 						bp->b_xio.xio_pages[j] = mtmp;
1173 					}
1174 				}
1175 
1176 				if ((bp->b_flags & B_INVAL) == 0) {
1177 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1178 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1179 				}
1180 				m = bp->b_xio.xio_pages[i];
1181 			}
1182 
1183 			/*
1184 			 * Invalidate the backing store if B_NOCACHE is set
1185 			 * (e.g. used with vinvalbuf()).  If this is NFS
1186 			 * we impose a requirement that the block size be
1187 			 * a multiple of PAGE_SIZE and create a temporary
1188 			 * hack to basically invalidate the whole page.  The
1189 			 * problem is that NFS uses really odd buffer sizes
1190 			 * especially when tracking piecemeal writes and
1191 			 * it also vinvalbuf()'s a lot, which would result
1192 			 * in only partial page validation and invalidation
1193 			 * here.  If the file page is mmap()'d, however,
1194 			 * all the valid bits get set so after we invalidate
1195 			 * here we would end up with weird m->valid values
1196 			 * like 0xfc.  nfs_getpages() can't handle this so
1197 			 * we clear all the valid bits for the NFS case
1198 			 * instead of just some of them.
1199 			 *
1200 			 * The real bug is the VM system having to set m->valid
1201 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1202 			 * itself is an artifact of the whole 512-byte
1203 			 * granular mess that exists to support odd block
1204 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1205 			 * A complete rewrite is required.
1206 			 */
1207 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1208 				int poffset = foff & PAGE_MASK;
1209 				int presid;
1210 
1211 				presid = PAGE_SIZE - poffset;
1212 				if (bp->b_vp->v_tag == VT_NFS &&
1213 				    bp->b_vp->v_type == VREG) {
1214 					; /* entire page */
1215 				} else if (presid > resid) {
1216 					presid = resid;
1217 				}
1218 				KASSERT(presid >= 0, ("brelse: extra page"));
1219 				vm_page_set_invalid(m, poffset, presid);
1220 			}
1221 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1222 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1223 		}
1224 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1225 			vfs_vmio_release(bp);
1226 	} else {
1227 		/*
1228 		 * Rundown for non-VMIO buffers.
1229 		 */
1230 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1231 #if 0
1232 			if (bp->b_vp)
1233 				kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1234 #endif
1235 			if (bp->b_bufsize)
1236 				allocbuf(bp, 0);
1237 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1238 			if (bp->b_vp)
1239 				brelvp(bp);
1240 		}
1241 	}
1242 
1243 	if (bp->b_qindex != BQUEUE_NONE)
1244 		panic("brelse: free buffer onto another queue???");
1245 	if (BUF_REFCNTNB(bp) > 1) {
1246 		/* Temporary panic to verify exclusive locking */
1247 		/* This panic goes away when we allow shared refs */
1248 		panic("brelse: multiple refs");
1249 		/* do not release to free list */
1250 		BUF_UNLOCK(bp);
1251 		crit_exit();
1252 		return;
1253 	}
1254 
1255 	/*
1256 	 * Figure out the correct queue to place the cleaned up buffer on.
1257 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1258 	 * disassociated from their vnode.
1259 	 */
1260 	if (bp->b_flags & B_LOCKED) {
1261 		/*
1262 		 * Buffers that are locked are placed in the locked queue
1263 		 * immediately, regardless of their state.
1264 		 */
1265 		bp->b_qindex = BQUEUE_LOCKED;
1266 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1267 	} else if (bp->b_bufsize == 0) {
1268 		/*
1269 		 * Buffers with no memory.  Due to conditionals near the top
1270 		 * of brelse() such buffers should probably already be
1271 		 * marked B_INVAL and disassociated from their vnode.
1272 		 */
1273 		bp->b_flags |= B_INVAL;
1274 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1275 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1276 		if (bp->b_kvasize) {
1277 			bp->b_qindex = BQUEUE_EMPTYKVA;
1278 		} else {
1279 			bp->b_qindex = BQUEUE_EMPTY;
1280 		}
1281 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1282 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1283 		/*
1284 		 * Buffers with junk contents.   Again these buffers had better
1285 		 * already be disassociated from their vnode.
1286 		 */
1287 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1288 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1289 		bp->b_flags |= B_INVAL;
1290 		bp->b_qindex = BQUEUE_CLEAN;
1291 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1292 	} else {
1293 		/*
1294 		 * Remaining buffers.  These buffers are still associated with
1295 		 * their vnode.
1296 		 */
1297 		switch(bp->b_flags & (B_DELWRI|B_HEAVY|B_AGE)) {
1298 		case B_DELWRI | B_AGE:
1299 		    bp->b_qindex = BQUEUE_DIRTY;
1300 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1301 		    break;
1302 		case B_DELWRI:
1303 		    bp->b_qindex = BQUEUE_DIRTY;
1304 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1305 		    break;
1306 		case B_DELWRI | B_HEAVY | B_AGE:
1307 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1308 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY_HW], bp,
1309 				      b_freelist);
1310 		    break;
1311 		case B_DELWRI | B_HEAVY:
1312 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1313 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1314 				      b_freelist);
1315 		    break;
1316 		case B_HEAVY | B_AGE:
1317 		case B_AGE:
1318 		    bp->b_qindex = BQUEUE_CLEAN;
1319 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1320 		    break;
1321 		default:
1322 		    bp->b_qindex = BQUEUE_CLEAN;
1323 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1324 		    break;
1325 		}
1326 	}
1327 
1328 	/*
1329 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1330 	 * on the correct queue.
1331 	 */
1332 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1333 		bundirty(bp);
1334 
1335 	/*
1336 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1337 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1338 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1339 	 * if B_INVAL is set ).
1340 	 */
1341 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1342 		bufcountwakeup();
1343 
1344 	/*
1345 	 * Something we can maybe free or reuse
1346 	 */
1347 	if (bp->b_bufsize || bp->b_kvasize)
1348 		bufspacewakeup();
1349 
1350 	/*
1351 	 * Clean up temporary flags and unlock the buffer.
1352 	 */
1353 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1354 			B_DIRECT);
1355 	BUF_UNLOCK(bp);
1356 	crit_exit();
1357 }
1358 
1359 /*
1360  * bqrelse:
1361  *
1362  *	Release a buffer back to the appropriate queue but do not try to free
1363  *	it.  The buffer is expected to be used again soon.
1364  *
1365  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1366  *	biodone() to requeue an async I/O on completion.  It is also used when
1367  *	known good buffers need to be requeued but we think we may need the data
1368  *	again soon.
1369  *
1370  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1371  */
1372 void
1373 bqrelse(struct buf *bp)
1374 {
1375 	crit_enter();
1376 
1377 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1378 
1379 	if (bp->b_qindex != BQUEUE_NONE)
1380 		panic("bqrelse: free buffer onto another queue???");
1381 	if (BUF_REFCNTNB(bp) > 1) {
1382 		/* do not release to free list */
1383 		panic("bqrelse: multiple refs");
1384 		BUF_UNLOCK(bp);
1385 		crit_exit();
1386 		return;
1387 	}
1388 	if (bp->b_flags & B_LOCKED) {
1389 		/*
1390 		 * Locked buffers are released to the locked queue.  However,
1391 		 * if the buffer is dirty it will first go into the dirty
1392 		 * queue and later on after the I/O completes successfully it
1393 		 * will be released to the locked queue.
1394 		 */
1395 		bp->b_flags &= ~B_ERROR;
1396 		bp->b_qindex = BQUEUE_LOCKED;
1397 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1398 	} else if (bp->b_flags & B_DELWRI) {
1399 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1400 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1401 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1402 	} else if (vm_page_count_severe()) {
1403 		/*
1404 		 * We are too low on memory, we have to try to free the
1405 		 * buffer (most importantly: the wired pages making up its
1406 		 * backing store) *now*.
1407 		 */
1408 		crit_exit();
1409 		brelse(bp);
1410 		return;
1411 	} else {
1412 		bp->b_qindex = BQUEUE_CLEAN;
1413 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1414 	}
1415 
1416 	if ((bp->b_flags & B_LOCKED) == 0 &&
1417 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1418 		bufcountwakeup();
1419 	}
1420 
1421 	/*
1422 	 * Something we can maybe free or reuse.
1423 	 */
1424 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1425 		bufspacewakeup();
1426 
1427 	/*
1428 	 * Final cleanup and unlock.  Clear bits that are only used while a
1429 	 * buffer is actively locked.
1430 	 */
1431 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1432 	BUF_UNLOCK(bp);
1433 	crit_exit();
1434 }
1435 
1436 /*
1437  * vfs_vmio_release:
1438  *
1439  *	Return backing pages held by the buffer 'bp' back to the VM system
1440  *	if possible.  The pages are freed if they are no longer valid or
1441  *	attempt to free if it was used for direct I/O otherwise they are
1442  *	sent to the page cache.
1443  *
1444  *	Pages that were marked busy are left alone and skipped.
1445  *
1446  *	The KVA mapping (b_data) for the underlying pages is removed by
1447  *	this function.
1448  */
1449 static void
1450 vfs_vmio_release(struct buf *bp)
1451 {
1452 	int i;
1453 	vm_page_t m;
1454 
1455 	crit_enter();
1456 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1457 		m = bp->b_xio.xio_pages[i];
1458 		bp->b_xio.xio_pages[i] = NULL;
1459 		/*
1460 		 * In order to keep page LRU ordering consistent, put
1461 		 * everything on the inactive queue.
1462 		 */
1463 		vm_page_unwire(m, 0);
1464 		/*
1465 		 * We don't mess with busy pages, it is
1466 		 * the responsibility of the process that
1467 		 * busied the pages to deal with them.
1468 		 */
1469 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1470 			continue;
1471 
1472 		if (m->wire_count == 0) {
1473 			vm_page_flag_clear(m, PG_ZERO);
1474 			/*
1475 			 * Might as well free the page if we can and it has
1476 			 * no valid data.  We also free the page if the
1477 			 * buffer was used for direct I/O.
