xref: /dragonfly/sys/kern/vfs_bio.c (revision b4f25088)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
58 
59 #include <sys/buf2.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
69 
70 /*
71  * Buffer queues.
72  */
73 enum bufq_type {
74 	BQUEUE_NONE,    	/* not on any queue */
75 	BQUEUE_LOCKED,  	/* locked buffers */
76 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
77 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
78 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
79 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
80 	BQUEUE_EMPTY,    	/* empty buffer headers */
81 
82 	BUFFER_QUEUES		/* number of buffer queues */
83 };
84 
85 typedef enum bufq_type bufq_type_t;
86 
87 #define BD_WAKE_SIZE	16384
88 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
89 
90 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
91 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
92 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
93 
94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
95 
96 struct buf *buf;		/* buffer header pool */
97 
98 static void vfs_clean_pages(struct buf *bp);
99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
100 #if 0
101 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
102 #endif
103 static void vfs_vmio_release(struct buf *bp);
104 static int flushbufqueues(struct buf *marker, bufq_type_t q);
105 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
106 				vm_pindex_t pg, int deficit);
107 
108 static void bd_signal(long totalspace);
109 static void buf_daemon(void);
110 static void buf_daemon_hw(void);
111 
112 /*
113  * bogus page -- for I/O to/from partially complete buffers
114  * this is a temporary solution to the problem, but it is not
115  * really that bad.  it would be better to split the buffer
116  * for input in the case of buffers partially already in memory,
117  * but the code is intricate enough already.
118  */
119 vm_page_t bogus_page;
120 
121 /*
122  * These are all static, but make the ones we export globals so we do
123  * not need to use compiler magic.
124  */
125 long bufspace;			/* locked by buffer_map */
126 long maxbufspace;
127 static long bufmallocspace;	/* atomic ops */
128 long maxbufmallocspace, lobufspace, hibufspace;
129 static long bufreusecnt, bufdefragcnt, buffreekvacnt;
130 static long lorunningspace;
131 static long hirunningspace;
132 static long runningbufreq;		/* locked by bufcspin */
133 static long dirtykvaspace;		/* locked by bufcspin */
134 static long dirtybufspace;		/* locked by bufcspin */
135 static long dirtybufcount;		/* locked by bufcspin */
136 static long dirtybufspacehw;		/* locked by bufcspin */
137 static long dirtybufcounthw;		/* locked by bufcspin */
138 static long runningbufspace;		/* locked by bufcspin */
139 static long runningbufcount;		/* locked by bufcspin */
140 long lodirtybufspace;
141 long hidirtybufspace;
142 static int getnewbufcalls;
143 static int getnewbufrestarts;
144 static int recoverbufcalls;
145 static int needsbuffer;		/* locked by bufcspin */
146 static int bd_request;		/* locked by bufcspin */
147 static int bd_request_hw;	/* locked by bufcspin */
148 static u_int bd_wake_ary[BD_WAKE_SIZE];
149 static u_int bd_wake_index;
150 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
151 static int debug_commit;
152 
153 static struct thread *bufdaemon_td;
154 static struct thread *bufdaemonhw_td;
155 static u_int lowmempgallocs;
156 static u_int lowmempgfails;
157 
158 /*
159  * Sysctls for operational control of the buffer cache.
160  */
161 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
162 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
163 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
164 	"High watermark used to trigger explicit flushing of dirty buffers");
165 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
166 	"Minimum amount of buffer space required for active I/O");
167 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
168 	"Maximum amount of buffer space to usable for active I/O");
169 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
170 	"Page allocations done during periods of very low free memory");
171 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
172 	"Page allocations which failed during periods of very low free memory");
173 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
174 	"Recycle pages to active or inactive queue transition pt 0-64");
175 /*
176  * Sysctls determining current state of the buffer cache.
177  */
178 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
179 	"Total number of buffers in buffer cache");
180 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
181 	"KVA reserved by dirty buffers (all)");
182 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
183 	"Pending bytes of dirty buffers (all)");
184 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
185 	"Pending bytes of dirty buffers (heavy weight)");
186 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
187 	"Pending number of dirty buffers");
188 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
189 	"Pending number of dirty buffers (heavy weight)");
190 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
191 	"I/O bytes currently in progress due to asynchronous writes");
192 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
193 	"I/O buffers currently in progress due to asynchronous writes");
194 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
195 	"Hard limit on maximum amount of memory usable for buffer space");
196 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
197 	"Soft limit on maximum amount of memory usable for buffer space");
198 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
199 	"Minimum amount of memory to reserve for system buffer space");
200 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
201 	"Amount of memory available for buffers");
202 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
203 	0, "Maximum amount of memory reserved for buffers using malloc");
204 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
205 	"Amount of memory left for buffers using malloc-scheme");
206 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
207 	"New buffer header acquisition requests");
208 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
209 	0, "New buffer header acquisition restarts");
210 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
211 	"Recover VM space in an emergency");
212 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
213 	"Buffer acquisition restarts due to fragmented buffer map");
214 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
215 	"Amount of time KVA space was deallocated in an arbitrary buffer");
216 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
217 	"Amount of time buffer re-use operations were successful");
218 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
219 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
220 	"sizeof(struct buf)");
221 
222 char *buf_wmesg = BUF_WMESG;
223 
224 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
225 #define VFS_BIO_NEED_UNUSED02	0x02
226 #define VFS_BIO_NEED_UNUSED04	0x04
227 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
228 
229 /*
230  * bufspacewakeup:
231  *
232  *	Called when buffer space is potentially available for recovery.
233  *	getnewbuf() will block on this flag when it is unable to free
234  *	sufficient buffer space.  Buffer space becomes recoverable when
235  *	bp's get placed back in the queues.
236  */
237 static __inline void
238 bufspacewakeup(void)
239 {
240 	/*
241 	 * If someone is waiting for BUF space, wake them up.  Even
242 	 * though we haven't freed the kva space yet, the waiting
243 	 * process will be able to now.
244 	 */
245 	spin_lock(&bufcspin);
246 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
247 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
248 		spin_unlock(&bufcspin);
249 		wakeup(&needsbuffer);
250 	} else {
251 		spin_unlock(&bufcspin);
252 	}
253 }
254 
255 /*
256  * runningbufwakeup:
257  *
258  *	Accounting for I/O in progress.
259  *
260  */
261 static __inline void
262 runningbufwakeup(struct buf *bp)
263 {
264 	long totalspace;
265 	long limit;
266 
267 	if ((totalspace = bp->b_runningbufspace) != 0) {
268 		spin_lock(&bufcspin);
269 		runningbufspace -= totalspace;
270 		--runningbufcount;
271 		bp->b_runningbufspace = 0;
272 
273 		/*
274 		 * see waitrunningbufspace() for limit test.
275 		 */
276 		limit = hirunningspace * 3 / 6;
277 		if (runningbufreq && runningbufspace <= limit) {
278 			runningbufreq = 0;
279 			spin_unlock(&bufcspin);
280 			wakeup(&runningbufreq);
281 		} else {
282 			spin_unlock(&bufcspin);
283 		}
284 		bd_signal(totalspace);
285 	}
286 }
287 
288 /*
289  * bufcountwakeup:
290  *
291  *	Called when a buffer has been added to one of the free queues to
292  *	account for the buffer and to wakeup anyone waiting for free buffers.
293  *	This typically occurs when large amounts of metadata are being handled
294  *	by the buffer cache ( else buffer space runs out first, usually ).
295  *
296  * MPSAFE
297  */
298 static __inline void
299 bufcountwakeup(void)
300 {
301 	spin_lock(&bufcspin);
302 	if (needsbuffer) {
303 		needsbuffer &= ~VFS_BIO_NEED_ANY;
304 		spin_unlock(&bufcspin);
305 		wakeup(&needsbuffer);
306 	} else {
307 		spin_unlock(&bufcspin);
308 	}
309 }
310 
311 /*
312  * waitrunningbufspace()
313  *
314  * If runningbufspace exceeds 4/6 hirunningspace we block until
315  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
316  * thread blocked here in order to be fair, even if runningbufspace
317  * is now lower than the limit.
318  *
319  * The caller may be using this function to block in a tight loop, we
320  * must block while runningbufspace is greater than at least
321  * hirunningspace * 3 / 6.
322  */
323 void
324 waitrunningbufspace(void)
325 {
326 	long limit = hirunningspace * 4 / 6;
327 
328 	if (runningbufspace > limit || runningbufreq) {
329 		spin_lock(&bufcspin);
330 		while (runningbufspace > limit || runningbufreq) {
331 			runningbufreq = 1;
332 			ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
333 		}
334 		spin_unlock(&bufcspin);
335 	}
336 }
337 
338 /*
339  * buf_dirty_count_severe:
340  *
341  *	Return true if we have too many dirty buffers.
342  */
343 int
344 buf_dirty_count_severe(void)
345 {
346 	return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
347 	        dirtybufcount >= nbuf / 2);
348 }
349 
350 /*
351  * Return true if the amount of running I/O is severe and BIOQ should
352  * start bursting.
353  */
354 int
355 buf_runningbufspace_severe(void)
356 {
357 	return (runningbufspace >= hirunningspace * 4 / 6);
358 }
359 
360 /*
361  * vfs_buf_test_cache:
362  *
363  * Called when a buffer is extended.  This function clears the B_CACHE
364  * bit if the newly extended portion of the buffer does not contain
365  * valid data.
366  *
367  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
368  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
369  * them while a clean buffer was present.
370  */
371 static __inline__
372 void
373 vfs_buf_test_cache(struct buf *bp,
374 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
375 		  vm_page_t m)
376 {
377 	if (bp->b_flags & B_CACHE) {
378 		int base = (foff + off) & PAGE_MASK;
379 		if (vm_page_is_valid(m, base, size) == 0)
380 			bp->b_flags &= ~B_CACHE;
381 	}
382 }
383 
384 /*
385  * bd_speedup()
386  *
387  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
388  * low water mark.
389  *
390  * MPSAFE
391  */
392 static __inline__
393 void
394 bd_speedup(void)
395 {
396 	if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
397 		return;
398 
399 	if (bd_request == 0 &&
400 	    (dirtykvaspace > lodirtybufspace / 2 ||
401 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
402 		spin_lock(&bufcspin);
403 		bd_request = 1;
404 		spin_unlock(&bufcspin);
405 		wakeup(&bd_request);
406 	}
407 	if (bd_request_hw == 0 &&
408 	    (dirtykvaspace > lodirtybufspace / 2 ||
409 	     dirtybufcounthw >= nbuf / 2)) {
410 		spin_lock(&bufcspin);
411 		bd_request_hw = 1;
412 		spin_unlock(&bufcspin);
413 		wakeup(&bd_request_hw);
414 	}
415 }
416 
417 /*
418  * bd_heatup()
419  *
420  *	Get the buf_daemon heated up when the number of running and dirty
421  *	buffers exceeds the mid-point.
422  *
423  *	Return the total number of dirty bytes past the second mid point
424  *	as a measure of how much excess dirty data there is in the system.
425  *
426  * MPSAFE
427  */
428 long
429 bd_heatup(void)
430 {
431 	long mid1;
432 	long mid2;
433 	long totalspace;
434 
435 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
436 
437 	totalspace = runningbufspace + dirtykvaspace;
438 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
439 		bd_speedup();
440 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
441 		if (totalspace >= mid2)
442 			return(totalspace - mid2);
443 	}
444 	return(0);
445 }
446 
447 /*
448  * bd_wait()
449  *
450  *	Wait for the buffer cache to flush (totalspace) bytes worth of
451  *	buffers, then return.
452  *
453  *	Regardless this function blocks while the number of dirty buffers
454  *	exceeds hidirtybufspace.
455  *
456  * MPSAFE
457  */
458 void
459 bd_wait(long totalspace)
460 {
461 	u_int i;
462 	int count;
463 
464 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
465 		return;
466 
467 	while (totalspace > 0) {
468 		bd_heatup();
469 		if (totalspace > runningbufspace + dirtykvaspace)
470 			totalspace = runningbufspace + dirtykvaspace;
471 		count = totalspace / BKVASIZE;
472 		if (count >= BD_WAKE_SIZE)
473 			count = BD_WAKE_SIZE - 1;
474 
475 		spin_lock(&bufcspin);
476 		i = (bd_wake_index + count) & BD_WAKE_MASK;
477 		++bd_wake_ary[i];
478 
479 		/*
480 		 * This is not a strict interlock, so we play a bit loose
481 		 * with locking access to dirtybufspace*
482 		 */
483 		tsleep_interlock(&bd_wake_ary[i], 0);
484 		spin_unlock(&bufcspin);
485 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
486 
487 		totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
488 	}
489 }
490 
491 /*
492  * bd_signal()
493  *
494  *	This function is called whenever runningbufspace or dirtykvaspace
495  *	is reduced.  Track threads waiting for run+dirty buffer I/O
496  *	complete.
497  *
498  * MPSAFE
499  */
500 static void
501 bd_signal(long totalspace)
502 {
503 	u_int i;
504 
505 	if (totalspace > 0) {
506 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
507 			totalspace = BKVASIZE * BD_WAKE_SIZE;
508 		spin_lock(&bufcspin);
509 		while (totalspace > 0) {
510 			i = bd_wake_index++;
511 			i &= BD_WAKE_MASK;
512 			if (bd_wake_ary[i]) {
513 				bd_wake_ary[i] = 0;
514 				spin_unlock(&bufcspin);
515 				wakeup(&bd_wake_ary[i]);
516 				spin_lock(&bufcspin);
517 			}
518 			totalspace -= BKVASIZE;
519 		}
520 		spin_unlock(&bufcspin);
521 	}
522 }
523 
524 /*
525  * BIO tracking support routines.
526  *
527  * Release a ref on a bio_track.  Wakeup requests are atomically released
528  * along with the last reference so bk_active will never wind up set to
529  * only 0x80000000.
530  *
531  * MPSAFE
532  */
533 static
534 void
535 bio_track_rel(struct bio_track *track)
536 {
537 	int	active;
538 	int	desired;
539 
540 	/*
541 	 * Shortcut
542 	 */
543 	active = track->bk_active;
544 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
545 		return;
546 
547 	/*
548 	 * Full-on.  Note that the wait flag is only atomically released on
549 	 * the 1->0 count transition.
550 	 *
551 	 * We check for a negative count transition using bit 30 since bit 31
552 	 * has a different meaning.
553 	 */
554 	for (;;) {
555 		desired = (active & 0x7FFFFFFF) - 1;
556 		if (desired)
557 			desired |= active & 0x80000000;
558 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
559 			if (desired & 0x40000000)
560 				panic("bio_track_rel: bad count: %p", track);
561 			if (active & 0x80000000)
562 				wakeup(track);
563 			break;
564 		}
565 		active = track->bk_active;
566 	}
567 }
568 
569 /*
570  * Wait for the tracking count to reach 0.
571  *
572  * Use atomic ops such that the wait flag is only set atomically when
573  * bk_active is non-zero.
574  *
575  * MPSAFE
576  */
577 int
578 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
579 {
580 	int	active;
581 	int	desired;
582 	int	error;
583 
584 	/*
585 	 * Shortcut
586 	 */
587 	if (track->bk_active == 0)
588 		return(0);
589 
590 	/*
591 	 * Full-on.  Note that the wait flag may only be atomically set if
592 	 * the active count is non-zero.
593 	 *
594 	 * NOTE: We cannot optimize active == desired since a wakeup could
595 	 *	 clear active prior to our tsleep_interlock().
596 	 */
597 	error = 0;
598 	while ((active = track->bk_active) != 0) {
599 		cpu_ccfence();
600 		desired = active | 0x80000000;
601 		tsleep_interlock(track, slp_flags);
602 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
603 			error = tsleep(track, slp_flags | PINTERLOCKED,
604 				       "trwait", slp_timo);
605 			if (error)
606 				break;
607 		}
608 	}
609 	return (error);
610 }
611 
612 /*
613  * bufinit:
614  *
615  *	Load time initialisation of the buffer cache, called from machine
616  *	dependant initialization code.
617  */
618 void
619 bufinit(void)
620 {
621 	struct buf *bp;
622 	vm_offset_t bogus_offset;
623 	long i;
624 
625 	/* next, make a null set of free lists */
626 	for (i = 0; i < BUFFER_QUEUES; i++)
627 		TAILQ_INIT(&bufqueues[i]);
628 
629 	/* finally, initialize each buffer header and stick on empty q */
630 	for (i = 0; i < nbuf; i++) {
631 		bp = &buf[i];
632 		bzero(bp, sizeof *bp);
633 		bp->b_flags = B_INVAL;	/* we're just an empty header */
634 		bp->b_cmd = BUF_CMD_DONE;
635 		bp->b_qindex = BQUEUE_EMPTY;
636 		initbufbio(bp);
637 		xio_init(&bp->b_xio);
638 		buf_dep_init(bp);
639 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
640 	}
641 
642 	/*
643 	 * maxbufspace is the absolute maximum amount of buffer space we are
644 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
645 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
646 	 * used by most other processes.  The differential is required to
647 	 * ensure that buf_daemon is able to run when other processes might
648 	 * be blocked waiting for buffer space.
649 	 *
650 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
651 	 * this may result in KVM fragmentation which is not handled optimally
652 	 * by the system.
653 	 */
654 	maxbufspace = nbuf * BKVASIZE;
655 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
656 	lobufspace = hibufspace - MAXBSIZE;
657 
658 	lorunningspace = 512 * 1024;
659 	/* hirunningspace -- see below */
660 
661 	/*
662 	 * Limit the amount of malloc memory since it is wired permanently
663 	 * into the kernel space.  Even though this is accounted for in
664 	 * the buffer allocation, we don't want the malloced region to grow
665 	 * uncontrolled.  The malloc scheme improves memory utilization
666 	 * significantly on average (small) directories.
667 	 */
668 	maxbufmallocspace = hibufspace / 20;
669 
670 	/*
671 	 * Reduce the chance of a deadlock occuring by limiting the number
672 	 * of delayed-write dirty buffers we allow to stack up.
673 	 *
674 	 * We don't want too much actually queued to the device at once
675 	 * (XXX this needs to be per-mount!), because the buffers will
676 	 * wind up locked for a very long period of time while the I/O
677 	 * drains.
678 	 */
679 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
680 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
681 	if (hirunningspace < 1024 * 1024)
682 		hirunningspace = 1024 * 1024;
683 
684 	dirtykvaspace = 0;
685 	dirtybufspace = 0;
686 	dirtybufspacehw = 0;
687 
688 	lodirtybufspace = hidirtybufspace / 2;
689 
690 	/*
691 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
692 	 * somewhat of a hack at the moment, we really need to limit ourselves
693 	 * based on the number of bytes of I/O in-transit that were initiated
694 	 * from buf_daemon.
695 	 */
696 
697 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
698 	vm_object_hold(&kernel_object);
699 	bogus_page = vm_page_alloc(&kernel_object,
700 				   (bogus_offset >> PAGE_SHIFT),
701 				   VM_ALLOC_NORMAL);
702 	vm_object_drop(&kernel_object);
703 	vmstats.v_wire_count++;
704 
705 }
706 
707 /*
708  * Initialize the embedded bio structures, typically used by
709  * deprecated code which tries to allocate its own struct bufs.
710  */
711 void
712 initbufbio(struct buf *bp)
713 {
714 	bp->b_bio1.bio_buf = bp;
715 	bp->b_bio1.bio_prev = NULL;
716 	bp->b_bio1.bio_offset = NOOFFSET;
717 	bp->b_bio1.bio_next = &bp->b_bio2;
718 	bp->b_bio1.bio_done = NULL;
719 	bp->b_bio1.bio_flags = 0;
720 
721 	bp->b_bio2.bio_buf = bp;
722 	bp->b_bio2.bio_prev = &bp->b_bio1;
723 	bp->b_bio2.bio_offset = NOOFFSET;
724 	bp->b_bio2.bio_next = NULL;
725 	bp->b_bio2.bio_done = NULL;
726 	bp->b_bio2.bio_flags = 0;
727 
728 	BUF_LOCKINIT(bp);
729 }
730 
731 /*
732  * Reinitialize the embedded bio structures as well as any additional
733  * translation cache layers.
