xref: /dragonfly/sys/kern/vfs_bio.c (revision 984263bc)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/eventhandler.h>
35 #include <sys/lock.h>
36 #include <sys/malloc.h>
37 #include <sys/mount.h>
38 #include <sys/kernel.h>
39 #include <sys/kthread.h>
40 #include <sys/proc.h>
41 #include <sys/reboot.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sysctl.h>
44 #include <sys/vmmeter.h>
45 #include <sys/vnode.h>
46 #include <vm/vm.h>
47 #include <vm/vm_param.h>
48 #include <vm/vm_kern.h>
49 #include <vm/vm_pageout.h>
50 #include <vm/vm_page.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_map.h>
54 
55 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
56 
57 struct	bio_ops bioops;		/* I/O operation notification */
58 
59 struct buf *buf;		/* buffer header pool */
60 struct swqueue bswlist;
61 
62 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
63 		vm_offset_t to);
64 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
65 		vm_offset_t to);
66 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
67 			       int pageno, vm_page_t m);
68 static void vfs_clean_pages(struct buf * bp);
69 static void vfs_setdirty(struct buf *bp);
70 static void vfs_vmio_release(struct buf *bp);
71 static void vfs_backgroundwritedone(struct buf *bp);
72 static int flushbufqueues(void);
73 
74 static int bd_request;
75 
76 static void buf_daemon __P((void));
77 /*
78  * bogus page -- for I/O to/from partially complete buffers
79  * this is a temporary solution to the problem, but it is not
80  * really that bad.  it would be better to split the buffer
81  * for input in the case of buffers partially already in memory,
82  * but the code is intricate enough already.
83  */
84 vm_page_t bogus_page;
85 int vmiodirenable = TRUE;
86 int runningbufspace;
87 static vm_offset_t bogus_offset;
88 
89 static int bufspace, maxbufspace,
90 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
91 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
92 static int needsbuffer;
93 static int lorunningspace, hirunningspace, runningbufreq;
94 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
95 static int numfreebuffers, lofreebuffers, hifreebuffers;
96 static int getnewbufcalls;
97 static int getnewbufrestarts;
98 
99 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
100 	&numdirtybuffers, 0, "");
101 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
102 	&lodirtybuffers, 0, "");
103 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
104 	&hidirtybuffers, 0, "");
105 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
106 	&numfreebuffers, 0, "");
107 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
108 	&lofreebuffers, 0, "");
109 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
110 	&hifreebuffers, 0, "");
111 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
112 	&runningbufspace, 0, "");
113 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
114 	&lorunningspace, 0, "");
115 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
116 	&hirunningspace, 0, "");
117 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
118 	&maxbufspace, 0, "");
119 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
120 	&hibufspace, 0, "");
121 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
122 	&lobufspace, 0, "");
123 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
124 	&bufspace, 0, "");
125 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
126 	&maxbufmallocspace, 0, "");
127 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
128 	&bufmallocspace, 0, "");
129 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
130 	&getnewbufcalls, 0, "");
131 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
132 	&getnewbufrestarts, 0, "");
133 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
134 	&vmiodirenable, 0, "");
135 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
136 	&bufdefragcnt, 0, "");
137 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
138 	&buffreekvacnt, 0, "");
139 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
140 	&bufreusecnt, 0, "");
141 
142 static int bufhashmask;
143 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
144 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
145 char *buf_wmesg = BUF_WMESG;
146 
147 extern int vm_swap_size;
148 
149 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
150 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
151 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
152 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
153 
154 /*
155  * Buffer hash table code.  Note that the logical block scans linearly, which
156  * gives us some L1 cache locality.
157  */
158 
159 static __inline
160 struct bufhashhdr *
161 bufhash(struct vnode *vnp, daddr_t bn)
162 {
163 	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
164 }
165 
166 /*
167  *	numdirtywakeup:
168  *
169  *	If someone is blocked due to there being too many dirty buffers,
170  *	and numdirtybuffers is now reasonable, wake them up.
171  */
172 
173 static __inline void
174 numdirtywakeup(int level)
175 {
176 	if (numdirtybuffers <= level) {
177 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
178 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
179 			wakeup(&needsbuffer);
180 		}
181 	}
182 }
183 
184 /*
185  *	bufspacewakeup:
186  *
187  *	Called when buffer space is potentially available for recovery.
188  *	getnewbuf() will block on this flag when it is unable to free
189  *	sufficient buffer space.  Buffer space becomes recoverable when
190  *	bp's get placed back in the queues.
191  */
192 
193 static __inline void
194 bufspacewakeup(void)
195 {
196 	/*
197 	 * If someone is waiting for BUF space, wake them up.  Even
198 	 * though we haven't freed the kva space yet, the waiting
199 	 * process will be able to now.
200 	 */
201 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
202 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
203 		wakeup(&needsbuffer);
204 	}
205 }
206 
207 /*
208  * runningbufwakeup() - in-progress I/O accounting.
209  *
210  */
211 static __inline void
212 runningbufwakeup(struct buf *bp)
213 {
214 	if (bp->b_runningbufspace) {
215 		runningbufspace -= bp->b_runningbufspace;
216 		bp->b_runningbufspace = 0;
217 		if (runningbufreq && runningbufspace <= lorunningspace) {
218 			runningbufreq = 0;
219 			wakeup(&runningbufreq);
220 		}
221 	}
222 }
223 
224 /*
225  *	bufcountwakeup:
226  *
227  *	Called when a buffer has been added to one of the free queues to
228  *	account for the buffer and to wakeup anyone waiting for free buffers.
229  *	This typically occurs when large amounts of metadata are being handled
230  *	by the buffer cache ( else buffer space runs out first, usually ).
231  */
232 
233 static __inline void
234 bufcountwakeup(void)
235 {
236 	++numfreebuffers;
237 	if (needsbuffer) {
238 		needsbuffer &= ~VFS_BIO_NEED_ANY;
239 		if (numfreebuffers >= hifreebuffers)
240 			needsbuffer &= ~VFS_BIO_NEED_FREE;
241 		wakeup(&needsbuffer);
242 	}
243 }
244 
245 /*
246  *	waitrunningbufspace()
247  *
248  *	runningbufspace is a measure of the amount of I/O currently
249  *	running.  This routine is used in async-write situations to
250  *	prevent creating huge backups of pending writes to a device.
251  *	Only asynchronous writes are governed by this function.
252  *
253  *	Reads will adjust runningbufspace, but will not block based on it.
254  *	The read load has a side effect of reducing the allowed write load.
255  *
256  *	This does NOT turn an async write into a sync write.  It waits
257  *	for earlier writes to complete and generally returns before the
258  *	caller's write has reached the device.
259  */
260 static __inline void
261 waitrunningbufspace(void)
262 {
263 	while (runningbufspace > hirunningspace) {
264 		int s;
265 
266 		s = splbio();	/* fix race against interrupt/biodone() */
267 		++runningbufreq;
268 		tsleep(&runningbufreq, PVM, "wdrain", 0);
269 		splx(s);
270 	}
271 }
272 
273 /*
274  *	vfs_buf_test_cache:
275  *
276  *	Called when a buffer is extended.  This function clears the B_CACHE
277  *	bit if the newly extended portion of the buffer does not contain
278  *	valid data.
279  */
280 static __inline__
281 void
282 vfs_buf_test_cache(struct buf *bp,
283 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
284 		  vm_page_t m)
285 {
286 	if (bp->b_flags & B_CACHE) {
287 		int base = (foff + off) & PAGE_MASK;
288 		if (vm_page_is_valid(m, base, size) == 0)
289 			bp->b_flags &= ~B_CACHE;
290 	}
291 }
292 
293 static __inline__
294 void
295 bd_wakeup(int dirtybuflevel)
296 {
297 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
298 		bd_request = 1;
299 		wakeup(&bd_request);
300 	}
301 }
302 
303 /*
304  * bd_speedup - speedup the buffer cache flushing code
305  */
306 
307 static __inline__
308 void
309 bd_speedup(void)
310 {
311 	bd_wakeup(1);
312 }
313 
314 /*
315  * Initialize buffer headers and related structures.
316  */
317 
318 caddr_t
319 bufhashinit(caddr_t vaddr)
320 {
321 	/* first, make a null hash table */
322 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
323 		;
324 	bufhashtbl = (void *)vaddr;
325 	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
326 	--bufhashmask;
327 	return(vaddr);
328 }
329 
330 void
331 bufinit(void)
332 {
333 	struct buf *bp;
334 	int i;
335 
336 	TAILQ_INIT(&bswlist);
337 	LIST_INIT(&invalhash);
338 	simple_lock_init(&buftimelock);
339 
340 	for (i = 0; i <= bufhashmask; i++)
341 		LIST_INIT(&bufhashtbl[i]);
342 
343 	/* next, make a null set of free lists */
344 	for (i = 0; i < BUFFER_QUEUES; i++)
345 		TAILQ_INIT(&bufqueues[i]);
346 
347 	/* finally, initialize each buffer header and stick on empty q */
348 	for (i = 0; i < nbuf; i++) {
349 		bp = &buf[i];
350 		bzero(bp, sizeof *bp);
351 		bp->b_flags = B_INVAL;	/* we're just an empty header */
352 		bp->b_dev = NODEV;
353 		bp->b_rcred = NOCRED;
354 		bp->b_wcred = NOCRED;
355 		bp->b_qindex = QUEUE_EMPTY;
356 		bp->b_xflags = 0;
357 		LIST_INIT(&bp->b_dep);
358 		BUF_LOCKINIT(bp);
359 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
360 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
361 	}
362 
363 	/*
364 	 * maxbufspace is the absolute maximum amount of buffer space we are
365 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
366 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
367 	 * used by most other processes.  The differential is required to
368 	 * ensure that buf_daemon is able to run when other processes might
369 	 * be blocked waiting for buffer space.
370 	 *
371 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
372 	 * this may result in KVM fragmentation which is not handled optimally
373 	 * by the system.
374 	 */
375 	maxbufspace = nbuf * BKVASIZE;
376 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
377 	lobufspace = hibufspace - MAXBSIZE;
378 
379 	lorunningspace = 512 * 1024;
380 	hirunningspace = 1024 * 1024;
381 
382 /*
383  * Limit the amount of malloc memory since it is wired permanently into
384  * the kernel space.  Even though this is accounted for in the buffer
385  * allocation, we don't want the malloced region to grow uncontrolled.
386  * The malloc scheme improves memory utilization significantly on average
387  * (small) directories.
388  */
389 	maxbufmallocspace = hibufspace / 20;
390 
391 /*
392  * Reduce the chance of a deadlock occuring by limiting the number
393  * of delayed-write dirty buffers we allow to stack up.
394  */
395 	hidirtybuffers = nbuf / 4 + 20;
396 	numdirtybuffers = 0;
397 /*
398  * To support extreme low-memory systems, make sure hidirtybuffers cannot
399  * eat up all available buffer space.  This occurs when our minimum cannot
400  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
401  * BKVASIZE'd (8K) buffers.
402  */
403 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
404 		hidirtybuffers >>= 1;
405 	}
406 	lodirtybuffers = hidirtybuffers / 2;
407 
408 /*
409  * Try to keep the number of free buffers in the specified range,
410  * and give special processes (e.g. like buf_daemon) access to an
411  * emergency reserve.
412  */
413 	lofreebuffers = nbuf / 18 + 5;
414 	hifreebuffers = 2 * lofreebuffers;
415 	numfreebuffers = nbuf;
416 
417 /*
418  * Maximum number of async ops initiated per buf_daemon loop.  This is
419  * somewhat of a hack at the moment, we really need to limit ourselves
420  * based on the number of bytes of I/O in-transit that were initiated
421  * from buf_daemon.
422  */
423 
424 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
425 	bogus_page = vm_page_alloc(kernel_object,
426 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
427 			VM_ALLOC_NORMAL);
428 	cnt.v_wire_count++;
429 
430 }
431 
432 /*
433  * bfreekva() - free the kva allocation for a buffer.
434  *
435  *	Must be called at splbio() or higher as this is the only locking for
436  *	buffer_map.
437  *
438  *	Since this call frees up buffer space, we call bufspacewakeup().
439  */
440 static void
441 bfreekva(struct buf * bp)
442 {
443 	if (bp->b_kvasize) {
444 		++buffreekvacnt;
445 		vm_map_lock(buffer_map);
446 		bufspace -= bp->b_kvasize;
447 		vm_map_delete(buffer_map,
448 		    (vm_offset_t) bp->b_kvabase,
449 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
450 		);
451 		vm_map_unlock(buffer_map);
452 		bp->b_kvasize = 0;
453 		bufspacewakeup();
454 	}
455 }
456 
457 /*
458  *	bremfree:
459  *
460  *	Remove the buffer from the appropriate free list.
461  */
462 void
463 bremfree(struct buf * bp)
464 {
465 	int s = splbio();
466 	int old_qindex = bp->b_qindex;
467 
468 	if (bp->b_qindex != QUEUE_NONE) {
469 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
470 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
471 		bp->b_qindex = QUEUE_NONE;
472 	} else {
473 		if (BUF_REFCNT(bp) <= 1)
474 			panic("bremfree: removing a buffer not on a queue");
475 	}
476 
477 	/*
478 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
479 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
480 	 * the buffer was free and we must decrement numfreebuffers.