1478 			 */
1479 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1480 					m->hold_count == 0) {
1481 				vm_page_busy(m);
1482 				vm_page_protect(m, VM_PROT_NONE);
1483 				vm_page_free(m);
1484 			} else if (bp->b_flags & B_DIRECT) {
1485 				vm_page_try_to_free(m);
1486 			} else if (vm_page_count_severe()) {
1487 				vm_page_try_to_cache(m);
1488 			}
1489 		}
1490 	}
1491 	crit_exit();
1492 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1493 	if (bp->b_bufsize) {
1494 		bufspacewakeup();
1495 		bp->b_bufsize = 0;
1496 	}
1497 	bp->b_xio.xio_npages = 0;
1498 	bp->b_flags &= ~B_VMIO;
1499 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1500 	if (bp->b_vp)
1501 		brelvp(bp);
1502 }
1503 
1504 /*
1505  * vfs_bio_awrite:
1506  *
1507  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1508  *	This is much better then the old way of writing only one buffer at
1509  *	a time.  Note that we may not be presented with the buffers in the
1510  *	correct order, so we search for the cluster in both directions.
1511  *
1512  *	The buffer is locked on call.
1513  */
1514 int
1515 vfs_bio_awrite(struct buf *bp)
1516 {
1517 	int i;
1518 	int j;
1519 	off_t loffset = bp->b_loffset;
1520 	struct vnode *vp = bp->b_vp;
1521 	int nbytes;
1522 	struct buf *bpa;
1523 	int nwritten;
1524 	int size;
1525 
1526 	crit_enter();
1527 	/*
1528 	 * right now we support clustered writing only to regular files.  If
1529 	 * we find a clusterable block we could be in the middle of a cluster
1530 	 * rather then at the beginning.
1531 	 *
1532 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1533 	 * to b_loffset.  b_bio2 contains the translated block number.
1534 	 */
1535 	if ((vp->v_type == VREG) &&
1536 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1537 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1538 
1539 		size = vp->v_mount->mnt_stat.f_iosize;
1540 
1541 		for (i = size; i < MAXPHYS; i += size) {
1542 			if ((bpa = findblk(vp, loffset + i)) &&
1543 			    BUF_REFCNT(bpa) == 0 &&
1544 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1545 			    (B_DELWRI | B_CLUSTEROK)) &&
1546 			    (bpa->b_bufsize == size)) {
1547 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1548 				    (bpa->b_bio2.bio_offset !=
1549 				     bp->b_bio2.bio_offset + i))
1550 					break;
1551 			} else {
1552 				break;
1553 			}
1554 		}
1555 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1556 			if ((bpa = findblk(vp, loffset - j)) &&
1557 			    BUF_REFCNT(bpa) == 0 &&
1558 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1559 			    (B_DELWRI | B_CLUSTEROK)) &&
1560 			    (bpa->b_bufsize == size)) {
1561 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1562 				    (bpa->b_bio2.bio_offset !=
1563 				     bp->b_bio2.bio_offset - j))
1564 					break;
1565 			} else {
1566 				break;
1567 			}
1568 		}
1569 		j -= size;
1570 		nbytes = (i + j);
1571 		/*
1572 		 * this is a possible cluster write
1573 		 */
1574 		if (nbytes != size) {
1575 			BUF_UNLOCK(bp);
1576 			nwritten = cluster_wbuild(vp, size,
1577 						  loffset - j, nbytes);
1578 			crit_exit();
1579 			return nwritten;
1580 		}
1581 	}
1582 
1583 	bremfree(bp);
1584 	bp->b_flags |= B_ASYNC;
1585 
1586 	crit_exit();
1587 	/*
1588 	 * default (old) behavior, writing out only one block
1589 	 *
1590 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1591 	 */
1592 	nwritten = bp->b_bufsize;
1593 	bwrite(bp);
1594 
1595 	return nwritten;
1596 }
1597 
1598 /*
1599  * getnewbuf:
1600  *
1601  *	Find and initialize a new buffer header, freeing up existing buffers
1602  *	in the bufqueues as necessary.  The new buffer is returned locked.
1603  *
1604  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1605  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1606  *
1607  *	We block if:
1608  *		We have insufficient buffer headers
1609  *		We have insufficient buffer space
1610  *		buffer_map is too fragmented ( space reservation fails )
1611  *		If we have to flush dirty buffers ( but we try to avoid this )
1612  *
1613  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1614  *	Instead we ask the buf daemon to do it for us.  We attempt to
1615  *	avoid piecemeal wakeups of the pageout daemon.
1616  */
1617 
1618 static struct buf *
1619 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1620 {
1621 	struct buf *bp;
1622 	struct buf *nbp;
1623 	int defrag = 0;
1624 	int nqindex;
1625 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1626 	static int flushingbufs;
1627 
1628 	/*
1629 	 * We can't afford to block since we might be holding a vnode lock,
1630 	 * which may prevent system daemons from running.  We deal with
1631 	 * low-memory situations by proactively returning memory and running
1632 	 * async I/O rather then sync I/O.
1633 	 */
1634 
1635 	++getnewbufcalls;
1636 	--getnewbufrestarts;
1637 restart:
1638 	++getnewbufrestarts;
1639 
1640 	/*
1641 	 * Setup for scan.  If we do not have enough free buffers,
1642 	 * we setup a degenerate case that immediately fails.  Note
1643 	 * that if we are specially marked process, we are allowed to
1644 	 * dip into our reserves.
1645 	 *
1646 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1647 	 *
1648 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1649 	 * However, there are a number of cases (defragging, reusing, ...)
1650 	 * where we cannot backup.
1651 	 */
1652 	nqindex = BQUEUE_EMPTYKVA;
1653 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1654 
1655 	if (nbp == NULL) {
1656 		/*
1657 		 * If no EMPTYKVA buffers and we are either
1658 		 * defragging or reusing, locate a CLEAN buffer
1659 		 * to free or reuse.  If bufspace useage is low
1660 		 * skip this step so we can allocate a new buffer.
1661 		 */
1662 		if (defrag || bufspace >= lobufspace) {
1663 			nqindex = BQUEUE_CLEAN;
1664 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1665 		}
1666 
1667 		/*
1668 		 * If we could not find or were not allowed to reuse a
1669 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1670 		 * buffer.  We can only use an EMPTY buffer if allocating
1671 		 * its KVA would not otherwise run us out of buffer space.
1672 		 */
1673 		if (nbp == NULL && defrag == 0 &&
1674 		    bufspace + maxsize < hibufspace) {
1675 			nqindex = BQUEUE_EMPTY;
1676 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1677 		}
1678 	}
1679 
1680 	/*
1681 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1682 	 * depending.
1683 	 */
1684 
1685 	while ((bp = nbp) != NULL) {
1686 		int qindex = nqindex;
1687 
1688 		/*
1689 		 * Calculate next bp ( we can only use it if we do not block
1690 		 * or do other fancy things ).
1691 		 */
1692 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1693 			switch(qindex) {
1694 			case BQUEUE_EMPTY:
1695 				nqindex = BQUEUE_EMPTYKVA;
1696 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1697 					break;
1698 				/* fall through */
1699 			case BQUEUE_EMPTYKVA:
1700 				nqindex = BQUEUE_CLEAN;
1701 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1702 					break;
1703 				/* fall through */
1704 			case BQUEUE_CLEAN:
1705 				/*
1706 				 * nbp is NULL.
1707 				 */
1708 				break;
1709 			}
1710 		}
1711 
1712 		/*
1713 		 * Sanity Checks
1714 		 */
1715 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1716 
1717 		/*
1718 		 * Note: we no longer distinguish between VMIO and non-VMIO
1719 		 * buffers.
1720 		 */
1721 
1722 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1723 
1724 		/*
1725 		 * If we are defragging then we need a buffer with
1726 		 * b_kvasize != 0.  XXX this situation should no longer
1727 		 * occur, if defrag is non-zero the buffer's b_kvasize
1728 		 * should also be non-zero at this point.  XXX
1729 		 */
1730 		if (defrag && bp->b_kvasize == 0) {
1731 			kprintf("Warning: defrag empty buffer %p\n", bp);
1732 			continue;
1733 		}
1734 
1735 		/*
1736 		 * Start freeing the bp.  This is somewhat involved.  nbp
1737 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1738 		 * on the clean list must be disassociated from their
1739 		 * current vnode.  Buffers on the empty[kva] lists have
1740 		 * already been disassociated.
1741 		 */
1742 
1743 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1744 			kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1745 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1746 			goto restart;
1747 		}
1748 		if (bp->b_qindex != qindex) {
1749 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1750 			BUF_UNLOCK(bp);
1751 			goto restart;
1752 		}
1753 		bremfree(bp);
1754 
1755 		/*
1756 		 * Dependancies must be handled before we disassociate the
1757 		 * vnode.
1758 		 *
1759 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1760 		 * be immediately disassociated.  HAMMER then becomes
1761 		 * responsible for releasing the buffer.
1762 		 */
1763 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1764 			buf_deallocate(bp);
1765 			if (bp->b_flags & B_LOCKED) {
1766 				bqrelse(bp);
1767 				goto restart;
1768 			}
1769 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1770 		}
1771 
1772 		if (qindex == BQUEUE_CLEAN) {
1773 			if (bp->b_flags & B_VMIO) {
1774 				bp->b_flags &= ~B_ASYNC;
1775 				vfs_vmio_release(bp);
1776 			}
1777 			if (bp->b_vp)
1778 				brelvp(bp);
1779 		}
1780 
1781 		/*
1782 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1783 		 * the scan from this point on.
1784 		 *
1785 		 * Get the rest of the buffer freed up.  b_kva* is still
1786 		 * valid after this operation.
1787 		 */
1788 
1789 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1790 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1791 
1792 		/*
1793 		 * critical section protection is not required when
1794 		 * scrapping a buffer's contents because it is already
1795 		 * wired.
1796 		 */
1797 		if (bp->b_bufsize)
1798 			allocbuf(bp, 0);
1799 
1800 		bp->b_flags = B_BNOCLIP;
1801 		bp->b_cmd = BUF_CMD_DONE;
1802 		bp->b_vp = NULL;
1803 		bp->b_error = 0;
1804 		bp->b_resid = 0;
1805 		bp->b_bcount = 0;
1806 		bp->b_xio.xio_npages = 0;
1807 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1808 		reinitbufbio(bp);
1809 		buf_dep_init(bp);
1810 		if (blkflags & GETBLK_BHEAVY)
1811 			bp->b_flags |= B_HEAVY;
1812 
1813 		/*
1814 		 * If we are defragging then free the buffer.