734  */
735 void
736 reinitbufbio(struct buf *bp)
737 {
738 	struct bio *bio;
739 
740 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
741 		bio->bio_done = NULL;
742 		bio->bio_offset = NOOFFSET;
743 	}
744 }
745 
746 /*
747  * Undo the effects of an initbufbio().
748  */
749 void
750 uninitbufbio(struct buf *bp)
751 {
752 	dsched_exit_buf(bp);
753 	BUF_LOCKFREE(bp);
754 }
755 
756 /*
757  * Push another BIO layer onto an existing BIO and return it.  The new
758  * BIO layer may already exist, holding cached translation data.
759  */
760 struct bio *
761 push_bio(struct bio *bio)
762 {
763 	struct bio *nbio;
764 
765 	if ((nbio = bio->bio_next) == NULL) {
766 		int index = bio - &bio->bio_buf->b_bio_array[0];
767 		if (index >= NBUF_BIO - 1) {
768 			panic("push_bio: too many layers bp %p",
769 				bio->bio_buf);
770 		}
771 		nbio = &bio->bio_buf->b_bio_array[index + 1];
772 		bio->bio_next = nbio;
773 		nbio->bio_prev = bio;
774 		nbio->bio_buf = bio->bio_buf;
775 		nbio->bio_offset = NOOFFSET;
776 		nbio->bio_done = NULL;
777 		nbio->bio_next = NULL;
778 	}
779 	KKASSERT(nbio->bio_done == NULL);
780 	return(nbio);
781 }
782 
783 /*
784  * Pop a BIO translation layer, returning the previous layer.  The
785  * must have been previously pushed.
786  */
787 struct bio *
788 pop_bio(struct bio *bio)
789 {
790 	return(bio->bio_prev);
791 }
792 
793 void
794 clearbiocache(struct bio *bio)
795 {
796 	while (bio) {
797 		bio->bio_offset = NOOFFSET;
798 		bio = bio->bio_next;
799 	}
800 }
801 
802 /*
803  * bfreekva:
804  *
805  *	Free the KVA allocation for buffer 'bp'.
806  *
807  *	Must be called from a critical section as this is the only locking for
808  *	buffer_map.
809  *
810  *	Since this call frees up buffer space, we call bufspacewakeup().
811  *
812  * MPALMOSTSAFE
813  */
814 static void
815 bfreekva(struct buf *bp)
816 {
817 	int count;
818 
819 	if (bp->b_kvasize) {
820 		++buffreekvacnt;
821 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
822 		vm_map_lock(&buffer_map);
823 		bufspace -= bp->b_kvasize;
824 		vm_map_delete(&buffer_map,
825 		    (vm_offset_t) bp->b_kvabase,
826 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
827 		    &count
828 		);
829 		vm_map_unlock(&buffer_map);
830 		vm_map_entry_release(count);
831 		bp->b_kvasize = 0;
832 		bp->b_kvabase = NULL;
833 		bufspacewakeup();
834 	}
835 }
836 
837 /*
838  * bremfree:
839  *
840  *	Remove the buffer from the appropriate free list.
841  */
842 static __inline void
843 _bremfree(struct buf *bp)
844 {
845 	if (bp->b_qindex != BQUEUE_NONE) {
846 		KASSERT(BUF_REFCNTNB(bp) == 1,
847 				("bremfree: bp %p not locked",bp));
848 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
849 		bp->b_qindex = BQUEUE_NONE;
850 	} else {
851 		if (BUF_REFCNTNB(bp) <= 1)
852 			panic("bremfree: removing a buffer not on a queue");
853 	}
854 }
855 
856 void
857 bremfree(struct buf *bp)
858 {
859 	spin_lock(&bufqspin);
860 	_bremfree(bp);
861 	spin_unlock(&bufqspin);
862 }
863 
864 static void
865 bremfree_locked(struct buf *bp)
866 {
867 	_bremfree(bp);
868 }
869 
870 /*
871  * This version of bread issues any required I/O asyncnronously and
872  * makes a callback on completion.
873  *
874  * The callback must check whether BIO_DONE is set in the bio and issue
875  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
876  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
877  */
878 void
879 breadcb(struct vnode *vp, off_t loffset, int size,
880 	void (*func)(struct bio *), void *arg)
881 {
882 	struct buf *bp;
883 
884 	bp = getblk(vp, loffset, size, 0, 0);
885 
886 	/* if not found in cache, do some I/O */
887 	if ((bp->b_flags & B_CACHE) == 0) {
888 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
889 		bp->b_cmd = BUF_CMD_READ;
890 		bp->b_bio1.bio_done = func;
891 		bp->b_bio1.bio_caller_info1.ptr = arg;
892 		vfs_busy_pages(vp, bp);
893 		BUF_KERNPROC(bp);
894 		vn_strategy(vp, &bp->b_bio1);
895 	} else if (func) {
896 		/*
897 		 * Since we are issuing the callback synchronously it cannot
898 		 * race the BIO_DONE, so no need for atomic ops here.
899 		 */
900 		/*bp->b_bio1.bio_done = func;*/
901 		bp->b_bio1.bio_caller_info1.ptr = arg;
902 		bp->b_bio1.bio_flags |= BIO_DONE;
903 		func(&bp->b_bio1);
904 	} else {
905 		bqrelse(bp);
906 	}
907 }
908 
909 /*
910  * breadnx() - Terminal function for bread() and breadn().
911  *
912  * This function will start asynchronous I/O on read-ahead blocks as well
913  * as satisfy the primary request.
914  *
915  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
916  * set, the buffer is valid and we do not have to do anything.
917  */
918 int
919 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
920 	int *rabsize, int cnt, struct buf **bpp)
921 {
922 	struct buf *bp, *rabp;
923 	int i;
924 	int rv = 0, readwait = 0;
925 
926 	if (*bpp)
927 		bp = *bpp;
928 	else
929 		*bpp = bp = getblk(vp, loffset, size, 0, 0);
930 
931 	/* if not found in cache, do some I/O */
932 	if ((bp->b_flags & B_CACHE) == 0) {
933 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
934 		bp->b_cmd = BUF_CMD_READ;
935 		bp->b_bio1.bio_done = biodone_sync;
936 		bp->b_bio1.bio_flags |= BIO_SYNC;
937 		vfs_busy_pages(vp, bp);
938 		vn_strategy(vp, &bp->b_bio1);
939 		++readwait;
940 	}
941 
942 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
943 		if (inmem(vp, *raoffset))
944 			continue;
945 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
946 
947 		if ((rabp->b_flags & B_CACHE) == 0) {
948 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
949 			rabp->b_cmd = BUF_CMD_READ;
950 			vfs_busy_pages(vp, rabp);
951 			BUF_KERNPROC(rabp);
952 			vn_strategy(vp, &rabp->b_bio1);
953 		} else {
954 			brelse(rabp);
955 		}
956 	}
957 	if (readwait)
958 		rv = biowait(&bp->b_bio1, "biord");
959 	return (rv);
960 }
961 
962 /*
963  * bwrite:
964  *
965  *	Synchronous write, waits for completion.
966  *
967  *	Write, release buffer on completion.  (Done by iodone
968  *	if async).  Do not bother writing anything if the buffer
969  *	is invalid.
970  *
971  *	Note that we set B_CACHE here, indicating that buffer is
972  *	fully valid and thus cacheable.  This is true even of NFS
973  *	now so we set it generally.  This could be set either here
974  *	or in biodone() since the I/O is synchronous.  We put it
975  *	here.
976  */
977 int
978 bwrite(struct buf *bp)
979 {
980 	int error;
981 
982 	if (bp->b_flags & B_INVAL) {
983 		brelse(bp);
984 		return (0);
985 	}
986 	if (BUF_REFCNTNB(bp) == 0)
987 		panic("bwrite: buffer is not busy???");
988 
989 	/* Mark the buffer clean */
990 	bundirty(bp);
991 
992 	bp->b_flags &= ~(B_ERROR | B_EINTR);
993 	bp->b_flags |= B_CACHE;
994 	bp->b_cmd = BUF_CMD_WRITE;
995 	bp->b_bio1.bio_done = biodone_sync;
996 	bp->b_bio1.bio_flags |= BIO_SYNC;
997 	vfs_busy_pages(bp->b_vp, bp);
998 
999 	/*
1000 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1001 	 * valid for vnode-backed buffers.
1002 	 */
1003 	bsetrunningbufspace(bp, bp->b_bufsize);
1004 	vn_strategy(bp->b_vp, &bp->b_bio1);
1005 	error = biowait(&bp->b_bio1, "biows");
1006 	brelse(bp);
1007 
1008 	return (error);
1009 }
1010 
1011 /*
1012  * bawrite:
1013  *
1014  *	Asynchronous write.  Start output on a buffer, but do not wait for
1015  *	it to complete.  The buffer is released when the output completes.
1016  *
1017  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1018  *	B_INVAL buffers.  Not us.
1019  */
1020 void
1021 bawrite(struct buf *bp)
1022 {
1023 	if (bp->b_flags & B_INVAL) {
1024 		brelse(bp);
1025 		return;
1026 	}
1027 	if (BUF_REFCNTNB(bp) == 0)
1028 		panic("bwrite: buffer is not busy???");
1029 
1030 	/* Mark the buffer clean */
1031 	bundirty(bp);
1032 
1033 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1034 	bp->b_flags |= B_CACHE;
1035 	bp->b_cmd = BUF_CMD_WRITE;
1036 	KKASSERT(bp->b_bio1.bio_done == NULL);
1037 	vfs_busy_pages(bp->b_vp, bp);
1038 
1039 	/*
1040 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1041 	 * valid for vnode-backed buffers.
1042 	 */
1043 	bsetrunningbufspace(bp, bp->b_bufsize);
1044 	BUF_KERNPROC(bp);
1045 	vn_strategy(bp->b_vp, &bp->b_bio1);
1046 }
1047 
1048 /*
1049  * bowrite:
1050  *
1051  *	Ordered write.  Start output on a buffer, and flag it so that the
1052  *	device will write it in the order it was queued.  The buffer is
1053  *	released when the output completes.  bwrite() ( or the VOP routine
1054  *	anyway ) is responsible for handling B_INVAL buffers.
1055  */
1056 int
1057 bowrite(struct buf *bp)
1058 {
1059 	bp->b_flags |= B_ORDERED;
1060 	bawrite(bp);
1061 	return (0);
1062 }
1063 
1064 /*
1065  * bdwrite:
1066  *
1067  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1068  *	anything if the buffer is marked invalid.
1069  *
1070  *	Note that since the buffer must be completely valid, we can safely
1071  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1072  *	biodone() in order to prevent getblk from writing the buffer
1073  *	out synchronously.
1074  */
1075 void
1076 bdwrite(struct buf *bp)
1077 {
1078 	if (BUF_REFCNTNB(bp) == 0)
1079 		panic("bdwrite: buffer is not busy");
1080 
1081 	if (bp->b_flags & B_INVAL) {
1082 		brelse(bp);
1083 		return;
1084 	}
1085 	bdirty(bp);
1086 
1087 	if (dsched_is_clear_buf_priv(bp))
1088 		dsched_new_buf(bp);
1089 
1090 	/*
1091 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1092 	 * true even of NFS now.
1093 	 */
1094 	bp->b_flags |= B_CACHE;
1095 
1096 	/*
1097 	 * This bmap keeps the system from needing to do the bmap later,
1098 	 * perhaps when the system is attempting to do a sync.  Since it
1099 	 * is likely that the indirect block -- or whatever other datastructure
1100 	 * that the filesystem needs is still in memory now, it is a good
1101 	 * thing to do this.  Note also, that if the pageout daemon is
1102 	 * requesting a sync -- there might not be enough memory to do
1103 	 * the bmap then...  So, this is important to do.
1104 	 */
1105 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1106 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1107 			 NULL, NULL, BUF_CMD_WRITE);
1108 	}
1109 
1110 	/*
1111 	 * Because the underlying pages may still be mapped and
1112 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1113 	 * range here will be inaccurate.
1114 	 *
1115 	 * However, we must still clean the pages to satisfy the
1116 	 * vnode_pager and pageout daemon, so theythink the pages
1117 	 * have been "cleaned".  What has really occured is that
1118 	 * they've been earmarked for later writing by the buffer
1119 	 * cache.
1120 	 *
1121 	 * So we get the b_dirtyoff/end update but will not actually
1122 	 * depend on it (NFS that is) until the pages are busied for
1123 	 * writing later on.
1124 	 */
1125 	vfs_clean_pages(bp);
1126 	bqrelse(bp);
1127 
1128 	/*
1129 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1130 	 * due to the softdep code.
1131 	 */
1132 }
1133 
1134 /*
1135  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1136  * This is used by tmpfs.
1137  *
1138  * It is important for any VFS using this routine to NOT use it for
1139  * IO_SYNC or IO_ASYNC operations which occur when the system really
1140  * wants to flush VM pages to backing store.
1141  */
1142 void
1143 buwrite(struct buf *bp)
1144 {
1145 	vm_page_t m;
1146 	int i;
1147 
1148 	/*
1149 	 * Only works for VMIO buffers.  If the buffer is already
1150 	 * marked for delayed-write we can't avoid the bdwrite().
1151 	 */
1152 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1153 		bdwrite(bp);
1154 		return;
1155 	}
1156 
1157 	/*
1158 	 * Mark as needing a commit.
1159 	 */
1160 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1161 		m = bp->b_xio.xio_pages[i];
1162 		vm_page_need_commit(m);
1163 	}
1164 	bqrelse(bp);
1165 }
1166 
1167 /*
1168  * bdirty:
1169  *
1170  *	Turn buffer into delayed write request by marking it B_DELWRI.
1171  *	B_RELBUF and B_NOCACHE must be cleared.
1172  *
1173  *	We reassign the buffer to itself to properly update it in the
1174  *	dirty/clean lists.
1175  *
1176  *	Must be called from a critical section.
1177  *	The buffer must be on BQUEUE_NONE.
1178  */
1179 void
1180 bdirty(struct buf *bp)
1181 {
1182 	KASSERT(bp->b_qindex == BQUEUE_NONE,
1183 		("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1184 	if (bp->b_flags & B_NOCACHE) {
1185 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1186 		bp->b_flags &= ~B_NOCACHE;
1187 	}
1188 	if (bp->b_flags & B_INVAL) {
1189 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1190 	}
1191 	bp->b_flags &= ~B_RELBUF;
1192 
1193 	if ((bp->b_flags & B_DELWRI) == 0) {
1194 		lwkt_gettoken(&bp->b_vp->v_token);
1195 		bp->b_flags |= B_DELWRI;
1196 		reassignbuf(bp);
1197 		lwkt_reltoken(&bp->b_vp->v_token);
1198 
1199 		spin_lock(&bufcspin);
1200 		++dirtybufcount;
1201 		dirtykvaspace += bp->b_kvasize;
1202 		dirtybufspace += bp->b_bufsize;
1203 		if (bp->b_flags & B_HEAVY) {
1204 			++dirtybufcounthw;
1205 			dirtybufspacehw += bp->b_bufsize;
1206 		}
1207 		spin_unlock(&bufcspin);
1208 
1209 		bd_heatup();
1210 	}
1211 }
1212 
1213 /*
1214  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1215  * needs to be flushed with a different buf_daemon thread to avoid
1216  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1217  */
1218 void
1219 bheavy(struct buf *bp)
1220 {
1221 	if ((bp->b_flags & B_HEAVY) == 0) {
1222 		bp->b_flags |= B_HEAVY;
1223 		if (bp->b_flags & B_DELWRI) {
1224 			spin_lock(&bufcspin);
1225 			++dirtybufcounthw;
1226 			dirtybufspacehw += bp->b_bufsize;
1227 			spin_unlock(&bufcspin);
1228 		}
1229 	}
1230 }
1231 
1232 /*
1233  * bundirty:
1234  *
1235  *	Clear B_DELWRI for buffer.
1236  *
1237  *	Must be called from a critical section.
1238  *
1239  *	The buffer is typically on BQUEUE_NONE but there is one case in
1240  *	brelse() that calls this function after placing the buffer on
1241  *	a different queue.
1242  *
1243  * MPSAFE
1244  */
1245 void
1246 bundirty(struct buf *bp)
1247 {
1248 	if (bp->b_flags & B_DELWRI) {
1249 		lwkt_gettoken(&bp->b_vp->v_token);
1250 		bp->b_flags &= ~B_DELWRI;
1251 		reassignbuf(bp);
1252 		lwkt_reltoken(&bp->b_vp->v_token);
1253 
1254 		spin_lock(&bufcspin);
1255 		--dirtybufcount;
1256 		dirtykvaspace -= bp->b_kvasize;
1257 		dirtybufspace -= bp->b_bufsize;
1258 		if (bp->b_flags & B_HEAVY) {
1259 			--dirtybufcounthw;
1260 			dirtybufspacehw -= bp->b_bufsize;
1261 		}
1262 		spin_unlock(&bufcspin);
1263 
1264 		bd_signal(bp->b_bufsize);
1265 	}
1266 	/*
1267 	 * Since it is now being written, we can clear its deferred write flag.
1268 	 */
1269 	bp->b_flags &= ~B_DEFERRED;
1270 }
1271 
1272 /*
1273  * Set the b_runningbufspace field, used to track how much I/O is
1274  * in progress at any given moment.
1275  */
1276 void
1277 bsetrunningbufspace(struct buf *bp, int bytes)
1278 {
1279 	bp->b_runningbufspace = bytes;
1280 	if (bytes) {
1281 		spin_lock(&bufcspin);
1282 		runningbufspace += bytes;
1283 		++runningbufcount;
1284 		spin_unlock(&bufcspin);
1285 	}
1286 }
1287 
1288 /*
1289  * brelse:
1290  *
1291  *	Release a busy buffer and, if requested, free its resources.  The
1292  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1293  *	to be accessed later as a cache entity or reused for other purposes.
1294  *
1295  * MPALMOSTSAFE
1296  */
1297 void
1298 brelse(struct buf *bp)
1299 {
1300 #ifdef INVARIANTS
1301 	int saved_flags = bp->b_flags;
1302 #endif
1303 
1304 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1305 
1306 	/*
1307 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1308 	 * its backing store.  Clear B_DELWRI.
1309 	 *
1310 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1311 	 * to destroy the buffer and backing store and (2) when the caller
1312 	 * wants to destroy the buffer and backing store after a write
1313 	 * completes.
1314 	 */
1315 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1316 		bundirty(bp);
1317 	}
1318 
1319 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1320 		/*
1321 		 * A re-dirtied buffer is only subject to destruction
1322 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1323 		 */
1324 		/* leave buffer intact */
1325 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1326 		   (bp->b_bufsize <= 0)) {
1327 		/*
1328 		 * Either a failed read or we were asked to free or not
1329 		 * cache the buffer.  This path is reached with B_DELWRI
1330 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1331 		 * backing store destruction.
1332 		 *
1333 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1334 		 * buffer cannot be immediately freed.
1335 		 */
1336 		bp->b_flags |= B_INVAL;
1337 		if (LIST_FIRST(&bp->b_dep) != NULL)
1338 			buf_deallocate(bp);
1339 		if (bp->b_flags & B_DELWRI) {
1340 			spin_lock(&bufcspin);
1341 			--dirtybufcount;
1342 			dirtykvaspace -= bp->b_kvasize;
1343 			dirtybufspace -= bp->b_bufsize;
1344 			if (bp->b_flags & B_HEAVY) {
1345 				--dirtybufcounthw;
1346 				dirtybufspacehw -= bp->b_bufsize;
1347 			}
1348 			spin_unlock(&bufcspin);
1349 
1350 			bd_signal(bp->b_bufsize);
1351 		}
1352 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1353 	}
1354 
1355 	/*
1356 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1357 	 * or if b_refs is non-zero.