481 	 */
482 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
483 		switch(old_qindex) {
484 		case QUEUE_DIRTY:
485 		case QUEUE_CLEAN:
486 		case QUEUE_EMPTY:
487 		case QUEUE_EMPTYKVA:
488 			--numfreebuffers;
489 			break;
490 		default:
491 			break;
492 		}
493 	}
494 	splx(s);
495 }
496 
497 
498 /*
499  * Get a buffer with the specified data.  Look in the cache first.  We
500  * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
501  * is set, the buffer is valid and we do not have to do anything ( see
502  * getblk() ).
503  */
504 int
505 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
506     struct buf ** bpp)
507 {
508 	struct buf *bp;
509 
510 	bp = getblk(vp, blkno, size, 0, 0);
511 	*bpp = bp;
512 
513 	/* if not found in cache, do some I/O */
514 	if ((bp->b_flags & B_CACHE) == 0) {
515 		if (curproc != NULL)
516 			curproc->p_stats->p_ru.ru_inblock++;
517 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
518 		bp->b_flags |= B_READ;
519 		bp->b_flags &= ~(B_ERROR | B_INVAL);
520 		if (bp->b_rcred == NOCRED) {
521 			if (cred != NOCRED)
522 				crhold(cred);
523 			bp->b_rcred = cred;
524 		}
525 		vfs_busy_pages(bp, 0);
526 		VOP_STRATEGY(vp, bp);
527 		return (biowait(bp));
528 	}
529 	return (0);
530 }
531 
532 /*
533  * Operates like bread, but also starts asynchronous I/O on
534  * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
535  * to initiating I/O . If B_CACHE is set, the buffer is valid
536  * and we do not have to do anything.
537  */
538 int
539 breadn(struct vnode * vp, daddr_t blkno, int size,
540     daddr_t * rablkno, int *rabsize,
541     int cnt, struct ucred * cred, struct buf ** bpp)
542 {
543 	struct buf *bp, *rabp;
544 	int i;
545 	int rv = 0, readwait = 0;
546 
547 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
548 
549 	/* if not found in cache, do some I/O */
550 	if ((bp->b_flags & B_CACHE) == 0) {
551 		if (curproc != NULL)
552 			curproc->p_stats->p_ru.ru_inblock++;
553 		bp->b_flags |= B_READ;
554 		bp->b_flags &= ~(B_ERROR | B_INVAL);
555 		if (bp->b_rcred == NOCRED) {
556 			if (cred != NOCRED)
557 				crhold(cred);
558 			bp->b_rcred = cred;
559 		}
560 		vfs_busy_pages(bp, 0);
561 		VOP_STRATEGY(vp, bp);
562 		++readwait;
563 	}
564 
565 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
566 		if (inmem(vp, *rablkno))
567 			continue;
568 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
569 
570 		if ((rabp->b_flags & B_CACHE) == 0) {
571 			if (curproc != NULL)
572 				curproc->p_stats->p_ru.ru_inblock++;
573 			rabp->b_flags |= B_READ | B_ASYNC;
574 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
575 			if (rabp->b_rcred == NOCRED) {
576 				if (cred != NOCRED)
577 					crhold(cred);
578 				rabp->b_rcred = cred;
579 			}
580 			vfs_busy_pages(rabp, 0);
581 			BUF_KERNPROC(rabp);
582 			VOP_STRATEGY(vp, rabp);
583 		} else {
584 			brelse(rabp);
585 		}
586 	}
587 
588 	if (readwait) {
589 		rv = biowait(bp);
590 	}
591 	return (rv);
592 }
593 
594 /*
595  * Write, release buffer on completion.  (Done by iodone
596  * if async).  Do not bother writing anything if the buffer
597  * is invalid.
598  *
599  * Note that we set B_CACHE here, indicating that buffer is
600  * fully valid and thus cacheable.  This is true even of NFS
601  * now so we set it generally.  This could be set either here
602  * or in biodone() since the I/O is synchronous.  We put it
603  * here.
604  */
605 int
606 bwrite(struct buf * bp)
607 {
608 	int oldflags, s;
609 	struct buf *newbp;
610 
611 	if (bp->b_flags & B_INVAL) {
612 		brelse(bp);
613 		return (0);
614 	}
615 
616 	oldflags = bp->b_flags;
617 
618 	if (BUF_REFCNT(bp) == 0)
619 		panic("bwrite: buffer is not busy???");
620 	s = splbio();
621 	/*
622 	 * If a background write is already in progress, delay
623 	 * writing this block if it is asynchronous. Otherwise
624 	 * wait for the background write to complete.
625 	 */
626 	if (bp->b_xflags & BX_BKGRDINPROG) {
627 		if (bp->b_flags & B_ASYNC) {
628 			splx(s);
629 			bdwrite(bp);
630 			return (0);
631 		}
632 		bp->b_xflags |= BX_BKGRDWAIT;
633 		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
634 		if (bp->b_xflags & BX_BKGRDINPROG)
635 			panic("bwrite: still writing");
636 	}
637 
638 	/* Mark the buffer clean */
639 	bundirty(bp);
640 
641 	/*
642 	 * If this buffer is marked for background writing and we
643 	 * do not have to wait for it, make a copy and write the
644 	 * copy so as to leave this buffer ready for further use.
645 	 *
646 	 * This optimization eats a lot of memory.  If we have a page
647 	 * or buffer shortfull we can't do it.
648 	 */
649 	if ((bp->b_xflags & BX_BKGRDWRITE) &&
650 	    (bp->b_flags & B_ASYNC) &&
651 	    !vm_page_count_severe() &&
652 	    !buf_dirty_count_severe()) {
653 		if (bp->b_flags & B_CALL)
654 			panic("bwrite: need chained iodone");
655 
656 		/* get a new block */
657 		newbp = geteblk(bp->b_bufsize);
658 
659 		/* set it to be identical to the old block */
660 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
661 		bgetvp(bp->b_vp, newbp);
662 		newbp->b_lblkno = bp->b_lblkno;
663 		newbp->b_blkno = bp->b_blkno;
664 		newbp->b_offset = bp->b_offset;
665 		newbp->b_iodone = vfs_backgroundwritedone;
666 		newbp->b_flags |= B_ASYNC | B_CALL;
667 		newbp->b_flags &= ~B_INVAL;
668 
669 		/* move over the dependencies */
670 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
671 			(*bioops.io_movedeps)(bp, newbp);
672 
673 		/*
674 		 * Initiate write on the copy, release the original to
675 		 * the B_LOCKED queue so that it cannot go away until
676 		 * the background write completes. If not locked it could go
677 		 * away and then be reconstituted while it was being written.
678 		 * If the reconstituted buffer were written, we could end up
679 		 * with two background copies being written at the same time.
680 		 */
681 		bp->b_xflags |= BX_BKGRDINPROG;
682 		bp->b_flags |= B_LOCKED;
683 		bqrelse(bp);
684 		bp = newbp;
685 	}
686 
687 	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
688 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
689 
690 	bp->b_vp->v_numoutput++;
691 	vfs_busy_pages(bp, 1);
692 
693 	/*
694 	 * Normal bwrites pipeline writes
695 	 */
696 	bp->b_runningbufspace = bp->b_bufsize;
697 	runningbufspace += bp->b_runningbufspace;
698 
699 	if (curproc != NULL)
700 		curproc->p_stats->p_ru.ru_oublock++;
701 	splx(s);
702 	if (oldflags & B_ASYNC)
703 		BUF_KERNPROC(bp);
704 	VOP_STRATEGY(bp->b_vp, bp);
705 
706 	if ((oldflags & B_ASYNC) == 0) {
707 		int rtval = biowait(bp);
708 		brelse(bp);
709 		return (rtval);
710 	} else if ((oldflags & B_NOWDRAIN) == 0) {
711 		/*
712 		 * don't allow the async write to saturate the I/O
713 		 * system.  Deadlocks can occur only if a device strategy
714 		 * routine (like in VN) turns around and issues another
715 		 * high-level write, in which case B_NOWDRAIN is expected
716 		 * to be set.   Otherwise we will not deadlock here because
717 		 * we are blocking waiting for I/O that is already in-progress
718 		 * to complete.
719 		 */
720 		waitrunningbufspace();
721 	}
722 
723 	return (0);
724 }
725 
726 /*
727  * Complete a background write started from bwrite.
728  */
729 static void
730 vfs_backgroundwritedone(bp)
731 	struct buf *bp;
732 {
733 	struct buf *origbp;
734 
735 	/*
736 	 * Find the original buffer that we are writing.
737 	 */
738 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
739 		panic("backgroundwritedone: lost buffer");
740 	/*
741 	 * Process dependencies then return any unfinished ones.
742 	 */
743 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
744 		(*bioops.io_complete)(bp);
745 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
746 		(*bioops.io_movedeps)(bp, origbp);
747 	/*
748 	 * Clear the BX_BKGRDINPROG flag in the original buffer
749 	 * and awaken it if it is waiting for the write to complete.
750 	 * If BX_BKGRDINPROG is not set in the original buffer it must
751 	 * have been released and re-instantiated - which is not legal.
752 	 */
753 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
754 	origbp->b_xflags &= ~BX_BKGRDINPROG;
755 	if (origbp->b_xflags & BX_BKGRDWAIT) {
756 		origbp->b_xflags &= ~BX_BKGRDWAIT;
757 		wakeup(&origbp->b_xflags);
758 	}
759 	/*
760 	 * Clear the B_LOCKED flag and remove it from the locked
761 	 * queue if it currently resides there.
762 	 */
763 	origbp->b_flags &= ~B_LOCKED;
764 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
765 		bremfree(origbp);
766 		bqrelse(origbp);
767 	}
768 	/*
769 	 * This buffer is marked B_NOCACHE, so when it is released
770 	 * by biodone, it will be tossed. We mark it with B_READ
771 	 * to avoid biodone doing a second vwakeup.
772 	 */
773 	bp->b_flags |= B_NOCACHE | B_READ;
774 	bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE);
775 	bp->b_iodone = 0;
776 	biodone(bp);
777 }
778 
779 /*
780  * Delayed write. (Buffer is marked dirty).  Do not bother writing
781  * anything if the buffer is marked invalid.
782  *
783  * Note that since the buffer must be completely valid, we can safely
784  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
785  * biodone() in order to prevent getblk from writing the buffer
786  * out synchronously.
787  */
788 void
789 bdwrite(struct buf * bp)
790 {
791 	if (BUF_REFCNT(bp) == 0)
792 		panic("bdwrite: buffer is not busy");
793 
794 	if (bp->b_flags & B_INVAL) {
795 		brelse(bp);
796 		return;
797 	}
798 	bdirty(bp);
799 
800 	/*
801 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
802 	 * true even of NFS now.
803 	 */
804 	bp->b_flags |= B_CACHE;
805 
806 	/*
807 	 * This bmap keeps the system from needing to do the bmap later,
808 	 * perhaps when the system is attempting to do a sync.  Since it
809 	 * is likely that the indirect block -- or whatever other datastructure
810 	 * that the filesystem needs is still in memory now, it is a good
811 	 * thing to do this.  Note also, that if the pageout daemon is
812 	 * requesting a sync -- there might not be enough memory to do
813 	 * the bmap then...  So, this is important to do.
814 	 */
815 	if (bp->b_lblkno == bp->b_blkno) {
816 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
817 	}
818 
819 	/*
820 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
821 	 */
822 	vfs_setdirty(bp);
823 
824 	/*
825 	 * We need to do this here to satisfy the vnode_pager and the
826 	 * pageout daemon, so that it thinks that the pages have been
827 	 * "cleaned".  Note that since the pages are in a delayed write
828 	 * buffer -- the VFS layer "will" see that the pages get written
829 	 * out on the next sync, or perhaps the cluster will be completed.
830 	 */
831 	vfs_clean_pages(bp);
832 	bqrelse(bp);
833 
834 	/*
835 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
836 	 * buffers (midpoint between our recovery point and our stall
837 	 * point).
838 	 */
839 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
840 
841 	/*
842 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
843 	 * due to the softdep code.
844 	 */
845 }
846 
847 /*
848  *	bdirty:
849  *
850  *	Turn buffer into delayed write request.  We must clear B_READ and
851  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
852  *	itself to properly update it in the dirty/clean lists.  We mark it
853  *	B_DONE to ensure that any asynchronization of the buffer properly
854  *	clears B_DONE ( else a panic will occur later ).
855  *
856  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
857  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
858  *	should only be called if the buffer is known-good.
859  *
860  *	Since the buffer is not on a queue, we do not update the numfreebuffers
861  *	count.
862  *
863  *	Must be called at splbio().
864  *	The buffer must be on QUEUE_NONE.
865  */
866 void
867 bdirty(bp)
868 	struct buf *bp;
869 {
870 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
871 	bp->b_flags &= ~(B_READ|B_RELBUF);
872 
873 	if ((bp->b_flags & B_DELWRI) == 0) {
874 		bp->b_flags |= B_DONE | B_DELWRI;
875 		reassignbuf(bp, bp->b_vp);
876 		++numdirtybuffers;
877 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
878 	}
879 }
880 
881 /*
882  *	bundirty:
883  *
884  *	Clear B_DELWRI for buffer.