1815 		 */
1816 		if (defrag) {
1817 			bp->b_flags |= B_INVAL;
1818 			bfreekva(bp);
1819 			brelse(bp);
1820 			defrag = 0;
1821 			goto restart;
1822 		}
1823 
1824 		/*
1825 		 * If we are overcomitted then recover the buffer and its
1826 		 * KVM space.  This occurs in rare situations when multiple
1827 		 * processes are blocked in getnewbuf() or allocbuf().
1828 		 */
1829 		if (bufspace >= hibufspace)
1830 			flushingbufs = 1;
1831 		if (flushingbufs && bp->b_kvasize != 0) {
1832 			bp->b_flags |= B_INVAL;
1833 			bfreekva(bp);
1834 			brelse(bp);
1835 			goto restart;
1836 		}
1837 		if (bufspace < lobufspace)
1838 			flushingbufs = 0;
1839 		break;
1840 	}
1841 
1842 	/*
1843 	 * If we exhausted our list, sleep as appropriate.  We may have to
1844 	 * wakeup various daemons and write out some dirty buffers.
1845 	 *
1846 	 * Generally we are sleeping due to insufficient buffer space.
1847 	 */
1848 
1849 	if (bp == NULL) {
1850 		int flags;
1851 		char *waitmsg;
1852 
1853 		if (defrag) {
1854 			flags = VFS_BIO_NEED_BUFSPACE;
1855 			waitmsg = "nbufkv";
1856 		} else if (bufspace >= hibufspace) {
1857 			waitmsg = "nbufbs";
1858 			flags = VFS_BIO_NEED_BUFSPACE;
1859 		} else {
1860 			waitmsg = "newbuf";
1861 			flags = VFS_BIO_NEED_ANY;
1862 		}
1863 
1864 		needsbuffer |= flags;
1865 		bd_speedup();	/* heeeelp */
1866 		while (needsbuffer & flags) {
1867 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
1868 				return (NULL);
1869 		}
1870 	} else {
1871 		/*
1872 		 * We finally have a valid bp.  We aren't quite out of the
1873 		 * woods, we still have to reserve kva space.  In order
1874 		 * to keep fragmentation sane we only allocate kva in
1875 		 * BKVASIZE chunks.
1876 		 */
1877 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1878 
1879 		if (maxsize != bp->b_kvasize) {
1880 			vm_offset_t addr = 0;
1881 			int count;
1882 
1883 			bfreekva(bp);
1884 
1885 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1886 			vm_map_lock(&buffer_map);
1887 
1888 			if (vm_map_findspace(&buffer_map,
1889 				    vm_map_min(&buffer_map), maxsize,
1890 				    maxsize, &addr)) {
1891 				/*
1892 				 * Uh oh.  Buffer map is too fragmented.  We
1893 				 * must defragment the map.
1894 				 */
1895 				vm_map_unlock(&buffer_map);
1896 				vm_map_entry_release(count);
1897 				++bufdefragcnt;
1898 				defrag = 1;
1899 				bp->b_flags |= B_INVAL;
1900 				brelse(bp);
1901 				goto restart;
1902 			}
1903 			if (addr) {
1904 				vm_map_insert(&buffer_map, &count,
1905 					NULL, 0,
1906 					addr, addr + maxsize,
1907 					VM_MAPTYPE_NORMAL,
1908 					VM_PROT_ALL, VM_PROT_ALL,
1909 					MAP_NOFAULT);
1910 
1911 				bp->b_kvabase = (caddr_t) addr;
1912 				bp->b_kvasize = maxsize;
1913 				bufspace += bp->b_kvasize;
1914 				++bufreusecnt;
1915 			}
1916 			vm_map_unlock(&buffer_map);
1917 			vm_map_entry_release(count);
1918 		}
1919 		bp->b_data = bp->b_kvabase;
1920 	}
1921 	return(bp);
1922 }
1923 
1924 /*
1925  * buf_daemon:
1926  *
1927  *	Buffer flushing daemon.  Buffers are normally flushed by the
1928  *	update daemon but if it cannot keep up this process starts to
1929  *	take the load in an attempt to prevent getnewbuf() from blocking.
1930  *
1931  *	Once a flush is initiated it does not stop until the number
1932  *	of buffers falls below lodirtybuffers, but we will wake up anyone
1933  *	waiting at the mid-point.
1934  */
1935 
1936 static struct thread *bufdaemon_td;
1937 static struct thread *bufdaemonhw_td;
1938 
1939 static struct kproc_desc buf_kp = {
1940 	"bufdaemon",
1941 	buf_daemon,
1942 	&bufdaemon_td
1943 };
1944 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
1945 	kproc_start, &buf_kp)
1946 
1947 static struct kproc_desc bufhw_kp = {
1948 	"bufdaemon_hw",
1949 	buf_daemon_hw,
1950 	&bufdaemonhw_td
1951 };
1952 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
1953 	kproc_start, &bufhw_kp)
1954 
1955 static void
1956 buf_daemon(void)
1957 {
1958 	/*
1959 	 * This process needs to be suspended prior to shutdown sync.
1960 	 */
1961 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1962 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
1963 
1964 	/*
1965 	 * This process is allowed to take the buffer cache to the limit
1966 	 */
1967 	crit_enter();
1968 
1969 	for (;;) {
1970 		kproc_suspend_loop();
1971 
1972 		/*
1973 		 * Do the flush.  Limit the amount of in-transit I/O we
1974 		 * allow to build up, otherwise we would completely saturate
1975 		 * the I/O system.  Wakeup any waiting processes before we
1976 		 * normally would so they can run in parallel with our drain.
1977 		 */
1978 		while (numdirtybuffers > lodirtybuffers) {
1979 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
1980 				break;
1981 			waitrunningbufspace();
1982 			numdirtywakeup();
1983 		}
1984 		numdirtywakeup();
1985 
1986 		/*
1987 		 * Only clear bd_request if we have reached our low water
1988 		 * mark.  The buf_daemon normally waits 5 seconds and
1989 		 * then incrementally flushes any dirty buffers that have
1990 		 * built up, within reason.
1991 		 *
1992 		 * If we were unable to hit our low water mark and couldn't
1993 		 * find any flushable buffers, we sleep half a second.
1994 		 * Otherwise we loop immediately.
1995 		 */
1996 		if (numdirtybuffers <= lodirtybuffers) {
1997 			/*
1998 			 * We reached our low water mark, reset the
1999 			 * request and sleep until we are needed again.
2000 			 * The sleep is just so the suspend code works.
2001 			 */
2002 			spin_lock_wr(&needsbuffer_spin);
2003 			bd_request = 0;
2004 			msleep(&bd_request, &needsbuffer_spin, 0,
2005 			       "psleep", hz);
2006 			spin_unlock_wr(&needsbuffer_spin);
2007 		} else {
2008 			/*
2009 			 * We couldn't find any flushable dirty buffers but
2010 			 * still have too many dirty buffers, we
2011 			 * have to sleep and try again.  (rare)
2012 			 */
2013 			tsleep(&bd_request, 0, "qsleep", hz / 2);
2014 		}
2015 	}
2016 }
2017 
2018 static void
2019 buf_daemon_hw(void)
2020 {
2021 	/*
2022 	 * This process needs to be suspended prior to shutdown sync.
2023 	 */
2024 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2025 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2026 
2027 	/*
2028 	 * This process is allowed to take the buffer cache to the limit
2029 	 */
2030 	crit_enter();
2031 
2032 	for (;;) {
2033 		kproc_suspend_loop();
2034 
2035 		/*
2036 		 * Do the flush.  Limit the amount of in-transit I/O we
2037 		 * allow to build up, otherwise we would completely saturate
2038 		 * the I/O system.  Wakeup any waiting processes before we
2039 		 * normally would so they can run in parallel with our drain.
2040 		 */
2041 		while (numdirtybuffershw > lodirtybuffers) {
2042 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2043 				break;
2044 			waitrunningbufspace();
2045 			numdirtywakeup();
2046 		}
2047 
2048 		/*
2049 		 * Only clear bd_request if we have reached our low water
2050 		 * mark.  The buf_daemon normally waits 5 seconds and
2051 		 * then incrementally flushes any dirty buffers that have
2052 		 * built up, within reason.
2053 		 *
2054 		 * If we were unable to hit our low water mark and couldn't
2055 		 * find any flushable buffers, we sleep half a second.
2056 		 * Otherwise we loop immediately.
2057 		 */
2058 		if (numdirtybuffershw <= lodirtybuffers) {
2059 			/*
2060 			 * We reached our low water mark, reset the
2061 			 * request and sleep until we are needed again.
2062 			 * The sleep is just so the suspend code works.
2063 			 */
2064 			spin_lock_wr(&needsbuffer_spin);
2065 			bd_request_hw = 0;
2066 			msleep(&bd_request_hw, &needsbuffer_spin, 0,
2067 			       "psleep", hz);
2068 			spin_unlock_wr(&needsbuffer_spin);
2069 		} else {
2070 			/*
2071 			 * We couldn't find any flushable dirty buffers but
2072 			 * still have too many dirty buffers, we
2073 			 * have to sleep and try again.  (rare)
2074 			 */
2075 			tsleep(&bd_request_hw, 0, "qsleep", hz / 2);
2076 		}
2077 	}
2078 }
2079 
2080 /*
2081  * flushbufqueues:
2082  *
2083  *	Try to flush a buffer in the dirty queue.  We must be careful to
2084  *	free up B_INVAL buffers instead of write them, which NFS is
2085  *	particularly sensitive to.
2086  */
2087 
2088 static int
2089 flushbufqueues(bufq_type_t q)
2090 {
2091 	struct buf *bp;
2092 	int r = 0;
2093 
2094 	bp = TAILQ_FIRST(&bufqueues[q]);
2095 
2096 	while (bp) {
2097 		KASSERT((bp->b_flags & B_DELWRI),
2098 			("unexpected clean buffer %p", bp));
2099 		if (bp->b_flags & B_DELWRI) {
2100 			if (bp->b_flags & B_INVAL) {
2101 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2102 					panic("flushbufqueues: locked buf");
2103 				bremfree(bp);
2104 				brelse(bp);
2105 				++r;
2106 				break;
2107 			}
2108 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2109 			    (bp->b_flags & B_DEFERRED) == 0 &&
2110 			    buf_countdeps(bp, 0)) {
2111 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2112 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2113 						  b_freelist);
2114 				bp->b_flags |= B_DEFERRED;
2115 				bp = TAILQ_FIRST(&bufqueues[q]);
2116 				continue;
2117 			}
2118 
2119 			/*
2120 			 * Only write it out if we can successfully lock
2121 			 * it.  If the buffer has a dependancy,
2122 			 * buf_checkwrite must also return 0.