1358 	 *
1359 	 * If vfs_vmio_release() is called with either bit set, the
1360 	 * underlying pages may wind up getting freed causing a previous
1361 	 * write (bdwrite()) to get 'lost' because pages associated with
1362 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1363 	 * B_LOCKED buffer may be mapped by the filesystem.
1364 	 *
1365 	 * If we want to release the buffer ourselves (rather then the
1366 	 * originator asking us to release it), give the originator a
1367 	 * chance to countermand the release by setting B_LOCKED.
1368 	 *
1369 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1370 	 * if B_DELWRI is set.
1371 	 *
1372 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1373 	 * on pages to return pages to the VM page queues.
1374 	 */
1375 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1376 		bp->b_flags &= ~B_RELBUF;
1377 	} else if (vm_page_count_min(0)) {
1378 		if (LIST_FIRST(&bp->b_dep) != NULL)
1379 			buf_deallocate(bp);		/* can set B_LOCKED */
1380 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1381 			bp->b_flags &= ~B_RELBUF;
1382 		else
1383 			bp->b_flags |= B_RELBUF;
1384 	}
1385 
1386 	/*
1387 	 * Make sure b_cmd is clear.  It may have already been cleared by
1388 	 * biodone().
1389 	 *
1390 	 * At this point destroying the buffer is governed by the B_INVAL
1391 	 * or B_RELBUF flags.
1392 	 */
1393 	bp->b_cmd = BUF_CMD_DONE;
1394 	dsched_exit_buf(bp);
1395 
1396 	/*
1397 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1398 	 * after an I/O may have replaces some of the pages with bogus pages
1399 	 * in order to not destroy dirty pages in a fill-in read.
1400 	 *
1401 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1402 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1403 	 * B_INVAL may still be set, however.
1404 	 *
1405 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1406 	 * but not the backing store.   B_NOCACHE will destroy the backing
1407 	 * store.
1408 	 *
1409 	 * Note that dirty NFS buffers contain byte-granular write ranges
1410 	 * and should not be destroyed w/ B_INVAL even if the backing store
1411 	 * is left intact.
1412 	 */
1413 	if (bp->b_flags & B_VMIO) {
1414 		/*
1415 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1416 		 */
1417 		int i, j, resid;
1418 		vm_page_t m;
1419 		off_t foff;
1420 		vm_pindex_t poff;
1421 		vm_object_t obj;
1422 		struct vnode *vp;
1423 
1424 		vp = bp->b_vp;
1425 
1426 		/*
1427 		 * Get the base offset and length of the buffer.  Note that
1428 		 * in the VMIO case if the buffer block size is not
1429 		 * page-aligned then b_data pointer may not be page-aligned.
1430 		 * But our b_xio.xio_pages array *IS* page aligned.
1431 		 *
1432 		 * block sizes less then DEV_BSIZE (usually 512) are not
1433 		 * supported due to the page granularity bits (m->valid,
1434 		 * m->dirty, etc...).
1435 		 *
1436 		 * See man buf(9) for more information
1437 		 */
1438 
1439 		resid = bp->b_bufsize;
1440 		foff = bp->b_loffset;
1441 
1442 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1443 			m = bp->b_xio.xio_pages[i];
1444 			vm_page_flag_clear(m, PG_ZERO);
1445 			/*
1446 			 * If we hit a bogus page, fixup *all* of them
1447 			 * now.  Note that we left these pages wired
1448 			 * when we removed them so they had better exist,
1449 			 * and they cannot be ripped out from under us so
1450 			 * no critical section protection is necessary.
1451 			 */
1452 			if (m == bogus_page) {
1453 				obj = vp->v_object;
1454 				poff = OFF_TO_IDX(bp->b_loffset);
1455 
1456 				vm_object_hold(obj);
1457 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1458 					vm_page_t mtmp;
1459 
1460 					mtmp = bp->b_xio.xio_pages[j];
1461 					if (mtmp == bogus_page) {
1462 						mtmp = vm_page_lookup(obj, poff + j);
1463 						if (!mtmp) {
1464 							panic("brelse: page missing");
1465 						}
1466 						bp->b_xio.xio_pages[j] = mtmp;
1467 					}
1468 				}
1469 				bp->b_flags &= ~B_HASBOGUS;
1470 				vm_object_drop(obj);
1471 
1472 				if ((bp->b_flags & B_INVAL) == 0) {
1473 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1474 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1475 				}
1476 				m = bp->b_xio.xio_pages[i];
1477 			}
1478 
1479 			/*
1480 			 * Invalidate the backing store if B_NOCACHE is set
1481 			 * (e.g. used with vinvalbuf()).  If this is NFS
1482 			 * we impose a requirement that the block size be
1483 			 * a multiple of PAGE_SIZE and create a temporary
1484 			 * hack to basically invalidate the whole page.  The
1485 			 * problem is that NFS uses really odd buffer sizes
1486 			 * especially when tracking piecemeal writes and
1487 			 * it also vinvalbuf()'s a lot, which would result
1488 			 * in only partial page validation and invalidation
1489 			 * here.  If the file page is mmap()'d, however,
1490 			 * all the valid bits get set so after we invalidate
1491 			 * here we would end up with weird m->valid values
1492 			 * like 0xfc.  nfs_getpages() can't handle this so
1493 			 * we clear all the valid bits for the NFS case
1494 			 * instead of just some of them.
1495 			 *
1496 			 * The real bug is the VM system having to set m->valid
1497 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1498 			 * itself is an artifact of the whole 512-byte
1499 			 * granular mess that exists to support odd block
1500 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1501 			 * A complete rewrite is required.
1502 			 *
1503 			 * XXX
1504 			 */
1505 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1506 				int poffset = foff & PAGE_MASK;
1507 				int presid;
1508 
1509 				presid = PAGE_SIZE - poffset;
1510 				if (bp->b_vp->v_tag == VT_NFS &&
1511 				    bp->b_vp->v_type == VREG) {
1512 					; /* entire page */
1513 				} else if (presid > resid) {
1514 					presid = resid;
1515 				}
1516 				KASSERT(presid >= 0, ("brelse: extra page"));
1517 				vm_page_set_invalid(m, poffset, presid);
1518 
1519 				/*
1520 				 * Also make sure any swap cache is removed
1521 				 * as it is now stale (HAMMER in particular
1522 				 * uses B_NOCACHE to deal with buffer
1523 				 * aliasing).
1524 				 */
1525 				swap_pager_unswapped(m);
1526 			}
1527 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1528 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1529 		}
1530 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1531 			vfs_vmio_release(bp);
1532 	} else {
1533 		/*
1534 		 * Rundown for non-VMIO buffers.
1535 		 */
1536 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1537 			if (bp->b_bufsize)
1538 				allocbuf(bp, 0);
1539 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1540 			if (bp->b_vp)
1541 				brelvp(bp);
1542 		}
1543 	}
1544 
1545 	if (bp->b_qindex != BQUEUE_NONE)
1546 		panic("brelse: free buffer onto another queue???");
1547 	if (BUF_REFCNTNB(bp) > 1) {
1548 		/* Temporary panic to verify exclusive locking */
1549 		/* This panic goes away when we allow shared refs */
1550 		panic("brelse: multiple refs");
1551 		/* NOT REACHED */
1552 		return;
1553 	}
1554 
1555 	/*
1556 	 * Figure out the correct queue to place the cleaned up buffer on.
1557 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1558 	 * disassociated from their vnode.
1559 	 */
1560 	spin_lock(&bufqspin);
1561 	if (bp->b_flags & B_LOCKED) {
1562 		/*
1563 		 * Buffers that are locked are placed in the locked queue
1564 		 * immediately, regardless of their state.
1565 		 */
1566 		bp->b_qindex = BQUEUE_LOCKED;
1567 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1568 	} else if (bp->b_bufsize == 0) {
1569 		/*
1570 		 * Buffers with no memory.  Due to conditionals near the top
1571 		 * of brelse() such buffers should probably already be
1572 		 * marked B_INVAL and disassociated from their vnode.
1573 		 */
1574 		bp->b_flags |= B_INVAL;
1575 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1576 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1577 		if (bp->b_kvasize) {
1578 			bp->b_qindex = BQUEUE_EMPTYKVA;
1579 		} else {
1580 			bp->b_qindex = BQUEUE_EMPTY;
1581 		}
1582 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1583 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1584 		/*
1585 		 * Buffers with junk contents.   Again these buffers had better
1586 		 * already be disassociated from their vnode.
1587 		 */
1588 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1589 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1590 		bp->b_flags |= B_INVAL;
1591 		bp->b_qindex = BQUEUE_CLEAN;
1592 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1593 	} else {
1594 		/*
1595 		 * Remaining buffers.  These buffers are still associated with
1596 		 * their vnode.
1597 		 */
1598 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1599 		case B_DELWRI:
1600 		    bp->b_qindex = BQUEUE_DIRTY;
1601 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1602 		    break;
1603 		case B_DELWRI | B_HEAVY:
1604 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1605 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1606 				      b_freelist);
1607 		    break;
1608 		default:
1609 		    /*
1610 		     * NOTE: Buffers are always placed at the end of the
1611 		     * queue.  If B_AGE is not set the buffer will cycle
1612 		     * through the queue twice.
1613 		     */
1614 		    bp->b_qindex = BQUEUE_CLEAN;
1615 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1616 		    break;
1617 		}
1618 	}
1619 	spin_unlock(&bufqspin);
1620 
1621 	/*
1622 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1623 	 * on the correct queue.
1624 	 */
1625 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1626 		bundirty(bp);
1627 
1628 	/*
1629 	 * The bp is on an appropriate queue unless locked.  If it is not
1630 	 * locked or dirty we can wakeup threads waiting for buffer space.
1631 	 *
1632 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1633 	 * if B_INVAL is set ).
1634 	 */
1635 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1636 		bufcountwakeup();
1637 
1638 	/*
1639 	 * Something we can maybe free or reuse
1640 	 */
1641 	if (bp->b_bufsize || bp->b_kvasize)
1642 		bufspacewakeup();
1643 
1644 	/*
1645 	 * Clean up temporary flags and unlock the buffer.
1646 	 */
1647 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1648 	BUF_UNLOCK(bp);
1649 }
1650 
1651 /*
1652  * bqrelse:
1653  *
1654  *	Release a buffer back to the appropriate queue but do not try to free
1655  *	it.  The buffer is expected to be used again soon.
1656  *
1657  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1658  *	biodone() to requeue an async I/O on completion.  It is also used when
1659  *	known good buffers need to be requeued but we think we may need the data
1660  *	again soon.
1661  *
1662  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1663  *
1664  * MPSAFE
1665  */
1666 void
1667 bqrelse(struct buf *bp)
1668 {
1669 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1670 
1671 	if (bp->b_qindex != BQUEUE_NONE)
1672 		panic("bqrelse: free buffer onto another queue???");
1673 	if (BUF_REFCNTNB(bp) > 1) {
1674 		/* do not release to free list */
1675 		panic("bqrelse: multiple refs");
1676 		return;
1677 	}
1678 
1679 	buf_act_advance(bp);
1680 
1681 	spin_lock(&bufqspin);
1682 	if (bp->b_flags & B_LOCKED) {
1683 		/*
1684 		 * Locked buffers are released to the locked queue.  However,
1685 		 * if the buffer is dirty it will first go into the dirty
1686 		 * queue and later on after the I/O completes successfully it
1687 		 * will be released to the locked queue.
1688 		 */
1689 		bp->b_qindex = BQUEUE_LOCKED;
1690 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1691 	} else if (bp->b_flags & B_DELWRI) {
1692 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1693 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1694 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1695 	} else if (vm_page_count_min(0)) {
1696 		/*
1697 		 * We are too low on memory, we have to try to free the
1698 		 * buffer (most importantly: the wired pages making up its
1699 		 * backing store) *now*.
1700 		 */
1701 		spin_unlock(&bufqspin);
1702 		brelse(bp);
1703 		return;
1704 	} else {
1705 		bp->b_qindex = BQUEUE_CLEAN;
1706 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1707 	}
1708 	spin_unlock(&bufqspin);
1709 
1710 	if ((bp->b_flags & B_LOCKED) == 0 &&
1711 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1712 		bufcountwakeup();
1713 	}
1714 
1715 	/*
1716 	 * Something we can maybe free or reuse.
1717 	 */
1718 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1719 		bufspacewakeup();
1720 
1721 	/*
1722 	 * Final cleanup and unlock.  Clear bits that are only used while a
1723 	 * buffer is actively locked.
1724 	 */
1725 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1726 	dsched_exit_buf(bp);
1727 	BUF_UNLOCK(bp);
1728 }
1729 
1730 /*
1731  * Hold a buffer, preventing it from being reused.  This will prevent
1732  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1733  * operations.  If a B_INVAL operation occurs the buffer will remain held
1734  * but the underlying pages may get ripped out.
1735  *
1736  * These functions are typically used in VOP_READ/VOP_WRITE functions
1737  * to hold a buffer during a copyin or copyout, preventing deadlocks
1738  * or recursive lock panics when read()/write() is used over mmap()'d
1739  * space.
1740  *
1741  * NOTE: bqhold() requires that the buffer be locked at the time of the
1742  *	 hold.  bqdrop() has no requirements other than the buffer having
1743  *	 previously been held.
1744  */
1745 void
1746 bqhold(struct buf *bp)
1747 {
1748 	atomic_add_int(&bp->b_refs, 1);
1749 }
1750 
1751 void
1752 bqdrop(struct buf *bp)
1753 {
1754 	KKASSERT(bp->b_refs > 0);
1755 	atomic_add_int(&bp->b_refs, -1);
1756 }
1757 
1758 /*
1759  * Return backing pages held by the buffer 'bp' back to the VM system.
1760  * This routine is called when the bp is invalidated, released, or
1761  * reused.
1762  *
1763  * The KVA mapping (b_data) for the underlying pages is removed by
1764  * this function.
1765  *
1766  * WARNING! This routine is integral to the low memory critical path
1767  *          when a buffer is B_RELBUF'd.  If the system has a severe page
1768  *          deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1769  *          queues so they can be reused in the current pageout daemon
1770  *          pass.
1771  */
1772 static void
1773 vfs_vmio_release(struct buf *bp)
1774 {
1775 	int i;
1776 	vm_page_t m;
1777 
1778 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1779 		m = bp->b_xio.xio_pages[i];
1780 		bp->b_xio.xio_pages[i] = NULL;
1781 
1782 		/*
1783 		 * We need to own the page in order to safely unwire it.
1784 		 */
1785 		vm_page_busy_wait(m, FALSE, "vmiopg");
1786 
1787 		/*
1788 		 * The VFS is telling us this is not a meta-data buffer
1789 		 * even if it is backed by a block device.
1790 		 */
1791 		if (bp->b_flags & B_NOTMETA)
1792 			vm_page_flag_set(m, PG_NOTMETA);
1793 
1794 		/*
1795 		 * This is a very important bit of code.  We try to track
1796 		 * VM page use whether the pages are wired into the buffer
1797 		 * cache or not.  While wired into the buffer cache the
1798 		 * bp tracks the act_count.
1799 		 *
1800 		 * We can choose to place unwired pages on the inactive
1801 		 * queue (0) or active queue (1).  If we place too many
1802 		 * on the active queue the queue will cycle the act_count
1803 		 * on pages we'd like to keep, just from single-use pages
1804 		 * (such as when doing a tar-up or file scan).
1805 		 */
1806 		if (bp->b_act_count < vm_cycle_point)
1807 			vm_page_unwire(m, 0);
1808 		else
1809 			vm_page_unwire(m, 1);
1810 
1811 		/*
1812 		 * If the wire_count has dropped to 0 we may need to take
1813 		 * further action before unbusying the page.
1814 		 *
1815 		 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1816 		 */
1817 		if (m->wire_count == 0) {
1818 			vm_page_flag_clear(m, PG_ZERO);
1819 
1820 			if (bp->b_flags & B_DIRECT) {
1821 				/*
1822 				 * Attempt to free the page if B_DIRECT is
1823 				 * set, the caller does not desire the page
1824 				 * to be cached.
1825 				 */
1826 				vm_page_wakeup(m);
1827 				vm_page_try_to_free(m);
1828 			} else if ((bp->b_flags & B_NOTMETA) ||
1829 				   vm_page_count_min(0)) {
1830 				/*
1831 				 * Attempt to move the page to PQ_CACHE
1832 				 * if B_NOTMETA is set.  This flag is set
1833 				 * by HAMMER to remove one of the two pages
1834 				 * present when double buffering is enabled.
1835 				 *
1836 				 * Attempt to move the page to PQ_CACHE
1837 				 * If we have a severe page deficit.  This
1838 				 * will cause buffer cache operations related
1839 				 * to pageouts to recycle the related pages
1840 				 * in order to avoid a low memory deadlock.
1841 				 */
1842 				m->act_count = bp->b_act_count;
1843 				vm_page_wakeup(m);
1844 				vm_page_try_to_cache(m);
1845 			} else {
1846 				/*
1847 				 * Nominal case, leave the page on the
1848 				 * queue the original unwiring placed it on
1849 				 * (active or inactive).
1850 				 */
1851 				m->act_count = bp->b_act_count;
1852 				vm_page_wakeup(m);
1853 			}
1854 		} else {
1855 			vm_page_wakeup(m);
1856 		}
1857 	}
1858 
1859 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1860 		     bp->b_xio.xio_npages);
1861 	if (bp->b_bufsize) {
1862 		bufspacewakeup();
1863 		bp->b_bufsize = 0;
1864 	}
1865 	bp->b_xio.xio_npages = 0;
1866 	bp->b_flags &= ~B_VMIO;
1867 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1868 	if (bp->b_vp)
1869 		brelvp(bp);
1870 }
1871 
1872 /*
1873  * getnewbuf:
1874  *
1875  *	Find and initialize a new buffer header, freeing up existing buffers
1876  *	in the bufqueues as necessary.  The new buffer is returned locked.
1877  *
1878  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1879  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1880  *
1881  *	We block if:
1882  *		We have insufficient buffer headers
1883  *		We have insufficient buffer space
1884  *		buffer_map is too fragmented ( space reservation fails )
1885  *		If we have to flush dirty buffers ( but we try to avoid this )
1886  *
1887  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1888  *	Instead we ask the buf daemon to do it for us.  We attempt to
1889  *	avoid piecemeal wakeups of the pageout daemon.
1890  *
1891  * MPALMOSTSAFE
1892  */
1893 struct buf *
1894 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1895 {
1896 	struct buf *bp;
1897 	struct buf *nbp;
1898 	int defrag = 0;
1899 	int nqindex;
1900 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1901 	static int flushingbufs;
1902 
1903 	/*
1904 	 * We can't afford to block since we might be holding a vnode lock,
1905 	 * which may prevent system daemons from running.  We deal with
1906 	 * low-memory situations by proactively returning memory and running
1907 	 * async I/O rather then sync I/O.
1908 	 */
1909 
1910 	++getnewbufcalls;
1911 	--getnewbufrestarts;
1912 restart:
1913 	++getnewbufrestarts;
1914 
1915 	/*
1916 	 * Setup for scan.  If we do not have enough free buffers,
1917 	 * we setup a degenerate case that immediately fails.  Note
1918 	 * that if we are specially marked process, we are allowed to
1919 	 * dip into our reserves.
1920 	 *
1921 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1922 	 *
1923 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1924 	 * However, there are a number of cases (defragging, reusing, ...)
1925 	 * where we cannot backup.