885  *
886  *	Since the buffer is not on a queue, we do not update the numfreebuffers
887  *	count.
888  *
889  *	Must be called at splbio().
890  *	The buffer must be on QUEUE_NONE.
891  */
892 
893 void
894 bundirty(bp)
895 	struct buf *bp;
896 {
897 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
898 
899 	if (bp->b_flags & B_DELWRI) {
900 		bp->b_flags &= ~B_DELWRI;
901 		reassignbuf(bp, bp->b_vp);
902 		--numdirtybuffers;
903 		numdirtywakeup(lodirtybuffers);
904 	}
905 	/*
906 	 * Since it is now being written, we can clear its deferred write flag.
907 	 */
908 	bp->b_flags &= ~B_DEFERRED;
909 }
910 
911 /*
912  *	bawrite:
913  *
914  *	Asynchronous write.  Start output on a buffer, but do not wait for
915  *	it to complete.  The buffer is released when the output completes.
916  *
917  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
918  *	B_INVAL buffers.  Not us.
919  */
920 void
921 bawrite(struct buf * bp)
922 {
923 	bp->b_flags |= B_ASYNC;
924 	(void) VOP_BWRITE(bp->b_vp, bp);
925 }
926 
927 /*
928  *	bowrite:
929  *
930  *	Ordered write.  Start output on a buffer, and flag it so that the
931  *	device will write it in the order it was queued.  The buffer is
932  *	released when the output completes.  bwrite() ( or the VOP routine
933  *	anyway ) is responsible for handling B_INVAL buffers.
934  */
935 int
936 bowrite(struct buf * bp)
937 {
938 	bp->b_flags |= B_ORDERED | B_ASYNC;
939 	return (VOP_BWRITE(bp->b_vp, bp));
940 }
941 
942 /*
943  *	bwillwrite:
944  *
945  *	Called prior to the locking of any vnodes when we are expecting to
946  *	write.  We do not want to starve the buffer cache with too many
947  *	dirty buffers so we block here.  By blocking prior to the locking
948  *	of any vnodes we attempt to avoid the situation where a locked vnode
949  *	prevents the various system daemons from flushing related buffers.
950  */
951 
952 void
953 bwillwrite(void)
954 {
955 	if (numdirtybuffers >= hidirtybuffers) {
956 		int s;
957 
958 		s = splbio();
959 		while (numdirtybuffers >= hidirtybuffers) {
960 			bd_wakeup(1);
961 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
962 			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
963 		}
964 		splx(s);
965 	}
966 }
967 
968 /*
969  * Return true if we have too many dirty buffers.
970  */
971 int
972 buf_dirty_count_severe(void)
973 {
974 	return(numdirtybuffers >= hidirtybuffers);
975 }
976 
977 /*
978  *	brelse:
979  *
980  *	Release a busy buffer and, if requested, free its resources.  The
981  *	buffer will be stashed in the appropriate bufqueue[] allowing it
982  *	to be accessed later as a cache entity or reused for other purposes.
983  */
984 void
985 brelse(struct buf * bp)
986 {
987 	int s;
988 
989 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
990 
991 	s = splbio();
992 
993 	if (bp->b_flags & B_LOCKED)
994 		bp->b_flags &= ~B_ERROR;
995 
996 	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
997 		/*
998 		 * Failed write, redirty.  Must clear B_ERROR to prevent
999 		 * pages from being scrapped.  If B_INVAL is set then
1000 		 * this case is not run and the next case is run to
1001 		 * destroy the buffer.  B_INVAL can occur if the buffer
1002 		 * is outside the range supported by the underlying device.
1003 		 */
1004 		bp->b_flags &= ~B_ERROR;
1005 		bdirty(bp);
1006 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
1007 	    (bp->b_bufsize <= 0)) {
1008 		/*
1009 		 * Either a failed I/O or we were asked to free or not
1010 		 * cache the buffer.
1011 		 */
1012 		bp->b_flags |= B_INVAL;
1013 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1014 			(*bioops.io_deallocate)(bp);
1015 		if (bp->b_flags & B_DELWRI) {
1016 			--numdirtybuffers;
1017 			numdirtywakeup(lodirtybuffers);
1018 		}
1019 		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
1020 		if ((bp->b_flags & B_VMIO) == 0) {
1021 			if (bp->b_bufsize)
1022 				allocbuf(bp, 0);
1023 			if (bp->b_vp)
1024 				brelvp(bp);
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1030 	 * is called with B_DELWRI set, the underlying pages may wind up
1031 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1032 	 * because pages associated with a B_DELWRI bp are marked clean.
1033 	 *
1034 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1035 	 * if B_DELWRI is set.
1036 	 *
1037 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1038 	 * on pages to return pages to the VM page queues.
1039 	 */
1040 	if (bp->b_flags & B_DELWRI)
1041 		bp->b_flags &= ~B_RELBUF;
1042 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1043 		bp->b_flags |= B_RELBUF;
1044 
1045 	/*
1046 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1047 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1048 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1049 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1050 	 *
1051 	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1052 	 * invalidated.  B_ERROR cannot be set for a failed write unless the
1053 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1054 	 *
1055 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1056 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1057 	 * the commit state and we cannot afford to lose the buffer. If the
1058 	 * buffer has a background write in progress, we need to keep it
1059 	 * around to prevent it from being reconstituted and starting a second
1060 	 * background write.
1061 	 */
1062 	if ((bp->b_flags & B_VMIO)
1063 	    && !(bp->b_vp->v_tag == VT_NFS &&
1064 		 !vn_isdisk(bp->b_vp, NULL) &&
1065 		 (bp->b_flags & B_DELWRI))
1066 	    ) {
1067 
1068 		int i, j, resid;
1069 		vm_page_t m;
1070 		off_t foff;
1071 		vm_pindex_t poff;
1072 		vm_object_t obj;
1073 		struct vnode *vp;
1074 
1075 		vp = bp->b_vp;
1076 
1077 		/*
1078 		 * Get the base offset and length of the buffer.  Note that
1079 		 * in the VMIO case if the buffer block size is not
1080 		 * page-aligned then b_data pointer may not be page-aligned.
1081 		 * But our b_pages[] array *IS* page aligned.
1082 		 *
1083 		 * block sizes less then DEV_BSIZE (usually 512) are not
1084 		 * supported due to the page granularity bits (m->valid,
1085 		 * m->dirty, etc...).
1086 		 *
1087 		 * See man buf(9) for more information
1088 		 */
1089 
1090 		resid = bp->b_bufsize;
1091 		foff = bp->b_offset;
1092 
1093 		for (i = 0; i < bp->b_npages; i++) {
1094 			m = bp->b_pages[i];
1095 			vm_page_flag_clear(m, PG_ZERO);
1096 			/*
1097 			 * If we hit a bogus page, fixup *all* of them
1098 			 * now.
1099 			 */
1100 			if (m == bogus_page) {
1101 				VOP_GETVOBJECT(vp, &obj);
1102 				poff = OFF_TO_IDX(bp->b_offset);
1103 
1104 				for (j = i; j < bp->b_npages; j++) {
1105 					vm_page_t mtmp;
1106 
1107 					mtmp = bp->b_pages[j];
1108 					if (mtmp == bogus_page) {
1109 						mtmp = vm_page_lookup(obj, poff + j);
1110 						if (!mtmp) {
1111 							panic("brelse: page missing\n");
1112 						}
1113 						bp->b_pages[j] = mtmp;
1114 					}
1115 				}
1116 
1117 				if ((bp->b_flags & B_INVAL) == 0) {
1118 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1119 				}
1120 				m = bp->b_pages[i];
1121 			}
1122 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1123 				int poffset = foff & PAGE_MASK;
1124 				int presid = resid > (PAGE_SIZE - poffset) ?
1125 					(PAGE_SIZE - poffset) : resid;
1126 
1127 				KASSERT(presid >= 0, ("brelse: extra page"));
1128 				vm_page_set_invalid(m, poffset, presid);
1129 			}
1130 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1131 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1132 		}
1133 
1134 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1135 			vfs_vmio_release(bp);
1136 
1137 	} else if (bp->b_flags & B_VMIO) {
1138 
1139 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1140 			vfs_vmio_release(bp);
1141 
1142 	}
1143 
1144 	if (bp->b_qindex != QUEUE_NONE)
1145 		panic("brelse: free buffer onto another queue???");
1146 	if (BUF_REFCNT(bp) > 1) {
1147 		/* Temporary panic to verify exclusive locking */
1148 		/* This panic goes away when we allow shared refs */
1149 		panic("brelse: multiple refs");
1150 		/* do not release to free list */
1151 		BUF_UNLOCK(bp);
1152 		splx(s);
1153 		return;
1154 	}
1155 
1156 	/* enqueue */
1157 
1158 	/* buffers with no memory */
1159 	if (bp->b_bufsize == 0) {
1160 		bp->b_flags |= B_INVAL;
1161 		bp->b_xflags &= ~BX_BKGRDWRITE;
1162 		if (bp->b_xflags & BX_BKGRDINPROG)
1163 			panic("losing buffer 1");
1164 		if (bp->b_kvasize) {
1165 			bp->b_qindex = QUEUE_EMPTYKVA;
1166 		} else {
1167 			bp->b_qindex = QUEUE_EMPTY;
1168 		}
1169 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1170 		LIST_REMOVE(bp, b_hash);
1171 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1172 		bp->b_dev = NODEV;
1173 	/* buffers with junk contents */
1174 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1175 		bp->b_flags |= B_INVAL;
1176 		bp->b_xflags &= ~BX_BKGRDWRITE;
1177 		if (bp->b_xflags & BX_BKGRDINPROG)
1178 			panic("losing buffer 2");
1179 		bp->b_qindex = QUEUE_CLEAN;
1180 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1181 		LIST_REMOVE(bp, b_hash);
1182 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1183 		bp->b_dev = NODEV;
1184 
1185 	/* buffers that are locked */
1186 	} else if (bp->b_flags & B_LOCKED) {
1187 		bp->b_qindex = QUEUE_LOCKED;
1188 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1189 
1190 	/* remaining buffers */
1191 	} else {
1192 		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1193 		case B_DELWRI | B_AGE:
1194 		    bp->b_qindex = QUEUE_DIRTY;
1195 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1196 		    break;
1197 		case B_DELWRI:
1198 		    bp->b_qindex = QUEUE_DIRTY;
1199 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1200 		    break;
1201 		case B_AGE:
1202 		    bp->b_qindex = QUEUE_CLEAN;
1203 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1204 		    break;
1205 		default:
1206 		    bp->b_qindex = QUEUE_CLEAN;
1207 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1208 		    break;
1209 		}
1210 	}
1211 
1212 	/*
1213 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1214 	 * on the correct queue.
1215 	 */
1216 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1217 		bundirty(bp);
1218 
1219 	/*
1220 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1221 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1222 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1223 	 * if B_INVAL is set ).
1224 	 */
1225 
1226 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1227 		bufcountwakeup();
1228 
1229 	/*
1230 	 * Something we can maybe free or reuse
1231 	 */
1232 	if (bp->b_bufsize || bp->b_kvasize)
1233 		bufspacewakeup();
1234 
1235 	/* unlock */
1236 	BUF_UNLOCK(bp);
1237 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1238 			B_DIRECT | B_NOWDRAIN);
1239 	splx(s);
1240 }
1241 
1242 /*
1243  * Release a buffer back to the appropriate queue but do not try to free
1244  * it.  The buffer is expected to be used again soon.
1245  *
1246  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1247  * biodone() to requeue an async I/O on completion.  It is also used when
1248  * known good buffers need to be requeued but we think we may need the data
1249  * again soon.
1250  *
1251  * XXX we should be able to leave the B_RELBUF hint set on completion.
1252  */
1253 void
1254 bqrelse(struct buf * bp)
1255 {
1256 	int s;
1257 
1258 	s = splbio();
1259 
1260 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1261 
1262 	if (bp->b_qindex != QUEUE_NONE)
1263 		panic("bqrelse: free buffer onto another queue???");
1264 	if (BUF_REFCNT(bp) > 1) {
1265 		/* do not release to free list */
1266 		panic("bqrelse: multiple refs");
1267 		BUF_UNLOCK(bp);
1268 		splx(s);
1269 		return;
1270 	}
1271 	if (bp->b_flags & B_LOCKED) {
1272 		bp->b_flags &= ~B_ERROR;
1273 		bp->b_qindex = QUEUE_LOCKED;
1274 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1275 		/* buffers with stale but valid contents */
1276 	} else if (bp->b_flags & B_DELWRI) {
1277 		bp->b_qindex = QUEUE_DIRTY;
1278 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1279 	} else if (vm_page_count_severe()) {
1280 		/*
1281 		 * We are too low on memory, we have to try to free the
1282 		 * buffer (most importantly: the wired pages making up its
1283 		 * backing store) *now*.