2123 			 */
2124 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2125 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2126 				    buf_checkwrite(bp)) {
2127 					bremfree(bp);
2128 					brelse(bp);
2129 				} else {
2130 					vfs_bio_awrite(bp);
2131 				}
2132 				++r;
2133 				break;
2134 			}
2135 		}
2136 		bp = TAILQ_NEXT(bp, b_freelist);
2137 	}
2138 	return (r);
2139 }
2140 
2141 /*
2142  * inmem:
2143  *
2144  *	Returns true if no I/O is needed to access the associated VM object.
2145  *	This is like findblk except it also hunts around in the VM system for
2146  *	the data.
2147  *
2148  *	Note that we ignore vm_page_free() races from interrupts against our
2149  *	lookup, since if the caller is not protected our return value will not
2150  *	be any more valid then otherwise once we exit the critical section.
2151  */
2152 int
2153 inmem(struct vnode *vp, off_t loffset)
2154 {
2155 	vm_object_t obj;
2156 	vm_offset_t toff, tinc, size;
2157 	vm_page_t m;
2158 
2159 	if (findblk(vp, loffset))
2160 		return 1;
2161 	if (vp->v_mount == NULL)
2162 		return 0;
2163 	if ((obj = vp->v_object) == NULL)
2164 		return 0;
2165 
2166 	size = PAGE_SIZE;
2167 	if (size > vp->v_mount->mnt_stat.f_iosize)
2168 		size = vp->v_mount->mnt_stat.f_iosize;
2169 
2170 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2171 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2172 		if (m == NULL)
2173 			return 0;
2174 		tinc = size;
2175 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2176 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2177 		if (vm_page_is_valid(m,
2178 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2179 			return 0;
2180 	}
2181 	return 1;
2182 }
2183 
2184 /*
2185  * vfs_setdirty:
2186  *
2187  *	Sets the dirty range for a buffer based on the status of the dirty
2188  *	bits in the pages comprising the buffer.
2189  *
2190  *	The range is limited to the size of the buffer.
2191  *
2192  *	This routine is primarily used by NFS, but is generalized for the
2193  *	B_VMIO case.
2194  */
2195 static void
2196 vfs_setdirty(struct buf *bp)
2197 {
2198 	int i;
2199 	vm_object_t object;
2200 
2201 	/*
2202 	 * Degenerate case - empty buffer
2203 	 */
2204 
2205 	if (bp->b_bufsize == 0)
2206 		return;
2207 
2208 	/*
2209 	 * We qualify the scan for modified pages on whether the
2210 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2211 	 * is not cleared simply by protecting pages off.
2212 	 */
2213 
2214 	if ((bp->b_flags & B_VMIO) == 0)
2215 		return;
2216 
2217 	object = bp->b_xio.xio_pages[0]->object;
2218 
2219 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2220 		kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2221 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2222 		kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2223 
2224 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2225 		vm_offset_t boffset;
2226 		vm_offset_t eoffset;
2227 
2228 		/*
2229 		 * test the pages to see if they have been modified directly
2230 		 * by users through the VM system.
2231 		 */
2232 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2233 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2234 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2235 		}
2236 
2237 		/*
2238 		 * Calculate the encompassing dirty range, boffset and eoffset,
2239 		 * (eoffset - boffset) bytes.
2240 		 */
2241 
2242 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2243 			if (bp->b_xio.xio_pages[i]->dirty)
2244 				break;
2245 		}
2246 		boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2247 
2248 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2249 			if (bp->b_xio.xio_pages[i]->dirty) {
2250 				break;
2251 			}
2252 		}
2253 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2254 
2255 		/*
2256 		 * Fit it to the buffer.
2257 		 */
2258 
2259 		if (eoffset > bp->b_bcount)
2260 			eoffset = bp->b_bcount;
2261 
2262 		/*
2263 		 * If we have a good dirty range, merge with the existing
2264 		 * dirty range.
2265 		 */
2266 
2267 		if (boffset < eoffset) {
2268 			if (bp->b_dirtyoff > boffset)
2269 				bp->b_dirtyoff = boffset;
2270 			if (bp->b_dirtyend < eoffset)
2271 				bp->b_dirtyend = eoffset;
2272 		}
2273 	}
2274 }
2275 
2276 /*
2277  * findblk:
2278  *
2279  *	Locate and return the specified buffer, or NULL if the buffer does
2280  *	not exist.  Do not attempt to lock the buffer or manipulate it in
2281  *	any way.  The caller must validate that the correct buffer has been
2282  *	obtain after locking it.
2283  */
2284 struct buf *
2285 findblk(struct vnode *vp, off_t loffset)
2286 {
2287 	struct buf *bp;
2288 
2289 	crit_enter();
2290 	bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2291 	crit_exit();
2292 	return(bp);
2293 }
2294 
2295 /*
2296  * getblk:
2297  *
2298  *	Get a block given a specified block and offset into a file/device.
2299  * 	B_INVAL may or may not be set on return.  The caller should clear
2300  *	B_INVAL prior to initiating a READ.
2301  *
2302  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2303  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2304  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2305  *	without doing any of those things the system will likely believe
2306  *	the buffer to be valid (especially if it is not B_VMIO), and the
2307  *	next getblk() will return the buffer with B_CACHE set.
2308  *
2309  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2310  *	an existing buffer.
2311  *
2312  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2313  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2314  *	and then cleared based on the backing VM.  If the previous buffer is
2315  *	non-0-sized but invalid, B_CACHE will be cleared.
2316  *
2317  *	If getblk() must create a new buffer, the new buffer is returned with
2318  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2319  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2320  *	backing VM.
2321  *
2322  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2323  *	B_CACHE bit is clear.
2324  *
2325  *	What this means, basically, is that the caller should use B_CACHE to
2326  *	determine whether the buffer is fully valid or not and should clear
2327  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2328  *	the buffer by loading its data area with something, the caller needs
2329  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2330  *	the caller should set B_CACHE ( as an optimization ), else the caller
2331  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2332  *	a write attempt or if it was a successfull read.  If the caller
2333  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2334  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2335  *
2336  *	getblk flags:
2337  *
2338  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2339  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2340  */
2341 struct buf *
2342 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2343 {
2344 	struct buf *bp;
2345 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2346 
2347 	if (size > MAXBSIZE)
2348 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2349 	if (vp->v_object == NULL)
2350 		panic("getblk: vnode %p has no object!", vp);
2351 
2352 	crit_enter();
2353 loop:
2354 	if ((bp = findblk(vp, loffset))) {
2355 		/*
2356 		 * The buffer was found in the cache, but we need to lock it.
2357 		 * Even with LK_NOWAIT the lockmgr may break our critical
2358 		 * section, so double-check the validity of the buffer
2359 		 * once the lock has been obtained.
2360 		 */
2361 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2362 			int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2363 			if (blkflags & GETBLK_PCATCH)
2364 				lkflags |= LK_PCATCH;
2365 			if (BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo) ==
2366 			    ENOLCK) {
2367 				goto loop;
2368 			}
2369 			crit_exit();
2370 			return (NULL);
2371 		}
2372 
2373 		/*
2374 		 * Once the buffer has been locked, make sure we didn't race
2375 		 * a buffer recyclement.  Buffers that are no longer hashed
2376 		 * will have b_vp == NULL, so this takes care of that check
2377 		 * as well.
2378 		 */
2379 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2380 			kprintf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset);
2381 			BUF_UNLOCK(bp);
2382 			goto loop;
2383 		}
2384 
2385 		/*
2386 		 * All vnode-based buffers must be backed by a VM object.
2387 		 */
2388 		KKASSERT(bp->b_flags & B_VMIO);
2389 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2390 
2391 		/*
2392 		 * Make sure that B_INVAL buffers do not have a cached
2393 		 * block number translation.
2394 		 */
2395 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2396 			kprintf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset);
2397 			clearbiocache(&bp->b_bio2);
2398 		}
2399 
2400 		/*
2401 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2402 		 * invalid.
2403 		 */
2404 		if (bp->b_flags & B_INVAL)
2405 			bp->b_flags &= ~B_CACHE;
2406 		bremfree(bp);
2407 
2408 		/*
2409 		 * Any size inconsistancy with a dirty buffer or a buffer
2410 		 * with a softupdates dependancy must be resolved.  Resizing
2411 		 * the buffer in such circumstances can lead to problems.
2412 		 */
2413 		if (size != bp->b_bcount) {
2414 			if (bp->b_flags & B_DELWRI) {
2415 				bp->b_flags |= B_NOCACHE;
2416 				bwrite(bp);
2417 			} else if (LIST_FIRST(&bp->b_dep)) {
2418 				bp->b_flags |= B_NOCACHE;
2419 				bwrite(bp);
2420 			} else {
2421 				bp->b_flags |= B_RELBUF;
2422 				brelse(bp);
2423 			}
2424 			goto loop;
2425 		}
2426 		KKASSERT(size <= bp->b_kvasize);
2427 		KASSERT(bp->b_loffset != NOOFFSET,
2428 			("getblk: no buffer offset"));
2429 
2430 		/*
2431 		 * A buffer with B_DELWRI set and B_CACHE clear must
2432 		 * be committed before we can return the buffer in
2433 		 * order to prevent the caller from issuing a read
2434 		 * ( due to B_CACHE not being set ) and overwriting
2435 		 * it.
2436 		 *
2437 		 * Most callers, including NFS and FFS, need this to
2438 		 * operate properly either because they assume they
2439 		 * can issue a read if B_CACHE is not set, or because
2440 		 * ( for example ) an uncached B_DELWRI might loop due
2441 		 * to softupdates re-dirtying the buffer.  In the latter
2442 		 * case, B_CACHE is set after the first write completes,
2443 		 * preventing further loops.
2444 		 *
2445 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2446 		 * above while extending the buffer, we cannot allow the
2447 		 * buffer to remain with B_CACHE set after the write
2448 		 * completes or it will represent a corrupt state.  To
2449 		 * deal with this we set B_NOCACHE to scrap the buffer
2450 		 * after the write.
2451 		 *
2452 		 * We might be able to do something fancy, like setting
2453 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2454 		 * so the below call doesn't set B_CACHE, but that gets real
2455 		 * confusing.  This is much easier.