1926 	 */
1927 	nqindex = BQUEUE_EMPTYKVA;
1928 	spin_lock(&bufqspin);
1929 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1930 
1931 	if (nbp == NULL) {
1932 		/*
1933 		 * If no EMPTYKVA buffers and we are either
1934 		 * defragging or reusing, locate a CLEAN buffer
1935 		 * to free or reuse.  If bufspace useage is low
1936 		 * skip this step so we can allocate a new buffer.
1937 		 */
1938 		if (defrag || bufspace >= lobufspace) {
1939 			nqindex = BQUEUE_CLEAN;
1940 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1941 		}
1942 
1943 		/*
1944 		 * If we could not find or were not allowed to reuse a
1945 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1946 		 * buffer.  We can only use an EMPTY buffer if allocating
1947 		 * its KVA would not otherwise run us out of buffer space.
1948 		 */
1949 		if (nbp == NULL && defrag == 0 &&
1950 		    bufspace + maxsize < hibufspace) {
1951 			nqindex = BQUEUE_EMPTY;
1952 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1953 		}
1954 	}
1955 
1956 	/*
1957 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1958 	 * depending.
1959 	 *
1960 	 * WARNING!  bufqspin is held!
1961 	 */
1962 	while ((bp = nbp) != NULL) {
1963 		int qindex = nqindex;
1964 
1965 		nbp = TAILQ_NEXT(bp, b_freelist);
1966 
1967 		/*
1968 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1969 		 * cycles through the queue twice before being selected.
1970 		 */
1971 		if (qindex == BQUEUE_CLEAN &&
1972 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1973 			bp->b_flags |= B_AGE;
1974 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1975 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1976 			continue;
1977 		}
1978 
1979 		/*
1980 		 * Calculate next bp ( we can only use it if we do not block
1981 		 * or do other fancy things ).
1982 		 */
1983 		if (nbp == NULL) {
1984 			switch(qindex) {
1985 			case BQUEUE_EMPTY:
1986 				nqindex = BQUEUE_EMPTYKVA;
1987 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1988 					break;
1989 				/* fall through */
1990 			case BQUEUE_EMPTYKVA:
1991 				nqindex = BQUEUE_CLEAN;
1992 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1993 					break;
1994 				/* fall through */
1995 			case BQUEUE_CLEAN:
1996 				/*
1997 				 * nbp is NULL.
1998 				 */
1999 				break;
2000 			}
2001 		}
2002 
2003 		/*
2004 		 * Sanity Checks
2005 		 */
2006 		KASSERT(bp->b_qindex == qindex,
2007 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2008 
2009 		/*
2010 		 * Note: we no longer distinguish between VMIO and non-VMIO
2011 		 * buffers.
2012 		 */
2013 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2014 			("delwri buffer %p found in queue %d", bp, qindex));
2015 
2016 		/*
2017 		 * Do not try to reuse a buffer with a non-zero b_refs.
2018 		 * This is an unsynchronized test.  A synchronized test
2019 		 * is also performed after we lock the buffer.
2020 		 */
2021 		if (bp->b_refs)
2022 			continue;
2023 
2024 		/*
2025 		 * If we are defragging then we need a buffer with
2026 		 * b_kvasize != 0.  XXX this situation should no longer
2027 		 * occur, if defrag is non-zero the buffer's b_kvasize
2028 		 * should also be non-zero at this point.  XXX
2029 		 */
2030 		if (defrag && bp->b_kvasize == 0) {
2031 			kprintf("Warning: defrag empty buffer %p\n", bp);
2032 			continue;
2033 		}
2034 
2035 		/*
2036 		 * Start freeing the bp.  This is somewhat involved.  nbp
2037 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2038 		 * on the clean list must be disassociated from their
2039 		 * current vnode.  Buffers on the empty[kva] lists have
2040 		 * already been disassociated.
2041 		 *
2042 		 * b_refs is checked after locking along with queue changes.
2043 		 * We must check here to deal with zero->nonzero transitions
2044 		 * made by the owner of the buffer lock, which is used by
2045 		 * VFS's to hold the buffer while issuing an unlocked
2046 		 * uiomove()s.  We cannot invalidate the buffer's pages
2047 		 * for this case.  Once we successfully lock a buffer the
2048 		 * only 0->1 transitions of b_refs will occur via findblk().
2049 		 *
2050 		 * We must also check for queue changes after successful
2051 		 * locking as the current lock holder may dispose of the
2052 		 * buffer and change its queue.
2053 		 */
2054 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2055 			spin_unlock(&bufqspin);
2056 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2057 			goto restart;
2058 		}
2059 		if (bp->b_qindex != qindex || bp->b_refs) {
2060 			spin_unlock(&bufqspin);
2061 			BUF_UNLOCK(bp);
2062 			goto restart;
2063 		}
2064 		bremfree_locked(bp);
2065 		spin_unlock(&bufqspin);
2066 
2067 		/*
2068 		 * Dependancies must be handled before we disassociate the
2069 		 * vnode.
2070 		 *
2071 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2072 		 * be immediately disassociated.  HAMMER then becomes
2073 		 * responsible for releasing the buffer.
2074 		 *
2075 		 * NOTE: bufqspin is UNLOCKED now.
2076 		 */
2077 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2078 			buf_deallocate(bp);
2079 			if (bp->b_flags & B_LOCKED) {
2080 				bqrelse(bp);
2081 				goto restart;
2082 			}
2083 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2084 		}
2085 
2086 		if (qindex == BQUEUE_CLEAN) {
2087 			if (bp->b_flags & B_VMIO)
2088 				vfs_vmio_release(bp);
2089 			if (bp->b_vp)
2090 				brelvp(bp);
2091 		}
2092 
2093 		/*
2094 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2095 		 * the scan from this point on.
2096 		 *
2097 		 * Get the rest of the buffer freed up.  b_kva* is still
2098 		 * valid after this operation.
2099 		 */
2100 		KASSERT(bp->b_vp == NULL,
2101 			("bp3 %p flags %08x vnode %p qindex %d "
2102 			 "unexpectededly still associated!",
2103 			 bp, bp->b_flags, bp->b_vp, qindex));
2104 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2105 
2106 		/*
2107 		 * critical section protection is not required when
2108 		 * scrapping a buffer's contents because it is already
2109 		 * wired.
2110 		 */
2111 		if (bp->b_bufsize)
2112 			allocbuf(bp, 0);
2113 
2114 		bp->b_flags = B_BNOCLIP;
2115 		bp->b_cmd = BUF_CMD_DONE;
2116 		bp->b_vp = NULL;
2117 		bp->b_error = 0;
2118 		bp->b_resid = 0;
2119 		bp->b_bcount = 0;
2120 		bp->b_xio.xio_npages = 0;
2121 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2122 		bp->b_act_count = ACT_INIT;
2123 		reinitbufbio(bp);
2124 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2125 		buf_dep_init(bp);
2126 		if (blkflags & GETBLK_BHEAVY)
2127 			bp->b_flags |= B_HEAVY;
2128 
2129 		/*
2130 		 * If we are defragging then free the buffer.
2131 		 */
2132 		if (defrag) {
2133 			bp->b_flags |= B_INVAL;
2134 			bfreekva(bp);
2135 			brelse(bp);
2136 			defrag = 0;
2137 			goto restart;
2138 		}
2139 
2140 		/*
2141 		 * If we are overcomitted then recover the buffer and its
2142 		 * KVM space.  This occurs in rare situations when multiple
2143 		 * processes are blocked in getnewbuf() or allocbuf().
2144 		 */
2145 		if (bufspace >= hibufspace)
2146 			flushingbufs = 1;
2147 		if (flushingbufs && bp->b_kvasize != 0) {
2148 			bp->b_flags |= B_INVAL;
2149 			bfreekva(bp);
2150 			brelse(bp);
2151 			goto restart;
2152 		}
2153 		if (bufspace < lobufspace)
2154 			flushingbufs = 0;
2155 
2156 		/*
2157 		 * b_refs can transition to a non-zero value while we hold
2158 		 * the buffer locked due to a findblk().  Our brelvp() above
2159 		 * interlocked any future possible transitions due to
2160 		 * findblk()s.
2161 		 *
2162 		 * If we find b_refs to be non-zero we can destroy the
2163 		 * buffer's contents but we cannot yet reuse the buffer.
2164 		 */
2165 		if (bp->b_refs) {
2166 			bp->b_flags |= B_INVAL;
2167 			bfreekva(bp);
2168 			brelse(bp);
2169 			goto restart;
2170 		}
2171 		break;
2172 		/* NOT REACHED, bufqspin not held */
2173 	}
2174 
2175 	/*
2176 	 * If we exhausted our list, sleep as appropriate.  We may have to
2177 	 * wakeup various daemons and write out some dirty buffers.
2178 	 *
2179 	 * Generally we are sleeping due to insufficient buffer space.
2180 	 *
2181 	 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2182 	 */
2183 	if (bp == NULL) {
2184 		int flags;
2185 		char *waitmsg;
2186 
2187 		spin_unlock(&bufqspin);
2188 		if (defrag) {
2189 			flags = VFS_BIO_NEED_BUFSPACE;
2190 			waitmsg = "nbufkv";
2191 		} else if (bufspace >= hibufspace) {
2192 			waitmsg = "nbufbs";
2193 			flags = VFS_BIO_NEED_BUFSPACE;
2194 		} else {
2195 			waitmsg = "newbuf";
2196 			flags = VFS_BIO_NEED_ANY;
2197 		}
2198 
2199 		bd_speedup();	/* heeeelp */
2200 		spin_lock(&bufcspin);
2201 		needsbuffer |= flags;
2202 		while (needsbuffer & flags) {
2203 			if (ssleep(&needsbuffer, &bufcspin,
2204 				   slpflags, waitmsg, slptimeo)) {
2205 				spin_unlock(&bufcspin);
2206 				return (NULL);
2207 			}
2208 		}
2209 		spin_unlock(&bufcspin);
2210 	} else {
2211 		/*
2212 		 * We finally have a valid bp.  We aren't quite out of the
2213 		 * woods, we still have to reserve kva space.  In order
2214 		 * to keep fragmentation sane we only allocate kva in
2215 		 * BKVASIZE chunks.
2216 		 *
2217 		 * (bufqspin is not held)
2218 		 */
2219 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2220 
2221 		if (maxsize != bp->b_kvasize) {
2222 			vm_offset_t addr = 0;
2223 			int count;
2224 
2225 			bfreekva(bp);
2226 
2227 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2228 			vm_map_lock(&buffer_map);
2229 
2230 			if (vm_map_findspace(&buffer_map,
2231 				    vm_map_min(&buffer_map), maxsize,
2232 				    maxsize, 0, &addr)) {
2233 				/*
2234 				 * Uh oh.  Buffer map is too fragmented.  We
2235 				 * must defragment the map.
2236 				 */
2237 				vm_map_unlock(&buffer_map);
2238 				vm_map_entry_release(count);
2239 				++bufdefragcnt;
2240 				defrag = 1;
2241 				bp->b_flags |= B_INVAL;
2242 				brelse(bp);
2243 				goto restart;
2244 			}
2245 			if (addr) {
2246 				vm_map_insert(&buffer_map, &count,
2247 					NULL, 0,
2248 					addr, addr + maxsize,
2249 					VM_MAPTYPE_NORMAL,
2250 					VM_PROT_ALL, VM_PROT_ALL,
2251 					MAP_NOFAULT);
2252 
2253 				bp->b_kvabase = (caddr_t) addr;
2254 				bp->b_kvasize = maxsize;
2255 				bufspace += bp->b_kvasize;
2256 				++bufreusecnt;
2257 			}
2258 			vm_map_unlock(&buffer_map);
2259 			vm_map_entry_release(count);
2260 		}
2261 		bp->b_data = bp->b_kvabase;
2262 	}
2263 	return(bp);
2264 }
2265 
2266 #if 0
2267 /*
2268  * This routine is called in an emergency to recover VM pages from the
2269  * buffer cache by cashing in clean buffers.  The idea is to recover
2270  * enough pages to be able to satisfy a stuck bio_page_alloc().
2271  *
2272  * XXX Currently not implemented.  This function can wind up deadlocking
2273  * against another thread holding one or more of the backing pages busy.
2274  */
2275 static int
2276 recoverbufpages(void)
2277 {
2278 	struct buf *bp;
2279 	int bytes = 0;
2280 
2281 	++recoverbufcalls;
2282 
2283 	spin_lock(&bufqspin);
2284 	while (bytes < MAXBSIZE) {
2285 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2286 		if (bp == NULL)
2287 			break;
2288 
2289 		/*
2290 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2291 		 * cycles through the queue twice before being selected.
2292 		 */
2293 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2294 			bp->b_flags |= B_AGE;
2295 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2296 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2297 					  bp, b_freelist);
2298 			continue;
2299 		}
2300 
2301 		/*
2302 		 * Sanity Checks
2303 		 */
2304 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2305 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2306 
2307 		/*
2308 		 * Start freeing the bp.  This is somewhat involved.
2309 		 *
2310 		 * Buffers on the clean list must be disassociated from
2311 		 * their current vnode
2312 		 */
2313 
2314 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2315 			kprintf("recoverbufpages: warning, locked buf %p, "
2316 				"race corrected\n",
2317 				bp);
2318 			ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2319 			continue;
2320 		}
2321 		if (bp->b_qindex != BQUEUE_CLEAN) {
2322 			kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2323 				"unexpectedly on buf %p index %d, race "
2324 				"corrected\n",
2325 				bp, bp->b_qindex);
2326 			BUF_UNLOCK(bp);
2327 			continue;
2328 		}
2329 		bremfree_locked(bp);
2330 		spin_unlock(&bufqspin);
2331 
2332 		/*
2333 		 * Sanity check.  Only BQUEUE_DIRTY[_HW] employs markers.
2334 		 */
2335 		KKASSERT((bp->b_flags & B_MARKER) == 0);
2336 
2337 		/*
2338 		 * Dependancies must be handled before we disassociate the
2339 		 * vnode.
2340 		 *
2341 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2342 		 * be immediately disassociated.  HAMMER then becomes
2343 		 * responsible for releasing the buffer.
2344 		 */
2345 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2346 			buf_deallocate(bp);
2347 			if (bp->b_flags & B_LOCKED) {
2348 				bqrelse(bp);
2349 				spin_lock(&bufqspin);
2350 				continue;
2351 			}
2352 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2353 		}
2354 
2355 		bytes += bp->b_bufsize;
2356 
2357 		if (bp->b_flags & B_VMIO) {
2358 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2359 			vfs_vmio_release(bp);
2360 		}
2361 		if (bp->b_vp)
2362 			brelvp(bp);
2363 
2364 		KKASSERT(bp->b_vp == NULL);
2365 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2366 
2367 		/*
2368 		 * critical section protection is not required when
2369 		 * scrapping a buffer's contents because it is already
2370 		 * wired.
2371 		 */
2372 		if (bp->b_bufsize)
2373 			allocbuf(bp, 0);
2374 
2375 		bp->b_flags = B_BNOCLIP;
2376 		bp->b_cmd = BUF_CMD_DONE;
2377 		bp->b_vp = NULL;
2378 		bp->b_error = 0;
2379 		bp->b_resid = 0;
2380 		bp->b_bcount = 0;
2381 		bp->b_xio.xio_npages = 0;
2382 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2383 		reinitbufbio(bp);
2384 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2385 		buf_dep_init(bp);
2386 		bp->b_flags |= B_INVAL;
2387 		/* bfreekva(bp); */
2388 		brelse(bp);
2389 		spin_lock(&bufqspin);
2390 	}
2391 	spin_unlock(&bufqspin);
2392 	return(bytes);
2393 }
2394 #endif
2395 
2396 /*
2397  * buf_daemon:
2398  *
2399  *	Buffer flushing daemon.  Buffers are normally flushed by the
2400  *	update daemon but if it cannot keep up this process starts to
2401  *	take the load in an attempt to prevent getnewbuf() from blocking.
2402  *
2403  *	Once a flush is initiated it does not stop until the number
2404  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2405  *	waiting at the mid-point.
2406  */
2407 static struct kproc_desc buf_kp = {
2408 	"bufdaemon",
2409 	buf_daemon,
2410 	&bufdaemon_td
2411 };
2412 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2413 	kproc_start, &buf_kp)
2414 
2415 static struct kproc_desc bufhw_kp = {
2416 	"bufdaemon_hw",
2417 	buf_daemon_hw,
2418 	&bufdaemonhw_td
2419 };
2420 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2421 	kproc_start, &bufhw_kp)
2422 
2423 /*
2424  * MPSAFE thread
2425  */
2426 static void
2427 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2428 	    int *bd_req)
2429 {
2430 	long limit;
2431 	struct buf *marker;
2432 
2433 	marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2434 	marker->b_flags |= B_MARKER;
2435 	marker->b_qindex = BQUEUE_NONE;
2436 
2437 	/*
2438 	 * This process needs to be suspended prior to shutdown sync.
2439 	 */
2440 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2441 			      td, SHUTDOWN_PRI_LAST);
2442 	curthread->td_flags |= TDF_SYSTHREAD;
2443 
2444 	/*
2445 	 * This process is allowed to take the buffer cache to the limit
2446 	 */
2447 	for (;;) {
2448 		kproc_suspend_loop();
2449 
2450 		/*
2451 		 * Do the flush as long as the number of dirty buffers
2452 		 * (including those running) exceeds lodirtybufspace.
2453 		 *
2454 		 * When flushing limit running I/O to hirunningspace
2455 		 * Do the flush.  Limit the amount of in-transit I/O we
2456 		 * allow to build up, otherwise we would completely saturate
2457 		 * the I/O system.  Wakeup any waiting processes before we
2458 		 * normally would so they can run in parallel with our drain.
2459 		 *
2460 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2461 		 * but because we split the operation into two threads we
2462 		 * have to cut it in half for each thread.
2463 		 */
2464 		waitrunningbufspace();
2465 		limit = lodirtybufspace / 2;
2466 		while (buf_limit_fn(limit)) {
2467 			if (flushbufqueues(marker, queue) == 0)
2468 				break;
2469 			if (runningbufspace < hirunningspace)
2470 				continue;
2471 			waitrunningbufspace();
2472 		}
2473 
2474 		/*
2475 		 * We reached our low water mark, reset the
2476 		 * request and sleep until we are needed again.
2477 		 * The sleep is just so the suspend code works.
2478 		 */
2479 		spin_lock(&bufcspin);
2480 		if (*bd_req == 0)
2481 			ssleep(bd_req, &bufcspin, 0, "psleep", hz);
2482 		*bd_req = 0;
2483 		spin_unlock(&bufcspin);
2484 	}
2485 	/* NOT REACHED */
2486 	/*kfree(marker, M_BIOBUF);*/
2487 }
2488 
2489 static int
2490 buf_daemon_limit(long limit)
2491 {
2492 	return (runningbufspace + dirtykvaspace > limit ||
2493 		dirtybufcount - dirtybufcounthw >= nbuf / 2);
2494 }
2495 
2496 static int
2497 buf_daemon_hw_limit(long limit)
2498 {
2499 	return (runningbufspace + dirtykvaspace > limit ||
2500 		dirtybufcounthw >= nbuf / 2);
2501 }
2502 
2503 static void
2504 buf_daemon(void)
2505 {
2506 	buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2507 		    &bd_request);
2508 }
2509 
2510 static void
2511 buf_daemon_hw(void)
2512 {
2513 	buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2514 		    &bd_request_hw);
2515 }
2516 
2517 /*
2518  * flushbufqueues:
2519  *
2520  *	Try to flush a buffer in the dirty queue.  We must be careful to
2521  *	free up B_INVAL buffers instead of write them, which NFS is
2522  *	particularly sensitive to.
2523  *
2524  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2525  *	that we really want to try to get the buffer out and reuse it
2526  *	due to the write load on the machine.
2527  *
2528  *	We must lock the buffer in order to check its validity before we
2529  *	can mess with its contents.  bufqspin isn't enough.