1284 		 */
1285 		splx(s);
1286 		brelse(bp);
1287 		return;
1288 	} else {
1289 		bp->b_qindex = QUEUE_CLEAN;
1290 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1291 	}
1292 
1293 	if ((bp->b_flags & B_LOCKED) == 0 &&
1294 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1295 		bufcountwakeup();
1296 	}
1297 
1298 	/*
1299 	 * Something we can maybe free or reuse.
1300 	 */
1301 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1302 		bufspacewakeup();
1303 
1304 	/* unlock */
1305 	BUF_UNLOCK(bp);
1306 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1307 	splx(s);
1308 }
1309 
1310 static void
1311 vfs_vmio_release(bp)
1312 	struct buf *bp;
1313 {
1314 	int i, s;
1315 	vm_page_t m;
1316 
1317 	s = splvm();
1318 	for (i = 0; i < bp->b_npages; i++) {
1319 		m = bp->b_pages[i];
1320 		bp->b_pages[i] = NULL;
1321 		/*
1322 		 * In order to keep page LRU ordering consistent, put
1323 		 * everything on the inactive queue.
1324 		 */
1325 		vm_page_unwire(m, 0);
1326 		/*
1327 		 * We don't mess with busy pages, it is
1328 		 * the responsibility of the process that
1329 		 * busied the pages to deal with them.
1330 		 */
1331 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1332 			continue;
1333 
1334 		if (m->wire_count == 0) {
1335 			vm_page_flag_clear(m, PG_ZERO);
1336 			/*
1337 			 * Might as well free the page if we can and it has
1338 			 * no valid data.  We also free the page if the
1339 			 * buffer was used for direct I/O.
1340 			 */
1341 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1342 				vm_page_busy(m);
1343 				vm_page_protect(m, VM_PROT_NONE);
1344 				vm_page_free(m);
1345 			} else if (bp->b_flags & B_DIRECT) {
1346 				vm_page_try_to_free(m);
1347 			} else if (vm_page_count_severe()) {
1348 				vm_page_try_to_cache(m);
1349 			}
1350 		}
1351 	}
1352 	splx(s);
1353 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1354 	if (bp->b_bufsize) {
1355 		bufspacewakeup();
1356 		bp->b_bufsize = 0;
1357 	}
1358 	bp->b_npages = 0;
1359 	bp->b_flags &= ~B_VMIO;
1360 	if (bp->b_vp)
1361 		brelvp(bp);
1362 }
1363 
1364 /*
1365  * Check to see if a block is currently memory resident.
1366  */
1367 struct buf *
1368 gbincore(struct vnode * vp, daddr_t blkno)
1369 {
1370 	struct buf *bp;
1371 	struct bufhashhdr *bh;
1372 
1373 	bh = bufhash(vp, blkno);
1374 
1375 	/* Search hash chain */
1376 	LIST_FOREACH(bp, bh, b_hash) {
1377 		/* hit */
1378 		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1379 		    (bp->b_flags & B_INVAL) == 0) {
1380 			break;
1381 		}
1382 	}
1383 	return (bp);
1384 }
1385 
1386 /*
1387  *	vfs_bio_awrite:
1388  *
1389  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1390  *	This is much better then the old way of writing only one buffer at
1391  *	a time.  Note that we may not be presented with the buffers in the
1392  *	correct order, so we search for the cluster in both directions.
1393  */
1394 int
1395 vfs_bio_awrite(struct buf * bp)
1396 {
1397 	int i;
1398 	int j;
1399 	daddr_t lblkno = bp->b_lblkno;
1400 	struct vnode *vp = bp->b_vp;
1401 	int s;
1402 	int ncl;
1403 	struct buf *bpa;
1404 	int nwritten;
1405 	int size;
1406 	int maxcl;
1407 
1408 	s = splbio();
1409 	/*
1410 	 * right now we support clustered writing only to regular files.  If
1411 	 * we find a clusterable block we could be in the middle of a cluster
1412 	 * rather then at the beginning.
1413 	 */
1414 	if ((vp->v_type == VREG) &&
1415 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1416 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1417 
1418 		size = vp->v_mount->mnt_stat.f_iosize;
1419 		maxcl = MAXPHYS / size;
1420 
1421 		for (i = 1; i < maxcl; i++) {
1422 			if ((bpa = gbincore(vp, lblkno + i)) &&
1423 			    BUF_REFCNT(bpa) == 0 &&
1424 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1425 			    (B_DELWRI | B_CLUSTEROK)) &&
1426 			    (bpa->b_bufsize == size)) {
1427 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1428 				    (bpa->b_blkno !=
1429 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1430 					break;
1431 			} else {
1432 				break;
1433 			}
1434 		}
1435 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1436 			if ((bpa = gbincore(vp, lblkno - j)) &&
1437 			    BUF_REFCNT(bpa) == 0 &&
1438 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1439 			    (B_DELWRI | B_CLUSTEROK)) &&
1440 			    (bpa->b_bufsize == size)) {
1441 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1442 				    (bpa->b_blkno !=
1443 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1444 					break;
1445 			} else {
1446 				break;
1447 			}
1448 		}
1449 		--j;
1450 		ncl = i + j;
1451 		/*
1452 		 * this is a possible cluster write
1453 		 */
1454 		if (ncl != 1) {
1455 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1456 			splx(s);
1457 			return nwritten;
1458 		}
1459 	}
1460 
1461 	BUF_LOCK(bp, LK_EXCLUSIVE);
1462 	bremfree(bp);
1463 	bp->b_flags |= B_ASYNC;
1464 
1465 	splx(s);
1466 	/*
1467 	 * default (old) behavior, writing out only one block
1468 	 *
1469 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1470 	 */
1471 	nwritten = bp->b_bufsize;
1472 	(void) VOP_BWRITE(bp->b_vp, bp);
1473 
1474 	return nwritten;
1475 }
1476 
1477 /*
1478  *	getnewbuf:
1479  *
1480  *	Find and initialize a new buffer header, freeing up existing buffers
1481  *	in the bufqueues as necessary.  The new buffer is returned locked.
1482  *
1483  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1484  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1485  *
1486  *	We block if:
1487  *		We have insufficient buffer headers
1488  *		We have insufficient buffer space
1489  *		buffer_map is too fragmented ( space reservation fails )
1490  *		If we have to flush dirty buffers ( but we try to avoid this )
1491  *
1492  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1493  *	Instead we ask the buf daemon to do it for us.  We attempt to
1494  *	avoid piecemeal wakeups of the pageout daemon.
1495  */
1496 
1497 static struct buf *
1498 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1499 {
1500 	struct buf *bp;
1501 	struct buf *nbp;
1502 	int defrag = 0;
1503 	int nqindex;
1504 	static int flushingbufs;
1505 
1506 	/*
1507 	 * We can't afford to block since we might be holding a vnode lock,
1508 	 * which may prevent system daemons from running.  We deal with
1509 	 * low-memory situations by proactively returning memory and running
1510 	 * async I/O rather then sync I/O.
1511 	 */
1512 
1513 	++getnewbufcalls;
1514 	--getnewbufrestarts;
1515 restart:
1516 	++getnewbufrestarts;
1517 
1518 	/*
1519 	 * Setup for scan.  If we do not have enough free buffers,
1520 	 * we setup a degenerate case that immediately fails.  Note
1521 	 * that if we are specially marked process, we are allowed to
1522 	 * dip into our reserves.
1523 	 *
1524 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1525 	 *
1526 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1527 	 * However, there are a number of cases (defragging, reusing, ...)
1528 	 * where we cannot backup.
1529 	 */
1530 	nqindex = QUEUE_EMPTYKVA;
1531 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1532 
1533 	if (nbp == NULL) {
1534 		/*
1535 		 * If no EMPTYKVA buffers and we are either
1536 		 * defragging or reusing, locate a CLEAN buffer
1537 		 * to free or reuse.  If bufspace useage is low
1538 		 * skip this step so we can allocate a new buffer.
1539 		 */
1540 		if (defrag || bufspace >= lobufspace) {
1541 			nqindex = QUEUE_CLEAN;
1542 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1543 		}
1544 
1545 		/*
1546 		 * If we could not find or were not allowed to reuse a
1547 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1548 		 * buffer.  We can only use an EMPTY buffer if allocating
1549 		 * its KVA would not otherwise run us out of buffer space.
1550 		 */
1551 		if (nbp == NULL && defrag == 0 &&
1552 		    bufspace + maxsize < hibufspace) {
1553 			nqindex = QUEUE_EMPTY;
1554 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1555 		}
1556 	}
1557 
1558 	/*
1559 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1560 	 * depending.
1561 	 */
1562 
1563 	while ((bp = nbp) != NULL) {
1564 		int qindex = nqindex;
1565 
1566 		/*
1567 		 * Calculate next bp ( we can only use it if we do not block
1568 		 * or do other fancy things ).
1569 		 */
1570 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1571 			switch(qindex) {
1572 			case QUEUE_EMPTY:
1573 				nqindex = QUEUE_EMPTYKVA;
1574 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1575 					break;
1576 				/* fall through */
1577 			case QUEUE_EMPTYKVA:
1578 				nqindex = QUEUE_CLEAN;
1579 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1580 					break;
1581 				/* fall through */
1582 			case QUEUE_CLEAN:
1583 				/*
1584 				 * nbp is NULL.
1585 				 */
1586 				break;
1587 			}
1588 		}
1589 
1590 		/*
1591 		 * Sanity Checks
1592 		 */
1593 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1594 
1595 		/*
1596 		 * Note: we no longer distinguish between VMIO and non-VMIO
1597 		 * buffers.
1598 		 */
1599 
1600 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1601 
1602 		/*
1603 		 * If we are defragging then we need a buffer with
1604 		 * b_kvasize != 0.  XXX this situation should no longer
1605 		 * occur, if defrag is non-zero the buffer's b_kvasize
1606 		 * should also be non-zero at this point.  XXX
1607 		 */
1608 		if (defrag && bp->b_kvasize == 0) {
1609 			printf("Warning: defrag empty buffer %p\n", bp);
1610 			continue;
1611 		}
1612 
1613 		/*
1614 		 * Start freeing the bp.  This is somewhat involved.  nbp
1615 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1616 		 */
1617 
1618 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1619 			panic("getnewbuf: locked buf");
1620 		bremfree(bp);
1621 
1622 		if (qindex == QUEUE_CLEAN) {
1623 			if (bp->b_flags & B_VMIO) {
1624 				bp->b_flags &= ~B_ASYNC;
1625 				vfs_vmio_release(bp);
1626 			}
1627 			if (bp->b_vp)
1628 				brelvp(bp);
1629 		}
1630 
1631 		/*
1632 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1633 		 * the scan from this point on.
1634 		 *
1635 		 * Get the rest of the buffer freed up.  b_kva* is still
1636 		 * valid after this operation.
1637 		 */
1638 
1639 		if (bp->b_rcred != NOCRED) {
1640 			crfree(bp->b_rcred);
1641 			bp->b_rcred = NOCRED;
1642 		}
1643 		if (bp->b_wcred != NOCRED) {
1644 			crfree(bp->b_wcred);
1645 			bp->b_wcred = NOCRED;
1646 		}
1647 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1648 			(*bioops.io_deallocate)(bp);
1649 		if (bp->b_xflags & BX_BKGRDINPROG)
1650 			panic("losing buffer 3");
1651 		LIST_REMOVE(bp, b_hash);
1652 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1653 
1654 		if (bp->b_bufsize)
1655 			allocbuf(bp, 0);
1656 
1657 		bp->b_flags = 0;
1658 		bp->b_xflags = 0;
1659 		bp->b_dev = NODEV;
1660 		bp->b_vp = NULL;
1661 		bp->b_blkno = bp->b_lblkno = 0;
1662 		bp->b_offset = NOOFFSET;
1663 		bp->b_iodone = 0;
1664 		bp->b_error = 0;
1665 		bp->b_resid = 0;
1666 		bp->b_bcount = 0;
1667 		bp->b_npages = 0;
1668 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1669 
1670 		LIST_INIT(&bp->b_dep);
1671 
1672 		/*
1673 		 * If we are defragging then free the buffer.
1674 		 */
1675 		if (defrag) {
1676 			bp->b_flags |= B_INVAL;
1677 			bfreekva(bp);
1678 			brelse(bp);
1679 			defrag = 0;
1680 			goto restart;
1681 		}
1682 
1683 		/*
1684 		 * If we are overcomitted then recover the buffer and its
1685 		 * KVM space.  This occurs in rare situations when multiple
1686 		 * processes are blocked in getnewbuf() or allocbuf().
1687 		 */
1688 		if (bufspace >= hibufspace)
1689 			flushingbufs = 1;
1690 		if (flushingbufs && bp->b_kvasize != 0) {
1691 			bp->b_flags |= B_INVAL;
1692 			bfreekva(bp);
1693 			brelse(bp);
1694 			goto restart;
1695 		}
1696 		if (bufspace < lobufspace)
1697 			flushingbufs = 0;
1698 		break;
1699 	}
1700 
1701 	/*
1702 	 * If we exhausted our list, sleep as appropriate.  We may have to
1703 	 * wakeup various daemons and write out some dirty buffers.
1704 	 *
1705 	 * Generally we are sleeping due to insufficient buffer space.