2456 		 */
2457 
2458 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2459 			bp->b_flags |= B_NOCACHE;
2460 			bwrite(bp);
2461 			goto loop;
2462 		}
2463 		crit_exit();
2464 	} else {
2465 		/*
2466 		 * Buffer is not in-core, create new buffer.  The buffer
2467 		 * returned by getnewbuf() is locked.  Note that the returned
2468 		 * buffer is also considered valid (not marked B_INVAL).
2469 		 *
2470 		 * Calculating the offset for the I/O requires figuring out
2471 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2472 		 * the mount's f_iosize otherwise.  If the vnode does not
2473 		 * have an associated mount we assume that the passed size is
2474 		 * the block size.
2475 		 *
2476 		 * Note that vn_isdisk() cannot be used here since it may
2477 		 * return a failure for numerous reasons.   Note that the
2478 		 * buffer size may be larger then the block size (the caller
2479 		 * will use block numbers with the proper multiple).  Beware
2480 		 * of using any v_* fields which are part of unions.  In
2481 		 * particular, in DragonFly the mount point overloading
2482 		 * mechanism uses the namecache only and the underlying
2483 		 * directory vnode is not a special case.
2484 		 */
2485 		int bsize, maxsize;
2486 
2487 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2488 			bsize = DEV_BSIZE;
2489 		else if (vp->v_mount)
2490 			bsize = vp->v_mount->mnt_stat.f_iosize;
2491 		else
2492 			bsize = size;
2493 
2494 		maxsize = size + (loffset & PAGE_MASK);
2495 		maxsize = imax(maxsize, bsize);
2496 
2497 		if ((bp = getnewbuf(blkflags, slptimeo, size, maxsize)) == NULL) {
2498 			if (slpflags || slptimeo) {
2499 				crit_exit();
2500 				return NULL;
2501 			}
2502 			goto loop;
2503 		}
2504 
2505 		/*
2506 		 * This code is used to make sure that a buffer is not
2507 		 * created while the getnewbuf routine is blocked.
2508 		 * This can be a problem whether the vnode is locked or not.
2509 		 * If the buffer is created out from under us, we have to
2510 		 * throw away the one we just created.  There is no window
2511 		 * race because we are safely running in a critical section
2512 		 * from the point of the duplicate buffer creation through
2513 		 * to here, and we've locked the buffer.
2514 		 */
2515 		if (findblk(vp, loffset)) {
2516 			bp->b_flags |= B_INVAL;
2517 			brelse(bp);
2518 			goto loop;
2519 		}
2520 
2521 		/*
2522 		 * Insert the buffer into the hash, so that it can
2523 		 * be found by findblk().
2524 		 *
2525 		 * Make sure the translation layer has been cleared.
2526 		 */
2527 		bp->b_loffset = loffset;
2528 		bp->b_bio2.bio_offset = NOOFFSET;
2529 		/* bp->b_bio2.bio_next = NULL; */
2530 
2531 		bgetvp(vp, bp);
2532 
2533 		/*
2534 		 * All vnode-based buffers must be backed by a VM object.
2535 		 */
2536 		KKASSERT(vp->v_object != NULL);
2537 		bp->b_flags |= B_VMIO;
2538 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2539 
2540 		allocbuf(bp, size);
2541 
2542 		crit_exit();
2543 	}
2544 	return (bp);
2545 }
2546 
2547 /*
2548  * regetblk(bp)
2549  *
2550  * Reacquire a buffer that was previously released to the locked queue,
2551  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2552  * set B_LOCKED (which handles the acquisition race).
2553  *
2554  * To this end, either B_LOCKED must be set or the dependancy list must be
2555  * non-empty.
2556  */
2557 void
2558 regetblk(struct buf *bp)
2559 {
2560 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2561 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2562 	crit_enter();
2563 	bremfree(bp);
2564 	crit_exit();
2565 }
2566 
2567 /*
2568  * geteblk:
2569  *
2570  *	Get an empty, disassociated buffer of given size.  The buffer is
2571  *	initially set to B_INVAL.
2572  *
2573  *	critical section protection is not required for the allocbuf()
2574  *	call because races are impossible here.
2575  */
2576 struct buf *
2577 geteblk(int size)
2578 {
2579 	struct buf *bp;
2580 	int maxsize;
2581 
2582 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2583 
2584 	crit_enter();
2585 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2586 		;
2587 	crit_exit();
2588 	allocbuf(bp, size);
2589 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2590 	return (bp);
2591 }
2592 
2593 
2594 /*
2595  * allocbuf:
2596  *
2597  *	This code constitutes the buffer memory from either anonymous system
2598  *	memory (in the case of non-VMIO operations) or from an associated
2599  *	VM object (in the case of VMIO operations).  This code is able to
2600  *	resize a buffer up or down.
2601  *
2602  *	Note that this code is tricky, and has many complications to resolve
2603  *	deadlock or inconsistant data situations.  Tread lightly!!!
2604  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2605  *	the caller.  Calling this code willy nilly can result in the loss of data.
2606  *
2607  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2608  *	B_CACHE for the non-VMIO case.
2609  *
2610  *	This routine does not need to be called from a critical section but you
2611  *	must own the buffer.
2612  */
2613 int
2614 allocbuf(struct buf *bp, int size)
2615 {
2616 	int newbsize, mbsize;
2617 	int i;
2618 
2619 	if (BUF_REFCNT(bp) == 0)
2620 		panic("allocbuf: buffer not busy");
2621 
2622 	if (bp->b_kvasize < size)
2623 		panic("allocbuf: buffer too small");
2624 
2625 	if ((bp->b_flags & B_VMIO) == 0) {
2626 		caddr_t origbuf;
2627 		int origbufsize;
2628 		/*
2629 		 * Just get anonymous memory from the kernel.  Don't
2630 		 * mess with B_CACHE.
2631 		 */
2632 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2633 		if (bp->b_flags & B_MALLOC)
2634 			newbsize = mbsize;
2635 		else
2636 			newbsize = round_page(size);
2637 
2638 		if (newbsize < bp->b_bufsize) {
2639 			/*
2640 			 * Malloced buffers are not shrunk
2641 			 */
2642 			if (bp->b_flags & B_MALLOC) {
2643 				if (newbsize) {
2644 					bp->b_bcount = size;
2645 				} else {
2646 					kfree(bp->b_data, M_BIOBUF);
2647 					if (bp->b_bufsize) {
2648 						bufmallocspace -= bp->b_bufsize;
2649 						bufspacewakeup();
2650 						bp->b_bufsize = 0;
2651 					}
2652 					bp->b_data = bp->b_kvabase;
2653 					bp->b_bcount = 0;
2654 					bp->b_flags &= ~B_MALLOC;
2655 				}
2656 				return 1;
2657 			}
2658 			vm_hold_free_pages(
2659 			    bp,
2660 			    (vm_offset_t) bp->b_data + newbsize,
2661 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2662 		} else if (newbsize > bp->b_bufsize) {
2663 			/*
2664 			 * We only use malloced memory on the first allocation.
2665 			 * and revert to page-allocated memory when the buffer
2666 			 * grows.
2667 			 */
2668 			if ((bufmallocspace < maxbufmallocspace) &&
2669 				(bp->b_bufsize == 0) &&
2670 				(mbsize <= PAGE_SIZE/2)) {
2671 
2672 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
2673 				bp->b_bufsize = mbsize;
2674 				bp->b_bcount = size;
2675 				bp->b_flags |= B_MALLOC;
2676 				bufmallocspace += mbsize;
2677 				return 1;
2678 			}
2679 			origbuf = NULL;
2680 			origbufsize = 0;
2681 			/*
2682 			 * If the buffer is growing on its other-than-first
2683 			 * allocation, then we revert to the page-allocation
2684 			 * scheme.
2685 			 */
2686 			if (bp->b_flags & B_MALLOC) {
2687 				origbuf = bp->b_data;
2688 				origbufsize = bp->b_bufsize;
2689 				bp->b_data = bp->b_kvabase;
2690 				if (bp->b_bufsize) {
2691 					bufmallocspace -= bp->b_bufsize;
2692 					bufspacewakeup();
2693 					bp->b_bufsize = 0;
2694 				}
2695 				bp->b_flags &= ~B_MALLOC;
2696 				newbsize = round_page(newbsize);
2697 			}
2698 			vm_hold_load_pages(
2699 			    bp,
2700 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2701 			    (vm_offset_t) bp->b_data + newbsize);
2702 			if (origbuf) {
2703 				bcopy(origbuf, bp->b_data, origbufsize);
2704 				kfree(origbuf, M_BIOBUF);
2705 			}
2706 		}
2707 	} else {
2708 		vm_page_t m;
2709 		int desiredpages;
2710 
2711 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2712 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
2713 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
2714 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
2715 
2716 		if (bp->b_flags & B_MALLOC)
2717 			panic("allocbuf: VMIO buffer can't be malloced");
2718 		/*
2719 		 * Set B_CACHE initially if buffer is 0 length or will become
2720 		 * 0-length.
2721 		 */
2722 		if (size == 0 || bp->b_bufsize == 0)
2723 			bp->b_flags |= B_CACHE;
2724 
2725 		if (newbsize < bp->b_bufsize) {
2726 			/*
2727 			 * DEV_BSIZE aligned new buffer size is less then the
2728 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2729 			 * if we have to remove any pages.
2730 			 */
2731 			if (desiredpages < bp->b_xio.xio_npages) {
2732 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2733 					/*
2734 					 * the page is not freed here -- it
2735 					 * is the responsibility of
2736 					 * vnode_pager_setsize
2737 					 */
2738 					m = bp->b_xio.xio_pages[i];
2739 					KASSERT(m != bogus_page,
2740 					    ("allocbuf: bogus page found"));
2741 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2742 						;
2743 
2744 					bp->b_xio.xio_pages[i] = NULL;
2745 					vm_page_unwire(m, 0);
2746 				}
2747 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2748 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2749 				bp->b_xio.xio_npages = desiredpages;
2750 			}
2751 		} else if (size > bp->b_bcount) {
2752 			/*
2753 			 * We are growing the buffer, possibly in a
2754 			 * byte-granular fashion.
2755 			 */
2756 			struct vnode *vp;
2757 			vm_object_t obj;
2758 			vm_offset_t toff;
2759 			vm_offset_t tinc;
2760 
2761 			/*
2762 			 * Step 1, bring in the VM pages from the object,
2763 			 * allocating them if necessary.  We must clear
2764 			 * B_CACHE if these pages are not valid for the
2765 			 * range covered by the buffer.