2530  */
2531 static int
2532 flushbufqueues(struct buf *marker, bufq_type_t q)
2533 {
2534 	struct buf *bp;
2535 	int r = 0;
2536 
2537 	KKASSERT(marker->b_qindex == BQUEUE_NONE);
2538 	KKASSERT(marker->b_flags & B_MARKER);
2539 
2540 	/*
2541 	 * Spinlock needed to perform operations on the queue and may be
2542 	 * held through a non-blocking BUF_LOCK(), but cannot be held when
2543 	 * BUF_UNLOCK()ing or through any other major operation.
2544 	 */
2545 	spin_lock(&bufqspin);
2546 	marker->b_qindex = q;
2547 	TAILQ_INSERT_HEAD(&bufqueues[q], marker, b_freelist);
2548 	bp = marker;
2549 
2550 	while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2551 		/*
2552 		 * NOTE: spinlock is always held at the top of the loop
2553 		 */
2554 		if (bp->b_flags & B_MARKER)
2555 			continue;
2556 		if ((bp->b_flags & B_DELWRI) == 0) {
2557 			kprintf("Unexpected clean buffer %p\n", bp);
2558 			continue;
2559 		}
2560 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2561 			continue;
2562 		KKASSERT(bp->b_qindex == q);
2563 
2564 		/*
2565 		 * Once the buffer is locked we will have no choice but to
2566 		 * unlock the spinlock around a later BUF_UNLOCK and re-set
2567 		 * bp = marker when looping.  Move the marker now to make
2568 		 * things easier.
2569 		 */
2570 		TAILQ_REMOVE(&bufqueues[q], marker, b_freelist);
2571 		TAILQ_INSERT_AFTER(&bufqueues[q], bp, marker, b_freelist);
2572 
2573 		/*
2574 		 * Must recheck B_DELWRI after successfully locking
2575 		 * the buffer.
2576 		 */
2577 		if ((bp->b_flags & B_DELWRI) == 0) {
2578 			spin_unlock(&bufqspin);
2579 			BUF_UNLOCK(bp);
2580 			spin_lock(&bufqspin);
2581 			bp = marker;
2582 			continue;
2583 		}
2584 
2585 		/*
2586 		 * Remove the buffer from its queue.  We still own the
2587 		 * spinlock here.
2588 		 */
2589 		_bremfree(bp);
2590 
2591 		/*
2592 		 * Disposing of an invalid buffer counts as a flush op
2593 		 */
2594 		if (bp->b_flags & B_INVAL) {
2595 			spin_unlock(&bufqspin);
2596 			brelse(bp);
2597 			spin_lock(&bufqspin);
2598 			++r;
2599 			break;
2600 		}
2601 
2602 		/*
2603 		 * Release the spinlock for the more complex ops we
2604 		 * are now going to do.
2605 		 */
2606 		spin_unlock(&bufqspin);
2607 		lwkt_yield();
2608 
2609 		/*
2610 		 * This is a bit messy
2611 		 */
2612 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2613 		    (bp->b_flags & B_DEFERRED) == 0 &&
2614 		    buf_countdeps(bp, 0)) {
2615 			spin_lock(&bufqspin);
2616 			TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2617 			bp->b_qindex = q;
2618 			bp->b_flags |= B_DEFERRED;
2619 			spin_unlock(&bufqspin);
2620 			BUF_UNLOCK(bp);
2621 			spin_lock(&bufqspin);
2622 			bp = marker;
2623 			continue;
2624 		}
2625 
2626 		/*
2627 		 * spinlock not held here.
2628 		 *
2629 		 * If the buffer has a dependancy, buf_checkwrite() must
2630 		 * also return 0 for us to be able to initate the write.
2631 		 *
2632 		 * If the buffer is flagged B_ERROR it may be requeued
2633 		 * over and over again, we try to avoid a live lock.
2634 		 *
2635 		 * NOTE: buf_checkwrite is MPSAFE.
2636 		 */
2637 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2638 			brelse(bp);
2639 		} else if (bp->b_flags & B_ERROR) {
2640 			tsleep(bp, 0, "bioer", 1);
2641 			bp->b_flags &= ~B_AGE;
2642 			cluster_awrite(bp);
2643 		} else {
2644 			bp->b_flags |= B_AGE;
2645 			cluster_awrite(bp);
2646 		}
2647 		spin_lock(&bufqspin);
2648 		++r;
2649 		break;
2650 	}
2651 	TAILQ_REMOVE(&bufqueues[q], marker, b_freelist);
2652 	marker->b_qindex = BQUEUE_NONE;
2653 	spin_unlock(&bufqspin);
2654 
2655 	return (r);
2656 }
2657 
2658 /*
2659  * inmem:
2660  *
2661  *	Returns true if no I/O is needed to access the associated VM object.
2662  *	This is like findblk except it also hunts around in the VM system for
2663  *	the data.
2664  *
2665  *	Note that we ignore vm_page_free() races from interrupts against our
2666  *	lookup, since if the caller is not protected our return value will not
2667  *	be any more valid then otherwise once we exit the critical section.
2668  */
2669 int
2670 inmem(struct vnode *vp, off_t loffset)
2671 {
2672 	vm_object_t obj;
2673 	vm_offset_t toff, tinc, size;
2674 	vm_page_t m;
2675 	int res = 1;
2676 
2677 	if (findblk(vp, loffset, FINDBLK_TEST))
2678 		return 1;
2679 	if (vp->v_mount == NULL)
2680 		return 0;
2681 	if ((obj = vp->v_object) == NULL)
2682 		return 0;
2683 
2684 	size = PAGE_SIZE;
2685 	if (size > vp->v_mount->mnt_stat.f_iosize)
2686 		size = vp->v_mount->mnt_stat.f_iosize;
2687 
2688 	vm_object_hold(obj);
2689 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2690 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2691 		if (m == NULL) {
2692 			res = 0;
2693 			break;
2694 		}
2695 		tinc = size;
2696 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2697 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2698 		if (vm_page_is_valid(m,
2699 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2700 			res = 0;
2701 			break;
2702 		}
2703 	}
2704 	vm_object_drop(obj);
2705 	return (res);
2706 }
2707 
2708 /*
2709  * findblk:
2710  *
2711  *	Locate and return the specified buffer.  Unless flagged otherwise,
2712  *	a locked buffer will be returned if it exists or NULL if it does not.
2713  *
2714  *	findblk()'d buffers are still on the bufqueues and if you intend
2715  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2716  *	and possibly do other stuff to it.
2717  *
2718  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2719  *			  for locking the buffer and ensuring that it remains
2720  *			  the desired buffer after locking.
2721  *
2722  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2723  *			  to acquire the lock we return NULL, even if the
2724  *			  buffer exists.
2725  *
2726  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2727  *			  reuse by getnewbuf() but does not prevent
2728  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2729  *			  against random (vp,loffset)s due to reassignment.
2730  *
2731  *	(0)		- Lock the buffer blocking.
2732  *
2733  * MPSAFE
2734  */
2735 struct buf *
2736 findblk(struct vnode *vp, off_t loffset, int flags)
2737 {
2738 	struct buf *bp;
2739 	int lkflags;
2740 
2741 	lkflags = LK_EXCLUSIVE;
2742 	if (flags & FINDBLK_NBLOCK)
2743 		lkflags |= LK_NOWAIT;
2744 
2745 	for (;;) {
2746 		/*
2747 		 * Lookup.  Ref the buf while holding v_token to prevent
2748 		 * reuse (but does not prevent diassociation).
2749 		 */
2750 		lwkt_gettoken_shared(&vp->v_token);
2751 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2752 		if (bp == NULL) {
2753 			lwkt_reltoken(&vp->v_token);
2754 			return(NULL);
2755 		}
2756 		bqhold(bp);
2757 		lwkt_reltoken(&vp->v_token);
2758 
2759 		/*
2760 		 * If testing only break and return bp, do not lock.
2761 		 */
2762 		if (flags & FINDBLK_TEST)
2763 			break;
2764 
2765 		/*
2766 		 * Lock the buffer, return an error if the lock fails.
2767 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2768 		 */
2769 		if (BUF_LOCK(bp, lkflags)) {
2770 			atomic_subtract_int(&bp->b_refs, 1);
2771 			/* bp = NULL; not needed */
2772 			return(NULL);
2773 		}
2774 
2775 		/*
2776 		 * Revalidate the locked buf before allowing it to be
2777 		 * returned.
2778 		 */
2779 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2780 			break;
2781 		atomic_subtract_int(&bp->b_refs, 1);
2782 		BUF_UNLOCK(bp);
2783 	}
2784 
2785 	/*
2786 	 * Success
2787 	 */
2788 	if ((flags & FINDBLK_REF) == 0)
2789 		atomic_subtract_int(&bp->b_refs, 1);
2790 	return(bp);
2791 }
2792 
2793 /*
2794  * getcacheblk:
2795  *
2796  *	Similar to getblk() except only returns the buffer if it is
2797  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2798  *	is returned.
2799  *
2800  *	If B_RAM is set the buffer might be just fine, but we return
2801  *	NULL anyway because we want the code to fall through to the
2802  *	cluster read.  Otherwise read-ahead breaks.
2803  *
2804  *	If blksize is 0 the buffer cache buffer must already be fully
2805  *	cached.
2806  *
2807  *	If blksize is non-zero getblk() will be used, allowing a buffer
2808  *	to be reinstantiated from its VM backing store.  The buffer must
2809  *	still be fully cached after reinstantiation to be returned.
2810  */
2811 struct buf *
2812 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2813 {
2814 	struct buf *bp;
2815 	int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2816 
2817 	if (blksize) {
2818 		bp = getblk(vp, loffset, blksize, blkflags, 0);
2819 		if (bp) {
2820 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2821 			    B_CACHE) {
2822 				bp->b_flags &= ~B_AGE;
2823 			} else {
2824 				brelse(bp);
2825 				bp = NULL;
2826 			}
2827 		}
2828 	} else {
2829 		bp = findblk(vp, loffset, fndflags);
2830 		if (bp) {
2831 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2832 			    B_CACHE) {
2833 				bp->b_flags &= ~B_AGE;
2834 				bremfree(bp);
2835 			} else {
2836 				BUF_UNLOCK(bp);
2837 				bp = NULL;
2838 			}
2839 		}
2840 	}
2841 	return (bp);
2842 }
2843 
2844 /*
2845  * getblk:
2846  *
2847  *	Get a block given a specified block and offset into a file/device.
2848  * 	B_INVAL may or may not be set on return.  The caller should clear
2849  *	B_INVAL prior to initiating a READ.
2850  *
2851  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2852  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2853  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2854  *	without doing any of those things the system will likely believe
2855  *	the buffer to be valid (especially if it is not B_VMIO), and the
2856  *	next getblk() will return the buffer with B_CACHE set.
2857  *
2858  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2859  *	an existing buffer.
2860  *
2861  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2862  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2863  *	and then cleared based on the backing VM.  If the previous buffer is
2864  *	non-0-sized but invalid, B_CACHE will be cleared.
2865  *
2866  *	If getblk() must create a new buffer, the new buffer is returned with
2867  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2868  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2869  *	backing VM.
2870  *
2871  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2872  *	B_CACHE bit is clear.
2873  *
2874  *	What this means, basically, is that the caller should use B_CACHE to
2875  *	determine whether the buffer is fully valid or not and should clear
2876  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2877  *	the buffer by loading its data area with something, the caller needs
2878  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2879  *	the caller should set B_CACHE ( as an optimization ), else the caller
2880  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2881  *	a write attempt or if it was a successfull read.  If the caller
2882  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2883  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2884  *
2885  *	getblk flags:
2886  *
2887  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2888  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2889  *
2890  * MPALMOSTSAFE
2891  */
2892 struct buf *
2893 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2894 {
2895 	struct buf *bp;
2896 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2897 	int error;
2898 	int lkflags;
2899 
2900 	if (size > MAXBSIZE)
2901 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2902 	if (vp->v_object == NULL)
2903 		panic("getblk: vnode %p has no object!", vp);
2904 
2905 loop:
2906 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2907 		/*
2908 		 * The buffer was found in the cache, but we need to lock it.
2909 		 * We must acquire a ref on the bp to prevent reuse, but
2910 		 * this will not prevent disassociation (brelvp()) so we
2911 		 * must recheck (vp,loffset) after acquiring the lock.
2912 		 *
2913 		 * Without the ref the buffer could potentially be reused
2914 		 * before we acquire the lock and create a deadlock
2915 		 * situation between the thread trying to reuse the buffer
2916 		 * and us due to the fact that we would wind up blocking
2917 		 * on a random (vp,loffset).
2918 		 */
2919 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2920 			if (blkflags & GETBLK_NOWAIT) {
2921 				bqdrop(bp);
2922 				return(NULL);
2923 			}
2924 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2925 			if (blkflags & GETBLK_PCATCH)
2926 				lkflags |= LK_PCATCH;
2927 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2928 			if (error) {
2929 				bqdrop(bp);
2930 				if (error == ENOLCK)
2931 					goto loop;
2932 				return (NULL);
2933 			}
2934 			/* buffer may have changed on us */
2935 		}
2936 		bqdrop(bp);
2937 
2938 		/*
2939 		 * Once the buffer has been locked, make sure we didn't race
2940 		 * a buffer recyclement.  Buffers that are no longer hashed
2941 		 * will have b_vp == NULL, so this takes care of that check
2942 		 * as well.
2943 		 */
2944 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2945 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2946 				"was recycled\n",
2947 				bp, vp, (long long)loffset);
2948 			BUF_UNLOCK(bp);
2949 			goto loop;
2950 		}
2951 
2952 		/*
2953 		 * If SZMATCH any pre-existing buffer must be of the requested
2954 		 * size or NULL is returned.  The caller absolutely does not
2955 		 * want getblk() to bwrite() the buffer on a size mismatch.
2956 		 */
2957 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2958 			BUF_UNLOCK(bp);
2959 			return(NULL);
2960 		}
2961 
2962 		/*
2963 		 * All vnode-based buffers must be backed by a VM object.
2964 		 */
2965 		KKASSERT(bp->b_flags & B_VMIO);
2966 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2967 		bp->b_flags &= ~B_AGE;
2968 
2969 		/*
2970 		 * Make sure that B_INVAL buffers do not have a cached
2971 		 * block number translation.
2972 		 */
2973 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2974 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2975 				" did not have cleared bio_offset cache\n",
2976 				bp, vp, (long long)loffset);
2977 			clearbiocache(&bp->b_bio2);
2978 		}
2979 
2980 		/*
2981 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2982 		 * invalid.
2983 		 */
2984 		if (bp->b_flags & B_INVAL)
2985 			bp->b_flags &= ~B_CACHE;
2986 		bremfree(bp);
2987 
2988 		/*
2989 		 * Any size inconsistancy with a dirty buffer or a buffer
2990 		 * with a softupdates dependancy must be resolved.  Resizing
2991 		 * the buffer in such circumstances can lead to problems.
2992 		 *
2993 		 * Dirty or dependant buffers are written synchronously.
2994 		 * Other types of buffers are simply released and
2995 		 * reconstituted as they may be backed by valid, dirty VM
2996 		 * pages (but not marked B_DELWRI).
2997 		 *
2998 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2999 		 * and may be left over from a prior truncation (and thus
3000 		 * no longer represent the actual EOF point), so we
3001 		 * definitely do not want to B_NOCACHE the backing store.
3002 		 */
3003 		if (size != bp->b_bcount) {
3004 			if (bp->b_flags & B_DELWRI) {
3005 				bp->b_flags |= B_RELBUF;
3006 				bwrite(bp);
3007 			} else if (LIST_FIRST(&bp->b_dep)) {
3008 				bp->b_flags |= B_RELBUF;
3009 				bwrite(bp);
3010 			} else {
3011 				bp->b_flags |= B_RELBUF;
3012 				brelse(bp);
3013 			}
3014 			goto loop;
3015 		}
3016 		KKASSERT(size <= bp->b_kvasize);
3017 		KASSERT(bp->b_loffset != NOOFFSET,
3018 			("getblk: no buffer offset"));
3019 
3020 		/*
3021 		 * A buffer with B_DELWRI set and B_CACHE clear must
3022 		 * be committed before we can return the buffer in
3023 		 * order to prevent the caller from issuing a read
3024 		 * ( due to B_CACHE not being set ) and overwriting
3025 		 * it.
3026 		 *
3027 		 * Most callers, including NFS and FFS, need this to
3028 		 * operate properly either because they assume they
3029 		 * can issue a read if B_CACHE is not set, or because
3030 		 * ( for example ) an uncached B_DELWRI might loop due
3031 		 * to softupdates re-dirtying the buffer.  In the latter
3032 		 * case, B_CACHE is set after the first write completes,
3033 		 * preventing further loops.
3034 		 *
3035 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3036 		 * above while extending the buffer, we cannot allow the
3037 		 * buffer to remain with B_CACHE set after the write
3038 		 * completes or it will represent a corrupt state.  To
3039 		 * deal with this we set B_NOCACHE to scrap the buffer
3040 		 * after the write.
3041 		 *
3042 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3043 		 *     I'm not even sure this state is still possible
3044 		 *     now that getblk() writes out any dirty buffers
3045 		 *     on size changes.
3046 		 *
3047 		 * We might be able to do something fancy, like setting
3048 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3049 		 * so the below call doesn't set B_CACHE, but that gets real
3050 		 * confusing.  This is much easier.
3051 		 */
3052 
3053 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3054 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3055 				"and CACHE clear, b_flags %08x\n",
3056 				bp, (uintmax_t)bp->b_loffset, bp->b_flags);
3057 			bp->b_flags |= B_NOCACHE;
3058 			bwrite(bp);
3059 			goto loop;
3060 		}
3061 	} else {
3062 		/*
3063 		 * Buffer is not in-core, create new buffer.  The buffer
3064 		 * returned by getnewbuf() is locked.  Note that the returned
3065 		 * buffer is also considered valid (not marked B_INVAL).
3066 		 *
3067 		 * Calculating the offset for the I/O requires figuring out
3068 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3069 		 * the mount's f_iosize otherwise.  If the vnode does not
3070 		 * have an associated mount we assume that the passed size is
3071 		 * the block size.
3072 		 *
3073 		 * Note that vn_isdisk() cannot be used here since it may
3074 		 * return a failure for numerous reasons.   Note that the
3075 		 * buffer size may be larger then the block size (the caller
3076 		 * will use block numbers with the proper multiple).  Beware
3077 		 * of using any v_* fields which are part of unions.  In
3078 		 * particular, in DragonFly the mount point overloading
3079 		 * mechanism uses the namecache only and the underlying
3080 		 * directory vnode is not a special case.
3081 		 */
3082 		int bsize, maxsize;
3083 
3084 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3085 			bsize = DEV_BSIZE;
3086 		else if (vp->v_mount)
3087 			bsize = vp->v_mount->mnt_stat.f_iosize;
3088 		else
3089 			bsize = size;
3090 
3091 		maxsize = size + (loffset & PAGE_MASK);
3092 		maxsize = imax(maxsize, bsize);
3093 
3094 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3095 		if (bp == NULL) {
3096 			if (slpflags || slptimeo)
3097 				return NULL;
3098 			goto loop;
3099 		}
3100 
3101 		/*
3102 		 * Atomically insert the buffer into the hash, so that it can
3103 		 * be found by findblk().
3104 		 *
3105 		 * If bgetvp() returns non-zero a collision occured, and the
3106 		 * bp will not be associated with the vnode.
3107 		 *
3108 		 * Make sure the translation layer has been cleared.
3109 		 */
3110 		bp->b_loffset = loffset;
3111 		bp->b_bio2.bio_offset = NOOFFSET;
3112 		/* bp->b_bio2.bio_next = NULL; */
3113 
3114 		if (bgetvp(vp, bp, size)) {
3115 			bp->b_flags |= B_INVAL;
3116 			brelse(bp);
3117 			goto loop;
3118 		}
3119 
3120 		/*
3121 		 * All vnode-based buffers must be backed by a VM object.