1706 	 */
1707 
1708 	if (bp == NULL) {
1709 		int flags;
1710 		char *waitmsg;
1711 
1712 		if (defrag) {
1713 			flags = VFS_BIO_NEED_BUFSPACE;
1714 			waitmsg = "nbufkv";
1715 		} else if (bufspace >= hibufspace) {
1716 			waitmsg = "nbufbs";
1717 			flags = VFS_BIO_NEED_BUFSPACE;
1718 		} else {
1719 			waitmsg = "newbuf";
1720 			flags = VFS_BIO_NEED_ANY;
1721 		}
1722 
1723 		bd_speedup();	/* heeeelp */
1724 
1725 		needsbuffer |= flags;
1726 		while (needsbuffer & flags) {
1727 			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1728 			    waitmsg, slptimeo))
1729 				return (NULL);
1730 		}
1731 	} else {
1732 		/*
1733 		 * We finally have a valid bp.  We aren't quite out of the
1734 		 * woods, we still have to reserve kva space.  In order
1735 		 * to keep fragmentation sane we only allocate kva in
1736 		 * BKVASIZE chunks.
1737 		 */
1738 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1739 
1740 		if (maxsize != bp->b_kvasize) {
1741 			vm_offset_t addr = 0;
1742 
1743 			bfreekva(bp);
1744 
1745 			vm_map_lock(buffer_map);
1746 
1747 			if (vm_map_findspace(buffer_map,
1748 				vm_map_min(buffer_map), maxsize, &addr)) {
1749 				/*
1750 				 * Uh oh.  Buffer map is to fragmented.  We
1751 				 * must defragment the map.
1752 				 */
1753 				vm_map_unlock(buffer_map);
1754 				++bufdefragcnt;
1755 				defrag = 1;
1756 				bp->b_flags |= B_INVAL;
1757 				brelse(bp);
1758 				goto restart;
1759 			}
1760 			if (addr) {
1761 				vm_map_insert(buffer_map, NULL, 0,
1762 					addr, addr + maxsize,
1763 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1764 
1765 				bp->b_kvabase = (caddr_t) addr;
1766 				bp->b_kvasize = maxsize;
1767 				bufspace += bp->b_kvasize;
1768 				++bufreusecnt;
1769 			}
1770 			vm_map_unlock(buffer_map);
1771 		}
1772 		bp->b_data = bp->b_kvabase;
1773 	}
1774 	return(bp);
1775 }
1776 
1777 /*
1778  *	buf_daemon:
1779  *
1780  *	buffer flushing daemon.  Buffers are normally flushed by the
1781  *	update daemon but if it cannot keep up this process starts to
1782  *	take the load in an attempt to prevent getnewbuf() from blocking.
1783  */
1784 
1785 static struct proc *bufdaemonproc;
1786 
1787 static struct kproc_desc buf_kp = {
1788 	"bufdaemon",
1789 	buf_daemon,
1790 	&bufdaemonproc
1791 };
1792 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1793 
1794 static void
1795 buf_daemon()
1796 {
1797 	int s;
1798 
1799 	/*
1800 	 * This process needs to be suspended prior to shutdown sync.
1801 	 */
1802 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, bufdaemonproc,
1803 	    SHUTDOWN_PRI_LAST);
1804 
1805 	/*
1806 	 * This process is allowed to take the buffer cache to the limit
1807 	 */
1808 	s = splbio();
1809 
1810 	for (;;) {
1811 		kproc_suspend_loop(bufdaemonproc);
1812 
1813 		/*
1814 		 * Do the flush.  Limit the amount of in-transit I/O we
1815 		 * allow to build up, otherwise we would completely saturate
1816 		 * the I/O system.  Wakeup any waiting processes before we
1817 		 * normally would so they can run in parallel with our drain.
1818 		 */
1819 		while (numdirtybuffers > lodirtybuffers) {
1820 			if (flushbufqueues() == 0)
1821 				break;
1822 			waitrunningbufspace();
1823 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1824 		}
1825 
1826 		/*
1827 		 * Only clear bd_request if we have reached our low water
1828 		 * mark.  The buf_daemon normally waits 5 seconds and
1829 		 * then incrementally flushes any dirty buffers that have
1830 		 * built up, within reason.
1831 		 *
1832 		 * If we were unable to hit our low water mark and couldn't
1833 		 * find any flushable buffers, we sleep half a second.
1834 		 * Otherwise we loop immediately.
1835 		 */
1836 		if (numdirtybuffers <= lodirtybuffers) {
1837 			/*
1838 			 * We reached our low water mark, reset the
1839 			 * request and sleep until we are needed again.
1840 			 * The sleep is just so the suspend code works.
1841 			 */
1842 			bd_request = 0;
1843 			tsleep(&bd_request, PVM, "psleep", hz);
1844 		} else {
1845 			/*
1846 			 * We couldn't find any flushable dirty buffers but
1847 			 * still have too many dirty buffers, we
1848 			 * have to sleep and try again.  (rare)
1849 			 */
1850 			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1851 		}
1852 	}
1853 }
1854 
1855 /*
1856  *	flushbufqueues:
1857  *
1858  *	Try to flush a buffer in the dirty queue.  We must be careful to
1859  *	free up B_INVAL buffers instead of write them, which NFS is
1860  *	particularly sensitive to.
1861  */
1862 
1863 static int
1864 flushbufqueues(void)
1865 {
1866 	struct buf *bp;
1867 	int r = 0;
1868 
1869 	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1870 
1871 	while (bp) {
1872 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1873 		if ((bp->b_flags & B_DELWRI) != 0 &&
1874 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1875 			if (bp->b_flags & B_INVAL) {
1876 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1877 					panic("flushbufqueues: locked buf");
1878 				bremfree(bp);
1879 				brelse(bp);
1880 				++r;
1881 				break;
1882 			}
1883 			if (LIST_FIRST(&bp->b_dep) != NULL &&
1884 			    bioops.io_countdeps &&
1885 			    (bp->b_flags & B_DEFERRED) == 0 &&
1886 			    (*bioops.io_countdeps)(bp, 0)) {
1887 				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1888 				    bp, b_freelist);
1889 				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1890 				    bp, b_freelist);
1891 				bp->b_flags |= B_DEFERRED;
1892 				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1893 				continue;
1894 			}
1895 			vfs_bio_awrite(bp);
1896 			++r;
1897 			break;
1898 		}
1899 		bp = TAILQ_NEXT(bp, b_freelist);
1900 	}
1901 	return (r);
1902 }
1903 
1904 /*
1905  * Check to see if a block is currently memory resident.
1906  */
1907 struct buf *
1908 incore(struct vnode * vp, daddr_t blkno)
1909 {
1910 	struct buf *bp;
1911 
1912 	int s = splbio();
1913 	bp = gbincore(vp, blkno);
1914 	splx(s);
1915 	return (bp);
1916 }
1917 
1918 /*
1919  * Returns true if no I/O is needed to access the
1920  * associated VM object.  This is like incore except
1921  * it also hunts around in the VM system for the data.
1922  */
1923 
1924 int
1925 inmem(struct vnode * vp, daddr_t blkno)
1926 {
1927 	vm_object_t obj;
1928 	vm_offset_t toff, tinc, size;
1929 	vm_page_t m;
1930 	vm_ooffset_t off;
1931 
1932 	if (incore(vp, blkno))
1933 		return 1;
1934 	if (vp->v_mount == NULL)
1935 		return 0;
1936 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
1937  		return 0;
1938 
1939 	size = PAGE_SIZE;
1940 	if (size > vp->v_mount->mnt_stat.f_iosize)
1941 		size = vp->v_mount->mnt_stat.f_iosize;
1942 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1943 
1944 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1945 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1946 		if (!m)
1947 			return 0;
1948 		tinc = size;
1949 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1950 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1951 		if (vm_page_is_valid(m,
1952 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1953 			return 0;
1954 	}
1955 	return 1;
1956 }
1957 
1958 /*
1959  *	vfs_setdirty:
1960  *
1961  *	Sets the dirty range for a buffer based on the status of the dirty
1962  *	bits in the pages comprising the buffer.
1963  *
1964  *	The range is limited to the size of the buffer.
1965  *
1966  *	This routine is primarily used by NFS, but is generalized for the
1967  *	B_VMIO case.
1968  */
1969 static void
1970 vfs_setdirty(struct buf *bp)
1971 {
1972 	int i;
1973 	vm_object_t object;
1974 
1975 	/*
1976 	 * Degenerate case - empty buffer
1977 	 */
1978 
1979 	if (bp->b_bufsize == 0)
1980 		return;
1981 
1982 	/*
1983 	 * We qualify the scan for modified pages on whether the
1984 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1985 	 * is not cleared simply by protecting pages off.
1986 	 */
1987 
1988 	if ((bp->b_flags & B_VMIO) == 0)
1989 		return;
1990 
1991 	object = bp->b_pages[0]->object;
1992 
1993 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1994 		printf("Warning: object %p writeable but not mightbedirty\n", object);
1995 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1996 		printf("Warning: object %p mightbedirty but not writeable\n", object);
1997 
1998 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1999 		vm_offset_t boffset;
2000 		vm_offset_t eoffset;
2001 
2002 		/*
2003 		 * test the pages to see if they have been modified directly
2004 		 * by users through the VM system.
2005 		 */
2006 		for (i = 0; i < bp->b_npages; i++) {
2007 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2008 			vm_page_test_dirty(bp->b_pages[i]);
2009 		}
2010 
2011 		/*
2012 		 * Calculate the encompassing dirty range, boffset and eoffset,
2013 		 * (eoffset - boffset) bytes.
2014 		 */
2015 
2016 		for (i = 0; i < bp->b_npages; i++) {
2017 			if (bp->b_pages[i]->dirty)
2018 				break;
2019 		}
2020 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2021 
2022 		for (i = bp->b_npages - 1; i >= 0; --i) {
2023 			if (bp->b_pages[i]->dirty) {
2024 				break;
2025 			}
2026 		}
2027 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2028 
2029 		/*
2030 		 * Fit it to the buffer.
2031 		 */
2032 
2033 		if (eoffset > bp->b_bcount)
2034 			eoffset = bp->b_bcount;
2035 
2036 		/*
2037 		 * If we have a good dirty range, merge with the existing
2038 		 * dirty range.
2039 		 */
2040 
2041 		if (boffset < eoffset) {
2042 			if (bp->b_dirtyoff > boffset)
2043 				bp->b_dirtyoff = boffset;
2044 			if (bp->b_dirtyend < eoffset)
2045 				bp->b_dirtyend = eoffset;
2046 		}
2047 	}
2048 }
2049 
2050 /*
2051  *	getblk:
2052  *
2053  *	Get a block given a specified block and offset into a file/device.
2054  *	The buffers B_DONE bit will be cleared on return, making it almost
2055  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2056  *	return.  The caller should clear B_INVAL prior to initiating a
2057  *	READ.
2058  *
2059  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2060  *	an existing buffer.
2061  *
2062  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2063  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2064  *	and then cleared based on the backing VM.  If the previous buffer is
2065  *	non-0-sized but invalid, B_CACHE will be cleared.
2066  *
2067  *	If getblk() must create a new buffer, the new buffer is returned with
2068  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2069  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2070  *	backing VM.
2071  *
2072  *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2073  *	B_CACHE bit is clear.
2074  *
2075  *	What this means, basically, is that the caller should use B_CACHE to
2076  *	determine whether the buffer is fully valid or not and should clear
2077  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2078  *	the buffer by loading its data area with something, the caller needs
2079  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2080  *	the caller should set B_CACHE ( as an optimization ), else the caller
2081  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2082  *	a write attempt or if it was a successfull read.  If the caller
2083  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2084  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2085  */
2086 struct buf *
2087 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2088 {
2089 	struct buf *bp;
2090 	int s;
2091 	struct bufhashhdr *bh;
2092 
2093 	if (size > MAXBSIZE)
2094 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2095 
2096 	s = splbio();
2097 loop:
2098 	/*
2099 	 * Block if we are low on buffers.   Certain processes are allowed
2100 	 * to completely exhaust the buffer cache.
2101          *
2102          * If this check ever becomes a bottleneck it may be better to
2103          * move it into the else, when gbincore() fails.  At the moment
2104          * it isn't a problem.
2105 	 *
2106 	 * XXX remove, we cannot afford to block anywhere if holding a vnode
2107 	 * lock in low-memory situation, so take it to the max.
2108          */
2109 	if (numfreebuffers == 0) {
2110 		if (!curproc)
2111 			return NULL;
2112 		needsbuffer |= VFS_BIO_NEED_ANY;
2113 		tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
2114 		    slptimeo);
2115 	}
2116 
2117 	if ((bp = gbincore(vp, blkno))) {
2118 		/*
2119 		 * Buffer is in-core.  If the buffer is not busy, it must
2120 		 * be on a queue.
2121 		 */
2122 
2123 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2124 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2125 			    "getblk", slpflag, slptimeo) == ENOLCK)
2126 				goto loop;
2127 			splx(s);
2128 			return (struct buf *) NULL;
2129 		}
2130 
2131 		/*
2132 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2133 		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2134 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2135 		 * backing VM cache.