2766 			 *
2767 			 * critical section protection is required to protect
2768 			 * against interrupts unbusying and freeing pages
2769 			 * between our vm_page_lookup() and our
2770 			 * busycheck/wiring call.
2771 			 */
2772 			vp = bp->b_vp;
2773 			obj = vp->v_object;
2774 
2775 			crit_enter();
2776 			while (bp->b_xio.xio_npages < desiredpages) {
2777 				vm_page_t m;
2778 				vm_pindex_t pi;
2779 
2780 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2781 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2782 					/*
2783 					 * note: must allocate system pages
2784 					 * since blocking here could intefere
2785 					 * with paging I/O, no matter which
2786 					 * process we are.
2787 					 */
2788 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2789 					if (m == NULL) {
2790 						vm_wait();
2791 						vm_pageout_deficit += desiredpages -
2792 							bp->b_xio.xio_npages;
2793 					} else {
2794 						vm_page_wire(m);
2795 						vm_page_wakeup(m);
2796 						bp->b_flags &= ~B_CACHE;
2797 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2798 						++bp->b_xio.xio_npages;
2799 					}
2800 					continue;
2801 				}
2802 
2803 				/*
2804 				 * We found a page.  If we have to sleep on it,
2805 				 * retry because it might have gotten freed out
2806 				 * from under us.
2807 				 *
2808 				 * We can only test PG_BUSY here.  Blocking on
2809 				 * m->busy might lead to a deadlock:
2810 				 *
2811 				 *  vm_fault->getpages->cluster_read->allocbuf
2812 				 *
2813 				 */
2814 
2815 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2816 					continue;
2817 
2818 				/*
2819 				 * We have a good page.  Should we wakeup the
2820 				 * page daemon?
2821 				 */
2822 				if ((curthread != pagethread) &&
2823 				    ((m->queue - m->pc) == PQ_CACHE) &&
2824 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2825 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2826 					pagedaemon_wakeup();
2827 				}
2828 				vm_page_flag_clear(m, PG_ZERO);
2829 				vm_page_wire(m);
2830 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2831 				++bp->b_xio.xio_npages;
2832 			}
2833 			crit_exit();
2834 
2835 			/*
2836 			 * Step 2.  We've loaded the pages into the buffer,
2837 			 * we have to figure out if we can still have B_CACHE
2838 			 * set.  Note that B_CACHE is set according to the
2839 			 * byte-granular range ( bcount and size ), not the
2840 			 * aligned range ( newbsize ).
2841 			 *
2842 			 * The VM test is against m->valid, which is DEV_BSIZE
2843 			 * aligned.  Needless to say, the validity of the data
2844 			 * needs to also be DEV_BSIZE aligned.  Note that this
2845 			 * fails with NFS if the server or some other client
2846 			 * extends the file's EOF.  If our buffer is resized,
2847 			 * B_CACHE may remain set! XXX
2848 			 */
2849 
2850 			toff = bp->b_bcount;
2851 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2852 
2853 			while ((bp->b_flags & B_CACHE) && toff < size) {
2854 				vm_pindex_t pi;
2855 
2856 				if (tinc > (size - toff))
2857 					tinc = size - toff;
2858 
2859 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2860 				    PAGE_SHIFT;
2861 
2862 				vfs_buf_test_cache(
2863 				    bp,
2864 				    bp->b_loffset,
2865 				    toff,
2866 				    tinc,
2867 				    bp->b_xio.xio_pages[pi]
2868 				);
2869 				toff += tinc;
2870 				tinc = PAGE_SIZE;
2871 			}
2872 
2873 			/*
2874 			 * Step 3, fixup the KVM pmap.  Remember that
2875 			 * bp->b_data is relative to bp->b_loffset, but
2876 			 * bp->b_loffset may be offset into the first page.
2877 			 */
2878 
2879 			bp->b_data = (caddr_t)
2880 			    trunc_page((vm_offset_t)bp->b_data);
2881 			pmap_qenter(
2882 			    (vm_offset_t)bp->b_data,
2883 			    bp->b_xio.xio_pages,
2884 			    bp->b_xio.xio_npages
2885 			);
2886 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2887 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2888 		}
2889 	}
2890 	if (newbsize < bp->b_bufsize)
2891 		bufspacewakeup();
2892 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2893 	bp->b_bcount = size;		/* requested buffer size	*/
2894 	return 1;
2895 }
2896 
2897 /*
2898  * biowait:
2899  *
2900  *	Wait for buffer I/O completion, returning error status.  The buffer
2901  *	is left locked on return.  B_EINTR is converted into an EINTR error
2902  *	and cleared.
2903  *
2904  *	NOTE!  The original b_cmd is lost on return, since b_cmd will be
2905  *	set to BUF_CMD_DONE.
2906  */
2907 int
2908 biowait(struct buf *bp)
2909 {
2910 	crit_enter();
2911 	while (bp->b_cmd != BUF_CMD_DONE) {
2912 		if (bp->b_cmd == BUF_CMD_READ)
2913 			tsleep(bp, 0, "biord", 0);
2914 		else
2915 			tsleep(bp, 0, "biowr", 0);
2916 	}
2917 	crit_exit();
2918 	if (bp->b_flags & B_EINTR) {
2919 		bp->b_flags &= ~B_EINTR;
2920 		return (EINTR);
2921 	}
2922 	if (bp->b_flags & B_ERROR) {
2923 		return (bp->b_error ? bp->b_error : EIO);
2924 	} else {
2925 		return (0);
2926 	}
2927 }
2928 
2929 /*
2930  * This associates a tracking count with an I/O.  vn_strategy() and
2931  * dev_dstrategy() do this automatically but there are a few cases
2932  * where a vnode or device layer is bypassed when a block translation
2933  * is cached.  In such cases bio_start_transaction() may be called on
2934  * the bypassed layers so the system gets an I/O in progress indication
2935  * for those higher layers.
2936  */
2937 void
2938 bio_start_transaction(struct bio *bio, struct bio_track *track)
2939 {
2940 	bio->bio_track = track;
2941 	atomic_add_int(&track->bk_active, 1);
2942 }
2943 
2944 /*
2945  * Initiate I/O on a vnode.
2946  */
2947 void
2948 vn_strategy(struct vnode *vp, struct bio *bio)
2949 {
2950 	struct bio_track *track;
2951 
2952 	KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
2953         if (bio->bio_buf->b_cmd == BUF_CMD_READ)
2954                 track = &vp->v_track_read;
2955         else
2956                 track = &vp->v_track_write;
2957 	bio->bio_track = track;
2958 	atomic_add_int(&track->bk_active, 1);
2959         vop_strategy(*vp->v_ops, vp, bio);
2960 }
2961 
2962 
2963 /*
2964  * biodone:
2965  *
2966  *	Finish I/O on a buffer, optionally calling a completion function.
2967  *	This is usually called from an interrupt so process blocking is
2968  *	not allowed.
2969  *
2970  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2971  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2972  *	assuming B_INVAL is clear.
2973  *
2974  *	For the VMIO case, we set B_CACHE if the op was a read and no
2975  *	read error occured, or if the op was a write.  B_CACHE is never
2976  *	set if the buffer is invalid or otherwise uncacheable.
2977  *
2978  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2979  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2980  *	in the biodone routine.
2981  */
2982 void
2983 biodone(struct bio *bio)
2984 {
2985 	struct buf *bp = bio->bio_buf;
2986 	buf_cmd_t cmd;
2987 
2988 	crit_enter();
2989 
2990 	KASSERT(BUF_REFCNTNB(bp) > 0,
2991 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2992 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2993 		("biodone: bp %p already done!", bp));
2994 
2995 	runningbufwakeup(bp);
2996 
2997 	/*
2998 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
2999 	 */
3000 	while (bio) {
3001 		biodone_t *done_func;
3002 		struct bio_track *track;
3003 
3004 		/*
3005 		 * BIO tracking.  Most but not all BIOs are tracked.
3006 		 */
3007 		if ((track = bio->bio_track) != NULL) {
3008 			atomic_subtract_int(&track->bk_active, 1);
3009 			if (track->bk_active < 0) {
3010 				panic("biodone: bad active count bio %p\n",
3011 				      bio);
3012 			}
3013 			if (track->bk_waitflag) {
3014 				track->bk_waitflag = 0;
3015 				wakeup(track);
3016 			}
3017 			bio->bio_track = NULL;
3018 		}
3019 
3020 		/*
3021 		 * A bio_done function terminates the loop.  The function
3022 		 * will be responsible for any further chaining and/or
3023 		 * buffer management.
3024 		 *
3025 		 * WARNING!  The done function can deallocate the buffer!
3026 		 */
3027 		if ((done_func = bio->bio_done) != NULL) {
3028 			bio->bio_done = NULL;
3029 			done_func(bio);
3030 			crit_exit();
3031 			return;
3032 		}
3033 		bio = bio->bio_prev;
3034 	}
3035 
3036 	cmd = bp->b_cmd;
3037 	bp->b_cmd = BUF_CMD_DONE;
3038 
3039 	/*
3040 	 * Only reads and writes are processed past this point.
3041 	 */
3042 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3043 		brelse(bp);
3044 		crit_exit();
3045 		return;
3046 	}
3047 
3048 	/*
3049 	 * Warning: softupdates may re-dirty the buffer.
3050 	 */
3051 	if (LIST_FIRST(&bp->b_dep) != NULL)
3052 		buf_complete(bp);
3053 
3054 	if (bp->b_flags & B_VMIO) {
3055 		int i;
3056 		vm_ooffset_t foff;
3057 		vm_page_t m;
3058 		vm_object_t obj;
3059 		int iosize;
3060 		struct vnode *vp = bp->b_vp;
3061 
3062 		obj = vp->v_object;
3063 
3064 #if defined(VFS_BIO_DEBUG)
3065 		if (vp->v_auxrefs == 0)
3066 			panic("biodone: zero vnode hold count");
3067 		if ((vp->v_flag & VOBJBUF) == 0)
3068 			panic("biodone: vnode is not setup for merged cache");
3069 #endif
3070 
3071 		foff = bp->b_loffset;
3072 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3073 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3074 
3075 #if defined(VFS_BIO_DEBUG)
3076 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3077 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3078 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3079 		}
3080 #endif
3081 
3082 		/*
3083 		 * Set B_CACHE if the op was a normal read and no error
3084 		 * occured.  B_CACHE is set for writes in the b*write()
3085 		 * routines.