3122 		 */
3123 		KKASSERT(vp->v_object != NULL);
3124 		bp->b_flags |= B_VMIO;
3125 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3126 
3127 		allocbuf(bp, size);
3128 	}
3129 	KKASSERT(dsched_is_clear_buf_priv(bp));
3130 	return (bp);
3131 }
3132 
3133 /*
3134  * regetblk(bp)
3135  *
3136  * Reacquire a buffer that was previously released to the locked queue,
3137  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3138  * set B_LOCKED (which handles the acquisition race).
3139  *
3140  * To this end, either B_LOCKED must be set or the dependancy list must be
3141  * non-empty.
3142  *
3143  * MPSAFE
3144  */
3145 void
3146 regetblk(struct buf *bp)
3147 {
3148 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3149 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3150 	bremfree(bp);
3151 }
3152 
3153 /*
3154  * geteblk:
3155  *
3156  *	Get an empty, disassociated buffer of given size.  The buffer is
3157  *	initially set to B_INVAL.
3158  *
3159  *	critical section protection is not required for the allocbuf()
3160  *	call because races are impossible here.
3161  *
3162  * MPALMOSTSAFE
3163  */
3164 struct buf *
3165 geteblk(int size)
3166 {
3167 	struct buf *bp;
3168 	int maxsize;
3169 
3170 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3171 
3172 	while ((bp = getnewbuf(0, 0, size, maxsize)) == NULL)
3173 		;
3174 	allocbuf(bp, size);
3175 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3176 	KKASSERT(dsched_is_clear_buf_priv(bp));
3177 	return (bp);
3178 }
3179 
3180 
3181 /*
3182  * allocbuf:
3183  *
3184  *	This code constitutes the buffer memory from either anonymous system
3185  *	memory (in the case of non-VMIO operations) or from an associated
3186  *	VM object (in the case of VMIO operations).  This code is able to
3187  *	resize a buffer up or down.
3188  *
3189  *	Note that this code is tricky, and has many complications to resolve
3190  *	deadlock or inconsistant data situations.  Tread lightly!!!
3191  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3192  *	the caller.  Calling this code willy nilly can result in the loss of
3193  *	data.
3194  *
3195  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3196  *	B_CACHE for the non-VMIO case.
3197  *
3198  *	This routine does not need to be called from a critical section but you
3199  *	must own the buffer.
3200  *
3201  * MPSAFE
3202  */
3203 int
3204 allocbuf(struct buf *bp, int size)
3205 {
3206 	int newbsize, mbsize;
3207 	int i;
3208 
3209 	if (BUF_REFCNT(bp) == 0)
3210 		panic("allocbuf: buffer not busy");
3211 
3212 	if (bp->b_kvasize < size)
3213 		panic("allocbuf: buffer too small");
3214 
3215 	if ((bp->b_flags & B_VMIO) == 0) {
3216 		caddr_t origbuf;
3217 		int origbufsize;
3218 		/*
3219 		 * Just get anonymous memory from the kernel.  Don't
3220 		 * mess with B_CACHE.
3221 		 */
3222 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3223 		if (bp->b_flags & B_MALLOC)
3224 			newbsize = mbsize;
3225 		else
3226 			newbsize = round_page(size);
3227 
3228 		if (newbsize < bp->b_bufsize) {
3229 			/*
3230 			 * Malloced buffers are not shrunk
3231 			 */
3232 			if (bp->b_flags & B_MALLOC) {
3233 				if (newbsize) {
3234 					bp->b_bcount = size;
3235 				} else {
3236 					kfree(bp->b_data, M_BIOBUF);
3237 					if (bp->b_bufsize) {
3238 						atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3239 						bufspacewakeup();
3240 						bp->b_bufsize = 0;
3241 					}
3242 					bp->b_data = bp->b_kvabase;
3243 					bp->b_bcount = 0;
3244 					bp->b_flags &= ~B_MALLOC;
3245 				}
3246 				return 1;
3247 			}
3248 			vm_hold_free_pages(
3249 			    bp,
3250 			    (vm_offset_t) bp->b_data + newbsize,
3251 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3252 		} else if (newbsize > bp->b_bufsize) {
3253 			/*
3254 			 * We only use malloced memory on the first allocation.
3255 			 * and revert to page-allocated memory when the buffer
3256 			 * grows.
3257 			 */
3258 			if ((bufmallocspace < maxbufmallocspace) &&
3259 				(bp->b_bufsize == 0) &&
3260 				(mbsize <= PAGE_SIZE/2)) {
3261 
3262 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3263 				bp->b_bufsize = mbsize;
3264 				bp->b_bcount = size;
3265 				bp->b_flags |= B_MALLOC;
3266 				atomic_add_long(&bufmallocspace, mbsize);
3267 				return 1;
3268 			}
3269 			origbuf = NULL;
3270 			origbufsize = 0;
3271 			/*
3272 			 * If the buffer is growing on its other-than-first
3273 			 * allocation, then we revert to the page-allocation
3274 			 * scheme.
3275 			 */
3276 			if (bp->b_flags & B_MALLOC) {
3277 				origbuf = bp->b_data;
3278 				origbufsize = bp->b_bufsize;
3279 				bp->b_data = bp->b_kvabase;
3280 				if (bp->b_bufsize) {
3281 					atomic_subtract_long(&bufmallocspace,
3282 							     bp->b_bufsize);
3283 					bufspacewakeup();
3284 					bp->b_bufsize = 0;
3285 				}
3286 				bp->b_flags &= ~B_MALLOC;
3287 				newbsize = round_page(newbsize);
3288 			}
3289 			vm_hold_load_pages(
3290 			    bp,
3291 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3292 			    (vm_offset_t) bp->b_data + newbsize);
3293 			if (origbuf) {
3294 				bcopy(origbuf, bp->b_data, origbufsize);
3295 				kfree(origbuf, M_BIOBUF);
3296 			}
3297 		}
3298 	} else {
3299 		vm_page_t m;
3300 		int desiredpages;
3301 
3302 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3303 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3304 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3305 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3306 
3307 		if (bp->b_flags & B_MALLOC)
3308 			panic("allocbuf: VMIO buffer can't be malloced");
3309 		/*
3310 		 * Set B_CACHE initially if buffer is 0 length or will become
3311 		 * 0-length.
3312 		 */
3313 		if (size == 0 || bp->b_bufsize == 0)
3314 			bp->b_flags |= B_CACHE;
3315 
3316 		if (newbsize < bp->b_bufsize) {
3317 			/*
3318 			 * DEV_BSIZE aligned new buffer size is less then the
3319 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3320 			 * if we have to remove any pages.
3321 			 */
3322 			if (desiredpages < bp->b_xio.xio_npages) {
3323 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3324 					/*
3325 					 * the page is not freed here -- it
3326 					 * is the responsibility of
3327 					 * vnode_pager_setsize
3328 					 */
3329 					m = bp->b_xio.xio_pages[i];
3330 					KASSERT(m != bogus_page,
3331 					    ("allocbuf: bogus page found"));
3332 					vm_page_busy_wait(m, TRUE, "biodep");
3333 					bp->b_xio.xio_pages[i] = NULL;
3334 					vm_page_unwire(m, 0);
3335 					vm_page_wakeup(m);
3336 				}
3337 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3338 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3339 				bp->b_xio.xio_npages = desiredpages;
3340 			}
3341 		} else if (size > bp->b_bcount) {
3342 			/*
3343 			 * We are growing the buffer, possibly in a
3344 			 * byte-granular fashion.
3345 			 */
3346 			struct vnode *vp;
3347 			vm_object_t obj;
3348 			vm_offset_t toff;
3349 			vm_offset_t tinc;
3350 
3351 			/*
3352 			 * Step 1, bring in the VM pages from the object,
3353 			 * allocating them if necessary.  We must clear
3354 			 * B_CACHE if these pages are not valid for the
3355 			 * range covered by the buffer.
3356 			 *
3357 			 * critical section protection is required to protect
3358 			 * against interrupts unbusying and freeing pages
3359 			 * between our vm_page_lookup() and our
3360 			 * busycheck/wiring call.
3361 			 */
3362 			vp = bp->b_vp;
3363 			obj = vp->v_object;
3364 
3365 			vm_object_hold(obj);
3366 			while (bp->b_xio.xio_npages < desiredpages) {
3367 				vm_page_t m;
3368 				vm_pindex_t pi;
3369 				int error;
3370 
3371 				pi = OFF_TO_IDX(bp->b_loffset) +
3372 				     bp->b_xio.xio_npages;
3373 
3374 				/*
3375 				 * Blocking on m->busy might lead to a
3376 				 * deadlock:
3377 				 *
3378 				 *  vm_fault->getpages->cluster_read->allocbuf
3379 				 */
3380 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3381 							    &error);
3382 				if (error) {
3383 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3384 					continue;
3385 				}
3386 				if (m == NULL) {
3387 					/*
3388 					 * note: must allocate system pages
3389 					 * since blocking here could intefere
3390 					 * with paging I/O, no matter which
3391 					 * process we are.
3392 					 */
3393 					m = bio_page_alloc(bp, obj, pi, desiredpages - bp->b_xio.xio_npages);
3394 					if (m) {
3395 						vm_page_wire(m);
3396 						vm_page_flag_clear(m, PG_ZERO);
3397 						vm_page_wakeup(m);
3398 						bp->b_flags &= ~B_CACHE;
3399 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3400 						++bp->b_xio.xio_npages;
3401 					}
3402 					continue;
3403 				}
3404 
3405 				/*
3406 				 * We found a page and were able to busy it.
3407 				 */
3408 				vm_page_flag_clear(m, PG_ZERO);
3409 				vm_page_wire(m);
3410 				vm_page_wakeup(m);
3411 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3412 				++bp->b_xio.xio_npages;
3413 				if (bp->b_act_count < m->act_count)
3414 					bp->b_act_count = m->act_count;
3415 			}
3416 			vm_object_drop(obj);
3417 
3418 			/*
3419 			 * Step 2.  We've loaded the pages into the buffer,
3420 			 * we have to figure out if we can still have B_CACHE
3421 			 * set.  Note that B_CACHE is set according to the
3422 			 * byte-granular range ( bcount and size ), not the
3423 			 * aligned range ( newbsize ).
3424 			 *
3425 			 * The VM test is against m->valid, which is DEV_BSIZE
3426 			 * aligned.  Needless to say, the validity of the data
3427 			 * needs to also be DEV_BSIZE aligned.  Note that this
3428 			 * fails with NFS if the server or some other client
3429 			 * extends the file's EOF.  If our buffer is resized,
3430 			 * B_CACHE may remain set! XXX
3431 			 */
3432 
3433 			toff = bp->b_bcount;
3434 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3435 
3436 			while ((bp->b_flags & B_CACHE) && toff < size) {
3437 				vm_pindex_t pi;
3438 
3439 				if (tinc > (size - toff))
3440 					tinc = size - toff;
3441 
3442 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3443 				    PAGE_SHIFT;
3444 
3445 				vfs_buf_test_cache(
3446 				    bp,
3447 				    bp->b_loffset,
3448 				    toff,
3449 				    tinc,
3450 				    bp->b_xio.xio_pages[pi]
3451 				);
3452 				toff += tinc;
3453 				tinc = PAGE_SIZE;
3454 			}
3455 
3456 			/*
3457 			 * Step 3, fixup the KVM pmap.  Remember that
3458 			 * bp->b_data is relative to bp->b_loffset, but
3459 			 * bp->b_loffset may be offset into the first page.
3460 			 */
3461 
3462 			bp->b_data = (caddr_t)
3463 			    trunc_page((vm_offset_t)bp->b_data);
3464 			pmap_qenter(
3465 			    (vm_offset_t)bp->b_data,
3466 			    bp->b_xio.xio_pages,
3467 			    bp->b_xio.xio_npages
3468 			);
3469 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3470 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3471 		}
3472 	}
3473 
3474 	/* adjust space use on already-dirty buffer */
3475 	if (bp->b_flags & B_DELWRI) {
3476 		spin_lock(&bufcspin);
3477 		/* dirtykvaspace unchanged */
3478 		dirtybufspace += newbsize - bp->b_bufsize;
3479 		if (bp->b_flags & B_HEAVY)
3480 			dirtybufspacehw += newbsize - bp->b_bufsize;
3481 		spin_unlock(&bufcspin);
3482 	}
3483 	if (newbsize < bp->b_bufsize)
3484 		bufspacewakeup();
3485 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3486 	bp->b_bcount = size;		/* requested buffer size	*/
3487 	return 1;
3488 }
3489 
3490 /*
3491  * biowait:
3492  *
3493  *	Wait for buffer I/O completion, returning error status. B_EINTR
3494  *	is converted into an EINTR error but not cleared (since a chain
3495  *	of biowait() calls may occur).
3496  *
3497  *	On return bpdone() will have been called but the buffer will remain
3498  *	locked and will not have been brelse()'d.
3499  *
3500  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3501  *	likely still in progress on return.
3502  *
3503  *	NOTE!  This operation is on a BIO, not a BUF.
3504  *
3505  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3506  *
3507  * MPSAFE
3508  */
3509 static __inline int
3510 _biowait(struct bio *bio, const char *wmesg, int to)
3511 {
3512 	struct buf *bp = bio->bio_buf;
3513 	u_int32_t flags;
3514 	u_int32_t nflags;
3515 	int error;
3516 
3517 	KKASSERT(bio == &bp->b_bio1);
3518 	for (;;) {
3519 		flags = bio->bio_flags;
3520 		if (flags & BIO_DONE)
3521 			break;
3522 		nflags = flags | BIO_WANT;
3523 		tsleep_interlock(bio, 0);
3524 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3525 			if (wmesg)
3526 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3527 			else if (bp->b_cmd == BUF_CMD_READ)
3528 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3529 			else
3530 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3531 			if (error) {
3532 				kprintf("tsleep error biowait %d\n", error);
3533 				return (error);
3534 			}
3535 		}
3536 	}
3537 
3538 	/*
3539 	 * Finish up.
3540 	 */
3541 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3542 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3543 	if (bp->b_flags & B_EINTR)
3544 		return (EINTR);
3545 	if (bp->b_flags & B_ERROR)
3546 		return (bp->b_error ? bp->b_error : EIO);
3547 	return (0);
3548 }
3549 
3550 int
3551 biowait(struct bio *bio, const char *wmesg)
3552 {
3553 	return(_biowait(bio, wmesg, 0));
3554 }
3555 
3556 int
3557 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3558 {
3559 	return(_biowait(bio, wmesg, to));
3560 }
3561 
3562 /*
3563  * This associates a tracking count with an I/O.  vn_strategy() and
3564  * dev_dstrategy() do this automatically but there are a few cases
3565  * where a vnode or device layer is bypassed when a block translation
3566  * is cached.  In such cases bio_start_transaction() may be called on
3567  * the bypassed layers so the system gets an I/O in progress indication
3568  * for those higher layers.
3569  */
3570 void
3571 bio_start_transaction(struct bio *bio, struct bio_track *track)
3572 {
3573 	bio->bio_track = track;
3574 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3575 		dsched_new_buf(bio->bio_buf);
3576 	bio_track_ref(track);
3577 }
3578 
3579 /*
3580  * Initiate I/O on a vnode.
3581  *
3582  * SWAPCACHE OPERATION:
3583  *
3584  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3585  *	devfs also uses b_vp for fake buffers so we also have to check
3586  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3587  *	underlying block device.  The swap assignments are related to the
3588  *	buffer cache buffer's b_vp, not the passed vp.
3589  *
3590  *	The passed vp == bp->b_vp only in the case where the strategy call
3591  *	is made on the vp itself for its own buffers (a regular file or
3592  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3593  *	after translating the request to an underlying device.
3594  *
3595  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3596  *	underlying buffer cache buffers.
3597  *
3598  *	We can only deal with page-aligned buffers at the moment, because
3599  *	we can't tell what the real dirty state for pages straddling a buffer
3600  *	are.
3601  *
3602  *	In order to call swap_pager_strategy() we must provide the VM object
3603  *	and base offset for the underlying buffer cache pages so it can find
3604  *	the swap blocks.
3605  */
3606 void
3607 vn_strategy(struct vnode *vp, struct bio *bio)
3608 {
3609 	struct bio_track *track;
3610 	struct buf *bp = bio->bio_buf;
3611 
3612 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3613 
3614 	/*
3615 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3616 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3617 	 * actually occurred.
3618 	 */
3619 	bp->b_flags |= B_IODEBUG;
3620 
3621 	/*
3622 	 * Handle the swap cache intercept.
3623 	 */
3624 	if (vn_cache_strategy(vp, bio))
3625 		return;
3626 
3627 	/*
3628 	 * Otherwise do the operation through the filesystem
3629 	 */
3630         if (bp->b_cmd == BUF_CMD_READ)
3631                 track = &vp->v_track_read;
3632         else
3633                 track = &vp->v_track_write;
3634 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3635 	bio->bio_track = track;
3636 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3637 		dsched_new_buf(bio->bio_buf);
3638 	bio_track_ref(track);
3639         vop_strategy(*vp->v_ops, vp, bio);
3640 }
3641 
3642 static void vn_cache_strategy_callback(struct bio *bio);
3643 
3644 int
3645 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3646 {
3647 	struct buf *bp = bio->bio_buf;
3648 	struct bio *nbio;
3649 	vm_object_t object;
3650 	vm_page_t m;
3651 	int i;
3652 
3653 	/*
3654 	 * Is this buffer cache buffer suitable for reading from
3655 	 * the swap cache?
3656 	 */
3657 	if (vm_swapcache_read_enable == 0 ||
3658 	    bp->b_cmd != BUF_CMD_READ ||
3659 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3660 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3661 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3662 	    (bp->b_bcount & PAGE_MASK) != 0) {
3663 		return(0);
3664 	}
3665 
3666 	/*
3667 	 * Figure out the original VM object (it will match the underlying
3668 	 * VM pages).  Note that swap cached data uses page indices relative
3669 	 * to that object, not relative to bio->bio_offset.
3670 	 */
3671 	if (bp->b_flags & B_CLUSTER)
3672 		object = vp->v_object;
3673 	else
3674 		object = bp->b_vp->v_object;
3675 
3676 	/*
3677 	 * In order to be able to use the swap cache all underlying VM
3678 	 * pages must be marked as such, and we can't have any bogus pages.
3679 	 */
3680 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3681 		m = bp->b_xio.xio_pages[i];
3682 		if ((m->flags & PG_SWAPPED) == 0)
3683 			break;
3684 		if (m == bogus_page)
3685 			break;
3686 	}
3687 
3688 	/*
3689 	 * If we are good then issue the I/O using swap_pager_strategy().
3690 	 *
3691 	 * We can only do this if the buffer actually supports object-backed
3692 	 * I/O.  If it doesn't npages will be 0.
3693 	 */
3694 	if (i && i == bp->b_xio.xio_npages) {
3695 		m = bp->b_xio.xio_pages[0];
3696 		nbio = push_bio(bio);
3697 		nbio->bio_done = vn_cache_strategy_callback;
3698 		nbio->bio_offset = ptoa(m->pindex);
3699 		KKASSERT(m->object == object);
3700 		swap_pager_strategy(object, nbio);
3701 		return(1);
3702 	}
3703 	return(0);
3704 }
3705 
3706 /*
3707  * This is a bit of a hack but since the vn_cache_strategy() function can
3708  * override a VFS's strategy function we must make sure that the bio, which
3709  * is probably bio2, doesn't leak an unexpected offset value back to the
3710  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3711  * bio went through its own file strategy function and the the bio2 offset
3712  * is a cached disk offset when, in fact, it isn't.
3713  */
3714 static void
3715 vn_cache_strategy_callback(struct bio *bio)
3716 {
3717 	bio->bio_offset = NOOFFSET;
3718 	biodone(pop_bio(bio));
3719 }
3720 
3721 /*
3722  * bpdone:
3723  *
3724  *	Finish I/O on a buffer after all BIOs have been processed.