2136 		 */
2137 		if (bp->b_flags & B_INVAL)
2138 			bp->b_flags &= ~B_CACHE;
2139 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2140 			bp->b_flags |= B_CACHE;
2141 		bremfree(bp);
2142 
2143 		/*
2144 		 * check for size inconsistancies for non-VMIO case.
2145 		 */
2146 
2147 		if (bp->b_bcount != size) {
2148 			if ((bp->b_flags & B_VMIO) == 0 ||
2149 			    (size > bp->b_kvasize)) {
2150 				if (bp->b_flags & B_DELWRI) {
2151 					bp->b_flags |= B_NOCACHE;
2152 					VOP_BWRITE(bp->b_vp, bp);
2153 				} else {
2154 					if ((bp->b_flags & B_VMIO) &&
2155 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2156 						bp->b_flags |= B_RELBUF;
2157 						brelse(bp);
2158 					} else {
2159 						bp->b_flags |= B_NOCACHE;
2160 						VOP_BWRITE(bp->b_vp, bp);
2161 					}
2162 				}
2163 				goto loop;
2164 			}
2165 		}
2166 
2167 		/*
2168 		 * If the size is inconsistant in the VMIO case, we can resize
2169 		 * the buffer.  This might lead to B_CACHE getting set or
2170 		 * cleared.  If the size has not changed, B_CACHE remains
2171 		 * unchanged from its previous state.
2172 		 */
2173 
2174 		if (bp->b_bcount != size)
2175 			allocbuf(bp, size);
2176 
2177 		KASSERT(bp->b_offset != NOOFFSET,
2178 		    ("getblk: no buffer offset"));
2179 
2180 		/*
2181 		 * A buffer with B_DELWRI set and B_CACHE clear must
2182 		 * be committed before we can return the buffer in
2183 		 * order to prevent the caller from issuing a read
2184 		 * ( due to B_CACHE not being set ) and overwriting
2185 		 * it.
2186 		 *
2187 		 * Most callers, including NFS and FFS, need this to
2188 		 * operate properly either because they assume they
2189 		 * can issue a read if B_CACHE is not set, or because
2190 		 * ( for example ) an uncached B_DELWRI might loop due
2191 		 * to softupdates re-dirtying the buffer.  In the latter
2192 		 * case, B_CACHE is set after the first write completes,
2193 		 * preventing further loops.
2194 		 *
2195 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2196 		 * above while extending the buffer, we cannot allow the
2197 		 * buffer to remain with B_CACHE set after the write
2198 		 * completes or it will represent a corrupt state.  To
2199 		 * deal with this we set B_NOCACHE to scrap the buffer
2200 		 * after the write.
2201 		 *
2202 		 * We might be able to do something fancy, like setting
2203 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2204 		 * so the below call doesn't set B_CACHE, but that gets real
2205 		 * confusing.  This is much easier.
2206 		 */
2207 
2208 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2209 			bp->b_flags |= B_NOCACHE;
2210 			VOP_BWRITE(bp->b_vp, bp);
2211 			goto loop;
2212 		}
2213 
2214 		splx(s);
2215 		bp->b_flags &= ~B_DONE;
2216 	} else {
2217 		/*
2218 		 * Buffer is not in-core, create new buffer.  The buffer
2219 		 * returned by getnewbuf() is locked.  Note that the returned
2220 		 * buffer is also considered valid (not marked B_INVAL).
2221 		 */
2222 		int bsize, maxsize, vmio;
2223 		off_t offset;
2224 
2225 		if (vn_isdisk(vp, NULL))
2226 			bsize = DEV_BSIZE;
2227 		else if (vp->v_mountedhere)
2228 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2229 		else if (vp->v_mount)
2230 			bsize = vp->v_mount->mnt_stat.f_iosize;
2231 		else
2232 			bsize = size;
2233 
2234 		offset = (off_t)blkno * bsize;
2235 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2236 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2237 		maxsize = imax(maxsize, bsize);
2238 
2239 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2240 			if (slpflag || slptimeo) {
2241 				splx(s);
2242 				return NULL;
2243 			}
2244 			goto loop;
2245 		}
2246 
2247 		/*
2248 		 * This code is used to make sure that a buffer is not
2249 		 * created while the getnewbuf routine is blocked.
2250 		 * This can be a problem whether the vnode is locked or not.
2251 		 * If the buffer is created out from under us, we have to
2252 		 * throw away the one we just created.  There is now window
2253 		 * race because we are safely running at splbio() from the
2254 		 * point of the duplicate buffer creation through to here,
2255 		 * and we've locked the buffer.
2256 		 */
2257 		if (gbincore(vp, blkno)) {
2258 			bp->b_flags |= B_INVAL;
2259 			brelse(bp);
2260 			goto loop;
2261 		}
2262 
2263 		/*
2264 		 * Insert the buffer into the hash, so that it can
2265 		 * be found by incore.
2266 		 */
2267 		bp->b_blkno = bp->b_lblkno = blkno;
2268 		bp->b_offset = offset;
2269 
2270 		bgetvp(vp, bp);
2271 		LIST_REMOVE(bp, b_hash);
2272 		bh = bufhash(vp, blkno);
2273 		LIST_INSERT_HEAD(bh, bp, b_hash);
2274 
2275 		/*
2276 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2277 		 * buffer size starts out as 0, B_CACHE will be set by
2278 		 * allocbuf() for the VMIO case prior to it testing the
2279 		 * backing store for validity.
2280 		 */
2281 
2282 		if (vmio) {
2283 			bp->b_flags |= B_VMIO;
2284 #if defined(VFS_BIO_DEBUG)
2285 			if (vp->v_type != VREG && vp->v_type != VBLK)
2286 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2287 #endif
2288 		} else {
2289 			bp->b_flags &= ~B_VMIO;
2290 		}
2291 
2292 		allocbuf(bp, size);
2293 
2294 		splx(s);
2295 		bp->b_flags &= ~B_DONE;
2296 	}
2297 	return (bp);
2298 }
2299 
2300 /*
2301  * Get an empty, disassociated buffer of given size.  The buffer is initially
2302  * set to B_INVAL.
2303  */
2304 struct buf *
2305 geteblk(int size)
2306 {
2307 	struct buf *bp;
2308 	int s;
2309 	int maxsize;
2310 
2311 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2312 
2313 	s = splbio();
2314 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2315 	splx(s);
2316 	allocbuf(bp, size);
2317 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2318 	return (bp);
2319 }
2320 
2321 
2322 /*
2323  * This code constitutes the buffer memory from either anonymous system
2324  * memory (in the case of non-VMIO operations) or from an associated
2325  * VM object (in the case of VMIO operations).  This code is able to
2326  * resize a buffer up or down.
2327  *
2328  * Note that this code is tricky, and has many complications to resolve
2329  * deadlock or inconsistant data situations.  Tread lightly!!!
2330  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2331  * the caller.  Calling this code willy nilly can result in the loss of data.
2332  *
2333  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2334  * B_CACHE for the non-VMIO case.
2335  */
2336 
2337 int
2338 allocbuf(struct buf *bp, int size)
2339 {
2340 	int newbsize, mbsize;
2341 	int i;
2342 
2343 	if (BUF_REFCNT(bp) == 0)
2344 		panic("allocbuf: buffer not busy");
2345 
2346 	if (bp->b_kvasize < size)
2347 		panic("allocbuf: buffer too small");
2348 
2349 	if ((bp->b_flags & B_VMIO) == 0) {
2350 		caddr_t origbuf;
2351 		int origbufsize;
2352 		/*
2353 		 * Just get anonymous memory from the kernel.  Don't
2354 		 * mess with B_CACHE.
2355 		 */
2356 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2357 #if !defined(NO_B_MALLOC)
2358 		if (bp->b_flags & B_MALLOC)
2359 			newbsize = mbsize;
2360 		else
2361 #endif
2362 			newbsize = round_page(size);
2363 
2364 		if (newbsize < bp->b_bufsize) {
2365 #if !defined(NO_B_MALLOC)
2366 			/*
2367 			 * malloced buffers are not shrunk
2368 			 */
2369 			if (bp->b_flags & B_MALLOC) {
2370 				if (newbsize) {
2371 					bp->b_bcount = size;
2372 				} else {
2373 					free(bp->b_data, M_BIOBUF);
2374 					if (bp->b_bufsize) {
2375 						bufmallocspace -= bp->b_bufsize;
2376 						bufspacewakeup();
2377 						bp->b_bufsize = 0;
2378 					}
2379 					bp->b_data = bp->b_kvabase;
2380 					bp->b_bcount = 0;
2381 					bp->b_flags &= ~B_MALLOC;
2382 				}
2383 				return 1;
2384 			}
2385 #endif
2386 			vm_hold_free_pages(
2387 			    bp,
2388 			    (vm_offset_t) bp->b_data + newbsize,
2389 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2390 		} else if (newbsize > bp->b_bufsize) {
2391 #if !defined(NO_B_MALLOC)
2392 			/*
2393 			 * We only use malloced memory on the first allocation.
2394 			 * and revert to page-allocated memory when the buffer
2395 			 * grows.
2396 			 */
2397 			if ( (bufmallocspace < maxbufmallocspace) &&
2398 				(bp->b_bufsize == 0) &&
2399 				(mbsize <= PAGE_SIZE/2)) {
2400 
2401 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2402 				bp->b_bufsize = mbsize;
2403 				bp->b_bcount = size;
2404 				bp->b_flags |= B_MALLOC;
2405 				bufmallocspace += mbsize;
2406 				return 1;
2407 			}
2408 #endif
2409 			origbuf = NULL;
2410 			origbufsize = 0;
2411 #if !defined(NO_B_MALLOC)
2412 			/*
2413 			 * If the buffer is growing on its other-than-first allocation,
2414 			 * then we revert to the page-allocation scheme.
2415 			 */
2416 			if (bp->b_flags & B_MALLOC) {
2417 				origbuf = bp->b_data;
2418 				origbufsize = bp->b_bufsize;
2419 				bp->b_data = bp->b_kvabase;
2420 				if (bp->b_bufsize) {
2421 					bufmallocspace -= bp->b_bufsize;
2422 					bufspacewakeup();
2423 					bp->b_bufsize = 0;
2424 				}
2425 				bp->b_flags &= ~B_MALLOC;
2426 				newbsize = round_page(newbsize);
2427 			}
2428 #endif
2429 			vm_hold_load_pages(
2430 			    bp,
2431 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2432 			    (vm_offset_t) bp->b_data + newbsize);
2433 #if !defined(NO_B_MALLOC)
2434 			if (origbuf) {
2435 				bcopy(origbuf, bp->b_data, origbufsize);
2436 				free(origbuf, M_BIOBUF);
2437 			}
2438 #endif
2439 		}
2440 	} else {
2441 		vm_page_t m;
2442 		int desiredpages;
2443 
2444 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2445 		desiredpages = (size == 0) ? 0 :
2446 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2447 
2448 #if !defined(NO_B_MALLOC)
2449 		if (bp->b_flags & B_MALLOC)
2450 			panic("allocbuf: VMIO buffer can't be malloced");
2451 #endif
2452 		/*
2453 		 * Set B_CACHE initially if buffer is 0 length or will become
2454 		 * 0-length.
2455 		 */
2456 		if (size == 0 || bp->b_bufsize == 0)
2457 			bp->b_flags |= B_CACHE;
2458 
2459 		if (newbsize < bp->b_bufsize) {
2460 			/*
2461 			 * DEV_BSIZE aligned new buffer size is less then the
2462 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2463 			 * if we have to remove any pages.
2464 			 */
2465 			if (desiredpages < bp->b_npages) {
2466 				for (i = desiredpages; i < bp->b_npages; i++) {
2467 					/*
2468 					 * the page is not freed here -- it
2469 					 * is the responsibility of
2470 					 * vnode_pager_setsize
2471 					 */
2472 					m = bp->b_pages[i];
2473 					KASSERT(m != bogus_page,
2474 					    ("allocbuf: bogus page found"));
2475 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2476 						;
2477 
2478 					bp->b_pages[i] = NULL;
2479 					vm_page_unwire(m, 0);
2480 				}
2481 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2482 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2483 				bp->b_npages = desiredpages;
2484 			}
2485 		} else if (size > bp->b_bcount) {
2486 			/*
2487 			 * We are growing the buffer, possibly in a
2488 			 * byte-granular fashion.
2489 			 */
2490 			struct vnode *vp;
2491 			vm_object_t obj;
2492 			vm_offset_t toff;
2493 			vm_offset_t tinc;
2494 
2495 			/*
2496 			 * Step 1, bring in the VM pages from the object,
2497 			 * allocating them if necessary.  We must clear
2498 			 * B_CACHE if these pages are not valid for the
2499 			 * range covered by the buffer.
2500 			 */
2501 
2502 			vp = bp->b_vp;
2503 			VOP_GETVOBJECT(vp, &obj);
2504 
2505 			while (bp->b_npages < desiredpages) {
2506 				vm_page_t m;
2507 				vm_pindex_t pi;
2508 
2509 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2510 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2511 					/*
2512 					 * note: must allocate system pages
2513 					 * since blocking here could intefere
2514 					 * with paging I/O, no matter which
2515 					 * process we are.