3086 		 */
3087 		iosize = bp->b_bcount - bp->b_resid;
3088 		if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3089 			bp->b_flags |= B_CACHE;
3090 		}
3091 
3092 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3093 			int bogusflag = 0;
3094 			int resid;
3095 
3096 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3097 			if (resid > iosize)
3098 				resid = iosize;
3099 
3100 			/*
3101 			 * cleanup bogus pages, restoring the originals.  Since
3102 			 * the originals should still be wired, we don't have
3103 			 * to worry about interrupt/freeing races destroying
3104 			 * the VM object association.
3105 			 */
3106 			m = bp->b_xio.xio_pages[i];
3107 			if (m == bogus_page) {
3108 				bogusflag = 1;
3109 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3110 				if (m == NULL)
3111 					panic("biodone: page disappeared");
3112 				bp->b_xio.xio_pages[i] = m;
3113 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3114 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3115 			}
3116 #if defined(VFS_BIO_DEBUG)
3117 			if (OFF_TO_IDX(foff) != m->pindex) {
3118 				kprintf(
3119 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
3120 				    (unsigned long)foff, m->pindex);
3121 			}
3122 #endif
3123 
3124 			/*
3125 			 * In the write case, the valid and clean bits are
3126 			 * already changed correctly ( see bdwrite() ), so we
3127 			 * only need to do this here in the read case.
3128 			 */
3129 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3130 				vfs_page_set_valid(bp, foff, i, m);
3131 			}
3132 			vm_page_flag_clear(m, PG_ZERO);
3133 
3134 			/*
3135 			 * when debugging new filesystems or buffer I/O methods, this
3136 			 * is the most common error that pops up.  if you see this, you
3137 			 * have not set the page busy flag correctly!!!
3138 			 */
3139 			if (m->busy == 0) {
3140 				kprintf("biodone: page busy < 0, "
3141 				    "pindex: %d, foff: 0x(%x,%x), "
3142 				    "resid: %d, index: %d\n",
3143 				    (int) m->pindex, (int)(foff >> 32),
3144 						(int) foff & 0xffffffff, resid, i);
3145 				if (!vn_isdisk(vp, NULL))
3146 					kprintf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n",
3147 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3148 					    bp->b_loffset,
3149 					    bp->b_flags, bp->b_xio.xio_npages);
3150 				else
3151 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3152 					    bp->b_loffset,
3153 					    bp->b_flags, bp->b_xio.xio_npages);
3154 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3155 				    m->valid, m->dirty, m->wire_count);
3156 				panic("biodone: page busy < 0");
3157 			}
3158 			vm_page_io_finish(m);
3159 			vm_object_pip_subtract(obj, 1);
3160 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3161 			iosize -= resid;
3162 		}
3163 		if (obj)
3164 			vm_object_pip_wakeupn(obj, 0);
3165 	}
3166 
3167 	/*
3168 	 * For asynchronous completions, release the buffer now. The brelse
3169 	 * will do a wakeup there if necessary - so no need to do a wakeup
3170 	 * here in the async case. The sync case always needs to do a wakeup.
3171 	 */
3172 
3173 	if (bp->b_flags & B_ASYNC) {
3174 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3175 			brelse(bp);
3176 		else
3177 			bqrelse(bp);
3178 	} else {
3179 		wakeup(bp);
3180 	}
3181 	crit_exit();
3182 }
3183 
3184 /*
3185  * vfs_unbusy_pages:
3186  *
3187  *	This routine is called in lieu of iodone in the case of
3188  *	incomplete I/O.  This keeps the busy status for pages
3189  *	consistant.
3190  */
3191 void
3192 vfs_unbusy_pages(struct buf *bp)
3193 {
3194 	int i;
3195 
3196 	runningbufwakeup(bp);
3197 	if (bp->b_flags & B_VMIO) {
3198 		struct vnode *vp = bp->b_vp;
3199 		vm_object_t obj;
3200 
3201 		obj = vp->v_object;
3202 
3203 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3204 			vm_page_t m = bp->b_xio.xio_pages[i];
3205 
3206 			/*
3207 			 * When restoring bogus changes the original pages
3208 			 * should still be wired, so we are in no danger of
3209 			 * losing the object association and do not need
3210 			 * critical section protection particularly.
3211 			 */
3212 			if (m == bogus_page) {
3213 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3214 				if (!m) {
3215 					panic("vfs_unbusy_pages: page missing");
3216 				}
3217 				bp->b_xio.xio_pages[i] = m;
3218 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3219 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3220 			}
3221 			vm_object_pip_subtract(obj, 1);
3222 			vm_page_flag_clear(m, PG_ZERO);
3223 			vm_page_io_finish(m);
3224 		}
3225 		vm_object_pip_wakeupn(obj, 0);
3226 	}
3227 }
3228 
3229 /*
3230  * vfs_page_set_valid:
3231  *
3232  *	Set the valid bits in a page based on the supplied offset.   The
3233  *	range is restricted to the buffer's size.
3234  *
3235  *	This routine is typically called after a read completes.
3236  */
3237 static void
3238 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3239 {
3240 	vm_ooffset_t soff, eoff;
3241 
3242 	/*
3243 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3244 	 * page boundry or cross the end of the buffer.  The end of the
3245 	 * buffer, in this case, is our file EOF, not the allocation size
3246 	 * of the buffer.
3247 	 */
3248 	soff = off;
3249 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3250 	if (eoff > bp->b_loffset + bp->b_bcount)
3251 		eoff = bp->b_loffset + bp->b_bcount;
3252 
3253 	/*
3254 	 * Set valid range.  This is typically the entire buffer and thus the
3255 	 * entire page.
3256 	 */
3257 	if (eoff > soff) {
3258 		vm_page_set_validclean(
3259 		    m,
3260 		   (vm_offset_t) (soff & PAGE_MASK),
3261 		   (vm_offset_t) (eoff - soff)
3262 		);
3263 	}
3264 }
3265 
3266 /*
3267  * vfs_busy_pages:
3268  *
3269  *	This routine is called before a device strategy routine.
3270  *	It is used to tell the VM system that paging I/O is in
3271  *	progress, and treat the pages associated with the buffer
3272  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3273  *	flag is handled to make sure that the object doesn't become
3274  *	inconsistant.
3275  *
3276  *	Since I/O has not been initiated yet, certain buffer flags
3277  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3278  *	and should be ignored.
3279  */
3280 void
3281 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3282 {
3283 	int i, bogus;
3284 	struct lwp *lp = curthread->td_lwp;
3285 
3286 	/*
3287 	 * The buffer's I/O command must already be set.  If reading,
3288 	 * B_CACHE must be 0 (double check against callers only doing
3289 	 * I/O when B_CACHE is 0).
3290 	 */
3291 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3292 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3293 
3294 	if (bp->b_flags & B_VMIO) {
3295 		vm_object_t obj;
3296 		vm_ooffset_t foff;
3297 
3298 		obj = vp->v_object;
3299 		foff = bp->b_loffset;
3300 		KASSERT(bp->b_loffset != NOOFFSET,
3301 			("vfs_busy_pages: no buffer offset"));
3302 		vfs_setdirty(bp);
3303 
3304 retry:
3305 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3306 			vm_page_t m = bp->b_xio.xio_pages[i];
3307 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3308 				goto retry;
3309 		}
3310 
3311 		bogus = 0;
3312 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3313 			vm_page_t m = bp->b_xio.xio_pages[i];
3314 
3315 			vm_page_flag_clear(m, PG_ZERO);
3316 			if ((bp->b_flags & B_CLUSTER) == 0) {
3317 				vm_object_pip_add(obj, 1);
3318 				vm_page_io_start(m);
3319 			}
3320 
3321 			/*
3322 			 * When readying a vnode-backed buffer for a write
3323 			 * we must zero-fill any invalid portions of the
3324 			 * backing VM pages.
3325 			 *
3326 			 * When readying a vnode-backed buffer for a read
3327 			 * we must replace any dirty pages with a bogus
3328 			 * page so we do not destroy dirty data when
3329 			 * filling in gaps.  Dirty pages might not
3330 			 * necessarily be marked dirty yet, so use m->valid
3331 			 * as a reasonable test.
3332 			 *
3333 			 * Bogus page replacement is, uh, bogus.  We need
3334 			 * to find a better way.
3335 			 */
3336 			vm_page_protect(m, VM_PROT_NONE);
3337 			if (bp->b_cmd == BUF_CMD_WRITE) {
3338 				vfs_page_set_valid(bp, foff, i, m);
3339 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3340 				bp->b_xio.xio_pages[i] = bogus_page;
3341 				bogus++;
3342 			}
3343 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3344 		}
3345 		if (bogus)
3346 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3347 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3348 	}
3349 
3350 	/*
3351 	 * This is the easiest place to put the process accounting for the I/O
3352 	 * for now.
3353 	 */
3354 	if (lp != NULL) {
3355 		if (bp->b_cmd == BUF_CMD_READ)
3356 			lp->lwp_ru.ru_inblock++;
3357 		else
3358 			lp->lwp_ru.ru_oublock++;
3359 	}
3360 }
3361 
3362 /*
3363  * vfs_clean_pages:
3364  *
3365  *	Tell the VM system that the pages associated with this buffer
3366  *	are clean.  This is used for delayed writes where the data is
3367  *	going to go to disk eventually without additional VM intevention.
3368  *
3369  *	Note that while we only really need to clean through to b_bcount, we
3370  *	just go ahead and clean through to b_bufsize.
3371  */
3372 static void
3373 vfs_clean_pages(struct buf *bp)
3374 {
3375 	int i;
3376 
3377 	if (bp->b_flags & B_VMIO) {
3378 		vm_ooffset_t foff;
3379 
3380 		foff = bp->b_loffset;
3381 		KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3382 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3383 			vm_page_t m = bp->b_xio.xio_pages[i];
3384 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3385 			vm_ooffset_t eoff = noff;
3386 
3387 			if (eoff > bp->b_loffset + bp->b_bufsize)
3388 				eoff = bp->b_loffset + bp->b_bufsize;
3389 			vfs_page_set_valid(bp, foff, i, m);
3390 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3391 			foff = noff;
3392 		}
3393 	}
3394 }
3395 
3396 /*
3397  * vfs_bio_set_validclean:
3398  *
3399  *	Set the range within the buffer to valid and clean.  The range is
3400  *	relative to the beginning of the buffer, b_loffset.  Note that
3401  *	b_loffset itself may be offset from the beginning of the first page.