3725  *	Called when the bio chain is exhausted or by biowait.  If called
3726  *	by biowait, elseit is typically 0.
3727  *
3728  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3729  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3730  *	assuming B_INVAL is clear.
3731  *
3732  *	For the VMIO case, we set B_CACHE if the op was a read and no
3733  *	read error occured, or if the op was a write.  B_CACHE is never
3734  *	set if the buffer is invalid or otherwise uncacheable.
3735  *
3736  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3737  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3738  *	in the biodone routine.
3739  */
3740 void
3741 bpdone(struct buf *bp, int elseit)
3742 {
3743 	buf_cmd_t cmd;
3744 
3745 	KASSERT(BUF_REFCNTNB(bp) > 0,
3746 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3747 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3748 		("biodone: bp %p already done!", bp));
3749 
3750 	/*
3751 	 * No more BIOs are left.  All completion functions have been dealt
3752 	 * with, now we clean up the buffer.
3753 	 */
3754 	cmd = bp->b_cmd;
3755 	bp->b_cmd = BUF_CMD_DONE;
3756 
3757 	/*
3758 	 * Only reads and writes are processed past this point.
3759 	 */
3760 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3761 		if (cmd == BUF_CMD_FREEBLKS)
3762 			bp->b_flags |= B_NOCACHE;
3763 		if (elseit)
3764 			brelse(bp);
3765 		return;
3766 	}
3767 
3768 	/*
3769 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3770 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3771 	 */
3772 	if (LIST_FIRST(&bp->b_dep) != NULL)
3773 		buf_complete(bp);	/* MPSAFE */
3774 
3775 	/*
3776 	 * A failed write must re-dirty the buffer unless B_INVAL
3777 	 * was set.  Only applicable to normal buffers (with VPs).
3778 	 * vinum buffers may not have a vp.
3779 	 */
3780 	if (cmd == BUF_CMD_WRITE &&
3781 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3782 		bp->b_flags &= ~B_NOCACHE;
3783 		if (bp->b_vp)
3784 			bdirty(bp);
3785 	}
3786 
3787 	if (bp->b_flags & B_VMIO) {
3788 		int i;
3789 		vm_ooffset_t foff;
3790 		vm_page_t m;
3791 		vm_object_t obj;
3792 		int iosize;
3793 		struct vnode *vp = bp->b_vp;
3794 
3795 		obj = vp->v_object;
3796 
3797 #if defined(VFS_BIO_DEBUG)
3798 		if (vp->v_auxrefs == 0)
3799 			panic("biodone: zero vnode hold count");
3800 		if ((vp->v_flag & VOBJBUF) == 0)
3801 			panic("biodone: vnode is not setup for merged cache");
3802 #endif
3803 
3804 		foff = bp->b_loffset;
3805 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3806 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3807 
3808 #if defined(VFS_BIO_DEBUG)
3809 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3810 			kprintf("biodone: paging in progress(%d) < "
3811 				"bp->b_xio.xio_npages(%d)\n",
3812 				obj->paging_in_progress,
3813 				bp->b_xio.xio_npages);
3814 		}
3815 #endif
3816 
3817 		/*
3818 		 * Set B_CACHE if the op was a normal read and no error
3819 		 * occured.  B_CACHE is set for writes in the b*write()
3820 		 * routines.
3821 		 */
3822 		iosize = bp->b_bcount - bp->b_resid;
3823 		if (cmd == BUF_CMD_READ &&
3824 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3825 			bp->b_flags |= B_CACHE;
3826 		}
3827 
3828 		vm_object_hold(obj);
3829 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3830 			int bogusflag = 0;
3831 			int resid;
3832 
3833 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3834 			if (resid > iosize)
3835 				resid = iosize;
3836 
3837 			/*
3838 			 * cleanup bogus pages, restoring the originals.  Since
3839 			 * the originals should still be wired, we don't have
3840 			 * to worry about interrupt/freeing races destroying
3841 			 * the VM object association.
3842 			 */
3843 			m = bp->b_xio.xio_pages[i];
3844 			if (m == bogus_page) {
3845 				bogusflag = 1;
3846 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3847 				if (m == NULL)
3848 					panic("biodone: page disappeared");
3849 				bp->b_xio.xio_pages[i] = m;
3850 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3851 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3852 			}
3853 #if defined(VFS_BIO_DEBUG)
3854 			if (OFF_TO_IDX(foff) != m->pindex) {
3855 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3856 					"mismatch\n",
3857 					(unsigned long)foff, (long)m->pindex);
3858 			}
3859 #endif
3860 
3861 			/*
3862 			 * In the write case, the valid and clean bits are
3863 			 * already changed correctly (see bdwrite()), so we
3864 			 * only need to do this here in the read case.
3865 			 */
3866 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3867 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3868 				vfs_clean_one_page(bp, i, m);
3869 			}
3870 			vm_page_flag_clear(m, PG_ZERO);
3871 
3872 			/*
3873 			 * when debugging new filesystems or buffer I/O
3874 			 * methods, this is the most common error that pops
3875 			 * up.  if you see this, you have not set the page
3876 			 * busy flag correctly!!!
3877 			 */
3878 			if (m->busy == 0) {
3879 				kprintf("biodone: page busy < 0, "
3880 				    "pindex: %d, foff: 0x(%x,%x), "
3881 				    "resid: %d, index: %d\n",
3882 				    (int) m->pindex, (int)(foff >> 32),
3883 						(int) foff & 0xffffffff, resid, i);
3884 				if (!vn_isdisk(vp, NULL))
3885 					kprintf(" iosize: %ld, loffset: %lld, "
3886 						"flags: 0x%08x, npages: %d\n",
3887 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3888 					    (long long)bp->b_loffset,
3889 					    bp->b_flags, bp->b_xio.xio_npages);
3890 				else
3891 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3892 					    (long long)bp->b_loffset,
3893 					    bp->b_flags, bp->b_xio.xio_npages);
3894 				kprintf(" valid: 0x%x, dirty: 0x%x, "
3895 					"wired: %d\n",
3896 					m->valid, m->dirty,
3897 					m->wire_count);
3898 				panic("biodone: page busy < 0");
3899 			}
3900 			vm_page_io_finish(m);
3901 			vm_page_wakeup(m);
3902 			vm_object_pip_wakeup(obj);
3903 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3904 			iosize -= resid;
3905 		}
3906 		bp->b_flags &= ~B_HASBOGUS;
3907 		vm_object_drop(obj);
3908 	}
3909 
3910 	/*
3911 	 * Finish up by releasing the buffer.  There are no more synchronous
3912 	 * or asynchronous completions, those were handled by bio_done
3913 	 * callbacks.
3914 	 */
3915 	if (elseit) {
3916 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3917 			brelse(bp);
3918 		else
3919 			bqrelse(bp);
3920 	}
3921 }
3922 
3923 /*
3924  * Normal biodone.
3925  */
3926 void
3927 biodone(struct bio *bio)
3928 {
3929 	struct buf *bp = bio->bio_buf;
3930 
3931 	runningbufwakeup(bp);
3932 
3933 	/*
3934 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3935 	 */
3936 	while (bio) {
3937 		biodone_t *done_func;
3938 		struct bio_track *track;
3939 
3940 		/*
3941 		 * BIO tracking.  Most but not all BIOs are tracked.
3942 		 */
3943 		if ((track = bio->bio_track) != NULL) {
3944 			bio_track_rel(track);
3945 			bio->bio_track = NULL;
3946 		}
3947 
3948 		/*
3949 		 * A bio_done function terminates the loop.  The function
3950 		 * will be responsible for any further chaining and/or
3951 		 * buffer management.
3952 		 *
3953 		 * WARNING!  The done function can deallocate the buffer!
3954 		 */
3955 		if ((done_func = bio->bio_done) != NULL) {
3956 			bio->bio_done = NULL;
3957 			done_func(bio);
3958 			return;
3959 		}
3960 		bio = bio->bio_prev;
3961 	}
3962 
3963 	/*
3964 	 * If we've run out of bio's do normal [a]synchronous completion.
3965 	 */
3966 	bpdone(bp, 1);
3967 }
3968 
3969 /*
3970  * Synchronous biodone - this terminates a synchronous BIO.
3971  *
3972  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3973  * but still locked.  The caller must brelse() the buffer after waiting
3974  * for completion.
3975  */
3976 void
3977 biodone_sync(struct bio *bio)
3978 {
3979 	struct buf *bp = bio->bio_buf;
3980 	int flags;
3981 	int nflags;
3982 
3983 	KKASSERT(bio == &bp->b_bio1);
3984 	bpdone(bp, 0);
3985 
3986 	for (;;) {
3987 		flags = bio->bio_flags;
3988 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3989 
3990 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3991 			if (flags & BIO_WANT)
3992 				wakeup(bio);
3993 			break;
3994 		}
3995 	}
3996 }
3997 
3998 /*
3999  * vfs_unbusy_pages:
4000  *
4001  *	This routine is called in lieu of iodone in the case of
4002  *	incomplete I/O.  This keeps the busy status for pages
4003  *	consistant.
4004  */
4005 void
4006 vfs_unbusy_pages(struct buf *bp)
4007 {
4008 	int i;
4009 
4010 	runningbufwakeup(bp);
4011 
4012 	if (bp->b_flags & B_VMIO) {
4013 		struct vnode *vp = bp->b_vp;
4014 		vm_object_t obj;
4015 
4016 		obj = vp->v_object;
4017 		vm_object_hold(obj);
4018 
4019 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4020 			vm_page_t m = bp->b_xio.xio_pages[i];
4021 
4022 			/*
4023 			 * When restoring bogus changes the original pages
4024 			 * should still be wired, so we are in no danger of
4025 			 * losing the object association and do not need
4026 			 * critical section protection particularly.
4027 			 */
4028 			if (m == bogus_page) {
4029 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4030 				if (!m) {
4031 					panic("vfs_unbusy_pages: page missing");
4032 				}
4033 				bp->b_xio.xio_pages[i] = m;
4034 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4035 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4036 			}
4037 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4038 			vm_page_flag_clear(m, PG_ZERO);
4039 			vm_page_io_finish(m);
4040 			vm_page_wakeup(m);
4041 			vm_object_pip_wakeup(obj);
4042 		}
4043 		bp->b_flags &= ~B_HASBOGUS;
4044 		vm_object_drop(obj);
4045 	}
4046 }
4047 
4048 /*
4049  * vfs_busy_pages:
4050  *
4051  *	This routine is called before a device strategy routine.
4052  *	It is used to tell the VM system that paging I/O is in
4053  *	progress, and treat the pages associated with the buffer
4054  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4055  *	flag is handled to make sure that the object doesn't become
4056  *	inconsistant.
4057  *
4058  *	Since I/O has not been initiated yet, certain buffer flags
4059  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4060  *	and should be ignored.
4061  *
4062  * MPSAFE
4063  */
4064 void
4065 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4066 {
4067 	int i, bogus;
4068 	struct lwp *lp = curthread->td_lwp;
4069 
4070 	/*
4071 	 * The buffer's I/O command must already be set.  If reading,
4072 	 * B_CACHE must be 0 (double check against callers only doing
4073 	 * I/O when B_CACHE is 0).
4074 	 */
4075 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4076 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4077 
4078 	if (bp->b_flags & B_VMIO) {
4079 		vm_object_t obj;
4080 
4081 		obj = vp->v_object;
4082 		KASSERT(bp->b_loffset != NOOFFSET,
4083 			("vfs_busy_pages: no buffer offset"));
4084 
4085 		/*
4086 		 * Busy all the pages.  We have to busy them all at once
4087 		 * to avoid deadlocks.
4088 		 */
4089 retry:
4090 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4091 			vm_page_t m = bp->b_xio.xio_pages[i];
4092 
4093 			if (vm_page_busy_try(m, FALSE)) {
4094 				vm_page_sleep_busy(m, FALSE, "vbpage");
4095 				while (--i >= 0)
4096 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4097 				goto retry;
4098 			}
4099 		}
4100 
4101 		/*
4102 		 * Setup for I/O, soft-busy the page right now because
4103 		 * the next loop may block.
4104 		 */
4105 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4106 			vm_page_t m = bp->b_xio.xio_pages[i];
4107 
4108 			vm_page_flag_clear(m, PG_ZERO);
4109 			if ((bp->b_flags & B_CLUSTER) == 0) {
4110 				vm_object_pip_add(obj, 1);
4111 				vm_page_io_start(m);
4112 			}
4113 		}
4114 
4115 		/*
4116 		 * Adjust protections for I/O and do bogus-page mapping.
4117 		 * Assume that vm_page_protect() can block (it can block
4118 		 * if VM_PROT_NONE, don't take any chances regardless).
4119 		 *
4120 		 * In particular note that for writes we must incorporate
4121 		 * page dirtyness from the VM system into the buffer's
4122 		 * dirty range.
4123 		 *
4124 		 * For reads we theoretically must incorporate page dirtyness
4125 		 * from the VM system to determine if the page needs bogus
4126 		 * replacement, but we shortcut the test by simply checking
4127 		 * that all m->valid bits are set, indicating that the page
4128 		 * is fully valid and does not need to be re-read.  For any
4129 		 * VM system dirtyness the page will also be fully valid
4130 		 * since it was mapped at one point.
4131 		 */
4132 		bogus = 0;
4133 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4134 			vm_page_t m = bp->b_xio.xio_pages[i];
4135 
4136 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4137 			if (bp->b_cmd == BUF_CMD_WRITE) {
4138 				/*
4139 				 * When readying a vnode-backed buffer for
4140 				 * a write we must zero-fill any invalid
4141 				 * portions of the backing VM pages, mark
4142 				 * it valid and clear related dirty bits.
4143 				 *
4144 				 * vfs_clean_one_page() incorporates any
4145 				 * VM dirtyness and updates the b_dirtyoff
4146 				 * range (after we've made the page RO).
4147 				 *
4148 				 * It is also expected that the pmap modified
4149 				 * bit has already been cleared by the
4150 				 * vm_page_protect().  We may not be able
4151 				 * to clear all dirty bits for a page if it
4152 				 * was also memory mapped (NFS).
4153 				 *
4154 				 * Finally be sure to unassign any swap-cache
4155 				 * backing store as it is now stale.
4156 				 */
4157 				vm_page_protect(m, VM_PROT_READ);
4158 				vfs_clean_one_page(bp, i, m);
4159 				swap_pager_unswapped(m);
4160 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4161 				/*
4162 				 * When readying a vnode-backed buffer for
4163 				 * read we must replace any dirty pages with
4164 				 * a bogus page so dirty data is not destroyed
4165 				 * when filling gaps.
4166 				 *
4167 				 * To avoid testing whether the page is
4168 				 * dirty we instead test that the page was
4169 				 * at some point mapped (m->valid fully
4170 				 * valid) with the understanding that
4171 				 * this also covers the dirty case.
4172 				 */
4173 				bp->b_xio.xio_pages[i] = bogus_page;
4174 				bp->b_flags |= B_HASBOGUS;
4175 				bogus++;
4176 			} else if (m->valid & m->dirty) {
4177 				/*
4178 				 * This case should not occur as partial
4179 				 * dirtyment can only happen if the buffer
4180 				 * is B_CACHE, and this code is not entered
4181 				 * if the buffer is B_CACHE.
4182 				 */
4183 				kprintf("Warning: vfs_busy_pages - page not "
4184 					"fully valid! loff=%jx bpf=%08x "
4185 					"idx=%d val=%02x dir=%02x\n",
4186 					(uintmax_t)bp->b_loffset, bp->b_flags,
4187 					i, m->valid, m->dirty);
4188 				vm_page_protect(m, VM_PROT_NONE);
4189 			} else {
4190 				/*
4191 				 * The page is not valid and can be made
4192 				 * part of the read.
4193 				 */
4194 				vm_page_protect(m, VM_PROT_NONE);
4195 			}
4196 			vm_page_wakeup(m);
4197 		}
4198 		if (bogus) {
4199 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4200 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4201 		}
4202 	}
4203 
4204 	/*
4205 	 * This is the easiest place to put the process accounting for the I/O
4206 	 * for now.
4207 	 */
4208 	if (lp != NULL) {
4209 		if (bp->b_cmd == BUF_CMD_READ)
4210 			lp->lwp_ru.ru_inblock++;
4211 		else
4212 			lp->lwp_ru.ru_oublock++;
4213 	}
4214 }
4215 
4216 /*
4217  * Tell the VM system that the pages associated with this buffer
4218  * are clean.  This is used for delayed writes where the data is
4219  * going to go to disk eventually without additional VM intevention.
4220  *
4221  * NOTE: While we only really need to clean through to b_bcount, we
4222  *	 just go ahead and clean through to b_bufsize.
4223  */
4224 static void
4225 vfs_clean_pages(struct buf *bp)
4226 {
4227 	vm_page_t m;
4228 	int i;
4229 
4230 	if ((bp->b_flags & B_VMIO) == 0)
4231 		return;
4232 
4233 	KASSERT(bp->b_loffset != NOOFFSET,
4234 		("vfs_clean_pages: no buffer offset"));
4235 
4236 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4237 		m = bp->b_xio.xio_pages[i];
4238 		vfs_clean_one_page(bp, i, m);
4239 	}
4240 }
4241 
4242 /*
4243  * vfs_clean_one_page:
4244  *
4245  *	Set the valid bits and clear the dirty bits in a page within a
4246  *	buffer.  The range is restricted to the buffer's size and the
4247  *	buffer's logical offset might index into the first page.
4248  *
4249  *	The caller has busied or soft-busied the page and it is not mapped,
4250  *	test and incorporate the dirty bits into b_dirtyoff/end before
4251  *	clearing them.  Note that we need to clear the pmap modified bits
4252  *	after determining the the page was dirty, vm_page_set_validclean()
4253  *	does not do it for us.
4254  *
4255  *	This routine is typically called after a read completes (dirty should
4256  *	be zero in that case as we are not called on bogus-replace pages),
4257  *	or before a write is initiated.
4258  */
4259 static void
4260 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4261 {
4262 	int bcount;
4263 	int xoff;
4264 	int soff;
4265 	int eoff;
4266 
4267 	/*
4268 	 * Calculate offset range within the page but relative to buffer's
4269 	 * loffset.  loffset might be offset into the first page.
4270 	 */
4271 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4272 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4273 
4274 	if (pageno == 0) {
4275 		soff = xoff;
4276 		eoff = PAGE_SIZE;
4277 	} else {
4278 		soff = (pageno << PAGE_SHIFT);
4279 		eoff = soff + PAGE_SIZE;
4280 	}
4281 	if (eoff > bcount)
4282 		eoff = bcount;
4283 	if (soff >= eoff)
4284 		return;
4285 
4286 	/*
4287 	 * Test dirty bits and adjust b_dirtyoff/end.
4288 	 *
4289 	 * If dirty pages are incorporated into the bp any prior
4290 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4291 	 * caller has not taken into account the new dirty data.
4292 	 *
4293 	 * If the page was memory mapped the dirty bits might go beyond the
4294 	 * end of the buffer, but we can't really make the assumption that
4295 	 * a file EOF straddles the buffer (even though this is the case for
4296 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4297 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4298 	 * This also saves some console spam.
4299 	 *
4300 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4301 	 * NFS can handle huge commits but not huge writes.
4302 	 */
4303 	vm_page_test_dirty(m);
4304 	if (m->dirty) {
4305 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4306 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4307 			if (debug_commit)
4308 				kprintf("Warning: vfs_clean_one_page: bp %p "
4309 				    "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4310 				    " cmd %d vd %02x/%02x x/s/e %d %d %d "
4311 				    "doff/end %d %d\n",
4312 				    bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4313 				    bp->b_flags, bp->b_cmd,
4314 				    m->valid, m->dirty, xoff, soff, eoff,
4315 				    bp->b_dirtyoff, bp->b_dirtyend);
4316 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4317 			if (debug_commit)
4318 				print_backtrace(-1);
4319 		}
4320 		/*
4321 		 * Only clear the pmap modified bits if ALL the dirty bits
4322 		 * are set, otherwise the system might mis-clear portions
4323 		 * of a page.