2516 					 */
2517 					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2518 					if (m == NULL) {
2519 						VM_WAIT;
2520 						vm_pageout_deficit += desiredpages - bp->b_npages;
2521 					} else {
2522 						vm_page_wire(m);
2523 						vm_page_wakeup(m);
2524 						bp->b_flags &= ~B_CACHE;
2525 						bp->b_pages[bp->b_npages] = m;
2526 						++bp->b_npages;
2527 					}
2528 					continue;
2529 				}
2530 
2531 				/*
2532 				 * We found a page.  If we have to sleep on it,
2533 				 * retry because it might have gotten freed out
2534 				 * from under us.
2535 				 *
2536 				 * We can only test PG_BUSY here.  Blocking on
2537 				 * m->busy might lead to a deadlock:
2538 				 *
2539 				 *  vm_fault->getpages->cluster_read->allocbuf
2540 				 *
2541 				 */
2542 
2543 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2544 					continue;
2545 
2546 				/*
2547 				 * We have a good page.  Should we wakeup the
2548 				 * page daemon?
2549 				 */
2550 				if ((curproc != pageproc) &&
2551 				    ((m->queue - m->pc) == PQ_CACHE) &&
2552 				    ((cnt.v_free_count + cnt.v_cache_count) <
2553 					(cnt.v_free_min + cnt.v_cache_min))) {
2554 					pagedaemon_wakeup();
2555 				}
2556 				vm_page_flag_clear(m, PG_ZERO);
2557 				vm_page_wire(m);
2558 				bp->b_pages[bp->b_npages] = m;
2559 				++bp->b_npages;
2560 			}
2561 
2562 			/*
2563 			 * Step 2.  We've loaded the pages into the buffer,
2564 			 * we have to figure out if we can still have B_CACHE
2565 			 * set.  Note that B_CACHE is set according to the
2566 			 * byte-granular range ( bcount and size ), new the
2567 			 * aligned range ( newbsize ).
2568 			 *
2569 			 * The VM test is against m->valid, which is DEV_BSIZE
2570 			 * aligned.  Needless to say, the validity of the data
2571 			 * needs to also be DEV_BSIZE aligned.  Note that this
2572 			 * fails with NFS if the server or some other client
2573 			 * extends the file's EOF.  If our buffer is resized,
2574 			 * B_CACHE may remain set! XXX
2575 			 */
2576 
2577 			toff = bp->b_bcount;
2578 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2579 
2580 			while ((bp->b_flags & B_CACHE) && toff < size) {
2581 				vm_pindex_t pi;
2582 
2583 				if (tinc > (size - toff))
2584 					tinc = size - toff;
2585 
2586 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2587 				    PAGE_SHIFT;
2588 
2589 				vfs_buf_test_cache(
2590 				    bp,
2591 				    bp->b_offset,
2592 				    toff,
2593 				    tinc,
2594 				    bp->b_pages[pi]
2595 				);
2596 				toff += tinc;
2597 				tinc = PAGE_SIZE;
2598 			}
2599 
2600 			/*
2601 			 * Step 3, fixup the KVM pmap.  Remember that
2602 			 * bp->b_data is relative to bp->b_offset, but
2603 			 * bp->b_offset may be offset into the first page.
2604 			 */
2605 
2606 			bp->b_data = (caddr_t)
2607 			    trunc_page((vm_offset_t)bp->b_data);
2608 			pmap_qenter(
2609 			    (vm_offset_t)bp->b_data,
2610 			    bp->b_pages,
2611 			    bp->b_npages
2612 			);
2613 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2614 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2615 		}
2616 	}
2617 	if (newbsize < bp->b_bufsize)
2618 		bufspacewakeup();
2619 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2620 	bp->b_bcount = size;		/* requested buffer size	*/
2621 	return 1;
2622 }
2623 
2624 /*
2625  *	biowait:
2626  *
2627  *	Wait for buffer I/O completion, returning error status.  The buffer
2628  *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2629  *	error and cleared.
2630  */
2631 int
2632 biowait(register struct buf * bp)
2633 {
2634 	int s;
2635 
2636 	s = splbio();
2637 	while ((bp->b_flags & B_DONE) == 0) {
2638 #if defined(NO_SCHEDULE_MODS)
2639 		tsleep(bp, PRIBIO, "biowait", 0);
2640 #else
2641 		if (bp->b_flags & B_READ)
2642 			tsleep(bp, PRIBIO, "biord", 0);
2643 		else
2644 			tsleep(bp, PRIBIO, "biowr", 0);
2645 #endif
2646 	}
2647 	splx(s);
2648 	if (bp->b_flags & B_EINTR) {
2649 		bp->b_flags &= ~B_EINTR;
2650 		return (EINTR);
2651 	}
2652 	if (bp->b_flags & B_ERROR) {
2653 		return (bp->b_error ? bp->b_error : EIO);
2654 	} else {
2655 		return (0);
2656 	}
2657 }
2658 
2659 /*
2660  *	biodone:
2661  *
2662  *	Finish I/O on a buffer, optionally calling a completion function.
2663  *	This is usually called from an interrupt so process blocking is
2664  *	not allowed.
2665  *
2666  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2667  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2668  *	assuming B_INVAL is clear.
2669  *
2670  *	For the VMIO case, we set B_CACHE if the op was a read and no
2671  *	read error occured, or if the op was a write.  B_CACHE is never
2672  *	set if the buffer is invalid or otherwise uncacheable.
2673  *
2674  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2675  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2676  *	in the biodone routine.
2677  */
2678 void
2679 biodone(register struct buf * bp)
2680 {
2681 	int s, error;
2682 
2683 	s = splbio();
2684 
2685 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2686 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2687 
2688 	bp->b_flags |= B_DONE;
2689 	runningbufwakeup(bp);
2690 
2691 	if (bp->b_flags & B_FREEBUF) {
2692 		brelse(bp);
2693 		splx(s);
2694 		return;
2695 	}
2696 
2697 	if ((bp->b_flags & B_READ) == 0) {
2698 		vwakeup(bp);
2699 	}
2700 
2701 	/* call optional completion function if requested */
2702 	if (bp->b_flags & B_CALL) {
2703 		bp->b_flags &= ~B_CALL;
2704 		(*bp->b_iodone) (bp);
2705 		splx(s);
2706 		return;
2707 	}
2708 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2709 		(*bioops.io_complete)(bp);
2710 
2711 	if (bp->b_flags & B_VMIO) {
2712 		int i;
2713 		vm_ooffset_t foff;
2714 		vm_page_t m;
2715 		vm_object_t obj;
2716 		int iosize;
2717 		struct vnode *vp = bp->b_vp;
2718 
2719 		error = VOP_GETVOBJECT(vp, &obj);
2720 
2721 #if defined(VFS_BIO_DEBUG)
2722 		if (vp->v_usecount == 0) {
2723 			panic("biodone: zero vnode ref count");
2724 		}
2725 
2726 		if (error) {
2727 			panic("biodone: missing VM object");
2728 		}
2729 
2730 		if ((vp->v_flag & VOBJBUF) == 0) {
2731 			panic("biodone: vnode is not setup for merged cache");
2732 		}
2733 #endif
2734 
2735 		foff = bp->b_offset;
2736 		KASSERT(bp->b_offset != NOOFFSET,
2737 		    ("biodone: no buffer offset"));
2738 
2739 		if (error) {
2740 			panic("biodone: no object");
2741 		}
2742 #if defined(VFS_BIO_DEBUG)
2743 		if (obj->paging_in_progress < bp->b_npages) {
2744 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2745 			    obj->paging_in_progress, bp->b_npages);
2746 		}
2747 #endif
2748 
2749 		/*
2750 		 * Set B_CACHE if the op was a normal read and no error
2751 		 * occured.  B_CACHE is set for writes in the b*write()
2752 		 * routines.
2753 		 */
2754 		iosize = bp->b_bcount - bp->b_resid;
2755 		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2756 			bp->b_flags |= B_CACHE;
2757 		}
2758 
2759 		for (i = 0; i < bp->b_npages; i++) {
2760 			int bogusflag = 0;
2761 			int resid;
2762 
2763 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2764 			if (resid > iosize)
2765 				resid = iosize;
2766 
2767 			/*
2768 			 * cleanup bogus pages, restoring the originals
2769 			 */
2770 			m = bp->b_pages[i];
2771 			if (m == bogus_page) {
2772 				bogusflag = 1;
2773 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2774 				if (m == NULL)
2775 					panic("biodone: page disappeared");
2776 				bp->b_pages[i] = m;
2777 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2778 			}
2779 #if defined(VFS_BIO_DEBUG)
2780 			if (OFF_TO_IDX(foff) != m->pindex) {
2781 				printf(
2782 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2783 				    (unsigned long)foff, m->pindex);
2784 			}
2785 #endif
2786 
2787 			/*
2788 			 * In the write case, the valid and clean bits are
2789 			 * already changed correctly ( see bdwrite() ), so we
2790 			 * only need to do this here in the read case.
2791 			 */
2792 			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2793 				vfs_page_set_valid(bp, foff, i, m);
2794 			}
2795 			vm_page_flag_clear(m, PG_ZERO);
2796 
2797 			/*
2798 			 * when debugging new filesystems or buffer I/O methods, this
2799 			 * is the most common error that pops up.  if you see this, you
2800 			 * have not set the page busy flag correctly!!!
2801 			 */
2802 			if (m->busy == 0) {
2803 				printf("biodone: page busy < 0, "
2804 				    "pindex: %d, foff: 0x(%x,%x), "
2805 				    "resid: %d, index: %d\n",
2806 				    (int) m->pindex, (int)(foff >> 32),
2807 						(int) foff & 0xffffffff, resid, i);
2808 				if (!vn_isdisk(vp, NULL))
2809 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2810 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2811 					    (int) bp->b_lblkno,
2812 					    bp->b_flags, bp->b_npages);
2813 				else
2814 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2815 					    (int) bp->b_lblkno,
2816 					    bp->b_flags, bp->b_npages);
2817 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2818 				    m->valid, m->dirty, m->wire_count);
2819 				panic("biodone: page busy < 0\n");
2820 			}
2821 			vm_page_io_finish(m);
2822 			vm_object_pip_subtract(obj, 1);
2823 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2824 			iosize -= resid;
2825 		}
2826 		if (obj)
2827 			vm_object_pip_wakeupn(obj, 0);
2828 	}
2829 
2830 	/*
2831 	 * For asynchronous completions, release the buffer now. The brelse
2832 	 * will do a wakeup there if necessary - so no need to do a wakeup
2833 	 * here in the async case. The sync case always needs to do a wakeup.
2834 	 */
2835 
2836 	if (bp->b_flags & B_ASYNC) {
2837 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2838 			brelse(bp);
2839 		else
2840 			bqrelse(bp);
2841 	} else {
2842 		wakeup(bp);
2843 	}
2844 	splx(s);
2845 }
2846 
2847 /*
2848  * This routine is called in lieu of iodone in the case of
2849  * incomplete I/O.  This keeps the busy status for pages
2850  * consistant.
2851  */
2852 void
2853 vfs_unbusy_pages(struct buf * bp)
2854 {
2855 	int i;
2856 
2857 	runningbufwakeup(bp);
2858 	if (bp->b_flags & B_VMIO) {
2859 		struct vnode *vp = bp->b_vp;
2860 		vm_object_t obj;
2861 
2862 		VOP_GETVOBJECT(vp, &obj);
2863 
2864 		for (i = 0; i < bp->b_npages; i++) {
2865 			vm_page_t m = bp->b_pages[i];
2866 
2867 			if (m == bogus_page) {
2868 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2869 				if (!m) {
2870 					panic("vfs_unbusy_pages: page missing\n");
2871 				}
2872 				bp->b_pages[i] = m;
2873 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2874 			}
2875 			vm_object_pip_subtract(obj, 1);
2876 			vm_page_flag_clear(m, PG_ZERO);
2877 			vm_page_io_finish(m);
2878 		}
2879 		vm_object_pip_wakeupn(obj, 0);
2880 	}
2881 }
2882 
2883 /*
2884  * vfs_page_set_valid:
2885  *
2886  *	Set the valid bits in a page based on the supplied offset.   The
2887  *	range is restricted to the buffer's size.
2888  *
2889  *	This routine is typically called after a read completes.
2890  */
2891 static void
2892 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2893 {
2894 	vm_ooffset_t soff, eoff;
2895 
2896 	/*
2897 	 * Start and end offsets in buffer.  eoff - soff may not cross a
2898 	 * page boundry or cross the end of the buffer.  The end of the
2899 	 * buffer, in this case, is our file EOF, not the allocation size
2900 	 * of the buffer.
2901 	 */
2902 	soff = off;
2903 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2904 	if (eoff > bp->b_offset + bp->b_bcount)
2905 		eoff = bp->b_offset + bp->b_bcount;
2906 
2907 	/*
2908 	 * Set valid range.  This is typically the entire buffer and thus the
2909 	 * entire page.
2910 	 */
2911 	if (eoff > soff) {
2912 		vm_page_set_validclean(
2913 		    m,
2914 		   (vm_offset_t) (soff & PAGE_MASK),
2915 		   (vm_offset_t) (eoff - soff)
2916 		);
2917 	}
2918 }
2919 
2920 /*
2921  * This routine is called before a device strategy routine.