3402  */
3403 
3404 void
3405 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3406 {
3407 	if (bp->b_flags & B_VMIO) {
3408 		int i;
3409 		int n;
3410 
3411 		/*
3412 		 * Fixup base to be relative to beginning of first page.
3413 		 * Set initial n to be the maximum number of bytes in the
3414 		 * first page that can be validated.
3415 		 */
3416 
3417 		base += (bp->b_loffset & PAGE_MASK);
3418 		n = PAGE_SIZE - (base & PAGE_MASK);
3419 
3420 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3421 			vm_page_t m = bp->b_xio.xio_pages[i];
3422 
3423 			if (n > size)
3424 				n = size;
3425 
3426 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3427 			base += n;
3428 			size -= n;
3429 			n = PAGE_SIZE;
3430 		}
3431 	}
3432 }
3433 
3434 /*
3435  * vfs_bio_clrbuf:
3436  *
3437  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3438  *	to clear B_ERROR and B_INVAL.
3439  *
3440  *	Note that while we only theoretically need to clear through b_bcount,
3441  *	we go ahead and clear through b_bufsize.
3442  */
3443 
3444 void
3445 vfs_bio_clrbuf(struct buf *bp)
3446 {
3447 	int i, mask = 0;
3448 	caddr_t sa, ea;
3449 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3450 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3451 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3452 		    (bp->b_loffset & PAGE_MASK) == 0) {
3453 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3454 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3455 				bp->b_resid = 0;
3456 				return;
3457 			}
3458 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3459 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3460 				bzero(bp->b_data, bp->b_bufsize);
3461 				bp->b_xio.xio_pages[0]->valid |= mask;
3462 				bp->b_resid = 0;
3463 				return;
3464 			}
3465 		}
3466 		ea = sa = bp->b_data;
3467 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3468 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3469 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3470 			ea = (caddr_t)(vm_offset_t)ulmin(
3471 			    (u_long)(vm_offset_t)ea,
3472 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3473 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3474 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3475 				continue;
3476 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3477 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3478 					bzero(sa, ea - sa);
3479 				}
3480 			} else {
3481 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3482 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3483 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3484 						bzero(sa, DEV_BSIZE);
3485 				}
3486 			}
3487 			bp->b_xio.xio_pages[i]->valid |= mask;
3488 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3489 		}
3490 		bp->b_resid = 0;
3491 	} else {
3492 		clrbuf(bp);
3493 	}
3494 }
3495 
3496 /*
3497  * vm_hold_load_pages:
3498  *
3499  *	Load pages into the buffer's address space.  The pages are
3500  *	allocated from the kernel object in order to reduce interference
3501  *	with the any VM paging I/O activity.  The range of loaded
3502  *	pages will be wired.
3503  *
3504  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
3505  *	retrieve the full range (to - from) of pages.
3506  *
3507  */
3508 void
3509 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3510 {
3511 	vm_offset_t pg;
3512 	vm_page_t p;
3513 	int index;
3514 
3515 	to = round_page(to);
3516 	from = round_page(from);
3517 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3518 
3519 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3520 
3521 tryagain:
3522 
3523 		/*
3524 		 * Note: must allocate system pages since blocking here
3525 		 * could intefere with paging I/O, no matter which
3526 		 * process we are.
3527 		 */
3528 		p = vm_page_alloc(&kernel_object,
3529 				  (pg >> PAGE_SHIFT),
3530 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3531 		if (!p) {
3532 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3533 			vm_wait();
3534 			goto tryagain;
3535 		}
3536 		vm_page_wire(p);
3537 		p->valid = VM_PAGE_BITS_ALL;
3538 		vm_page_flag_clear(p, PG_ZERO);
3539 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3540 		bp->b_xio.xio_pages[index] = p;
3541 		vm_page_wakeup(p);
3542 	}
3543 	bp->b_xio.xio_npages = index;
3544 }
3545 
3546 /*
3547  * vm_hold_free_pages:
3548  *
3549  *	Return pages associated with the buffer back to the VM system.
3550  *
3551  *	The range of pages underlying the buffer's address space will
3552  *	be unmapped and un-wired.
3553  */
3554 void
3555 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3556 {
3557 	vm_offset_t pg;
3558 	vm_page_t p;
3559 	int index, newnpages;
3560 
3561 	from = round_page(from);
3562 	to = round_page(to);
3563 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3564 
3565 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3566 		p = bp->b_xio.xio_pages[index];
3567 		if (p && (index < bp->b_xio.xio_npages)) {
3568 			if (p->busy) {
3569 				kprintf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n",
3570 					bp->b_bio2.bio_offset, bp->b_loffset);
3571 			}
3572 			bp->b_xio.xio_pages[index] = NULL;
3573 			pmap_kremove(pg);
3574 			vm_page_busy(p);
3575 			vm_page_unwire(p, 0);
3576 			vm_page_free(p);
3577 		}
3578 	}
3579 	bp->b_xio.xio_npages = newnpages;
3580 }
3581 
3582 /*
3583  * vmapbuf:
3584  *
3585  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
3586  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
3587  *	initialized.
3588  */
3589 int
3590 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
3591 {
3592 	caddr_t addr;
3593 	vm_offset_t va;
3594 	vm_page_t m;
3595 	int vmprot;
3596 	int error;
3597 	int pidx;
3598 	int i;
3599 
3600 	/*
3601 	 * bp had better have a command and it better be a pbuf.
3602 	 */
3603 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3604 	KKASSERT(bp->b_flags & B_PAGING);
3605 
3606 	if (bytes < 0)
3607 		return (-1);
3608 
3609 	/*
3610 	 * Map the user data into KVM.  Mappings have to be page-aligned.
3611 	 */
3612 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
3613 	pidx = 0;
3614 
3615 	vmprot = VM_PROT_READ;
3616 	if (bp->b_cmd == BUF_CMD_READ)
3617 		vmprot |= VM_PROT_WRITE;
3618 
3619 	while (addr < udata + bytes) {
3620 		/*
3621 		 * Do the vm_fault if needed; do the copy-on-write thing
3622 		 * when reading stuff off device into memory.
3623 		 *
3624 		 * vm_fault_page*() returns a held VM page.
3625 		 */
3626 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
3627 		va = trunc_page(va);
3628 
3629 		m = vm_fault_page_quick(va, vmprot, &error);
3630 		if (m == NULL) {
3631 			for (i = 0; i < pidx; ++i) {
3632 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3633 			    bp->b_xio.xio_pages[i] = NULL;
3634 			}
3635 			return(-1);
3636 		}
3637 		bp->b_xio.xio_pages[pidx] = m;
3638 		addr += PAGE_SIZE;
3639 		++pidx;
3640 	}
3641 
3642 	/*
3643 	 * Map the page array and set the buffer fields to point to
3644 	 * the mapped data buffer.
3645 	 */
3646 	if (pidx > btoc(MAXPHYS))
3647 		panic("vmapbuf: mapped more than MAXPHYS");
3648 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
3649 
3650 	bp->b_xio.xio_npages = pidx;
3651 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
3652 	bp->b_bcount = bytes;
3653 	bp->b_bufsize = bytes;
3654 	return(0);
3655 }
3656 
3657 /*
3658  * vunmapbuf:
3659  *
3660  *	Free the io map PTEs associated with this IO operation.
3661  *	We also invalidate the TLB entries and restore the original b_addr.
3662  */
3663 void
3664 vunmapbuf(struct buf *bp)
3665 {
3666 	int pidx;
3667 	int npages;
3668 
3669 	KKASSERT(bp->b_flags & B_PAGING);
3670 
3671 	npages = bp->b_xio.xio_npages;
3672 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3673 	for (pidx = 0; pidx < npages; ++pidx) {
3674 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
3675 		bp->b_xio.xio_pages[pidx] = NULL;
3676 	}
3677 	bp->b_xio.xio_npages = 0;
3678 	bp->b_data = bp->b_kvabase;
3679 }
3680 
3681 /*
3682  * Scan all buffers in the system and issue the callback.
3683  */
3684 int
3685 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
3686 {
3687 	int count = 0;
3688 	int error;
3689 	int n;
3690 
3691 	for (n = 0; n < nbuf; ++n) {
3692 		if ((error = callback(&buf[n], info)) < 0) {
3693 			count = error;
3694 			break;
3695 		}
3696 		count += error;
3697 	}
3698 	return (count);
3699 }
3700 
3701 /*
3702  * print out statistics from the current status of the buffer pool
3703  * this can be toggeled by the system control option debug.syncprt
3704  */
3705 #ifdef DEBUG
3706 void
3707 vfs_bufstats(void)
3708 {
3709         int i, j, count;
3710         struct buf *bp;
3711         struct bqueues *dp;
3712         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3713         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3714 
3715         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3716                 count = 0;
3717                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3718                         counts[j] = 0;
3719 		crit_enter();
3720                 TAILQ_FOREACH(bp, dp, b_freelist) {
3721                         counts[bp->b_bufsize/PAGE_SIZE]++;
3722                         count++;
3723                 }
3724 		crit_exit();
3725                 kprintf("%s: total-%d", bname[i], count);
3726                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3727                         if (counts[j] != 0)
3728                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
3729                 kprintf("\n");
3730         }
3731 }
3732 #endif
3733 
3734 #ifdef DDB
3735 
3736 DB_SHOW_COMMAND(buffer, db_show_buffer)
3737 {
3738 	/* get args */
3739 	struct buf *bp = (struct buf *)addr;
3740 
3741 	if (!have_addr) {
3742 		db_printf("usage: show buffer <addr>\n");
3743 		return;
3744 	}
3745 
3746 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3747 	db_printf("b_cmd = %d\n", bp->b_cmd);
3748 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3749 		  "b_resid = %d\n, b_data = %p, "
3750 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3751 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3752 		  bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1));
3753 	if (bp->b_xio.xio_npages) {
3754 		int i;
3755 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3756 			bp->b_xio.xio_npages);
3757 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3758 			vm_page_t m;
3759 			m = bp->b_xio.xio_pages[i];
3760 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3761 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3762 			if ((i + 1) < bp->b_xio.xio_npages)
3763 				db_printf(",");
3764 		}
3765 		db_printf("\n");
3766 	}
3767 }
3768 #endif /* DDB */
3769