4324 		 */
4325 		if (m->dirty == VM_PAGE_BITS_ALL &&
4326 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4327 			pmap_clear_modify(m);
4328 		}
4329 		if (bp->b_dirtyoff > soff - xoff)
4330 			bp->b_dirtyoff = soff - xoff;
4331 		if (bp->b_dirtyend < eoff - xoff)
4332 			bp->b_dirtyend = eoff - xoff;
4333 	}
4334 
4335 	/*
4336 	 * Set related valid bits, clear related dirty bits.
4337 	 * Does not mess with the pmap modified bit.
4338 	 *
4339 	 * WARNING!  We cannot just clear all of m->dirty here as the
4340 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4341 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4342 	 *	     The putpages code can clear m->dirty to 0.
4343 	 *
4344 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4345 	 *	     covers the same space as mapped writable pages the
4346 	 *	     buffer flush might not be able to clear all the dirty
4347 	 *	     bits and still require a putpages from the VM system
4348 	 *	     to finish it off.
4349 	 *
4350 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4351 	 *	     is held.  The page might not be busied (bdwrite() case).
4352 	 *	     XXX remove this comment once we've validated that this
4353 	 *	     is no longer an issue.
4354 	 */
4355 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4356 }
4357 
4358 #if 0
4359 /*
4360  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4361  * The page data is assumed to be valid (there is no zeroing here).
4362  */
4363 static void
4364 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4365 {
4366 	int bcount;
4367 	int xoff;
4368 	int soff;
4369 	int eoff;
4370 
4371 	/*
4372 	 * Calculate offset range within the page but relative to buffer's
4373 	 * loffset.  loffset might be offset into the first page.
4374 	 */
4375 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4376 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4377 
4378 	if (pageno == 0) {
4379 		soff = xoff;
4380 		eoff = PAGE_SIZE;
4381 	} else {
4382 		soff = (pageno << PAGE_SHIFT);
4383 		eoff = soff + PAGE_SIZE;
4384 	}
4385 	if (eoff > bcount)
4386 		eoff = bcount;
4387 	if (soff >= eoff)
4388 		return;
4389 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4390 }
4391 #endif
4392 
4393 /*
4394  * vfs_bio_clrbuf:
4395  *
4396  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4397  *	to clear B_ERROR and B_INVAL.
4398  *
4399  *	Note that while we only theoretically need to clear through b_bcount,
4400  *	we go ahead and clear through b_bufsize.
4401  */
4402 
4403 void
4404 vfs_bio_clrbuf(struct buf *bp)
4405 {
4406 	int i, mask = 0;
4407 	caddr_t sa, ea;
4408 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4409 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4410 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4411 		    (bp->b_loffset & PAGE_MASK) == 0) {
4412 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4413 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4414 				bp->b_resid = 0;
4415 				return;
4416 			}
4417 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4418 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4419 				bzero(bp->b_data, bp->b_bufsize);
4420 				bp->b_xio.xio_pages[0]->valid |= mask;
4421 				bp->b_resid = 0;
4422 				return;
4423 			}
4424 		}
4425 		sa = bp->b_data;
4426 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4427 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4428 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4429 			ea = (caddr_t)(vm_offset_t)ulmin(
4430 			    (u_long)(vm_offset_t)ea,
4431 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4432 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4433 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4434 				continue;
4435 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4436 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4437 					bzero(sa, ea - sa);
4438 				}
4439 			} else {
4440 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4441 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4442 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4443 						bzero(sa, DEV_BSIZE);
4444 				}
4445 			}
4446 			bp->b_xio.xio_pages[i]->valid |= mask;
4447 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4448 		}
4449 		bp->b_resid = 0;
4450 	} else {
4451 		clrbuf(bp);
4452 	}
4453 }
4454 
4455 /*
4456  * vm_hold_load_pages:
4457  *
4458  *	Load pages into the buffer's address space.  The pages are
4459  *	allocated from the kernel object in order to reduce interference
4460  *	with the any VM paging I/O activity.  The range of loaded
4461  *	pages will be wired.
4462  *
4463  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4464  *	retrieve the full range (to - from) of pages.
4465  *
4466  * MPSAFE
4467  */
4468 void
4469 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4470 {
4471 	vm_offset_t pg;
4472 	vm_page_t p;
4473 	int index;
4474 
4475 	to = round_page(to);
4476 	from = round_page(from);
4477 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4478 
4479 	pg = from;
4480 	while (pg < to) {
4481 		/*
4482 		 * Note: must allocate system pages since blocking here
4483 		 * could intefere with paging I/O, no matter which
4484 		 * process we are.
4485 		 */
4486 		vm_object_hold(&kernel_object);
4487 		p = bio_page_alloc(bp, &kernel_object, pg >> PAGE_SHIFT,
4488 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4489 		vm_object_drop(&kernel_object);
4490 		if (p) {
4491 			vm_page_wire(p);
4492 			p->valid = VM_PAGE_BITS_ALL;
4493 			vm_page_flag_clear(p, PG_ZERO);
4494 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4495 			bp->b_xio.xio_pages[index] = p;
4496 			vm_page_wakeup(p);
4497 
4498 			pg += PAGE_SIZE;
4499 			++index;
4500 		}
4501 	}
4502 	bp->b_xio.xio_npages = index;
4503 }
4504 
4505 /*
4506  * Allocate a page for a buffer cache buffer.
4507  *
4508  * If NULL is returned the caller is expected to retry (typically check if
4509  * the page already exists on retry before trying to allocate one).
4510  *
4511  * NOTE! Low-memory handling is dealt with in b[q]relse(), not here.  This
4512  *	 function will use the system reserve with the hope that the page
4513  *	 allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4514  *	 is done with the buffer.
4515  *
4516  * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4517  *	 to TMPFS doesn't clean the page.  For TMPFS, only the pagedaemon
4518  *	 is capable of retiring pages (to swap).  For TMPFS we don't dig
4519  *	 into the system reserve because doing so could stall out pretty
4520  *	 much every process running on the system.
4521  */
4522 static
4523 vm_page_t
4524 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4525 {
4526 	int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4527 	vm_page_t p;
4528 
4529 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4530 
4531 	/*
4532 	 * Try a normal allocation first.
4533 	 */
4534 	p = vm_page_alloc(obj, pg, vmflags);
4535 	if (p)
4536 		return(p);
4537 	if (vm_page_lookup(obj, pg))
4538 		return(NULL);
4539 	vm_pageout_deficit += deficit;
4540 
4541 	/*
4542 	 * Try again, digging into the system reserve.
4543 	 *
4544 	 * Trying to recover pages from the buffer cache here can deadlock
4545 	 * against other threads trying to busy underlying pages so we
4546 	 * depend on the code in brelse() and bqrelse() to free/cache the
4547 	 * underlying buffer cache pages when memory is low.
4548 	 */
4549 	if (curthread->td_flags & TDF_SYSTHREAD)
4550 		vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4551 	else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4552 		vmflags |= 0;
4553 	else
4554 		vmflags |= VM_ALLOC_SYSTEM;
4555 
4556 	/*recoverbufpages();*/
4557 	p = vm_page_alloc(obj, pg, vmflags);
4558 	if (p)
4559 		return(p);
4560 	if (vm_page_lookup(obj, pg))
4561 		return(NULL);
4562 
4563 	/*
4564 	 * Wait for memory to free up and try again
4565 	 */
4566 	if (vm_page_count_severe())
4567 		++lowmempgallocs;
4568 	vm_wait(hz / 20 + 1);
4569 
4570 	p = vm_page_alloc(obj, pg, vmflags);
4571 	if (p)
4572 		return(p);
4573 	if (vm_page_lookup(obj, pg))
4574 		return(NULL);
4575 
4576 	/*
4577 	 * Ok, now we are really in trouble.
4578 	 */
4579 	{
4580 		static struct krate biokrate = { .freq = 1 };
4581 		krateprintf(&biokrate,
4582 			    "Warning: bio_page_alloc: memory exhausted "
4583 			    "during bufcache page allocation from %s\n",
4584 			    curthread->td_comm);
4585 	}
4586 	if (curthread->td_flags & TDF_SYSTHREAD)
4587 		vm_wait(hz / 20 + 1);
4588 	else
4589 		vm_wait(hz / 2 + 1);
4590 	return (NULL);
4591 }
4592 
4593 /*
4594  * vm_hold_free_pages:
4595  *
4596  *	Return pages associated with the buffer back to the VM system.
4597  *
4598  *	The range of pages underlying the buffer's address space will
4599  *	be unmapped and un-wired.
4600  *
4601  * MPSAFE
4602  */
4603 void
4604 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4605 {
4606 	vm_offset_t pg;
4607 	vm_page_t p;
4608 	int index, newnpages;
4609 
4610 	from = round_page(from);
4611 	to = round_page(to);
4612 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4613 	newnpages = index;
4614 
4615 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4616 		p = bp->b_xio.xio_pages[index];
4617 		if (p && (index < bp->b_xio.xio_npages)) {
4618 			if (p->busy) {
4619 				kprintf("vm_hold_free_pages: doffset: %lld, "
4620 					"loffset: %lld\n",
4621 					(long long)bp->b_bio2.bio_offset,
4622 					(long long)bp->b_loffset);
4623 			}
4624 			bp->b_xio.xio_pages[index] = NULL;
4625 			pmap_kremove(pg);
4626 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4627 			vm_page_unwire(p, 0);
4628 			vm_page_free(p);
4629 		}
4630 	}
4631 	bp->b_xio.xio_npages = newnpages;
4632 }
4633 
4634 /*
4635  * vmapbuf:
4636  *
4637  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4638  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4639  *	initialized.
4640  */
4641 int
4642 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4643 {
4644 	caddr_t addr;
4645 	vm_offset_t va;
4646 	vm_page_t m;
4647 	int vmprot;
4648 	int error;
4649 	int pidx;
4650 	int i;
4651 
4652 	/*
4653 	 * bp had better have a command and it better be a pbuf.
4654 	 */
4655 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4656 	KKASSERT(bp->b_flags & B_PAGING);
4657 	KKASSERT(bp->b_kvabase);
4658 
4659 	if (bytes < 0)
4660 		return (-1);
4661 
4662 	/*
4663 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4664 	 */
4665 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4666 	pidx = 0;
4667 
4668 	vmprot = VM_PROT_READ;
4669 	if (bp->b_cmd == BUF_CMD_READ)
4670 		vmprot |= VM_PROT_WRITE;
4671 
4672 	while (addr < udata + bytes) {
4673 		/*
4674 		 * Do the vm_fault if needed; do the copy-on-write thing
4675 		 * when reading stuff off device into memory.
4676 		 *
4677 		 * vm_fault_page*() returns a held VM page.
4678 		 */
4679 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4680 		va = trunc_page(va);
4681 
4682 		m = vm_fault_page_quick(va, vmprot, &error);
4683 		if (m == NULL) {
4684 			for (i = 0; i < pidx; ++i) {
4685 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4686 			    bp->b_xio.xio_pages[i] = NULL;
4687 			}
4688 			return(-1);
4689 		}
4690 		bp->b_xio.xio_pages[pidx] = m;
4691 		addr += PAGE_SIZE;
4692 		++pidx;
4693 	}
4694 
4695 	/*
4696 	 * Map the page array and set the buffer fields to point to
4697 	 * the mapped data buffer.
4698 	 */
4699 	if (pidx > btoc(MAXPHYS))
4700 		panic("vmapbuf: mapped more than MAXPHYS");
4701 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4702 
4703 	bp->b_xio.xio_npages = pidx;
4704 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4705 	bp->b_bcount = bytes;
4706 	bp->b_bufsize = bytes;
4707 	return(0);
4708 }
4709 
4710 /*
4711  * vunmapbuf:
4712  *
4713  *	Free the io map PTEs associated with this IO operation.
4714  *	We also invalidate the TLB entries and restore the original b_addr.
4715  */
4716 void
4717 vunmapbuf(struct buf *bp)
4718 {
4719 	int pidx;
4720 	int npages;
4721 
4722 	KKASSERT(bp->b_flags & B_PAGING);
4723 
4724 	npages = bp->b_xio.xio_npages;
4725 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4726 	for (pidx = 0; pidx < npages; ++pidx) {
4727 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4728 		bp->b_xio.xio_pages[pidx] = NULL;
4729 	}
4730 	bp->b_xio.xio_npages = 0;
4731 	bp->b_data = bp->b_kvabase;
4732 }
4733 
4734 /*
4735  * Scan all buffers in the system and issue the callback.
4736  */
4737 int
4738 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4739 {
4740 	int count = 0;
4741 	int error;
4742 	long n;
4743 
4744 	for (n = 0; n < nbuf; ++n) {
4745 		if ((error = callback(&buf[n], info)) < 0) {
4746 			count = error;
4747 			break;
4748 		}
4749 		count += error;
4750 	}
4751 	return (count);
4752 }
4753 
4754 /*
4755  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4756  * completion to the master buffer.
4757  */
4758 static void
4759 nestiobuf_iodone(struct bio *bio)
4760 {
4761 	struct bio *mbio;
4762 	struct buf *mbp, *bp;
4763 	struct devstat *stats;
4764 	int error;
4765 	int donebytes;
4766 
4767 	bp = bio->bio_buf;
4768 	mbio = bio->bio_caller_info1.ptr;
4769 	stats = bio->bio_caller_info2.ptr;
4770 	mbp = mbio->bio_buf;
4771 
4772 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4773 	KKASSERT(mbp != bp);
4774 
4775 	error = bp->b_error;
4776 	if (bp->b_error == 0 &&
4777 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4778 		/*
4779 		 * Not all got transfered, raise an error. We have no way to
4780 		 * propagate these conditions to mbp.
4781 		 */
4782 		error = EIO;
4783 	}
4784 
4785 	donebytes = bp->b_bufsize;
4786 
4787 	relpbuf(bp, NULL);
4788 
4789 	nestiobuf_done(mbio, donebytes, error, stats);
4790 }
4791 
4792 void
4793 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4794 {
4795 	struct buf *mbp;
4796 
4797 	mbp = mbio->bio_buf;
4798 
4799 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4800 
4801 	/*
4802 	 * If an error occured, propagate it to the master buffer.
4803 	 *
4804 	 * Several biodone()s may wind up running concurrently so
4805 	 * use an atomic op to adjust b_flags.
4806 	 */
4807 	if (error) {
4808 		mbp->b_error = error;
4809 		atomic_set_int(&mbp->b_flags, B_ERROR);
4810 	}
4811 
4812 	/*
4813 	 * Decrement the operations in progress counter and terminate the
4814 	 * I/O if this was the last bit.
4815 	 */
4816 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4817 		mbp->b_resid = 0;
4818 		if (stats)
4819 			devstat_end_transaction_buf(stats, mbp);
4820 		biodone(mbio);
4821 	}
4822 }
4823 
4824 /*
4825  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4826  * the mbio from being biodone()'d while we are still adding sub-bios to
4827  * it.
4828  */
4829 void
4830 nestiobuf_init(struct bio *bio)
4831 {
4832 	bio->bio_driver_info = (void *)1;
4833 }
4834 
4835 /*
4836  * The BIOs added to the nestedio have already been started, remove the
4837  * count that placeheld our mbio and biodone() it if the count would
4838  * transition to 0.
4839  */
4840 void
4841 nestiobuf_start(struct bio *mbio)
4842 {
4843 	struct buf *mbp = mbio->bio_buf;
4844 
4845 	/*
4846 	 * Decrement the operations in progress counter and terminate the
4847 	 * I/O if this was the last bit.
4848 	 */
4849 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4850 		if (mbp->b_flags & B_ERROR)
4851 			mbp->b_resid = mbp->b_bcount;
4852 		else
4853 			mbp->b_resid = 0;
4854 		biodone(mbio);
4855 	}
4856 }
4857 
4858 /*
4859  * Set an intermediate error prior to calling nestiobuf_start()
4860  */
4861 void
4862 nestiobuf_error(struct bio *mbio, int error)
4863 {
4864 	struct buf *mbp = mbio->bio_buf;
4865 
4866 	if (error) {
4867 		mbp->b_error = error;
4868 		atomic_set_int(&mbp->b_flags, B_ERROR);
4869 	}
4870 }
4871 
4872 /*
4873  * nestiobuf_add: setup a "nested" buffer.
4874  *
4875  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4876  * => 'bp' should be a buffer allocated by getiobuf.
4877  * => 'offset' is a byte offset in the master buffer.
4878  * => 'size' is a size in bytes of this nested buffer.
4879  */
4880 void
4881 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4882 {
4883 	struct buf *mbp = mbio->bio_buf;
4884 	struct vnode *vp = mbp->b_vp;
4885 
4886 	KKASSERT(mbp->b_bcount >= offset + size);
4887 
4888 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4889 
4890 	/* kernel needs to own the lock for it to be released in biodone */
4891 	BUF_KERNPROC(bp);
4892 	bp->b_vp = vp;
4893 	bp->b_cmd = mbp->b_cmd;
4894 	bp->b_bio1.bio_done = nestiobuf_iodone;
4895 	bp->b_data = (char *)mbp->b_data + offset;
4896 	bp->b_resid = bp->b_bcount = size;
4897 	bp->b_bufsize = bp->b_bcount;
4898 
4899 	bp->b_bio1.bio_track = NULL;
4900 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4901 	bp->b_bio1.bio_caller_info2.ptr = stats;
4902 }
4903 
4904 /*
4905  * print out statistics from the current status of the buffer pool
4906  * this can be toggeled by the system control option debug.syncprt
4907  */
4908 #ifdef DEBUG
4909 void
4910 vfs_bufstats(void)
4911 {
4912         int i, j, count;
4913         struct buf *bp;
4914         struct bqueues *dp;
4915         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4916         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4917 
4918         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4919                 count = 0;
4920                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4921                         counts[j] = 0;
4922 
4923 		spin_lock(&bufqspin);
4924                 TAILQ_FOREACH(bp, dp, b_freelist) {
4925 			if (bp->b_flags & B_MARKER)
4926 				continue;
4927                         counts[bp->b_bufsize/PAGE_SIZE]++;
4928                         count++;
4929                 }
4930 		spin_unlock(&bufqspin);
4931 
4932                 kprintf("%s: total-%d", bname[i], count);
4933                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4934                         if (counts[j] != 0)
4935                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4936                 kprintf("\n");
4937         }
4938 }
4939 #endif
4940 
4941 #ifdef DDB
4942 
4943 DB_SHOW_COMMAND(buffer, db_show_buffer)
4944 {
4945 	/* get args */
4946 	struct buf *bp = (struct buf *)addr;
4947 
4948 	if (!have_addr) {
4949 		db_printf("usage: show buffer <addr>\n");
4950 		return;
4951 	}
4952 
4953 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4954 	db_printf("b_cmd = %d\n", bp->b_cmd);
4955 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4956 		  "b_resid = %d\n, b_data = %p, "
4957 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4958 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4959 		  bp->b_data,
4960 		  (long long)bp->b_bio2.bio_offset,
4961 		  (long long)(bp->b_bio2.bio_next ?
4962 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4963 	if (bp->b_xio.xio_npages) {
4964 		int i;
4965 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4966 			bp->b_xio.xio_npages);
4967 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4968 			vm_page_t m;
4969 			m = bp->b_xio.xio_pages[i];
4970 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4971 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4972 			if ((i + 1) < bp->b_xio.xio_npages)
4973 				db_printf(",");
4974 		}
4975 		db_printf("\n");
4976 	}
4977 }
4978 #endif /* DDB */
4979