2922  * It is used to tell the VM system that paging I/O is in
2923  * progress, and treat the pages associated with the buffer
2924  * almost as being PG_BUSY.  Also the object paging_in_progress
2925  * flag is handled to make sure that the object doesn't become
2926  * inconsistant.
2927  *
2928  * Since I/O has not been initiated yet, certain buffer flags
2929  * such as B_ERROR or B_INVAL may be in an inconsistant state
2930  * and should be ignored.
2931  */
2932 void
2933 vfs_busy_pages(struct buf * bp, int clear_modify)
2934 {
2935 	int i, bogus;
2936 
2937 	if (bp->b_flags & B_VMIO) {
2938 		struct vnode *vp = bp->b_vp;
2939 		vm_object_t obj;
2940 		vm_ooffset_t foff;
2941 
2942 		VOP_GETVOBJECT(vp, &obj);
2943 		foff = bp->b_offset;
2944 		KASSERT(bp->b_offset != NOOFFSET,
2945 		    ("vfs_busy_pages: no buffer offset"));
2946 		vfs_setdirty(bp);
2947 
2948 retry:
2949 		for (i = 0; i < bp->b_npages; i++) {
2950 			vm_page_t m = bp->b_pages[i];
2951 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2952 				goto retry;
2953 		}
2954 
2955 		bogus = 0;
2956 		for (i = 0; i < bp->b_npages; i++) {
2957 			vm_page_t m = bp->b_pages[i];
2958 
2959 			vm_page_flag_clear(m, PG_ZERO);
2960 			if ((bp->b_flags & B_CLUSTER) == 0) {
2961 				vm_object_pip_add(obj, 1);
2962 				vm_page_io_start(m);
2963 			}
2964 
2965 			/*
2966 			 * When readying a buffer for a read ( i.e
2967 			 * clear_modify == 0 ), it is important to do
2968 			 * bogus_page replacement for valid pages in
2969 			 * partially instantiated buffers.  Partially
2970 			 * instantiated buffers can, in turn, occur when
2971 			 * reconstituting a buffer from its VM backing store
2972 			 * base.  We only have to do this if B_CACHE is
2973 			 * clear ( which causes the I/O to occur in the
2974 			 * first place ).  The replacement prevents the read
2975 			 * I/O from overwriting potentially dirty VM-backed
2976 			 * pages.  XXX bogus page replacement is, uh, bogus.
2977 			 * It may not work properly with small-block devices.
2978 			 * We need to find a better way.
2979 			 */
2980 
2981 			vm_page_protect(m, VM_PROT_NONE);
2982 			if (clear_modify)
2983 				vfs_page_set_valid(bp, foff, i, m);
2984 			else if (m->valid == VM_PAGE_BITS_ALL &&
2985 				(bp->b_flags & B_CACHE) == 0) {
2986 				bp->b_pages[i] = bogus_page;
2987 				bogus++;
2988 			}
2989 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2990 		}
2991 		if (bogus)
2992 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2993 	}
2994 }
2995 
2996 /*
2997  * Tell the VM system that the pages associated with this buffer
2998  * are clean.  This is used for delayed writes where the data is
2999  * going to go to disk eventually without additional VM intevention.
3000  *
3001  * Note that while we only really need to clean through to b_bcount, we
3002  * just go ahead and clean through to b_bufsize.
3003  */
3004 static void
3005 vfs_clean_pages(struct buf * bp)
3006 {
3007 	int i;
3008 
3009 	if (bp->b_flags & B_VMIO) {
3010 		vm_ooffset_t foff;
3011 
3012 		foff = bp->b_offset;
3013 		KASSERT(bp->b_offset != NOOFFSET,
3014 		    ("vfs_clean_pages: no buffer offset"));
3015 		for (i = 0; i < bp->b_npages; i++) {
3016 			vm_page_t m = bp->b_pages[i];
3017 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3018 			vm_ooffset_t eoff = noff;
3019 
3020 			if (eoff > bp->b_offset + bp->b_bufsize)
3021 				eoff = bp->b_offset + bp->b_bufsize;
3022 			vfs_page_set_valid(bp, foff, i, m);
3023 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3024 			foff = noff;
3025 		}
3026 	}
3027 }
3028 
3029 /*
3030  *	vfs_bio_set_validclean:
3031  *
3032  *	Set the range within the buffer to valid and clean.  The range is
3033  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3034  *	itself may be offset from the beginning of the first page.
3035  */
3036 
3037 void
3038 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3039 {
3040 	if (bp->b_flags & B_VMIO) {
3041 		int i;
3042 		int n;
3043 
3044 		/*
3045 		 * Fixup base to be relative to beginning of first page.
3046 		 * Set initial n to be the maximum number of bytes in the
3047 		 * first page that can be validated.
3048 		 */
3049 
3050 		base += (bp->b_offset & PAGE_MASK);
3051 		n = PAGE_SIZE - (base & PAGE_MASK);
3052 
3053 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3054 			vm_page_t m = bp->b_pages[i];
3055 
3056 			if (n > size)
3057 				n = size;
3058 
3059 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3060 			base += n;
3061 			size -= n;
3062 			n = PAGE_SIZE;
3063 		}
3064 	}
3065 }
3066 
3067 /*
3068  *	vfs_bio_clrbuf:
3069  *
3070  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3071  *	to clear B_ERROR and B_INVAL.
3072  *
3073  *	Note that while we only theoretically need to clear through b_bcount,
3074  *	we go ahead and clear through b_bufsize.
3075  */
3076 
3077 void
3078 vfs_bio_clrbuf(struct buf *bp)
3079 {
3080 	int i, mask = 0;
3081 	caddr_t sa, ea;
3082 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3083 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3084 		if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3085 		    (bp->b_offset & PAGE_MASK) == 0) {
3086 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3087 			if ((bp->b_pages[0]->valid & mask) == mask) {
3088 				bp->b_resid = 0;
3089 				return;
3090 			}
3091 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3092 			    ((bp->b_pages[0]->valid & mask) == 0)) {
3093 				bzero(bp->b_data, bp->b_bufsize);
3094 				bp->b_pages[0]->valid |= mask;
3095 				bp->b_resid = 0;
3096 				return;
3097 			}
3098 		}
3099 		ea = sa = bp->b_data;
3100 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3101 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3102 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3103 			ea = (caddr_t)(vm_offset_t)ulmin(
3104 			    (u_long)(vm_offset_t)ea,
3105 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3106 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3107 			if ((bp->b_pages[i]->valid & mask) == mask)
3108 				continue;
3109 			if ((bp->b_pages[i]->valid & mask) == 0) {
3110 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3111 					bzero(sa, ea - sa);
3112 				}
3113 			} else {
3114 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3115 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3116 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3117 						bzero(sa, DEV_BSIZE);
3118 				}
3119 			}
3120 			bp->b_pages[i]->valid |= mask;
3121 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3122 		}
3123 		bp->b_resid = 0;
3124 	} else {
3125 		clrbuf(bp);
3126 	}
3127 }
3128 
3129 /*
3130  * vm_hold_load_pages and vm_hold_unload pages get pages into
3131  * a buffers address space.  The pages are anonymous and are
3132  * not associated with a file object.
3133  */
3134 void
3135 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3136 {
3137 	vm_offset_t pg;
3138 	vm_page_t p;
3139 	int index;
3140 
3141 	to = round_page(to);
3142 	from = round_page(from);
3143 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3144 
3145 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3146 
3147 tryagain:
3148 
3149 		/*
3150 		 * note: must allocate system pages since blocking here
3151 		 * could intefere with paging I/O, no matter which
3152 		 * process we are.
3153 		 */
3154 		p = vm_page_alloc(kernel_object,
3155 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3156 		    VM_ALLOC_SYSTEM);
3157 		if (!p) {
3158 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3159 			VM_WAIT;
3160 			goto tryagain;
3161 		}
3162 		vm_page_wire(p);
3163 		p->valid = VM_PAGE_BITS_ALL;
3164 		vm_page_flag_clear(p, PG_ZERO);
3165 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3166 		bp->b_pages[index] = p;
3167 		vm_page_wakeup(p);
3168 	}
3169 	bp->b_npages = index;
3170 }
3171 
3172 void
3173 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3174 {
3175 	vm_offset_t pg;
3176 	vm_page_t p;
3177 	int index, newnpages;
3178 
3179 	from = round_page(from);
3180 	to = round_page(to);
3181 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3182 
3183 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3184 		p = bp->b_pages[index];
3185 		if (p && (index < bp->b_npages)) {
3186 			if (p->busy) {
3187 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3188 					bp->b_blkno, bp->b_lblkno);
3189 			}
3190 			bp->b_pages[index] = NULL;
3191 			pmap_kremove(pg);
3192 			vm_page_busy(p);
3193 			vm_page_unwire(p, 0);
3194 			vm_page_free(p);
3195 		}
3196 	}
3197 	bp->b_npages = newnpages;
3198 }
3199 
3200 /*
3201  * Map an IO request into kernel virtual address space.
3202  *
3203  * All requests are (re)mapped into kernel VA space.
3204  * Notice that we use b_bufsize for the size of the buffer
3205  * to be mapped.  b_bcount might be modified by the driver.
3206  */
3207 int
3208 vmapbuf(struct buf *bp)
3209 {
3210 	caddr_t addr, v, kva;
3211 	vm_offset_t pa;
3212 	int pidx;
3213 	int i;
3214 	struct vm_page *m;
3215 
3216 	if ((bp->b_flags & B_PHYS) == 0)
3217 		panic("vmapbuf");
3218 	if (bp->b_bufsize < 0)
3219 		return (-1);
3220 	for (v = bp->b_saveaddr,
3221 		     addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3222 		     pidx = 0;
3223 	     addr < bp->b_data + bp->b_bufsize;
3224 	     addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3225 		/*
3226 		 * Do the vm_fault if needed; do the copy-on-write thing
3227 		 * when reading stuff off device into memory.
3228 		 */
3229 retry:
3230 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3231 			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3232 		if (i < 0) {
3233 			for (i = 0; i < pidx; ++i) {
3234 			    vm_page_unhold(bp->b_pages[i]);
3235 			    bp->b_pages[i] = NULL;
3236 			}
3237 			return(-1);
3238 		}
3239 
3240 		/*
3241 		 * WARNING!  If sparc support is MFCd in the future this will
3242 		 * have to be changed from pmap_kextract() to pmap_extract()
3243 		 * ala -current.
3244 		 */
3245 #ifdef __sparc64__
3246 #error "If MFCing sparc support use pmap_extract"
3247 #endif
3248 		pa = pmap_kextract((vm_offset_t)addr);
3249 		if (pa == 0) {
3250 			printf("vmapbuf: warning, race against user address during I/O");
3251 			goto retry;
3252 		}
3253 		m = PHYS_TO_VM_PAGE(pa);
3254 		vm_page_hold(m);
3255 		bp->b_pages[pidx] = m;
3256 	}
3257 	if (pidx > btoc(MAXPHYS))
3258 		panic("vmapbuf: mapped more than MAXPHYS");
3259 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3260 
3261 	kva = bp->b_saveaddr;
3262 	bp->b_npages = pidx;
3263 	bp->b_saveaddr = bp->b_data;
3264 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3265 	return(0);
3266 }
3267 
3268 /*
3269  * Free the io map PTEs associated with this IO operation.
3270  * We also invalidate the TLB entries and restore the original b_addr.
3271  */
3272 void
3273 vunmapbuf(bp)
3274 	register struct buf *bp;
3275 {
3276 	int pidx;
3277 	int npages;
3278 	vm_page_t *m;
3279 
3280 	if ((bp->b_flags & B_PHYS) == 0)
3281 		panic("vunmapbuf");
3282 
3283 	npages = bp->b_npages;
3284 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3285 		     npages);
3286 	m = bp->b_pages;
3287 	for (pidx = 0; pidx < npages; pidx++)
3288 		vm_page_unhold(*m++);
3289 
3290 	bp->b_data = bp->b_saveaddr;
3291 }
3292 
3293 #include "opt_ddb.h"
3294 #ifdef DDB
3295 #include <ddb/ddb.h>
3296 
3297 DB_SHOW_COMMAND(buffer, db_show_buffer)
3298 {
3299 	/* get args */
3300 	struct buf *bp = (struct buf *)addr;
3301 
3302 	if (!have_addr) {
3303 		db_printf("usage: show buffer <addr>\n");
3304 		return;
3305 	}
3306 
3307 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3308 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3309 		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3310 		  "b_blkno = %d, b_pblkno = %d\n",
3311 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3312 		  major(bp->b_dev), minor(bp->b_dev),
3313 		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3314 	if (bp->b_npages) {
3315 		int i;
3316 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3317 		for (i = 0; i < bp->b_npages; i++) {
3318 			vm_page_t m;
3319 			m = bp->b_pages[i];
3320 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3321 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3322 			if ((i + 1) < bp->b_npages)
3323 				db_printf(",");
3324 		}
3325 		db_printf("\n");
3326 	}
3327 }
3328 #endif /* DDB */
3329